ADSP-21062KSZ-133 [ADI]

SHARC Processor; SHARC处理器
ADSP-21062KSZ-133
型号: ADSP-21062KSZ-133
厂家: ADI    ADI
描述:

SHARC Processor
SHARC处理器

微控制器和处理器 外围集成电路 数字信号处理器 装置 时钟
文件: 总64页 (文件大小:817K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SHARC Processor  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
SUMMARY  
KEY FEATURES—PROCESSOR CORE  
High performance signal processor for communications,  
graphics and imaging applications  
40 MIPS, 25 ns instruction rate, single-cycle instruction  
execution  
Super Harvard Architecture  
4 independent buses for dual data fetch, instruction fetch,  
and nonintrusive I/O  
120 MFLOPS peak, 80 MFLOPS sustained performance  
Dual data address generators with modulo and bit-reverse  
addressing)  
32-bit IEEE floating-point computation units—multiplier,  
ALU, and shifter  
Efficient program sequencing with zero-overhead looping:  
Single-cycle loop setup  
Dual-ported on-chip SRAM and integrated I/O peripherals—a  
complete system-on-a-chip  
IEEE JTAG Standard 1149.1 Test Access Port and on-chip  
emulation  
Integrated multiprocessing features  
240-lead thermally enhanced MQFP_PQ4 package, 225-ball  
plastic ball grid array (PBGA), 240-lead hermetic CQFP  
package  
32-bit single-precision and 40-bit extended-precision IEEE  
floating-point data formats or 32-bit fixed-point data  
format  
RoHS compliant packages  
CORE PROCESSOR  
DUAL-PORTED SRAM  
INSTRUCTION  
TIMER  
JTAG  
TWO INDEPENDENT  
DUAL-PORTED BLOCKS  
7
CACHE  
TEST AND  
EMULATION  
32 48-BIT  
PROCESSOR PORT  
ADDR DATA  
ADDR  
I/O PORT  
ADDR  
ADDR  
DATA  
DATA  
DATA  
DAG1  
DAG2  
PROGRAM  
SEQUENCER  
8 4 32 8 4 24  
EXTERNAL  
PORT  
IOD  
48  
IOA  
17  
24  
PM ADDRESS BUS  
32  
48  
ADDR BUS  
MUX  
DM ADDRESS BUS  
32  
MULTIPROCESSOR  
INTERFACE  
48  
40/32  
PM DATA BUS  
DM DATA BUS  
BUS  
CONNECT  
(PX)  
DATA BUS  
MUX  
HOST PORT  
S
DATA  
REGISTER  
FILE  
DMA  
CONTROLLER  
4
IOP  
REGISTERS  
(MEMORY  
MAPPED)  
6
SERIAL PORTS  
(2)  
BARREL  
SHIFTER  
16 40-BIT  
6
MULT  
ALU  
CONTROL,  
STATUS AND  
DATA BUFFERS  
36  
LINK PORTS  
(6)  
I/O PROCESSOR  
Figure 1. Functional Block Diagram  
SHARC and the SHARC logo are registered trademarks of Analog Devices, Inc.  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel : 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
HOST PROCESSOR INTERFACE TO 16- AND 32-BIT  
MICROPROCESSORS  
PROCESSOR FEATURES (Continued)  
The processor family provides a variety of features. For a com-  
parison across family members, see Table 1.  
Host can directly read/write ADSP-2106x internal memory  
and IOP registers  
PARALLEL COMPUTATIONS  
MULTIPROCESSING  
Single-cycle multiply and ALU operations in parallel with  
dual memory read/writes and instruction fetch  
Multiply with add and subtract for accelerated FFT butterfly  
computation  
Glueless connection for scalable DSP multiprocessing  
architecture  
Distributed on-chip bus arbitration for parallel bus connect  
of up to six ADSP-2106xs plus host  
6 link ports for point-to-point connectivity and array  
multiprocessing  
240 MBps transfer rate over parallel bus  
240 MBps transfer rate over link ports  
UP TO 4M BIT ON-CHIP SRAM  
Dual-ported for independent access by core processor and  
DMA  
OFF-CHIP MEMORY INTERFACING  
4 gigawords addressable  
SERIAL PORTS  
Programmable wait state generation, page-mode DRAM  
support  
Two 40 Mbps synchronous serial ports with companding  
hardware  
DMA CONTROLLER  
Independent transmit and receive functions  
10 DMA channels for transfers between ADSP-2106x internal  
memory and external memory, external peripherals, host  
processor, serial ports, or link ports  
Background DMA transfers at up to 40 MHz, in parallel with  
full-speed processor execution  
Table 1. ADSP-2106x SHARC Processor Family Features  
Feature  
ADSP-21060  
4M bits  
5 V  
ADSP-21062  
2M bits  
5 V  
ADSP-21060L  
4M bits  
ADSP-21062L  
2M bits  
ADSP-21060C  
4M bits  
ADSP-21060LC  
4M bits  
SRAM  
Operating  
Voltage  
3.3 V  
3.3 V  
5 V  
3.3 V  
Instruction 33 MHz  
33 MHz  
40 MHz  
33 MHz  
40 MHz  
33 MHz  
40 MHz  
33 MHz  
40 MHz  
33 MHz  
40 MHz  
Rate  
40 MHz  
Package  
MQFP_PQ4  
PBGA  
MQFP_PQ4  
PBGA  
MQFP_PQ4  
PBGA  
MQFP_PQ4  
PBGA  
CQFP  
CQFP  
Rev. F  
|
Page 2 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
CONTENTS  
Summary ............................................................... 1  
Key Features—Processor Core .................................... 1  
Processor Features (Continued) .................................. 2  
Parallel Computations .............................................. 2  
Up to 4M Bit On-Chip SRAM ..................................... 2  
Off-Chip Memory Interfacing ..................................... 2  
DMA Controller ...................................................... 2  
Host Processor Interface to 16- and 32-Bit Microprocessors 2  
Multiprocessing ....................................................... 2  
Serial Ports ............................................................. 2  
Contents ................................................................ 3  
Revision History ...................................................... 3  
General Description ................................................. 4  
SHARC Family Core Architecture ............................ 4  
Memory and I/O Interface Features ........................... 5  
Development Tools ............................................... 8  
Evaluation Kit ...................................................... 9  
Designing an Emulator-Compatible DSP Board (Target) 9  
Additional Information .......................................... 9  
Pin Function Descriptions ........................................ 10  
Target Board Connector for EZ-ICE Probe ................ 13  
ADSP-21060/ADSP-21062 Specifications ..................... 15  
Operating Conditions (5 V) ................................... 15  
Electrical Characteristics (5 V) ................................ 15  
Internal Power Dissipation (5 V) ............................. 16  
External Power Dissipation (5 V) ............................ 17  
ADSP-21060L/ADSP-21062L Specifications ................. 18  
Operating Conditions (3.3 V) ................................. 18  
Electrical Characteristics (3.3 V) ............................. 18  
Internal Power Dissipation (3.3 V) .......................... 19  
External Power Dissipation (3.3 V) .......................... 20  
Absolute Maximum Ratings ................................... 20  
ESD Caution ...................................................... 21  
Package Marking Information ................................ 21  
Timing Specifications ........................................... 21  
Test Conditions .................................................. 47  
Environmental Conditions .................................... 50  
225-Ball PBGA Ball Configurations ............................ 51  
240-Lead MQFP_PQ4/CQFP Pin Configurations ........... 53  
Outline Dimensions ................................................ 55  
Surface-Mount Design .......................................... 60  
Ordering Guide ..................................................... 61  
REVISION HISTORY  
3/08—Rev. E to Rev. F  
Revised Absolute Maximum Ratings ............................ 20  
Corrected model package descriptions.  
See Ordering Guide.................................................. 61  
Rev. F  
|
Page 3 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
GENERAL DESCRIPTION  
The ADSP-2106x SHARC®—Super Harvard Architecture Com-  
puter—is a 32-bit signal processing microcomputer that offers  
high levels of DSP performance. The ADSP-2106x builds on the  
ADSP-21000 DSP core to form a complete system-on-a-chip,  
adding a dual-ported on-chip SRAM and integrated I/O periph-  
erals supported by a dedicated I/O bus.  
• Serial ports and link ports  
• JTAG Test Access Port  
ADSP-2106x  
CS  
BMS  
CLKIN  
BOOT  
EPROM  
(OPTIONAL)  
1 ϫ CLOCK  
Fabricated in a high speed, low power CMOS process, the  
ADSP-2106x has a 25 ns instruction cycle time and operates at  
40 MIPS. With its on-chip instruction cache, the processor can  
execute every instruction in a single cycle. Table 2 shows perfor-  
mance benchmarks for the ADSP-2106x.  
ADDR  
DATA  
EBOOT  
LBOOT  
IRQ2–0  
3
4
ADDR31–0  
ADDR  
FLAG3–0  
MEMORY-  
MAPPED  
DEVICES  
DATA47–0  
DATA  
TIMEXP  
OE  
RD  
LINK  
DEVICES  
(6 MAX)  
(OPTIONAL)  
The ADSP-2106x SHARC represents a new standard of integra-  
tion for signal computers, combining a high performance  
floating-point DSP core with integrated, on-chip system fea-  
tures including up to 4M bit SRAM memory (see Table 1), a  
host processor interface, DMA controller, serial ports and link  
port, and parallel bus connectivity for glueless DSP  
multiprocessing.  
LxCLK  
WE  
ACK  
WR  
ACK  
(OPTIONAL)  
LxACK  
LxDAT3–0  
CS  
MS3–0  
TCLK0  
RCLK0  
TFS0  
RSF0  
DT0  
PAGE  
SERIAL  
DEVICE  
(OPTIONAL)  
DMA DEVICE  
(OPTIONAL)  
SBTS  
DATA  
ADRCLK  
DR0  
DMAR1–2  
DMAG1–2  
CS  
TCLK1  
RCLK1  
TFS1  
RSF1  
DT1  
Table 2. Benchmarks (at 40 MHz)  
SERIAL  
DEVICE  
(OPTIONAL)  
HOST  
HBR  
HBG  
PROCESSOR  
INTERFACE  
(OPTIONAL)  
Benchmark Algorithm  
Speed  
Cycles  
DR1  
REDY  
BR1–6  
PA  
1024 Point Complex FFT (Radix 4, with 0.46 s  
reversal)  
18,221  
RPBA  
ID2–0  
ADDR  
DATA  
RESET JTAG  
FIR Filter (per tap)  
IIR Filter (per biquad)  
Divide (y/x)  
25 ns  
1
4
6
9
6
100 ns  
150 ns  
Figure 2. ADSP-2106x System Sample Configuration  
Inverse Square Root  
DMA Transfer Rate  
225 ns  
240 Mbytes/s  
SHARC FAMILY CORE ARCHITECTURE  
The ADSP-2106x continues SHARC’s industry-leading stan-  
dards of integration for DSPs, combining a high performance  
32-bit DSP core with integrated, on-chip system features.  
The ADSP-2106x includes the following architectural features  
of the ADSP-21000 family core. The ADSP-2106x processors  
are code- and function-compatible with the ADSP-21020.  
The block diagram on Page 1 illustrates the following architec-  
tural features:  
Independent, Parallel Computation Units  
The arithmetic/logic unit (ALU), multiplier and shifter all per-  
form single-cycle instructions. The three units are arranged in  
parallel, maximizing computational throughput. Single multi-  
function instructions execute parallel ALU and multiplier oper-  
ations. These computation units support IEEE 32-bit single-  
precision floating-point, extended precision 40-bit floating-  
point, and 32-bit fixed-point data formats.  
• Computation units (ALU, multiplier and shifter) with a  
shared data register file  
• Data address generators (DAG1, DAG2)  
• Program sequencer with instruction cache  
• PM and DM buses capable of supporting four 32-bit data  
transfers between memory and the core at every core pro-  
cessor cycle  
Data Register File  
• Interval timer  
A general–purpose data register file is used for transferring data  
between the computation units and the data buses, and for stor-  
ing intermediate results. This 10-port, 32-register (16 primary,  
16 secondary) register file, combined with the ADSP-21000  
Harvard architecture, allows unconstrained data flow between  
computation units and internal memory.  
• On-chip SRAM  
• External port for interfacing to off-chip memory and  
peripherals  
• Host port and multiprocessor Interface  
• DMA controller  
Rev. F  
|
Page 4 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
On the ADSP-21060/ADSP-21060L, the memory can be config-  
ured as a maximum of 128k words of 32-bit data, 256k words of  
16-bit data, 80k words of 48-bit instructions (or 40-bit data), or  
combinations of different word sizes up to four megabits. All of  
the memory can be accessed as 16-bit, 32-bit or 48-bit words.  
Single-Cycle Fetch of Instruction and Two Operands  
The ADSP-2106x features an enhanced Harvard architecture in  
which the data memory (DM) bus transfers data and the pro-  
gram memory (PM) bus transfers both instructions and data  
(see Figure 1 on Page 1). With its separate program and data  
memory buses and on-chip instruction cache, the processor can  
simultaneously fetch two operands and an instruction (from the  
cache), all in a single cycle.  
A 16-bit floating-point storage format is supported, which effec-  
tively doubles the amount of data that can be stored on-chip.  
Conversion between the 32-bit floating-point and 16-bit float-  
ing-point formats is done in a single instruction.  
Instruction Cache  
While each memory block can store combinations of code and  
data, accesses are most efficient when one block stores data,  
using the DM bus for transfers, and the other block stores  
instructions and data, using the PM bus for transfers. Using the  
DM bus and PM bus in this way, with one dedicated to each  
memory block, assures single-cycle execution with two data  
transfers. In this case, the instruction must be available in the  
cache. Single-cycle execution is also maintained when one of the  
data operands is transferred to or from off-chip, via the  
ADSP-2106x’s external port.  
The ADSP-2106x includes an on-chip instruction cache that  
enables three-bus operation for fetching an instruction and two  
data values. The cache is selective—only the instructions whose  
fetches conflict with PM bus data accesses are cached. This  
allows full-speed execution of core, looped operations such as  
digital filter multiply-accumulates and FFT butterfly processing.  
Data Address Generators with Hardware Circular Buffers  
The ADSP-2106x’s two data address generators (DAGs) imple-  
ment circular data buffers in hardware. Circular buffers allow  
efficient programming of delay lines and other data structures  
required in digital signal processing, and are commonly used in  
digital filters and Fourier transforms. The two DAGs of the  
ADSP-2106x contain sufficient registers to allow the creation of  
up to 32 circular buffers (16 primary register sets, 16 secondary).  
The DAGs automatically handle address pointer wraparound,  
reducing overhead, increasing performance and simplifying  
implementation. Circular buffers can start and end at any mem-  
ory location.  
On-Chip Memory and Peripherals Interface  
The ADSP-2106x’s external port provides the processor’s inter-  
face to off-chip memory and peripherals. The 4-gigaword off-  
chip address space is included in the ADSP-2106x’s unified  
address space. The separate on-chip buses—for PM addresses,  
PM data, DM addresses, DM data, I/O addresses, and I/O  
data—are multiplexed at the external port to create an external  
system bus with a single 32-bit address bus and a single 48-bit  
(or 32-bit) data bus.  
Addressing of external memory devices is facilitated by on-chip  
decoding of high-order address lines to generate memory bank  
select signals. Separate control lines are also generated for sim-  
plified addressing of page-mode DRAM. The ADSP-2106x  
provides programmable memory wait states and external mem-  
ory acknowledge controls to allow interfacing to DRAM and  
peripherals with variable access, hold and disable time  
requirements.  
Flexible Instruction Set  
The 48-bit instruction word accommodates a variety of  
parallel operations, for concise programming. For example, the  
ADSP-2106x can conditionally execute a multiply, an add, a  
subtract and a branch, all in a single instruction.  
MEMORY AND I/O INTERFACE FEATURES  
The ADSP-2106x processors add the following architectural  
features to the SHARC family core.  
Host Processor Interface  
The ADSP-2106x’s host interface allows easy connection to  
standard microprocessor buses, both 16-bit and 32-bit, with lit-  
tle additional hardware required. Asynchronous transfers at  
speeds up to the full clock rate of the processor are supported.  
The host interface is accessed through the ADSP-2106x’s exter-  
nal port and is memory-mapped into the unified address space.  
Four channels of DMA are available for the host interface; code  
and data transfers are accomplished with low software  
overhead.  
Dual-Ported On-Chip Memory  
The ADSP-21062/ADSP-21062L contains two megabits of on-  
chip SRAM, and the ADSP-21060/ADSP-21060L contains  
4M bits of on-chip SRAM. The internal memory is organized as  
two equal sized blocks of 1M bit each for the ADSP-21062/  
ADSP-21062L and two equal sized blocks of 2M bits each for  
the ADSP-21060/ADSP-21060L. Each can be configured for dif-  
ferent combinations of code and data storage. Each memory  
block is dual-ported for single-cycle, independent accesses by  
the core processor and I/O processor or DMA controller. The  
dual-ported memory and separate on-chip buses allow two data  
transfers from the core and one from I/O, all in a single cycle.  
The host processor requests the ADSP-2106x’s external bus with  
the host bus request (HBR), host bus grant (HBG), and ready  
(REDY) signals. The host can directly read and write the inter-  
nal memory of the ADSP-2106x, and can access the DMA  
channel setup and mailbox registers. Vector interrupt support is  
provided for efficient execution of host commands.  
On the ADSP-21062/ADSP-21062L, the memory can be config-  
ured as a maximum of 64k words of 32-bit data, 128k words of  
16-bit data, 40k words of 48-bit instructions (or 40-bit data), or  
combinations of different word sizes up to two megabits. All of  
the memory can be accessed as 16-bit, 32-bit, or 48-bit words.  
Rev. F  
|
Page 5 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
ADSP-2106x #6  
ADSP-2106x #5  
ADSP-2106x #4  
ADSP-2106x #3  
ADDR31–0  
CLKIN  
DATA47–0  
RESET  
RPBA  
3
ID2–0  
CONTROL  
011  
5
BR1–2, BR4–6  
BR3  
ADSP-2106x #2  
ADDR31–0  
DATA47–0  
CLKIN  
RESET  
RPBA  
3
ID2–0  
CONTROL  
010  
CPA  
BR1, BR3–6  
BR2  
5
ADSP-2106x #1  
CLKIN  
RESET  
RPBA  
ADDR31–0  
DATA47–0  
ADDR  
DATA  
GLOBAL MEMORY  
AND  
PERIPHERAL (OPTIONAL)  
RDx  
WRx  
OE  
WE  
ACK  
CS  
3
ACK  
MS3–0  
ID2–0  
BMS  
PAGE  
CS  
001  
BOOT EPROM (OPTIONAL)  
ADDR  
SBTS  
DATA  
BUS  
PRIORITY  
CS  
HBR  
RESET  
CLOCK  
HBG  
HOST PROCESSOR  
INTERFACE (OPTIONAL)  
REDY  
ADDR  
DATA  
CPA  
BR2–6  
BR1  
5
Figure 3. Shared Memory Multiprocessing System  
Rev. F  
|
Page 6 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
control two DMA channels using DMA request/grant lines  
(DMAR1–2, DMAG1–2). Other DMA features include inter-  
rupt generation upon completion of DMA transfers and DMA  
chaining for automatic linked DMA transfers.  
DMA Controller  
The ADSP-2106x’s on-chip DMA controller allows zero-over-  
head data transfers without processor intervention. The DMA  
controller operates independently and invisibly to the processor  
core, allowing DMA operations to occur while the core is simul-  
taneously executing its program instructions.  
Multiprocessing  
The ADSP-2106x offers powerful features tailored to multipro-  
cessor DSP systems. The unified address space (see Figure 4)  
allows direct interprocessor accesses of each ADSP-2106x’s  
internal memory. Distributed bus arbitration logic is included  
on-chip for simple, glueless connection of systems containing  
up to six ADSP-2106xs and a host processor. Master processor  
changeover incurs only one cycle of overhead. Bus arbitration is  
selectable as either fixed or rotating priority. Bus lock allows  
indivisible read-modify-write sequences for semaphores. A vec-  
tor interrupt is provided for interprocessor commands. Maxi-  
mum throughput for interprocessor data transfer is  
240M bytes/s over the link ports or external port. Broadcast  
writes allow simultaneous transmission of data to all  
ADSP-2106xs and can be used to implement reflective  
semaphores.  
DMA transfers can occur between the ADSP-2106x’s internal  
memory and external memory, external peripherals, or a host  
processor. DMA transfers can also occur between the ADSP-  
2106x’s internal memory and its serial ports or link ports. DMA  
transfers between external memory and external peripheral  
devices are another option. External bus packing to 16-,  
32-, or 48-bit words is performed during DMA transfers.  
Ten channels of DMA are available on the ADSP-2106x—two  
via the link ports, four via the serial ports, and four via the  
processor’s external port (for either host processor, other  
ADSP-2106xs, memory, or I/O transfers). Four additional link  
port DMA channels are shared with Serial Port 1 and the exter-  
nal port. Programs can be downloaded to the ADSP-2106x  
using DMA transfers. Asynchronous off-chip peripherals can  
ADDRESS  
ADDRESS  
0x0000 0000  
0x0002 0000  
0x0040 0000  
MS0  
IOP REGISTERS  
INTERNAL  
MEMORY  
SPACE  
NORMAL WORD ADDRESSING  
(32-BIT DATA WORDS  
48-BIT INSTRUCTION WORDS)  
BANK 0  
0x0004 0000  
SDRAM  
(OPTIONAL)  
SHORT WORD ADDRESSING  
(16-BIT DATA WORDS)  
0x0008 0000  
0x0010 0000  
INTERNAL MEMORY SPACE  
WITH ID = 001  
BANK 1  
BANK 2  
BANK 3  
MS1  
MS2  
INTERNAL MEMORY SPACE  
WITH ID = 010  
0x0018 0000  
0x0012 0000  
EXTERNAL  
MEMORY  
SPACE  
INTERNAL MEMORY SPACE  
WITH ID = 011  
MULTIPROCESSOR  
MEMORY  
SPACE  
INTERNAL MEMORY SPACE  
WITH ID = 100  
0x0028 0000  
0x0030 0000  
0x0038 0000  
MS3  
INTERNAL MEMORY SPACE  
WITH ID = 101  
INTERNAL MEMORY SPACE  
WITH ID = 110  
BROADCAST WRITE  
TO ALL ADSP-21061s  
NONBANKED  
0x003F FFFF  
0x0FFF FFFF  
NOTE: BANK SIZES ARE SELECTED BY  
MSIZE BITS IN THE SYSCON REGISTER  
Figure 4. Memory Map  
Rev. F  
|
Page 7 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
the real-time characteristics of the program. Essentially, the  
developer can identify bottlenecks in software quickly and effi-  
ciently. By using the profiler, the programmer can focus on  
those areas in the program that impact performance and take  
corrective action.  
Link Ports  
The ADSP-2106x features six 4-bit link ports that provide addi-  
tional I/O capabilities. The link ports can be clocked twice per  
cycle, allowing each to transfer eight bits of data per cycle. Link-  
port I/O is especially useful for point-to-point interprocessor  
communication in multiprocessing systems.  
Debugging both C/C++ and assembly programs with the  
VisualDSP++ debugger, programmers can:  
The link ports can operate independently and simultaneously,  
with a maximum data throughput of 240M bytes/s. Link port  
data is packed into 32- or 48-bit words, and can be directly read  
by the core processor or DMA-transferred to on-chip memory.  
• View mixed C/C++ and assembly code (interleaved source  
and object information)  
• Insert breakpoints  
Each link port has its own double-buffered input and output  
registers. Clock/acknowledge handshaking controls link port  
transfers. Transfers are programmable as either transmit or  
receive.  
• Set conditional breakpoints on registers, memory, and  
stacks  
• Trace instruction execution  
• Perform linear or statistical profiling of program execution  
• Fill, dump, and graphically plot the contents of memory  
• Perform source level debugging  
Program Booting  
The internal memory of the ADSP-2106x can be booted at sys-  
tem power-up from an 8-bit EPROM, a host processor, or  
through one of the link ports. Selection of the boot source is  
controlled by the BMS (boot memory select), EBOOT (EPROM  
Boot), and LBOOT (link/host boot) pins. 32-bit and 16-bit host  
processors can be used for booting. The processor also sup-  
ports a no-boot mode in which instruction execution is sourced  
from the external memory.  
• Create custom debugger windows  
The VisualDSP++ IDDE lets programmers define and manage  
DSP software development. Its dialog boxes and property pages  
let programmers configure and manage all of the ADSP-2106x  
development tools, including the color syntax highlighting in  
the VisualDSP++ editor. This capability permits:  
DEVELOPMENT TOOLS  
• Control in how the development tools process inputs and  
generate outputs  
The ADSP-2106x is supported by a complete set of  
CROSSCORE®software development tools, including Analog  
Devices emulators and VisualDSP++®development environ-  
ment. The same emulator hardware that supports other SHARC  
processors also fully emulates the ADSP-2106x.  
• Maintenance of a one-to-one correspondence with the  
tools’ command line switches  
The VisualDSP++ kernel (VDK) incorporates scheduling and  
resource management tailored specifically to address the mem-  
ory and timing constraints of DSP programming. These  
capabilities enable engineers to develop code more effectively,  
eliminating the need to start from the very beginning when  
developing new application code. The VDK features include  
threads, critical and unscheduled regions, semaphores, events,  
and device flags. The VDK also supports priority-based, pre-  
emptive, cooperative, and time-sliced scheduling approaches. In  
addition, the VDK was designed to be scalable. If the application  
does not use a specific feature, the support code for that feature  
is excluded from the target system.  
The VisualDSP++ project management environment lets pro-  
grammers develop and debug an application. This environment  
includes an easy to use assembler (which is based on an alge-  
braic syntax), an archiver (librarian/library builder), a linker, a  
loader, a cycle-accurate instruction-level simulator, a C/C++  
compiler, and a C/C++ runtime library that includes DSP and  
mathematical functions. A key point for these tools is C/C++  
code efficiency. The compiler has been developed for efficient  
translation of C/C++ code to DSP assembly. The ADSP-2106x  
SHARC DSP has architectural features that improve the effi-  
ciency of compiled C/C++ code.  
Because the VDK is a library, a developer can decide whether to  
use it or not. The VDK is integrated into the VisualDSP++  
development environment, but can also be used via standard  
command line tools. When the VDK is used, the development  
environment assists the developer with many error-prone tasks  
and assists in managing system resources, automating the gen-  
eration of various VDK-based objects, and visualizing the  
system state, when debugging an application that uses the VDK.  
The VisualDSP++ debugger has a number of important fea-  
tures. Data visualization is enhanced by a plotting package that  
offers a significant level of flexibility. This graphical representa-  
tion of user data enables the programmer to quickly determine  
the performance of an algorithm. As algorithms grow in com-  
plexity, this capability can have increasing significance on the  
designer’s development schedule, increasing productivity. Sta-  
tistical profiling enables the programmer to nonintrusively poll  
the processor as it is running the program. This feature, unique  
to VisualDSP++, enables the software developer to passively  
gather important code execution metrics without interrupting  
Use the expert linker to visually manipulate the placement of  
code and data on the embedded system. View memory utiliza-  
tion in a color-coded graphical form, easily move code and data  
to different areas of the DSP or external memory with a drag of  
the mouse, and examine run-time stack and heap usage. The  
CROSSCORE is a registered trademark of Analog Devices, Inc.  
VisualDSP++ is a registered trademark of Analog Devices, Inc.  
Rev. F  
|
Page 8 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
expert linker is fully compatible with existing linker definition  
file (LDF), allowing the developer to move between the graphi-  
cal and textual environments.  
Reference on the Analog Devices website (www.analog.com)—  
use site search on “EE-68.” This document is updated regularly  
to keep pace with improvements to emulator support.  
In addition to the software development tools available from  
Analog Devices, third parties provide a wide range of tools sup-  
porting the SHARC processor family. Third party software tools  
include DSP libraries, real-time operating systems, and block  
diagram design tools.  
ADDITIONAL INFORMATION  
This data sheet provides a general overview of the ADSP-2106x  
architecture and functionality. For detailed information on the  
ADSP-21000 family core architecture and instruction set, refer  
to the ADSP-2106x SHARC User’s Manual, Revision 2.1.  
EVALUATION KIT  
Analog Devices offers a range of EZ-KIT Lite®evaluation plat-  
forms to use as a cost-effective method to learn more about  
developing or prototyping applications with Analog Devices  
processors, platforms, and software tools. Each EZ-KIT Lite  
includes an evaluation board along with an evaluation suite of  
the VisualDSP++ development and debugging environment  
with the C/C++ compiler, assembler, and linker. Also included  
are sample application programs, power supply, and a USB  
cable. All evaluation versions of the software tools are limited  
for use only with the EZ-KIT Lite product.  
The USB controller on the EZ-KIT Lite board connects the  
board to the USB port of the user’s PC, enabling the  
VisualDSP++ evaluation suite to emulate the on-board proces-  
sor in-circuit. This permits the customer to download, execute,  
and debug programs for the EZ-KIT Lite system. It also allows  
in-circuit programming of the on-board flash device to store  
user-specific boot code, enabling the board to run as a standal-  
one unit, without being connected to the PC.  
With a full version of VisualDSP++ installed (sold separately),  
engineers can develop software for the EZ-KIT Lite or any cus-  
tom-defined system. Connecting an Analog Devices JTAG  
emulator to the EZ-KIT Lite board enables high speed, nonin-  
trusive emulation.  
DESIGNING AN EMULATOR-COMPATIBLE DSP  
BOARD (TARGET)  
The Analog Devices family of emulators are tools that every  
DSP developer needs to test and debug hardware and software  
systems. Analog Devices has supplied an IEEE 1149.1 JTAG test  
access port (TAP) on each JTAG DSP. Nonintrusive in-circuit  
emulation is assured by the use of the processor’s JTAG inter-  
face—the emulator does not affect target system loading or tim-  
ing. The emulator uses the TAP to access the internal features of  
the DSP, allowing the developer to load code, set breakpoints,  
observe variables, observe memory, and examine registers. The  
DSP must be halted to send data and commands, but once an  
operation has been completed by the emulator, the DSP system  
is set running at full speed with no impact on system timing.  
To use these emulators, the target board must include a header  
that connects the DSP’s JTAG port to the emulator.  
For details on target board design issues including mechanical  
layout, single processor connections, multiprocessor scan  
chains, signal buffering, signal termination, and emulator pod  
logic, see the EE-68: Analog Devices JTAG Emulation Technical  
EZ-KIT Lite is a registered trademark of Analog Devices, Inc.  
Rev. F  
|
Page 9 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
PIN FUNCTION DESCRIPTIONS  
The ADSP-2106x pin definitions are listed below. Inputs identi-  
fied as synchronous (S) must meet timing requirements with  
respect to CLKIN (or with respect to TCK for TMS, TDI).  
Inputs identified as asynchronous (A) can be asserted asynchro-  
nously to CLKIN (or to TCK for TRST).  
Unused inputs should be tied or pulled to VDD or GND, except  
for ADDR31–0, DATA47–0, FLAG3–0, and inputs that have  
internal pull-up or pull-down resistors (CPA, ACK, DTx, DRx,  
TCLKx, RCLKx, LxDAT3–0, LxCLK, LxACK, TMS, and  
TDI)—these pins can be left floating. These pins have a  
logic-level hold circuit that prevents the input from floating  
internally.  
Table 3. Pin Descriptions  
Pin  
Type  
Function  
ADDR31–0  
I/O/T  
External Bus Address. The ADSP-2106x outputs addresses for external memory and peripherals on these  
pins. In a multiprocessor system, the bus master outputs addresses for read/write of the internal memory  
or IOP registers of other ADSP-2106xs. The ADSP-2106x inputs addresses when a host processor or multi-  
processing bus master is reading or writing its internal memory or IOP registers.  
DATA47–0  
MS3–0  
I/O/T  
O/T  
External Bus Data. The ADSP-2106x inputs and outputs data and instructions on these pins. 32-bit single-  
precision floating-point data and 32-bit fixed-point data is transferred over bits 47–16 of the bus. 40-bit  
extended-precision floating-point data is transferred over bits 47–8 of the bus. 16-bit short word data is  
transferred over bits 31–16 of the bus. In PROM boot mode, 8-bit data is transferred over bits 23–16. Pull-up  
resistors on unused DATA pins are not necessary.  
Memory Select Lines. These lines are asserted (low) as chip selects for the corresponding banks of external  
memory. Memory bank size must be defined in the ADSP-2106x’s system control register (SYSCON). The  
MS3–0 lines are decoded memory address lines that change at the same time as the other address lines.  
When no external memory access is occurring, the MS3–0 lines are inactive; they are active however when  
a conditional memory access instruction is executed, whether or not the condition is true. MS0 can be used  
with the PAGE signal to implement a bank of DRAM memory (Bank 0). In a multiprocessing system the MS3–0  
lines are output by the bus master.  
RD  
I/O/T  
I/O/T  
O/T  
Memory Read Strobe. This pin is asserted (low) when the ADSP-2106x reads from external memory devices  
or from the internal memory of other ADSP-2106xs. External devices (including other ADSP-2106xs) must  
assert RD to read from the ADSP-2106x’s internal memory. In a multiprocessing system, RD is output by the  
bus master and is input by all other ADSP-2106xs.  
WR  
Memory Write Strobe. This pin is asserted (low) when the ADSP-2106x writes to external memory devices  
or to the internal memory of other ADSP-2106xs. External devices must assert WR to write to the ADSP-  
2106x’s internal memory. In a multiprocessing system, WR is output by the bus master and is input by all  
other ADSP-2106xs.  
PAGE  
DRAM Page Boundary. The ADSP-2106x asserts this pin to signal that an external DRAM page boundary  
has been crossed. DRAM page size must be defined in the ADSP-2106x’s memory control register (WAIT).  
DRAM can only be implemented in external memory Bank 0; the PAGE signal can only be activated for Bank  
0 accesses. In a multiprocessing system, PAGE is output by the bus master  
ADRCLK  
SW  
O/T  
Clock Output Reference. In a multiprocessing system, ADRCLK is output by the bus master.  
I/O/T  
Synchronous Write Select. This signal is used to interface the ADSP-2106x to synchronous memory devices  
(including other ADSP-2106xs). The ADSP-2106x asserts SW (low) to provide an early indication of an  
impending write cycle, which can be aborted if WR is not later asserted (e.g., in a conditional write  
instruction). In a multiprocessing system, SW is output by the bus master and is input by all other  
ADSP-2106xs to determine if the multiprocessor memory access is a read or write. SW is asserted at the same  
time as the address output. A host processor using synchronous writes must assert this pin when writing to  
the ADSP-2106x(s).  
A = Asynchronous, G = Ground, I = Input, O = Output, P = Power Supply, S = Synchronous, (A/D) = Active Drive, (O/D) = Open Drain,  
T = Three-State (when SBTS is asserted, or when the ADSP-2106x is a bus slave)  
Rev. F  
|
Page 10 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
Table 3. Pin Descriptions (Continued)  
Pin  
Type  
Function  
ACK  
I/O/S  
Memory Acknowledge. External devices can deassert ACK (low) to add wait states to an external memory  
access. ACK is used by I/O devices, memory controllers, or other peripherals to hold off completion of an  
external memory access. The ADSP-2106x deasserts ACK as an output to add waitstates to a synchronous  
access of its internal memory. In a multiprocessing system, a slave ADSP-2106x deasserts the bus master’s  
ACK input to add wait state(s) to an access of its internal memory. The bus master has a keeper latch on its  
ACK pin that maintains the input at the level to which it was last driven.  
SBTS  
I/S  
Suspend Bus Three-State. External devices can assert SBTS (low) to place the external bus address, data,  
selects, and strobes in a high impedance state for the following cycle. If the ADSP-2106x attempts to access  
externalmemorywhileSBTSisasserted, theprocessorwillhaltandthememoryaccesswillnotbecompleted  
until SBTS is deasserted. SBTS should only be used to recover from host processor/ADSP-2106x deadlock,  
or used with a DRAM controller.  
IRQ2–0  
I/A  
Interrupt Request Lines. May be either edge-triggered or level-sensitive.  
FLAG3–0  
I/O/A  
Flag Pins. Each is configured via control bits as either an input or output. As an input, they can be tested as  
a condition. As an output, they can be used to signal external peripherals.  
TIMEXP  
HBR  
O
Timer Expired. Asserted for four cycles when the timer is enabled and TCOUNT decrements to zero.  
I/A  
Host Bus Request. This pin must be asserted by a host processor to request control of the ADSP-2106x’s  
external bus. When HBR is asserted in a multiprocessing system, the ADSP-2106x that is bus master will  
relinquish the bus and assert HBG. To relinquish the bus, the ADSP-2106x places the address, data, select  
and strobe lines in a high impedance state. HBR has priority over all ADSP-2106x bus requests BR6–1 in a  
multiprocessing system.  
HBG  
I/O  
Host Bus Grant. Acknowledges a bus request, indicating that the host processor may take control of the  
externalbus. HBGisasserted(heldlow)bytheADSP-2106xuntilHBRisreleased. Inamultiprocessingsystem,  
HBG is output by the ADSP-2106x bus master and is monitored by all others.  
CS  
I/A  
Chip Select. Asserted by host processor to select the ADSP-2106x.  
REDY  
O (O/D)  
HostBusAcknowledge. TheADSP-2106xdeassertsREDY(low)toaddwaitstatestoanasynchronousaccess  
of its internal memory or IOP registers by a host. This pin is an open-drain output (O/D) by default; it can be  
programmed in the ADREDY bit of the SYSCON register to be active drive (A/D). REDY will only be output if  
the CS and HBR inputs are asserted.  
DMAR2–1  
DMAG2–1  
BR6–1  
I/A  
DMA Request 1 (DMA Channel 7) and DMA Request 2 (DMA Channel 8).  
DMA Grant 1 (DMA Channel 7) and DMA Grant 2 (DMA Channel 8).  
O/T  
I/O/S  
Multiprocessing Bus Requests. Used by multiprocessing ADSP-2106xs to arbitrate for bus master-ship. An  
ADSP-2106x only drives its own BRx line (corresponding to the value of its ID2-0 inputs) and monitors all  
others. In a multiprocessor system with less than six ADSP-2106xs, the unused BRx pins should be pulled  
high; the processor’s own BRx line must not be pulled high or low because it is an output.  
ID2–0  
RPBA  
O (O/D)  
I/S  
Multiprocessing ID. Determines which multiprocessing bus request (BR1– BR6) is used by ADSP-2106x.  
ID = 001 corresponds to BR1, ID = 010 corresponds to BR2, etc. ID = 000 in single-processor systems. These  
lines are a system configuration selection that should be hardwired or changed at reset only.  
Rotating Priority Bus Arbitration Select. When RPBA is high, rotating priority for multiprocessor bus  
arbitration is selected. When RPBA is low, fixed priority is selected. This signal is a system configuration  
selection that must be set to the same value on every ADSP-2106x. If the value of RPBA is changed during  
system operation, it must be changed in the same CLKIN cycle on every ADSP-2106x.  
CPA  
I/O (O/D)  
Core Priority Access. Asserting its CPA pin allows the core processor ofan ADSP-2106x bus slave to interrupt  
backgroundDMAtransfersandgainaccesstotheexternalbus. CPAisanopendrainoutputthatisconnected  
to all ADSP-2106xs in the system. The CPA pin has an internal 5 kpull-up resistor. If core access priority is  
not required in a system, the CPA pin should be left unconnected.  
DTx  
O
Data Transmit (Serial Ports 0, 1). Each DT pin has a 50 kinternal pull-up resistor.  
Data Receive (Serial Ports 0, 1). Each DR pin has a 50 kinternal pull-up resistor.  
Transmit Clock (Serial Ports 0, 1). Each TCLK pin has a 50 kinternal pull-up resistor.  
Receive Clock (Serial Ports 0, 1). Each RCLK pin has a 50 kinternal pull-up resistor.  
DRx  
I
TCLKx  
RCLKx  
I/O  
I/O  
A = Asynchronous, G = Ground, I = Input, O = Output, P = Power Supply, S = Synchronous, (A/D) = Active Drive, (O/D) = Open Drain,  
T = Three-State (when SBTS is asserted, or when the ADSP-2106x is a bus slave)  
Rev. F  
|
Page 11 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
Table 3. Pin Descriptions (Continued)  
Pin  
Type  
I/O  
Function  
TFSx  
Transmit Frame Sync (Serial Ports 0, 1).  
Receive Frame Sync (Serial Ports 0, 1).  
RFSx  
I/O  
LxDAT3–0  
I/O  
Link Port Data (Link Ports 0–5). Each LxDAT pin has a 50 kinternal pull-down resistor that is enabled or  
disabled by the LPDRD bit of the LCOM register.  
LxCLK  
LxACK  
EBOOT  
I/O  
I/O  
I
Link Port Clock (Link Ports 0–5). Each LxCLK pin has a 50 kinternal pull-down resistor that is enabled or  
disabled by the LPDRD bit of the LCOM register.  
Link Port Acknowledge (Link Ports 0–5). Each LxACK pin has a 50 kinternal pull-down resistor that is  
enabled or disabled by the LPDRD bit of the LCOM register.  
EPROM Boot Select. When EBOOT is high, the ADSP-2106x is configured for booting from an 8-bit EPROM.  
When EBOOT is low, the LBOOT and BMS inputs determine booting mode. See the table in the BMS pin  
description below. This signal is a system configuration selection that should be hardwired.  
LBOOT  
BMS  
I
Link Boot. When LBOOT is high, the ADSP-2106x is configured for link port booting. When LBOOT is low,  
the ADSP-2106x is configured for host processor booting or no booting. See the table in the BMS pin  
description below. This signal is a system configuration selection that should be hardwired.  
I/OT  
Boot Memory Select. Output: Used as chip select for boot EPROM devices (when EBOOT = 1, LBOOT = 0).  
In a multiprocessor system, BMS is output by the bus master. Input: When low, indicates that no booting will  
occur and that ADSP-2106x will begin executing instructions from external memory. See table below. This  
input is a system configuration selection that should be hardwired. *Three-statable only in EPROM boot  
mode (when BMS is an output).  
EBOOT  
LBOOT  
BMS  
Booting Mode  
1
0
0
0
0
1
0
0
1
0
1
1
Output  
1 (Input)  
1 (Input)  
0 (Input)  
0 (Input)  
x (Input)  
EPROM (Connect BMS to EPROM chip select.)  
Host Processor  
Link Port  
No Booting. Processor executes from external memory.  
Reserved  
Reserved  
CLKIN  
RESET  
I
Clock In. External clock input to the ADSP-2106x. The instruction cycle rate is equal to CLKIN. CLKIN should  
not be halted, changed, or operated below the minimum specified frequency.  
I/A  
Processor Reset. Resets the ADSP-2106x to a known state and begins program execution at the program  
memory location specified by the hardware reset vector address. This input must be asserted (low) at  
power-up.  
TCK  
TMS  
TDI  
I
Test Clock (JTAG). Provides an asynchronous clock for JTAG boundary scan.  
I/S  
I/S  
Test Mode Select (JTAG). Used to control the test state machine. TMS has a 20 kinternal pull-up resistor.  
Test Data Input (JTAG). Provides serial data for the boundary scan logic. TDI has a 20 kinternal pull-up  
resistor.  
TDO  
TRST  
O
Test Data Output (JTAG). Serial scan output of the boundary scan path.  
I/A  
Test Reset (JTAG). Resets the test state machine. TRST must be asserted (pulsed low) after power-up or held  
low for proper operation of the ADSP-2106x. TRST has a 20 kinternal pull-up resistor.  
EMU  
ICSA  
VDD  
GND  
NC  
O
O
P
Emulation Status. Must be connected to the ADSP-2106x EZ-ICE target board connector only.  
Reserved, leave unconnected.  
Power Supply; nominally 5.0 V dc for 5 V devices or 3.3 V dc for 3.3 V devices. (30 pins).  
Power Supply Return. (30 pins).  
G
Do Not Connect. Reserved pins which must be left open and unconnected.  
A = Asynchronous, G = Ground, I = Input, O = Output, P = Power Supply, S = Synchronous, (A/D) = Active Drive, (O/D) = Open Drain,  
T = Three-State (when SBTS is asserted, or when the ADSP-2106x is a bus slave)  
Rev. F  
|
Page 12 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
The JTAG signals are terminated on the EZ-ICE probe as shown  
in Table 4.  
TARGET BOARD CONNECTOR FOR EZ-ICE PROBE  
The ADSP-2106x EZ-ICE® Emulator uses the IEEE  
1149.1JTAG test access port of the ADSP-2106x to monitor and  
control the target board processor during emulation. The  
EZ-ICE probe requires the ADSP-2106x’s CLKIN, TMS, TCK,  
TRST, TDI, TDO, EMU, and GND signals be made accessible  
on the target system via a 14-pin connector (a 2-row 7-pin strip  
header) such as that shown in Figure 5. The EZ-ICE probe plugs  
directly onto this connector for chip-on-board emulation. You  
must add this connector to your target board design if you  
intend to use the ADSP-2106x EZ-ICE. The total trace length  
between the EZ-ICE connector and the furthest device sharing  
the EZ-ICE JTAG pin should be limited to 15 inches maximum  
for guaranteed operation. This length restriction must include  
EZ-ICE JTAG signals that are routed to one or more  
Table 4. Core Instruction Rate/CLKIN Ratio Selection  
Signal  
TMS  
Termination  
Driven Through 22 Resistor (16 mA Driver)  
TCK  
Driven at 10 MHz Through 22 Resistor (16 mA  
Driver)  
TRST1  
Active Low Driven Through 22 Resistor (16 mA  
Driver) (Pulled-Up by On-Chip 20 kResistor)  
TDI  
Driven by 22 Resistor (16 mA Driver)  
One TTL Load, Split Termination (160/220)  
One TTL Load, Split Termination (160/220)  
TDO  
CLKIN  
EMU  
Active Low 4.7 kPull-Up Resistor, One TTL Load  
ADSP-2106x devices, or a combination of ADSP-2106x devices  
and other JTAG devices on the chain.  
(Open-Drain Output from the DSP)  
1 TRSTis driven low until the EZ-ICE probe is turned on by the emulator at software  
start-up. After software start-up, is driven high.  
1
3
5
2
4
6
Figure 6 shows JTAG scan path connections for systems that  
contain multiple ADSP-2106x processors.  
EMU  
GND  
TMS  
GND  
Connecting CLKIN to Pin 4 of the EZ-ICE header is optional.  
The emulator only uses CLKIN when directed to perform oper-  
ations such as starting, stopping, and single-stepping multiple  
ADSP-2106xs in a synchronous manner. If you do not need  
these operations to occur synchronously on the multiple proces-  
sors, simply tie Pin 4 of the EZ-ICE header to ground.  
KEY (NO PIN)  
BTMS  
7
9
8
BTCK  
TCK  
10  
12  
BTRST  
TRST  
If synchronous multiprocessor operations are needed and  
CLKIN is connected, clock skew between the multiple  
ADSP-2106x processors and the CLKIN pin on the EZ-ICE  
header must be minimal. If the skew is too large, synchronous  
operations may be off by one or more cycles between proces-  
sors. For synchronous multiprocessor operation TCK, TMS,  
CLKIN, and EMU should be treated as critical signals in terms  
of skew, and should be laid out as short as possible on your  
board. If TCK, TMS, and CLKIN are driving a large number of  
ADSP-2106xs (more than eight) in your system, then treat them  
as a “clock tree” using multiple drivers to minimize skew. (See  
Figure 7 and “JTAG Clock Tree” and “Clock Distribution” in  
the “High Frequency Design Considerations” section of the  
ADSP-2106x User’s Manual, Revision 2.1.)  
9
11  
BTDI  
GND  
TDI  
13  
14  
TDO  
TOP VIEW  
Figure 5. Target Board Connector for ADSP-2106x EZ-ICE Emulator  
(Jumpers in Place)  
The 14-pin, 2-row pin strip header is keyed at the Pin 3 loca-  
tion—Pin 3 must be removed from the header. The pins must be  
0.025 inch square and at least 0.20 inch in length. Pin spacing  
should be 0.1 0.1 inches. Pin strip headers are available from  
vendors such as 3M, McKenzie, and Samtec. The BTMS, BTCK,  
BTRST, and BTDI signals are provided so that the test access  
port can also be used for board-level testing.  
If synchronous multiprocessor operations are not needed (i.e.,  
CLKIN is not connected), just use appropriate parallel termina-  
tion on TCK and TMS. TDI, TDO, EMU and TRST are not  
critical signals in terms of skew.  
For complete information on the SHARC EZ-ICE, see the  
ADSP-21000 Family JTAG EZ-ICE User's Guide and Reference.  
When the connector is not being used for emulation, place  
jumpers between the Bxxx pins and the xxx pins as shown in  
Figure 5. If you are not going to use the test access port for  
board testing, tie BTRST to GND and tie or pull up BTCK to  
VDD. The TRST pin must be asserted (pulsed low) after power-  
up (through BTRST on the connector) or held low for proper  
operation of the ADSP-2106x. None of the Bxxx pins (Pins 5, 7,  
9, and 11) are connected on the EZ-ICE probe.  
Rev. F  
|
Page 13 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
JTAG  
DEVICE  
(OPTIONAL)  
ADSP-2106x  
ADSP-2106x  
#1  
n
TDI  
TDO  
TDO  
TDO  
TDI  
TDI  
TDI  
EZ-ICE  
JTAG  
CONNECTOR  
OTHER  
JTAG  
CONTROLLER  
TCK  
TMS  
EMU  
TRST  
TDO  
CLKIN  
OPTIONAL  
Figure 6. JTAG Scan Path Connections for Multiple ADSP-2106x Systems  
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
5k  
*
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
TDI  
5k⍀  
*
EMU  
TCK  
TMS  
TRST  
TDO  
SYSTEM  
CLKIN  
CLKIN  
EMU  
*OPEN-DRAIN DRIVER OR EQUIVALENT, i.e.,  
Figure 7. JTAG Clocktree for Multiple ADSP-2106x Systems  
Rev. F  
|
Page 14 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
ADSP-21060/ADSP-21062 SPECIFICATIONS  
Note that component specifications are subject to change  
without notice.  
OPERATING CONDITIONS (5 V)  
A Grade  
Min Max  
C Grade  
Min Max  
K Grade  
Min Max  
Parameter  
Description  
Unit  
VDD  
Supply Voltage  
4.75 5.25  
–40 +85  
4.75 5.25  
–40 +100  
4.75 5.25  
–40 +85  
V
C  
V
V
V
TCASE  
VIH11  
VIH22  
Case Operating Temperature  
High Level Input Voltage @ VDD = Max  
High Level Input Voltage @ VDD = Max  
Low Level Input Voltage @ VDD = Min  
2.0  
2.2  
VDD + 0.5  
VDD + 0.5  
2.0  
2.2  
VDD + 0.5  
VDD + 0.5  
2.0  
2.2  
VDD + 0.5  
VDD + 0.5  
1, 2  
VIL  
–0.5 +0.8  
–0.5 +0.8  
–0.5 +0.8  
1 Applies to input and bidirectional pins: DATA47–0, ADDR31–0, RD, WR, SW, ACK, SBTS, IRQ2–0, FLAG3–0, HGB, CS, DMAR1, DMAR2, BR6–1, ID2–0, RPBA, CPA, TFS0,  
TFS1, RFS0, RFS1, LxDAT3–0, LxCLK, LxACK, EBOOT, LBOOT, BMS, TMS, TDI, TCK, HBR, DR0, DR1, TCLK0, TCLK1, RCLK0, RCLK1.  
2 Applies to input pins: CLKIN, RESET, TRST.  
ELECTRICAL CHARACTERISTICS (5 V)  
Parameter  
Description  
Test Conditions  
Min  
Max  
Unit  
1, 2  
VOH  
High Level Output Voltage  
Low Level Output Voltage  
High Level Input Current  
Low Level Input Current  
@ VDD = Min, IOH = –2.0 mA  
@ VDD = Min, IOL = 4.0 mA  
@ VDD = Max, VIN = VDD Max  
@ VDD = Max, VIN = 0 V  
@ VDD = Max, VIN = 0 V  
@ VDD = Max, VIN = VDD Max  
@ VDD = Max, VIN = 0 V  
@ VDD = Max, VIN = VDD Max  
@ VDD = Max, VIN = 0 V  
@ VDD = Max, VIN = 1.5 V  
@ VDD = Max, VIN = 0 V  
@ VDD = Max, VIN = 0 V  
fIN = 1 MHz, TCASE = 25°C, VIN = 2.5 V  
4.1  
V
V
1, 2  
VOL  
0.4  
10  
10  
150  
10  
10  
350  
1.5  
350  
4.2  
150  
4.7  
3, 4  
IIH  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
mA  
μA  
pF  
3
IIL  
4
IILP  
Low Level Input Current  
5, 6, 7, 8  
IOZH  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Input Capacitance  
5, 9  
IOZL  
9
IOZHP  
IOZLC  
IOZLA  
7
10  
8
IOZLAR  
6
IOZLS  
11, 12  
CIN  
1 Applies to output and bidirectional pins: DATA47–0, ADDR31-0, MS3–0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3–0, TIMEXP, HBG, REDY, DMAG1, DMAG2,  
BR6–1, CPA, DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, LxDAT3–0, LxCLK, LxACK, BMS, TDO, EMU, ICSA.  
2 See “Output Drive Currents” for typical drive current capabilities.  
3 Applies to input pins: ACK, SBTS, IRQ2–0, HBR, CS, DMAR1, DMAR2, ID2–0, RPBA, EBOOT, LBOOT, CLKIN, RESET, TCK.  
4 Applies to input pins with internal pull-ups: DR0, DR1, TRST, TMS, TDI.  
5 Applies to three-statable pins: DATA47–0, ADDR31–0, MS3–0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3–0, HBG, REDY, DMAG1, DMAG2, BMS, BR6–1, TFSx, RFSx,  
TDO, EMU. (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID2–0 = 001 and another ADSP-2106x is not requesting bus  
mastership.)  
6 Applies to three-statable pins with internal pull-ups: DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1.  
7 Applies to CPA pin.  
8 Applies to ACK pin when pulled up. (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID2–0 = 001 and another ADSP-2106xL  
is not requesting bus mastership).  
9 Applies to three-statable pins with internal pull-downs: LxDAT3–0, LxCLK, LxACK.  
10Applies to ACK pin when keeper latch enabled.  
11Applies to all signal pins.  
12Guaranteed but not tested.  
Rev. F  
|
Page 15 of 64  
|
March 2008  
 
 
 
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
INTERNAL POWER DISSIPATION (5 V)  
These specifications apply to the internal power portion of VDD  
only. For a complete discussion of the code used to measure  
power dissipation, see the technical note “SHARC Power Dissi-  
pation Measurements.”  
Specifications are based on the operating scenarios.  
Operation  
Peak Activity (IDDINPEAK  
Multifunction  
)
High Activity (IDDINHIGH  
Multifunction  
)
Low Activity (IDDINLOW  
Single Function  
Internal Memory  
None  
)
Instruction Type  
Instruction Fetch  
Core memory Access  
Internal Memory DMA  
Cache  
Internal Memory  
1 per Cycle (DM)  
1 per 2 Cycles  
2 per Cycle (DM and PM)  
1 per Cycle  
1 per 2 Cycles  
To estimate power consumption for a specific application, use  
the following equation where % is the amount of time your pro-  
gram spends in that state:  
%PEAK IDDINPEAK +%HIGH IDDINHIGH +%LOW IDDINLOW  
%IDLE IDDIDLE = Power Consumption  
+
Parameter  
DDINPEAK Supply Current (Internal)1  
Test Conditions  
Max  
Units  
I
tCK = 30 ns, VDD = Max  
tCK = 25 ns, VDD = Max  
745  
850  
mA  
mA  
IDDINHIGH Supply Current (Internal)2  
tCK = 30 ns, VDD = Max  
tCK = 25 ns, VDD = Max  
575  
670  
mA  
mA  
I
I
DDINLOW Supply Current (Internal)2  
DDIDLE Supply Current (Idle)3  
tCK = 30 ns, VDD = Max  
340  
390  
mA  
mA  
t
CK = 25 ns, VDD = Max  
VDD = Max  
200  
mA  
1 The test program used to measure IDDINPEAK represents worst case processor operation and is not sustainable under normal application conditions. Actual internal power  
measurements made using typical applications are less than specified.  
2 IDDINHIGH is a composite average based on a range of high activity code. IDDINLOW is a composite average based on a range of low activity code.  
3 Idle denotes ADSP-2106x state during execution of IDLE instruction.  
Rev. F  
|
Page 16 of 64  
|
March 2008  
 
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
drive high and low at a maximum rate of 1/(2tCK). The write  
strobe can switch every cycle at a frequency of 1/tCK. Select pins  
switch at 1/(2tCK), but selects can switch on each cycle.  
EXTERNAL POWER DISSIPATION (5 V)  
Total power dissipation has two components, one due to inter-  
nal circuitry and one due to the switching of external output  
drivers. Internal power dissipation is dependent on the instruc-  
tion execution sequence and the data operands involved.  
Internal power dissipation is calculated in the following way:  
Example: Estimate PEXT with the following assumptions:  
• A system with one bank of external data memory RAM  
(32-bit)  
P
INT = IDDIN VDD  
• Four 128K 8 RAM chips are used, each with a load of  
10 pF  
The external component of total power dissipation is caused by  
the switching of output pins. Its magnitude depends on:  
• External data memory writes occur every other cycle, a rate  
of 1/(4tCK), with 50% of the pins switching  
• the number of output pins that switch during each cycle  
(O)  
• The instruction cycle rate is 40 MHz (tCK = 25 ns)  
• the maximum frequency at which they can switch (f)  
• their load capacitance (C)  
The PEXT equation is calculated for each class of pins that can  
drive:  
A typical power consumption can now be calculated for these  
conditions by adding a typical internal power dissipation:  
• their voltage swing (VDD)  
and is calculated by:  
P
TOTAL = PEXT + (IDDIN2 5.0 V)  
P
EXT = O C VDD2 f  
Note that the conditions causing a worst-case PEXT are different  
from those causing a worst-case PINT. Maximum PINT cannot  
occur while 100% of the output pins are switching from all ones  
to all zeros. Note also that it is not common for an application to  
have 100% or even 50% of the outputs switching  
simultaneously.  
The load capacitance should include the processor’s package  
capacitance (CIN). The switching frequency includes driving  
the load high and then back low. Address and data pins can  
Table 5. External Power Calculations (5 V Devices)  
2
Pin Type  
Address  
MS0  
No. of Pins % Switching  
C  
f  
VDD  
25 V  
25 V  
25 V  
25 V  
25 V  
= PEXT  
15  
1
50  
0
44.7 pF  
44.7 pF  
44.7 pF  
14.7 pF  
4.7 pF  
10 MHz  
10 MHz  
20 MHz  
10 MHz  
20 MHz  
= 0.084 W  
= 0.000 W  
= 0.022 W  
= 0.059 W  
= 0.002 W  
WR  
1
Data  
32  
1
50  
ADDRCLK  
P
EXT = 0.167 W  
Rev. F  
|
Page 17 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
ADSP-21060L/ADSP-21062L SPECIFICATIONS  
Note that component specifications are subject to change  
without notice.  
OPERATING CONDITIONS (3.3 V)  
A Grade  
Min Max  
C Grade  
Min Max  
K Grade  
Min Max  
Parameter  
Description  
Unit  
VDD  
Supply Voltage  
3.15 3.45  
–40 +85  
3.15 3.45  
–40 +100  
3.15 3.45  
–40 +85  
V
C  
V
V
V
TCASE  
VIH11  
VIH22  
Case Operating Temperature  
High Level Input Voltage @ VDD = Max  
High Level Input Voltage @ VDD = Max  
Low Level Input Voltage @ VDD = Min  
2.0  
2.2  
VDD + 0.5  
VDD + 0.5  
2.0  
2.2  
VDD + 0.5  
VDD + 0.5  
2.0  
2.2  
VDD + 0.5  
VDD + 0.5  
1, 2  
VIL  
–0.5 +0.8  
–0.5 +0.8  
–0.5 +0.8  
1 Applies to input and bidirectional pins: DATA47–0, ADDR31–0, RD, WR, SW, ACK, SBTS, IRQ2–0, FLAG3–0, HGB, CS, DMAR1, DMAR2, BR6–1, ID2–0, RPBA, CPA,  
TFS0, TFS1, RFS0, RFS1, LxDAT3–0, LxCLK, LxACK, EBOOT, LBOOT, BMS, TMS, TDI, TCK, HBR, DR0, DR1, TCLK0, TCLK1, RCLK0, RCLK1  
2 Applies to input pins: CLKIN, RESET, TRST  
ELECTRICAL CHARACTERISTICS (3.3 V)  
Parameter  
Description  
Test Conditions  
Min  
Max  
Unit  
1, 2  
VOH  
High Level Output Voltage  
Low Level Output Voltage  
High Level Input Current  
Low Level Input Current  
@ VDD = Min, IOH = –2.0 mA  
@ VDD = Min, IOL = 4.0 mA  
@ VDD = Max, VIN = VDD Max  
@ VDD = Max, VIN = 0 V  
@ VDD = Max, VIN = 0 V  
@ VDD = Max, VIN = VDD Max  
@ VDD = Max, VIN = 0 V  
@ VDD = Max, VIN = VDD Max  
@ VDD = Max, VIN = 0 V  
@ VDD = Max, VIN = 1.5 V  
@ VDD = Max, VIN = 0 V  
@ VDD = Max, VIN = 0 V  
fIN = 1 MHz, TCASE = 25°C, VIN = 2.5 V  
2.4  
V
V
1, 2  
VOL  
0.4  
10  
10  
150  
10  
10  
350  
1.5  
350  
4.2  
150  
4.7  
3, 4  
IIH  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
mA  
μA  
pF  
3
IIL  
4
IILP  
Low Level Input Current  
5, 6, 7, 8  
IOZH  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Input Capacitance  
5, 9  
IOZL  
9
IOZHP  
IOZLC  
IOZLA  
7
10  
8
IOZLAR  
6
IOZLS  
11, 12  
CIN  
1 Applies to output and bidirectional pins: DATA47–0, ADDR31–0, MS3–0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3–0, TIMEXP, HBG, REDY, DMAG1, DMAG2,  
BR6–1, CPA, DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, LxDAT3–0, LxCLK, LxACK, BMS, TDO, EMU, ICSA.  
2 See “Output Drive Currents” for typical drive current capabilities.  
3 Applies to input pins: ACK, SBTS, IRQ2–0, HBR, CS, DMAR1, DMAR2, ID2–0, RPBA, EBOOT, LBOOT, CLKIN, RESET, TCK.  
4 Applies to input pins with internal pull-ups: DR0, DR1, TRST, TMS, TDI.  
5 Applies to three-statable pins: DATA47–0, ADDR31–0, MS3–0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3–0, HBG, REDY, DMAG1, DMAG2, BMS, BR6–1, TFSx, RFSx,  
TDO, EMU. (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID2–0 = 001 and another ADSP-2106x is not requesting bus  
mastership.)  
6 Applies to three-statable pins with internal pull-ups: DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1.  
7 Applies to CPA pin.  
8 Applies to ACK pin when pulled up. (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID2–0 = 001 and another ADSP-2106xL  
is not requesting bus mastership).  
9 Applies to three-statable pins with internal pull-downs: LxDAT3–0, LxCLK, LxACK.  
10Applies to ACK pin when keeper latch enabled.  
11Applies to all signal pins.  
12Guaranteed but not tested.  
Rev. F  
|
Page 18 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
INTERNAL POWER DISSIPATION (3.3 V)  
These specifications apply to the internal power portion of VDD  
only. For a complete discussion of the code used to measure  
power dissipation, see the technical note “SHARC Power Dissi-  
pation Measurements.”  
Specifications are based on the operating scenarios.  
Operation  
Peak Activity (IDDINPEAK  
Multifunction  
)
High Activity (IDDINHIGH  
Multifunction  
)
Low Activity (IDDINLOW  
Single Function  
Internal Memory  
None  
)
Instruction Type  
Instruction Fetch  
Core memory Access  
Internal Memory DMA  
Cache  
Internal Memory  
1 per Cycle (DM)  
1 per 2 Cycles  
2 per Cycle (DM and PM)  
1 per Cycle  
1 per 2 Cycles  
To estimate power consumption for a specific application, use  
the following equation where % is the amount of time your pro-  
gram spends in that state:  
%PEAK IDDINPEAK + %HIGH IDDINHIGH + %LOW IDDINLOW  
%IDLE IDDIDLE = Power Consumption  
+
Parameter  
DDINPEAK Supply Current (Internal)1  
Test Conditions  
Max  
Units  
I
tCK = 30 ns, VDD = Max  
tCK = 25 ns, VDD = Max  
540  
600  
mA  
mA  
IDDINHIGH Supply Current (Internal)2  
tCK = 30 ns, VDD = Max  
tCK = 25 ns, VDD = Max  
425  
475  
mA  
mA  
I
I
DDINLOW Supply Current (Internal)2  
DDIDLE Supply Current (Idle)3  
tCK = 30 ns, VDD = Max  
250  
275  
mA  
mA  
t
CK = 25 ns, VDD = Max  
VDD = Max  
180  
mA  
1 The test program used to measure IDDINPEAK represents worst case processor operation and is not sustainable under normal application conditions. Actual internal power  
measurements made using typical applications are less than specified.  
2 IDDINHIGH is a composite average based on a range of high activity code. IDDINLOW is a composite average based on a range of low activity code.  
3 Idle denotes ADSP-2106xL state during execution of IDLE instruction.  
Rev. F  
|
Page 19 of 64  
|
March 2008  
 
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
drive high and low at a maximum rate of 1/(2tCK). The write  
strobe can switch every cycle at a frequency of 1/tCK. Select pins  
switch at 1/(2tCK), but selects can switch on each cycle.  
EXTERNAL POWER DISSIPATION (3.3 V)  
Total power dissipation has two components, one due to inter-  
nal circuitry and one due to the switching of external output  
drivers. Internal power dissipation is dependent on the instruc-  
tion execution sequence and the data operands involved.  
Internal power dissipation is calculated in the following way:  
Example: Estimate PEXT with the following assumptions:  
• A system with one bank of external data memory RAM  
(32-bit)  
P
INT = IDDIN VDD  
• Four 128K 8 RAM chips are used, each with a load of  
10 pF  
The external component of total power dissipation is caused by  
the switching of output pins. Its magnitude depends on:  
• External data memory writes occur every other cycle, a rate  
of 1/(4tCK), with 50% of the pins switching  
• the number of output pins that switch during each cycle  
(O)  
• The instruction cycle rate is 40 MHz (tCK = 25 ns)  
• the maximum frequency at which they can switch (f)  
• their load capacitance (C)  
The PEXT equation is calculated for each class of pins that can  
drive:  
A typical power consumption can now be calculated for these  
conditions by adding a typical internal power dissipation:  
• their voltage swing (VDD  
and is calculated by:  
)
P
TOTAL = PEXT + (IDDIN2 5.0 V)  
P
EXT = O C VDD2 f  
Note that the conditions causing a worst-case PEXT are different  
from those causing a worst-case PINT. Maximum PINT cannot  
occur while 100% of the output pins are switching from all ones  
to all zeros. Note also that it is not common for an application to  
have 100% or even 50% of the outputs switching  
simultaneously.  
The load capacitance should include the processor’s package  
capacitance (CIN). The switching frequency includes driving  
the load high and then back low. Address and data pins can  
Table 6. External Power Calculations (3.3 V Devices)  
2
Pin Type  
Address  
MS0  
No. of Pins  
% Switching  
C  
f  
VDD  
= PEXT  
15  
1
50  
0
44.7 pF  
44.7 pF  
44.7 pF  
14.7 pF  
4.7 pF  
10 MHz  
10 MHz  
20 MHz  
10 MHz  
20 MHz  
10.9 V  
10.9 V  
10.9 V  
10.9 V  
10.9 V  
= 0.037 W  
= 0.000 W  
= 0.010 W  
= 0.026 W  
= 0.001 W  
WR  
1
Data  
32  
1
50  
ADDRCLK  
P
EXT = 0.074 W  
ABSOLUTE MAXIMUM RATINGS  
Stresses greater than those listed Table 7 may cause permanent  
damage to the device. These are stress ratings only; functional  
operation of the device at these or any other conditions greater  
than those indicated in the operational sections of this specifica-  
tion is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
Table 7. Absolute Maximum Ratings  
ADSP-21060/ADSP-21060C  
ADSP-21062  
ADSP-21060L/ADSP-21060LC  
ADSP-21062L  
Parameter  
5 V  
3.3 V  
Supply Voltage (VDD)  
Input Voltage  
–0.3 V to +7.0 V  
–0.5 V to VDD + 0.5 V  
–0.5 V to VDD + 0.5 V  
200 pF  
–0.3 V to +4.6 V  
–0.5 V to VDD +0.5 V  
–0.5 V to VDD + 0.5 V  
200 pF  
Output Voltage Swing  
Load Capacitance  
Storage Temperature Range  
Lead Temperature (5 seconds)  
Junction Temperature Under Bias  
–65C to +150C  
280C  
130C  
–65C to +150C  
280C  
130C  
Rev. F  
|
Page 20 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
ESD CAUTION  
TIMING SPECIFICATIONS  
The ADSP-2106x processors are available at maximum proces-  
sor speeds of 33 MHz (–133), and 40 MHz (–160). The timing  
specifications are based on a CLKIN frequency of 40 MHz  
ESD (electrostatic discharge) sensitive device.  
Charged devices and circuit boards can discharge  
without detection. Although this product features  
patented or proprietary protection circuitry, damage  
may occur on devices subjected to high energy ESD.  
Therefore, proper ESD precautions should be taken to  
avoid performance degradation or loss of functionality.  
t
CK = 25 ns). The DT derating factor enables the calculation for  
timing specifications within the min to max range of the tCK  
specification (see Table 9). DT is the difference between the der-  
ated CLKIN period and a CLKIN period of 25 ns:  
DT = tCK – 25 ns  
PACKAGE MARKING INFORMATION  
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results  
for an individual device, the values given in this data sheet  
reflect statistical variations and worst cases. Consequently, you  
cannot meaningfully add parameters to derive longer times.  
Figure 8 and Table 8 provide information on detail contained  
within the package marking for the ADSP-2106x processors  
(actual marking format may vary). For a complete listing of  
product availability, see Ordering Guide on Page 61.  
For voltage reference levels, see Figure 28 on Page 47 under Test  
Conditions.  
a
ADSP-2106x  
Timing Requirements apply to signals that are controlled by cir-  
cuitry external to the processor, such as the data input for a read  
operation. Timing requirements guarantee that the processor  
operates correctly with other devices. (O/D) = Open Drain,  
(A/D) = Active Drive.  
tppZccc  
vvvvvv.x n.n  
yyww country_of_origin  
Switching Characteristics specify how the processor changes its  
signals. You have no control over this timing—circuitry external  
to the processor must be designed for compatibility with these  
signal characteristics. Switching characteristics tell you what the  
processor will do in a given circumstance. You can also use  
switching characteristics to ensure that any timing requirement  
of a device connected to the processor (such as memory) is  
satisfied.  
S
Figure 8. Typical Package Brand  
Table 8. Package Brand Information  
Brand Key  
Field Description  
Temperature Range  
Package Type  
t
pp  
Z
Lead (Pb) Free Option  
See Ordering Guide  
Assembly Lot Code  
Silicon Revision  
ccc  
vvvvvv.x  
n.n  
yyww  
Date Code  
Rev. F  
|
Page 21 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
Clock Input  
Table 9. Clock Input  
ADSP-21060  
ADSP-21062  
40 MHz, 5 V  
ADSP-21060  
ADSP-21062  
33 MHz, 5 V  
ADSP-21060L  
ADSP-21062L  
40 MHz, 3.3 V  
ADSP-21060L  
ADSP-21062L  
33 MHz, 3.3 V  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tCK  
CLKIN Period  
25  
7
100  
30  
7
100  
25  
8.75  
5
100  
30  
8.751  
100  
ns  
ns  
ns  
ns  
tCKL  
CLKIN Width Low  
tCKH CLKIN Width High  
5
5
5
tCKRF CLKIN Rise/Fall (0.4 V to 2.0 V)  
3
3
3
3
1 For the ADSP-21060LC, this specification is 9.5 ns min.  
tCK  
CLKIN  
tCKH  
tCKL  
Figure 9. Clock Input  
Reset  
Table 10. Reset  
5 V and 3.3 V  
Max  
Unit  
Parameter  
Min  
Timing Requirements  
tWRST  
tSRST  
RESET Pulse Width Low1  
RESET Setup Before CLKIN High2  
4tCK  
ns  
ns  
14 + DT/2  
tCK  
1 Applies after the power-up sequence is complete. At power-up, the processor’s internal phase-locked loop requires no more than 100 μs while RESET is low, assuming stable  
VDD and CLKIN (not including start-up time of external clock oscillator).  
2 Only required if multiple ADSP-2106xs must come out of reset synchronous to CLKIN with program counters (PC) equal. Not required for multiple ADSP-2106xs commu-  
nicating over the shared bus (through the external port), because the bus arbitration logic automatically synchronizes itself after reset.  
CLKIN  
tSRST  
tWRST  
RESET  
Figure 10. Reset  
Rev. F  
|
Page 22 of 64  
|
March 2008  
 
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
Interrupts  
Table 11. Interrupts  
5 V and 3.3 V  
Unit  
Parameter  
Min  
Max  
Timing Requirements  
tSIR  
tHIR  
tIPW  
IRQ2–0 Setup Before CLKIN High1  
IRQ2–0 Hold Before CLKIN High1  
IRQ2–0 Pulse Width2  
18 + 3DT/4  
2+tCK  
ns  
ns  
ns  
12 + 3DT/4  
1 Only required for IRQx recognition in the following cycle.  
2 Applies only if tSIR and tHIR requirements are not met.  
CLKIN  
tSIR  
tHIR  
IRQ2–0  
tIPW  
Figure 11. Interrupts  
Timer  
Table 12. Timer  
5 V and 3.3 V  
Unit  
Parameter  
Min  
Max  
Switching Characteristic  
tDTEX  
CLKIN High to TIMEXP  
15  
ns  
CLKIN  
tDTEX  
tDTEX  
TIMEXP  
Figure 12. Timer  
Rev. F  
|
Page 23 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
Flags  
Table 13. Flags  
5 V and 3.3 V  
Unit  
Parameter  
Min  
Max  
Timing Requirements  
tSFI  
FLAG3–0 IN Setup Before CLKIN High1  
FLAG3–0 IN Hold After CLKIN High1  
FLAG3–0 IN Delay After RD/WR Low1  
FLAG3–0 IN Hold After RD/WR Deasserted1  
8 + 5DT/16  
0 – 5DT/16  
ns  
ns  
ns  
ns  
tHFI  
tDWRFI  
tHFIWR  
Switching Characteristics  
5 + 7DT/16  
0
tDFO  
FLAG3–0 OUT Delay After CLKIN High  
16  
14  
ns  
ns  
ns  
ns  
tHFO  
FLAG3–0 OUT Hold After CLKIN High  
CLKIN High to FLAG3–0 OUT Enable  
CLKIN High to FLAG3–0 OUT Disable  
4
3
tDFOE  
tDFOD  
1 Flag inputs meeting these setup and hold times for instruction cycle N will affect conditional instructions in instruction cycle N+2.  
CLKIN  
tDFO  
tDFOE  
tDFO  
tDFOD  
tHFO  
FLAG3–0 OUT  
FLAG OUTPUT  
CLKIN  
tSFI  
tHFI  
FLAG3–0 IN  
tDWRFI  
tHFIWR  
RD/WR  
FLAG INPUT  
Figure 13. Flags  
Rev. F  
|
Page 24 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
bus master accessing external memory space in asynchronous  
access mode. Note that timing for ACK, DATA, RD, WR, and  
DMAGx strobe timing parameters only applies to asynchronous  
access mode.  
Memory Read—Bus Master  
Use these specifications for asynchronous interfacing to memo-  
ries (and memory-mapped peripherals) without reference to  
CLKIN. These specifications apply when the ADSP-2106x is the  
Table 14. Memory Read—Bus Master  
5 V and 3.3 V  
Unit  
Parameter  
Min  
Max  
Timing Requirements  
tDAD  
Address Selects Delay to Data Valid1, 2  
RD Low to Data Valid1  
Data Hold from Address, Selects3  
Data Hold from RD High3  
ACK Delay from Address, Selects2, 4  
ACK Delay from RD Low4  
18 + DT+W  
ns  
ns  
ns  
ns  
ns  
ns  
tDRLD  
tHDA  
12 + 5DT/8 + W  
0.5  
2.0  
tHDRH  
tDAAK  
tDSAK  
14 + 7DT/8 + W  
8 + DT/2 + W  
Switching Characteristics  
tDRHA  
tDARL  
tRW  
Address Selects Hold After RD High  
Address Selects to RD Low2  
0+H  
ns  
ns  
ns  
ns  
ns  
2 + 3DT/8  
RD Pulse Width  
12.5 + 5DT/8 + W  
8 + 3DT/8 + HI  
0 + DT/4  
tRWR  
RD High to WR, RD, DMAGx Low  
Address, Selects Setup Before ADRCLK High2  
tSADADC  
W = (number of wait states specified in WAIT register) 
؋
 tCK  
.
HI = tCK (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).  
H = tCK (if an address hold cycle occurs as specified in WAIT register; otherwise H = 0).  
1 Data delay/setup: user must meet tDAD or tDRLD or synchronous spec tSSDATI  
.
2 The falling edge of MSx, SW, BMS is referenced.  
3 Data hold: user must meet tHDA or tHDRH or synchronous spec tHSDATI. See Example System Hold Time Calculation on Page 47 for the calculation of hold times given capacitive  
and dc loads.  
4 ACK delay/setup: user must meet tDAAK or tDSAK or synchronous specification tSACKC for deassertion of ACK (low), all three specifications must be met for assertion of ACK (high).  
ADDRESS  
MSx, SW  
BMS  
tDRHA  
tDARL  
tRW  
RD  
tHDA  
tHDRH  
tDRLD  
tDAD  
DATA  
tDSAK  
tRWR  
tDAAK  
ACK  
WR, DMAG  
tSADADC  
ADRCLK  
(OUT)  
Figure 14. Memory Read—Bus Master  
Rev. F  
|
Page 25 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
bus master accessing external memory space in asynchronous  
access mode. Note that timing for ACK, DATA, RD, WR, and  
DMAGx strobe timing parameters only applies to asynchronous  
access mode.  
Memory Write—Bus Master  
Use these specifications for asynchronous interfacing to memo-  
ries (and memory-mapped peripherals) without reference to  
CLKIN. These specifications apply when the ADSP-2106x is the  
Table 15. Memory Write—Bus Master  
5 V and 3.3 V  
Unit  
Parameter  
Min  
Max  
Timing Requirements  
tDAAK  
tDSAK  
ACK Delay from Address, Selects1, 2  
ACK Delay from WR Low1  
14 + 7DT/8 + W  
8 + DT/2 + W  
ns  
ns  
Switching Characteristics  
tDAWH  
tDAWL  
tWW  
Address Selects to WR Deasserted2  
Address Selects to WR Low2  
17 + 15DT/16 + W  
3 + 3DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WR Pulse Width  
12 + 9DT/16 + W  
7 + DT/2 + W  
0.5 + DT/16 + H  
1 + DT/16 +H  
8 + 7DT/16 + H  
5 + 3DT/8 + I  
–1 + DT/16  
tDDWH  
tDWHA  
tDATRWH  
tWWR  
Data Setup Before WR High  
Address Hold After WR Deasserted  
Data Disable After WR Deasserted3  
WR High to WR, RD, DMAGx Low  
Data Disable Before WR or RD Low  
WR Low to Data Enabled  
6 + DT/16+H  
tDDWR  
tWDE  
tSADADC  
Address, Selects Setup Before ADRCLK High2  
0 + DT/4  
W = (number of wait states specified in WAIT register) × tCK  
.
H = tCK (if an address hold cycle occurs, as specified in WAIT register; otherwise H = 0).  
HI = tCK (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).  
I = tCK (if a bus idle cycle occurs, as specified in WAIT register; otherwise I = 0).  
1 ACK delay/setup: user must meet tDAAK or tDSAK or synchronous specification tSAKC for deassertion of ACK (low), all three specifications must be met for assertion of ACK  
(High).  
2 The falling edge of MSx, SW, BMS is referenced.  
3 See Example System Hold Time Calculation on Page 47 for calculation of hold times given capacitive and dc loads.  
ADDRESS  
MSx, SW  
BMS  
tDWHA  
tDAWH  
tWW  
tDAWL  
WR  
tWWR  
tDDWR  
tDDWH  
tWDE  
tDATRWH  
DATA  
tDSAK  
tDAAK  
ACK  
RD, DMAG  
tSADADC  
ADRCLK  
(OUT)  
Figure 15. Memory Write—Bus Master  
Rev. F  
|
Page 26 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
Bus Master on Page 26). When accessing a slave ADSP-2106x,  
these switching characteristics must meet the slave’s timing  
requirements for synchronous read/writes (see Synchronous  
Read/Write—Bus Slave on Page 29). The slave ADSP-2106x  
must also meet these (bus master) timing requirements for data  
and acknowledge setup and hold times.  
Synchronous Read/Write—Bus Master  
Use these specifications for interfacing to external memory sys-  
tems that require CLKIN—relative timing or for accessing a  
slave ADSP-2106x (in multiprocessor memory space). These  
synchronous switching characteristics are also valid during  
asynchronous memory reads and writes except where noted (see  
Memory Read—Bus Master on Page 25 and Memory Write—  
Table 16. Synchronous Read/Write—Bus Master  
5 V and 3.3 V  
Unit  
Parameter  
Min  
Max  
Timing Requirements  
tSSDATI  
Data Setup Before CLKIN  
Data Hold After CLKIN  
ACK Delay After Address, Selects1, 2  
ACK Setup Before CLKIN2  
ACK Hold After CLKIN  
3 + DT/8  
ns  
ns  
ns  
ns  
ns  
tHSDATI  
3.5 – DT/8  
tDAAK  
14 + 7DT/8 + W  
tSACKC  
6.5+DT/4  
–1 – DT/4  
tHACK  
Switching Characteristics  
tDADRO  
tHADRO  
tDPGC  
Address, MSx, BMS, SW Delay After CLKIN1  
Address, MSx, BMS, SW Hold After CLKIN  
PAGE Delay After CLKIN  
7 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–1 – DT/8  
9 + DT/8  
16 + DT/8  
4 – DT/8  
tDRDO  
RD High Delay After CLKIN  
WR High Delay After CLKIN  
RD/WR Low Delay After CLKIN  
Data Delay After CLKIN  
Data Disable After CLKIN3  
ADRCLK Delay After CLKIN  
ADRCLK Period  
–2 – DT/8  
–3 – 3DT/16  
8 + DT/4  
tDWRO  
4 – 3DT/16  
12.5 + DT/4  
19 + 5DT/16  
7 – DT/8  
tDRWL  
tSDDATO  
tDATTR  
tDADCCK  
tADRCK  
tADRCKH  
tADRCKL  
0 – DT/8  
4 + DT/8  
tCK  
10 + DT/8  
ADRCLK Width High  
(tCK/2 – 2)  
(tCK/2 – 2)  
ADRCLK Width Low  
1 The falling edge of MSx, SW, BMS is referenced.  
2 ACK delay/setup: user must meet tDAAK or tDSAK or synchronous specification tSAKC for deassertion of ACK (low), all three specifications must be met for assertion of ACK  
(high).  
3 See Example System Hold Time Calculation on Page 47 for calculation of hold times given capacitive and dc loads.  
Rev. F  
|
Page 27 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
CLKIN  
tADRCK  
tADRCKH  
tDADCCK  
tADRCKL  
ADDRCLK  
tDADRO  
tDAAK  
tHADRO  
ADDRESS,  
BMS, SW, MSx  
tDPGC  
PAGE  
tHACK  
tSACKC  
ACK  
(IN)  
READ CYCLE  
tDRWL  
tDRDO  
RD  
tHSDATI  
tSSDATI  
DATA (IN)  
WRITE CYCLE  
tDWRO  
tDRWL  
WR  
tDATTR  
tSDDATO  
DATA  
(OUT)  
Figure 16. Synchronous Read/Write—Bus Master  
Rev. F  
|
Page 28 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
Synchronous Read/Write—Bus Slave  
Use these specifications for bus master accesses of a slave’s IOP  
registers or internal memory (in multiprocessor memory space).  
The bus master must meet the bus slave timing requirements.  
Table 17. Synchronous Read/Write—Bus Slave  
5 V and 3.3 V  
Unit  
Parameter  
Min  
Max  
Timing Requirements  
tSADRI  
Address, SW Setup Before CLKIN  
15 + DT/2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHADRI  
tSRWLI  
Address, SW Hold After CLKIN  
RD/WR Low Setup Before CLKIN1  
RD/WR Low Hold After CLKIN2  
RD/WR Pulse High  
5 + DT/2  
9.5 + 5DT/16  
tHRWLI  
tRWHPI  
tSDATWH  
tHDATWH  
–4 – 5DT/16  
8 + 7DT/16  
3
5
1
Data Setup Before WR High  
Data Hold After WR High  
Switching Characteristics  
tSDDATO  
Data Delay After CLKIN3  
tDATTR  
tDACKAD  
tACKTR  
18 + 5DT/16  
7 – DT/8  
9
ns  
ns  
ns  
ns  
Data Disable After CLKIN4  
ACK Delay After Address, SW5  
ACK Disable After CLKIN5  
0 – DT/8  
–1 – DT/8  
6 – DT/8  
1 tSRWLI (min) = 9.5 + 5DT/16 when Multiprocessor Memory Space Wait State (MMSWS bit in WAIT register) is disabled; when MMSWS is enabled, tSRWLI (min)= 4 + DT/8.  
2 For ADSP-21060C specification is –3.5 – 5DT/16 ns min, 8 + 7DT/16 ns max; for ADSP-21060LC specification is –3.75 – 5DT/16 ns min, 8 + 7DT/16 ns max.  
3 For ADSP-21062/ADSP-21062L/ADSP-21060C specification is 19 + 5DT/16 ns max; for ADSP-21060LC specification is 19.25 + 5DT/16 ns max.  
4 See Example System Hold Time Calculation on Page 47 for calculation of hold times given capacitive and dc loads.  
5 tDACKAD is true only if the address and SW inputs have setup times (before CLKIN) greater than 10 + DT/8 and less than 19 + 3DT/4. If the address and inputs have setup times  
greater than 19 + 3DT/4, then ACK is valid 14 + DT/4 (max) after CLKIN. A slave that sees an address with an M field match will respond with ACK regardless of the state  
of MMSWS or strobes. A slave will three-state ACK every cycle with tACKTR  
.
CLKIN  
tSADRI  
tHADRI  
ADDRESS  
tACKTR  
tDACKAD  
ACK  
tSRWLI  
tHRWLI  
tRWHPI  
READ ACCESS  
RD  
tDATTR  
tSDDATO  
DATA  
(OUT)  
WRITE ACCESS  
tHRWLI  
tRWHPI  
tSRWLI  
WR  
DATA  
(IN)  
tHDATWH  
tSDATWH  
Figure 17. Synchronous Read/Write—Bus Slave  
Rev. F  
|
Page 29 of 64  
|
March 2008  
 
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
Multiprocessor Bus Request and Host Bus Request  
Use these specifications for passing of bus mastership between  
multiprocessing ADSP-2106xs (BRx) or a host processor, both  
synchronous and asynchronous (HBR, HBG).  
Table 18. Multiprocessor Bus Request and Host Bus Request  
5 V and 3.3 V  
Unit  
Parameter  
Timing Requirements  
tHBGRCSV  
tSHBRI  
Min  
Max  
HBG Low to RD/WR/CS Valid1  
HBR Setup Before CLKIN2  
HBR Hold After CLKIN2  
20 + 5DT/4  
14 + 3DT/4  
6 + DT/2  
6 + DT/2  
12 + 3DT/4  
7 – DT/8  
7 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20 + 3DT/4  
13 + DT/2  
13 + DT/2  
21 + 3DT/4  
tHHBRI  
tSHBGI  
HBG Setup Before CLKIN  
HBG Hold After CLKIN High  
BRx, CPA Setup Before CLKIN3  
BRx, CPA Hold After CLKIN High  
RPBA Setup Before CLKIN  
RPBA Hold After CLKIN  
tHHBGI  
tSBRI  
tHBRI  
tSRPBAI  
tHRPBAI  
Switching Characteristics  
tDHBGO  
tHHBGO  
tDBRO  
HBG Delay After CLKIN  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HBG Hold After CLKIN  
–2 – DT/8  
BRx Delay After CLKIN  
tHBRO  
BRx Hold After CLKIN  
CPA Low Delay After CLKIN4  
–2 – DT/8  
tDCPAO  
tTRCPA  
8 – DT/8  
4.5 – DT/8  
8.5  
CPA Disable After CLKIN  
–2 – DT/8  
tDRDYCS  
tTRDYHG  
tARDYTR  
REDY (O/D) or (A/D) Low from CS and HBR Low5, 6  
REDY (O/D) Disable or REDY (A/D) High from HBG6, 7  
REDY (A/D) Disable from CS or HBR High6  
44 + 23DT/16  
10  
1 For first asynchronous access after HBR and CS asserted, ADDR31-0 must be a non-MMS value 1/2 tCK before RD or WR goes low or by tHBGRCSV after HBG goes low. This is  
easily accomplished by driving an upper address signal high when HBG is asserted. See the “Host Processor Control of the ADSP-2106x” section in the ADSP-2106x SHARC  
User’s Manual, Revision 2.1.  
2 Only required for recognition in the current cycle.  
3 CPA assertion must meet the setup to CLKIN; deassertion does not need to meet the setup to CLKIN.  
4 For ADSP-21060LC, specification is 8.5 – DT/8 ns max.  
5 For ADSP-21060L, specification is 9.5 ns max, For ADSP-21060LC, specification is 11.0 ns max, For ADSP-21062L, specification is 8.75 ns max.  
6 (O/D) = open drain, (A/D) = active drive.  
7 For ADSP-21060C/ADSP-21060LC, specification is 40 + 23DT/16 ns min.  
Rev. F  
|
Page 30 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
CLKIN  
tSHBRI  
tHHBRI  
HBR  
tDHBGO  
tHHBGO  
HBG (OUT)  
tDBRO  
tHBRO  
BRx (OUT)  
tTRCP A  
tDCPAO  
CPA (OUT, O/D)  
tSHBGI  
tHHBGI  
HBG (I N)  
tSBRI  
tHBRI  
BRx, CPA (IN, O/D)  
tSRPBAI  
tHRPBAI  
RP BA  
HBR  
CS  
tTRDYHG  
tDRDY CS  
REDY  
(O /D)  
tARDY TR  
REDY  
(A/D)  
tHBGRCSV  
HBG (OUT)  
RD  
WR  
CS  
O/D = OPEN DRAIN, A/D = ACTIVE DRIVE  
Figure 18. Multiprocessor Bus Request and Host Bus Request  
Rev. F  
|
Page 31 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
after goes low. For first access after asserted, ADDR31–0 must  
be a non-MMS value 1/2 tCLK before or goes low or by tHBGRCSV  
after goes low. This is easily accomplished by driving an upper  
address signal high when is asserted. See the “Host Processor  
Control of the ADSP-2106x” section in the ADSP-2106x  
SHARC User’s Manual, Revision 2.1.  
Asynchronous Read/Write—Host to ADSP-2106x  
Use these specifications for asynchronous host processor  
accesses of an ADSP-2106x, after the host has asserted CS and  
HBR (low). After HBG is returned by the ADSP-2106x, the host  
can drive the RD and WR pins to access the ADSP-2106x’s  
internal memory or IOP registers. HBR and HBG are assumed  
low for this timing. Not required if and address are valid tHBGRCSV  
Table 19. Read Cycle  
5 V and 3.3 V  
Unit  
Parameter  
Min  
Max  
Timing Requirements  
tSADRDL  
tHADRDH  
tWRWH  
Address Setup/CS Low Before RD Low1  
Address Hold/CS Hold Low After RD  
RD/WR High Width  
0
0
6
0
0
ns  
ns  
ns  
ns  
ns  
tDRDHRDY  
tDRDHRDY  
Switching Characteristics  
RD High Delay After REDY (O/D) Disable  
RD High Delay After REDY (A/D) Disable  
tSDATRDY  
tDRDYRDL  
tRDYPRD  
tHDARWH  
Data Valid Before REDY Disable from Low  
2
ns  
ns  
ns  
ns  
REDY (O/D) or (A/D) Low Delay After RD Low2  
REDY (O/D) or (A/D) Low Pulse Width for Read  
Data Disable After RD High3  
10  
8
45 + 21DT/16  
2
1 Not required if RD and address are valid tHBGRCSV after HBG goes low. For first access after HBR asserted, ADDR31-0 must be a non-MMS value 1/2 tCLK before RD or WR goes  
low or by tHBGRCSV after HBG goes low. This is easily accomplished by driving an upper address signal high when HBG is asserted. See the “Host Processor Control of the  
ADSP-2106x” section in the ADSP-2106x SHARC User’s Manual, Revision 2.1.  
2 For ADSP-21060L, specification is 10.5 ns max; for ADSP-21060LC, specification is 12.5 ns max.  
3 For ADSP-21060L/ADSP-21060LC, specification is 2 ns min, 8.5 ns max.  
Table 20. Write Cycle  
5 V and 3.3 V  
Unit  
Parameter  
Timing Requirements  
tSCSWRL  
Min  
Max  
CS Low Setup Before WR Low  
CS Low Hold After WR High  
Address Setup Before WR High  
Address Hold After WR High  
WR Low Width  
0
0
5
2
7
6
0
5
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHCSWRH  
tSADWRH  
tHADWRH  
tWWRL  
tWRWH  
RD/WR High Width  
tDWRHRDY  
tSDATWH  
WR High Delay After REDY (O/D) or (A/D) Disable  
Data Setup Before WR High  
Data Hold After WR High  
tHDATWH  
Switching Characteristics  
tDRDYWRL  
tRDYPWR  
tSRDYCK  
REDY (O/D) or (A/D) Low Delay After WR/CS Low  
10  
ns  
ns  
ns  
REDY (O/D) or (A/D) Low Pulse Width for Write  
REDY (O/D) or (A/D) Disable to CLKIN  
15 + 7DT/16  
1 + 7DT/16  
8 + 7DT/16  
Rev. F  
|
Page 32 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
CLKIN  
tSRDYCK  
RE DY (O/D)  
REDY (A/D)  
O/D = OPEN DRAIN, A/D = ACTIVE DRIVE  
Figure 19. Synchronous REDY Timing  
READ CYCLE  
ADDRESS/CS  
tHADRDH  
tS ADRDL  
tW RW H  
RD  
tHDARWH  
DATA (OUT)  
tDRDHRDY  
tSDATRDY  
tRDYPRD  
tDRDY R DL  
REDY (O/D)  
REDY (A/D)  
WRITE CYCLE  
ADDRESS  
tHADWRH  
tSADWRH  
tHCS WRH  
tS CSWRL  
CS  
tW WRL  
tWRWH  
WR  
tHDATWH  
tSDATWH  
DATA (IN)  
tDWRHRDY  
tDRDYWRL  
tRDYPWR  
RE DY (O/D)  
REDY (A/D)  
O/D = OPEN DRAIN, A/D = ACTIVE DRIVE  
Figure 20. Asynchronous Read/Write—Host to ADSP-2106x  
Rev. F  
|
Page 33 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
Three-State Timing—Bus Master/ Bus Slave  
These specifications show how the memory interface is disabled  
(stops driving) or enabled (resumes driving) relative to CLKIN  
and the SBTS pin. This timing is applicable to bus master transi-  
tion cycles (BTC) and host transition cycles (HTC) as well as the  
SBTS pin.  
Table 21. Three-State Timing—Bus Master, Bus Slave  
5 V and 3.3 V  
Unit  
Parameter  
Min  
Max  
Timing Requirements  
tSTSCK  
tHTSCK  
Switching Characteristics  
tMIENA  
Address/Select Enable After CLKIN1  
tMIENS  
tMIENHG  
tMITRA  
SBTS Setup Before CLKIN  
12 + DT/2  
ns  
ns  
SBTS Hold Before CLKIN  
6 + DT/2  
–1.5 – DT/8  
–1.5 – DT/8  
–1.5 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Strobes Enable After CLKIN2  
HBG Enable After CLKIN  
Address/Select Disable After CLKIN3  
Strobes Disable After CLKIN2  
HBG Disable After CLKIN  
0 – DT/4  
tMITRS  
1.5 – DT/4  
2.0 – DT/4  
tMITRHG  
tDATEN  
tDATTR  
tACKEN  
tACKTR  
tADCEN  
tADCTR  
tMTRHBG  
tMENHBG  
Data Enable After CLKIN4  
Data Disable After CLKIN4  
ACK Enable After CLKIN4  
ACK Disable After CLKIN4  
9 + 5DT/16  
0 – DT/8  
7 – DT/8  
6 – DT/8  
8 – DT/4  
7.5 + DT/4  
–1 – DT/8  
–2 – DT/8  
ADRCLK Enable After CLKIN  
ADRCLK Disable After CLKIN  
Memory Interface Disable Before HBG Low5  
Memory Interface Enable After HBG High5  
0 + DT/8  
19 + DT  
1 For ADSP-21060L/ADSP-21060LC/ADSP-21062L, specification is –1.25 – DT/8 ns min, for ADSP-21062, specification is –1 – DT/8 ns min.  
2 Strobes = RD, WR, PAGE, DMAG, BMS, SW.  
3 For ADSP-21060LC, specification is 0.25 – DT/4 ns max.  
4 In addition to bus master transition cycles, these specs also apply to bus master and bus slave synchronous read/write.  
5 Memory Interface = Address, RD, WR, MSx, SW, PAGE, DMAGx, and BMS (in EPROM boot mode).  
HBG  
tMTRHBG  
tMENHBG  
MEMORY  
INTERFACE  
MEMORY INTERFACE = ADDRESS, RD, WR, MSx, SW, PAGE, DMAGx. BMS (IN EPROM BOOT MODE)  
Figure 21. Three-State Timing (Bus Transition Cycle, SBTS Assertion)  
Rev. F  
|
Page 34 of 64  
|
March 2008  
 
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
CLKIN  
tSTSCK  
tHTSCK  
SBTS  
tMIENA, tMIENS, tMIENHG  
tMITRA, tMITRS, tMITRHG  
MEMORY  
INTERFACE  
tDATTR  
tDATEN  
DATA  
tACKTR  
tACKEN  
ACK  
tADCEN  
tADCTR  
ADRCLK  
Figure 22. Three-State Timing (Bus Transition Cycle, SBTS Assertion)  
Rev. F  
|
Page 35 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
and DMAGx signals. For Paced Master mode, the data transfer  
is controlled by ADDR31–0, RD, WR, MS3–0, and ACK (not  
DMAG). For Paced Master mode, the Memory Read-Bus Mas-  
ter, Memory Write-Bus Master, and Synchronous Read/Write-  
Bus Master timing specifications for ADDR31–0, RD, WR,  
MS3–0, PAGE, DATA63–0, and ACK also apply.  
DMA Handshake  
These specifications describe the three DMA handshake modes.  
In all three modes, DMARx is used to initiate transfers. For  
Handshake mode, DMAGx controls the latching or enabling of  
data externally. For External handshake mode, the data transfer  
is controlled by the ADDR31–0, RD, WR, PAGE, MS3–0, ACK,  
Table 22. DMA Handshake  
5 V and 3.3 V  
Unit  
Parameter  
Min  
Max  
Timing Requirements  
tSDRLC  
DMARx Low Setup Before CLKIN1  
DMARx High Setup Before CLKIN1  
DMARx Width Low (Nonsynchronous)  
Data Setup After DMAGx Low2  
Data Hold After DMAGx High  
Data Valid After DMARx High2  
DMARx Low Edge to Low Edge  
DMARx Width High2  
5
5
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSDRHC  
tWDR  
tSDATDGL  
tHDATIDG  
tDATDRH  
tDMARLL  
tDMARH  
10 + 5DT/8  
16 + 7DT/8  
2
23 + 7DT/8  
6
Switching Characteristics  
tDDGL  
DMAGx Low Delay After CLKIN  
9 + DT/4  
6 + 3DT/8  
12 + 5DT/8  
–2 – DT/8  
8 + 9DT/16  
0
15 + DT/4  
6 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWDGH  
tWDGL  
DMAGx High Width  
DMAGx Low Width  
tHDGC  
DMAGx High Delay After CLKIN  
Data Valid Before DMAGx High3  
Data Disable After DMAGx High4  
WR Low Before DMAGx Low5  
DMAGx Low Before WR High  
WR High Before DMAGx High  
RD Low Before DMAGx Low  
RD Low Before DMAGx High  
RD High Before DMAGx High  
DMAGx High to WR, RD, DMAGx Low  
Address/Select Valid to DMAGx High  
Address/Select Hold After DMAGx High6  
tVDATDGH  
tDATRDGH  
tDGWRL  
tDGWRH  
tDGWRR  
tDGRDL  
tDRDGH  
tDGRDR  
tDGWR  
7
2
0
10 + 5DT/8 +W  
1 + DT/16  
0
3 + DT/16  
2
11 + 9DT/16 + W  
0
3
5 + 3DT/8 + HI  
17 + DT  
–0.5  
tDADGH  
tDDGHA  
W = (number of wait states specified in WAIT register) 
؋
 tCK  
.
HI = tCK (if data bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).  
1 Only required for recognition in the current cycle.  
2 tSDATDGL is the data setup requirement if DMARx is not being used to hold off completion of a write. Otherwise, if DMARx low holds off completion of the write, the data can  
be driven tDATDRH after DMARx is brought high.  
3 tVDATDGH is valid if DMARx is not being used to hold off completion of a read. If DMARx is used to prolong the read, then tVDATDGH = tCK – 0.25tCCLK – 8 + (n × tCK) where n equals  
the number of extra cycles that the access is prolonged.  
4 See Example System Hold Time Calculation on Page 47 for calculation of hold times given capacitive and dc loads.  
5 For ADSP-21062/ADSP-21062L specification is –2.5 ns min, 2 ns max.  
6 For ADSP-21060L/ADSP-21062L specification is –1 ns min.  
Rev. F  
|
Page 36 of 64  
|
March 2008  
 
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
CLKIN  
tSDRLC  
tDMARLL  
tSDRHC  
tWDR  
tDMARH  
DMARx  
DMAGx  
tHDGC  
tDDGL  
tWDGL  
tWDGH  
TRANSFERS BETWEEN ADSP-2106x  
INTERNAL MEMORY AND EXTERNAL DEVICE  
tDATRDGH  
tVDATDGH  
DATA  
(OUT)  
(FROM ADSP-2106x TO EXTERNAL DEVICE)  
tDATDRH  
tSDATDGL  
tHDATIDG  
DATA  
(IN)  
(FROM EXTERNAL DEVICE TO ADSP-2106x)  
TRANSFERS BETWEEN EXTERNAL DEVICE AND  
EXTERNAL MEMORY* (EXTERNAL HANDSHAKE MODE)  
tDGWRL  
tDGWRR  
tDGWRH  
WR  
(EXTERNAL DEVICE TO EXTERNAL MEMORY)  
(EXTERNAL MEMORY TO EXTERNAL DEVICE)  
tDGRDR  
tDGRDL  
RD  
tDRDGH  
tDADGH  
tDDGHA  
ADDR  
MSx, SW  
*MEMORY READ BUS MASTER, MEMORY WRITE BUS MASTER, OR SYNCHRONOUS READ/WRITE BUS MASTER  
TIMING SPECIFICATIONS FOR ADDR31–0, RD, WR, SW MS3–0, AND ACK ALSO APPLY HERE.  
Figure 23. DMA Handshake  
Rev. F  
|
Page 37 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
Link Ports —1 × CLK Speed Operation  
Table 23. Link Ports—Receive  
5 V  
Max  
3.3 V  
Max  
Unit  
Parameter  
Min  
Min  
Timing Requirements  
tSLDCL  
Data Setup Before LCLK Low1  
3.5  
3
3
ns  
ns  
ns  
ns  
ns  
tHLDCL  
Data Hold After LCLK Low  
LCLK Period (1Operation)  
LCLK Width Low  
3
tLCLKIW  
tLCLKRWL  
tLCLKRWH  
tCK  
6
tCK  
6
LCLK Width High  
5
5
Switching Characteristics  
tDLAHC  
tDLALC  
tENDLK  
tTDLK  
LACK High Delay After CLKIN High2, 3  
18 + DT/2  
–3  
28.5 + DT/2  
+13  
18 + DT/2  
–3  
28.5 + DT/2  
+13  
ns  
ns  
ns  
ns  
LACK Low Delay After LCLK High  
LACK Enable From CLKIN  
5 + DT/2  
5 + DT/2  
LACK Disable From CLKIN  
20 + DT/2  
20 + DT/2  
1 For ADSP-21062, specification is 3 ns min.  
2 LACK goes low with tDLALC relative to rise of LCLK after first nibble, but does not go low if the receiver’s link buffer is not about to fill.  
3 For ADSP-21060C, specification is 18 + DT/2 ns min, 29 + DT/2 ns max.  
Table 24. Link Ports—Transmit  
5 V  
3.3 V  
Max  
Unit  
Parameter  
Min  
Max  
Min  
Timing Requirements  
tSLACH  
tHLACH  
Switching Characteristics  
LACK Setup Before LCLK High1  
18  
–7  
18  
–7  
ns  
ns  
LACK Hold After LCLK High  
tDLCLK  
Data Delay After CLKIN (1ꢂ  
15.5  
3
15.5  
2.5  
ns  
Operation)2  
tDLDCH  
tHLDCH  
tLCLKTWL  
tLCLKTWH  
tDLACLK  
tENDLK  
Data Delay After LCLK High3  
Data Hold After LCLK High  
LCLK Width Low4  
ns  
ns  
ns  
ns  
–3  
–3  
(tCK/2) – 2  
(tCK/2) – 2  
(tCK/2) + 8.5  
5 + DT/2  
(tCK/2) + 2  
(tCK/2) + 2  
(tCK/2) – 1  
(tCK/2) – 1.25  
(tCK/2) + 1.25  
(tCK/2) + 1  
LCLK Width High5  
LCLK Low Delay After LACK High6  
LACK Enable From CLKIN  
LACK Disable From CLKIN  
(3 tCK/2) + 17 (tCK/2) + 8  
5 + DT/2  
(3 tCK/2) + 17.5 ns  
ns  
tTDLK  
20 + DT/2  
20 + DT/2  
ns  
1 For ADSP-21060L/ADSP-21060LC, specification is 20 ns min.  
2 For ADSP-21060L, specification is 16.5 ns max; for ADSP-21060LC, specification is 16.75 ns max.  
3 For ADSP-21062, specification is 2.5 ns max.  
4 For ADSP-21062, specification is (tCK/2) – 1 ns min, (tCK/2) + 1.25 ns max; for ADSP-21062L, specification is (tCK/2) – 1 ns min, (tCK/2) + 1.5 ns max; for ADSP-21060LC  
specification is (tCK/2) – 1 ns min, (tCK/2) + 2.25 ns max.  
5 For ADSP-21062, specification is (tCK/2) – 1.25 ns min, (tCK/2) + 1 ns max; for ADSP-21062L, specification is (tCK/2) – 1.5 ns min, (tCK/2) + 1 ns max; for ADSP-21060C  
specification is (tCK/2) – 2.25 ns min, (tCK/2) + 1 ns max.  
6 For ADSP-21062, specification is (tCK/2) + 8.75 ns min, (3 × tCK/2) + 17 ns max; for ADSP-21062L, specification is (tCK/2) + 8 ns min, (3 × tCK/2) + 17 ns max; for  
ADSP-21060LC specification is (tCK/2) + 8 ns min, (3 × tCK/2) + 18.5 ns max.  
Rev. F  
|
Page 38 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
Table 25. Link Port Service Request Interrupts:1and 2Speed Operations  
5 V  
Max  
3.3 V  
Max  
Unit  
Parameter  
Min  
Min  
Timing Requirements  
tSLCK  
tHLCK  
LACK/LCLK Setup Before CLKIN Low1 10  
LACK/LCLK Hold After CLKIN Low1  
10  
2
ns  
ns  
2
1 Only required for interrupt recognition in the current cycle.  
Hold skew is the maximum delay that can be introduced in  
LCLK relative to LDATA:  
Link Ports —2 × CLK Speed Operation  
Calculation of link receiver data setup and hold relative to link  
clock is required to determine the maximum allowable skew  
that can be introduced in the transmission path between  
LDATA and LCLK. Setup skew is the maximum delay that can  
be introduced in LDATA relative to LCLK:  
Hold Skew = tLCLKTWL min – tHLDCH tHLDCL  
Calculations made directly from 2 speed specifications will  
result in unrealistically small skew times because they include  
multiple tester guardbands.  
Setup Skew = tLCLKTWH min – tDLDCH tSLDCL  
Note that link port transfers at 2× CLK speed at 40 MHz  
(tCK = 25 ns) may fail. However, 2× CLK speed link port trans-  
fers at 33 MHz (tCK = 30 ns) work as specified.  
Table 26. Link Ports—Receive  
5 V  
Max  
3.3 V  
Max  
Unit  
Parameter  
Min  
Min  
Timing Requirements  
tSLDCL  
Data Setup Before LCLK Low  
Data Hold After LCLK Low  
LCLK Period (2Operation)  
LCLK Width Low1  
2.5  
2.25  
2.25  
tCK/2  
5.25  
4
ns  
ns  
ns  
ns  
ns  
tHLDCL  
2.25  
tCK/2  
4.5  
tLCLKIW  
tLCLKRWL  
tLCLKRWH  
LCLK Width High2  
4.25  
Switching Characteristics  
tDLAHC  
LACK High Delay After CLKIN High3  
tDLALC  
LACK Low Delay After LCLK High4  
18 + DT/2  
6
28.5 + DT/2  
16  
18 + DT/2  
6
29.5 + DT/2  
16  
ns  
ns  
1 For ADSP-21060L, specification is 5 ns min.  
2 For ADSP-21062, specification is 4 ns min, for ADSP-21060LC, specification is 4.5 ns min.  
3 LACK goes low with tDLALC relative to rise of LCLK after first nibble, but does not go low if the receiver’s link buffer is not about to fill.  
4 For ADSP-21060L, specification is 6 ns min, 18 ns max. For ADSP-21060C, specification is 6 ns min, 16.5 ns max. For ADSP-21060LC, specification is 6 ns min, 18.5 ns max.  
Rev. F  
|
Page 39 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
Table 27. Link Ports—Transmit  
5 V  
Max  
3.3 V  
Max  
Unit  
Parameter  
Min  
Min  
Timing Requirements  
tSLACH  
tHLACH  
Switching Characteristics  
LACK Setup Before LCLK High  
19  
19  
ns  
ns  
LACK Hold After LCLK High  
–6.75  
–6.5  
tDLCLK  
Data Delay After CLKIN  
8
8
ns  
ns  
ns  
ns  
ns  
tDLDCH  
tHLDCH  
tLCLKTWL  
tLCLKTWH  
tDLACLK  
Data Delay After LCLK High1  
Data Hold After LCLK High2  
LCLK Width Low3  
2.25  
2.25  
–2.0  
–2  
(tCK/4) – 1  
(tCK/4) – 1.25  
(tCK/4) + 9  
(tCK/4) + 1.25  
(tCK/4) + 1  
(tCK/4) – 0.75  
(tCK/4) – 1.5  
(tCK/4) + 1.5  
(tCK/4) + 1  
LCLK Width High4  
LCLK Low Delay After LACK High  
(3 tCK/4) + 16.5 (tCK/4) + 9  
(3 tCK/4) + 16.5 ns  
1 For ADSP-21060/ADSP-21060C, specification is 2.5 ns max.  
2 For ADSP-21062L, specification is –2.25 ns min.  
3 For ADSP-21060, specification is (tCK/4) – 1ns min, (tCK/4) + 1 ns max; for ADSP-21060C/ADSP-21062L, specification is (tCK/4) – 1 ns min, (tCK/4) + 1.5 ns max.  
4 For ADSP-21060, specification is (tCK/4) – 1 ns min, (tCK/4) + 1 ns max; for ADSP-21060C, specification is (tCK/4) – 1.5 ns min, (tCK/4) + 1 ns max.  
Rev. F  
|
Page 40 of 64  
|
March 2008  
 
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
TRANSMIT  
CLKIN  
tDLCLK  
tLCLKTWL  
tLCLKTWH  
LAST NIBBLE  
TRANSMITTED  
FIRST NIBBLE  
TRANSMITTED  
LCLK INACTIVE  
(HIGH)  
LCLK 1x  
OR  
LCLK 2x  
tDLDCH  
tHLDCH  
LDAT(3:0)  
LACK (IN)  
OUT  
tDLACLK  
tSLACH  
tHLACH  
THE tSLACH REQUIREMENT APPLIES TO THE RISING EDGE OF LCLK ONLY FOR THE FIRST NIBBLE TRANSMITTED.  
RECEIVE  
CLKIN  
tLCLKIW  
tLCLKRWH  
tLCLKRWL  
LCLK 1x  
OR  
LCLK 2x  
tHLDCL  
tSLDCL  
IN  
LDAT(3:0)  
tDLALC  
tDLAHC  
LACK (OUT)  
LINK PORT ENABLE/THREE-STATE DELAY FROM INSTRUCTION  
CLKIN  
tENDLK  
tTDLK  
LCLK  
LDAT(3:0)  
LACK  
LINK PORT ENABLE OR THREE-STATE TAKES EFFECT 2 CYCLES AFTER A WRITE TO A LINK PORT CONTROL REGISTER.  
LINK PORT INTERRUPT SETUPTIME  
CLKIN  
tHLCK  
tSLCK  
LCLK  
LACK  
Figure 24. Link Ports—Receive  
Rev. F  
|
Page 41 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
at clock speed n, the following specifications must be confirmed:  
1) frame sync delay and frame sync setup and hold, 2) data delay  
and data setup and hold, and 3) SCLK width.  
Serial Ports  
For serial ports, see Table 28, Table 29, Table 30, Table 31,  
Table 32, Table 33, Table 35, Figure 26, and Figure 25. To deter-  
mine whether communication is possible between two devices  
Table 28. Serial Ports—External Clock  
5 V and 3.3 V  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSFSE  
TFS/RFS Setup Before TCLK/RCLK1  
TFS/RFS Hold After TCLK/RCLK1, 2  
Receive Data Setup Before RCLK1  
Receive Data Hold After RCLK1  
TCLK/RCLK Width3  
3.5  
4
ns  
ns  
ns  
ns  
ns  
ns  
tHFSE  
tSDRE  
tHDRE  
tSCLKW  
tSCLK  
1.5  
6.5  
9
TCLK/RCLK Period  
2tCLK  
1 Referenced to sample edge.  
2 RFS hold after RCK when MCE = 1, MFD = 0 is 0 ns minimum from drive edge. TFS hold after TCK for late external TFS is 0 ns minimum from drive edge.  
3 For ADSP-21060/ADSP-21060C/ADSP-21060LC, specification is 9.5 ns min.  
Table 29. Serial Ports—Internal Clock  
5 V and 3.3 V  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSFSI  
tHFSI  
tSDRI  
tHDRI  
TFS Setup Before TCLK1; RFS Setup Before RCLK1  
8
1
3
3
ns  
ns  
ns  
ns  
TFS/RFS Hold After TCLK/RCLK1, 2  
Receive Data Setup Before RCLK1  
Receive Data Hold After RCLK1  
1 Referenced to sample edge.  
2 RFS hold after RCK when MCE = 1, MFD = 0 is 0 ns minimum from drive edge. TFS hold after TCK for late external TFS is 0 ns minimum from drive edge.  
Table 30. Serial Ports—External or Internal Clock  
5 V and 3.3 V  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tDFSE  
RFS Delay After RCLK (Internally Generated RFS)1  
RFS Hold After RCLK (Internally Generated RFS)1  
13  
ns  
ns  
tHOFSE  
3
1 Referenced to drive edge.  
Table 31. Serial Ports—External Clock  
5 V and 3.3 V  
Max  
Parameter  
Min  
Unit  
Switching Characteristics  
tDFSE  
tHOFSE  
tDDTE  
tHDTE  
TFS Delay After TCLK (Internally Generated TFS)1  
TFS Hold After TCLK (Internally Generated TFS)1  
Transmit Data Delay After TCLK1  
13  
16  
ns  
ns  
ns  
ns  
3
5
Transmit Data Hold After TCLK1  
1 Referenced to drive edge.  
Rev. F  
|
Page 42 of 64  
|
March 2008  
 
 
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
Table 32. Serial Ports—Internal Clock  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tDFSI  
TFS Delay After TCLK (Internally Generated TFS)1  
4.5  
ns  
ns  
ns  
ns  
ns  
tHOFSI  
TFS Hold After TCLK (Internally Generated TFS)1  
Transmit Data Delay After TCLK1  
Transmit Data Hold After TCLK1  
TCLK/RCLK Width2  
–1.5  
tDDTI  
7.5  
tHDTI  
0
tSCLKIW  
0.5tSCLK –2.5  
0.5tSCLK+2.5  
1 Referenced to drive edge.  
2 For ADSP-21060L/ADSP-21060C, specification is 0.5TSCLK – 2 ns min, 0.5tSCLK + 2 ns max.  
Table 33. Serial Ports—Enable and Three-State  
Parameter  
Min  
4
Max  
Unit  
Switching Characteristics  
tDDTEN  
Data Enable from External TCLK1, 2  
Data Disable from External TCLK1, 3  
Data Enable from Internal TCLK1  
Data Disable from Internal TCLK1, 4  
TCLK/RCLK Delay from CLKIN  
SPORT Disable After CLKIN  
ns  
ns  
ns  
ns  
ns  
ns  
tDDTTE  
10.5  
tDDTIN  
0
tDDTTI  
3
tDCLK  
22 + 3 DT/8  
17  
tDPTR  
1 Referenced to drive edge.  
2 For ADSP-21060L/ADSP-21060C, specification is 3.5 ns min; for ADSP-21062 specification is 4.5 ns min.  
3 For ADSP-21062L, specification is 16 ns max.  
4 For ADSP-21062L, specification is 7.5 ns max.  
Table 34. Serial Ports—GATED SCLK with External TFS (Mesh Multiprocessing)1  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tSTFSCK  
tHTFSCK  
TFS Setup Before CLKIN  
TFS Hold After CLKIN  
4
ns  
ns  
tCK/2  
1 Applies only to gated serial clock mode used for serial port system I/O in mesh multiprocessing systems.  
Table 35. Serial Ports—External Late Frame Sync  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tDDTLFSE  
Data Delay from Late External TFS or External RFS with MCE = 1,  
MFD = 01, 2  
Data Enable from Late FS or MCE = 1, MFD = 01, 3  
12  
ns  
ns  
tDDTENFS  
3.5  
1 MCE = 1, TFS enable and TFS valid follow tDDTLFSE and tDDTENFS  
.
2 For ADSP-21062/ADSP-21062L, specification is 12.75 ns max; for ADSP-21060L/ADSP-21060LC, specification is 12.8 ns max.  
3 For ADSP-21060/ADSP-21060C, specification is 3 ns min.  
Rev. F  
|
Page 43 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
DATA RECEIVE— INTERNAL CLOCK  
DATA RECEIVE— EXTERNAL CLOCK  
DRIVE  
EDGE  
SAMPLE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKW  
tSCLKIW  
RCLK  
RCLK  
tDFSE  
tDFSE  
tHOFSE  
tHFSE  
tSFSI  
tHFSI  
tSFSE  
tHOFSE  
RFS  
DR  
RFS  
DR  
tSDRI  
tSDRE  
tHDRI  
tHDRE  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DATA TRANSMIT— INTERNAL CLOCK  
DATA TRANSMIT— EXTERNAL CLOCK  
DRIVE  
EDGE  
SAMPLE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKIW  
tSCLKW  
TCLK  
TCLK  
TFS  
tDFSE  
tDFSI  
tHOFSI  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
TFS  
DT  
tDDTI  
tDDTE  
tHDTE  
tHDTI  
DT  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DRIVE EDGE DRIVE EDGE  
TCLK/RCLK  
TCLK  
(EXT)  
tDDTTE  
tDDTEN  
DT  
DRIVE  
EDGE  
DRIVE  
EDGE  
TCLK/RCLK  
TCLK  
(INT)  
tDDTIN  
tDDTTI  
DT  
CLKIN  
CLKIN  
tHTFSCK  
tDPTR  
SPORT ENABLE AND  
THREE-STATE  
LATENCY  
TCLK, RCLK  
TFS, RFS, DT  
tSTFSCK  
SPORT DISABLE DELAY  
FROM INSTRUCTION  
TFS (EXT)  
IS TWO CYCLES  
tDCLK  
TCLK (INT)  
RCLK (INT)  
NOTE: APPLIES ONLY TO GATED SERIAL CLOCK MODE WITH  
EXTERNAL TFS, AS USED IN THE SERIAL PORT SYSTEM I/O  
FOR MESH MULTIPROCESSING.  
LOW TO HIGH ONLY  
Figure 25. Serial Ports  
Rev. F  
|
Page 44 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
EXTERNAL RFS WITH MCE = 1, MFD = 0  
DRIVE  
SAMPLE  
DRIVE  
RCLK  
RFS  
tSFSE/I  
tHOFSE/I  
tDDTE/I  
tHDTE/I  
1ST BIT  
tDDTENFS  
DT  
2ND BIT  
tDDTLFSE  
LATE EXTERNAL TFS  
DRIVE  
SAMPLE  
DRIVE  
TCLK  
tHOFSE/I  
tSFSE/I  
TFS  
tDDTE/I  
TDDTENFS  
tHDTE/I  
1ST BIT  
DT  
2ND BIT  
tDDTLFSE  
Figure 26. Serial Ports—External Late Frame Sync  
Rev. F  
|
Page 45 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
JTAG Test Access Port and Emulation  
For JTAG Test Access Port and Emulation, see Table 36 and  
Figure 27.  
Table 36. JTAG Test Access Port and Emulation  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tTCK  
TCK Period  
tCK  
5
ns  
ns  
ns  
ns  
ns  
ns  
tSTAP  
tHTAP  
tSSYS  
tHSYS  
tTRSTW  
TDI, TMS Setup Before TCK High  
TDI, TMS Hold After TCK High  
System Inputs Setup Before TCK Low1  
System Inputs Hold After TCK Low1, 2  
TRST Pulse Width  
6
7
18  
4tCK  
Switching Characteristics  
tDTDO TDO Delay from TCK Low  
tDSYS  
System Outputs Delay After TCK Low3  
13  
ns  
ns  
18.5  
1 System Inputs = DATA63–0, ADDR31–0, RD, WR, ACK, SBTS, HBR, HBG, CS, DMAR1, DMAR2, BR6–1, ID2–0, RPBA, IRQ2–0, FLAG3–0, PA, BRST, DR0, DR1, TCLK0,  
TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, LxDAT7–0, LxCLK, LxACK, EBOOT, LBOOT, BMS, CLKIN, RESET.  
2 For ADSP-21060L/ADSP-21060LC/ADSP-21062L, specification is 18.5 ns min.  
3 System Outputs = DATA63–0, ADDR31–0, MS3–0, RD, WR, ACK, PAGE, CLKOUT, HBG, REDY, DMAG1, DMAG2, BR6–1, PA, BRST, CIF, FLAG3–0, TIMEXP, DT0,  
DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, LxDAT7–0, LxCLK, LxACK, BMS.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 27. JTAG Test Access Port and Emulation  
Rev. F  
|
Page 46 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
output has reached a specified high or low trip point, as shown  
in the Output Enable/Disable diagram (Figure 29). If multiple  
pins (such as the data bus) are enabled, the measurement value  
is that of the first pin to start driving.  
TEST CONDITIONS  
For the ac signal specifications (timing parameters), see Timing  
Specifications on Page 21. These specifications include output  
disable time, output enable time, and capacitive loading. The  
timing specifications for the DSP apply for the voltage reference  
levels in Figure 28.  
Example System Hold Time Calculation  
To determine the data output hold time in a particular system,  
first calculate tDECAY using the equation given above. Choose V  
to be the difference between the ADSP-2106x’s output voltage  
and the input threshold for the device requiring the hold time. A  
typical V will be 0.4 V. CL is the total bus capacitance (per data  
line), and IL is the total leakage or three-state current (per data  
line). The hold time will be tDECAY plus the minimum disable  
time (i.e., tDATRWH for the write cycle).  
INPUT  
OR  
OUTPUT  
1.5V  
1.5V  
Figure 28. Voltage Reference Levels for AC Measurements (Except Output  
Enable/Disable)  
Capacitive Loading  
Output delays and holds are based on standard capacitive loads:  
50 pF on all pins (see Figure 30). The delay and hold specifica-  
tions given should be derated by a factor of 1.5 ns/50 pF for  
loads other than the nominal value of 50 pF. Figure 32,  
Figure 33, Figure 37, and Figure 38 show how output rise time  
varies with capacitance. Figure 34 and Figure 36 show  
graphically how output delays and holds vary with load capaci-  
tance. (Note that this graph or derating does not apply to output  
disable delays; see the previous section Output Disable Time  
under Test Conditions.) The graphs of Figure 32, Figure 33,  
Figure 37, and Figure 38 may not be linear outside the ranges  
shown.  
Output Disable Time  
Output pins are considered to be disabled when they stop driv-  
ing, go into a high impedance state, and start to decay from their  
output high or low voltage. The time for the voltage on the bus  
to decay by V is dependent on the capacitive load, CL, and the  
load current, IL. This decay time can be approximated by the fol-  
lowing equation:  
CLV  
IL  
-------------  
PEXT  
=
The output disable time tDIS is the difference between  
MEASURED and tDECAY as shown in Figure 29. The time tMEASURED is  
the interval from when the reference signal switches to when the  
output voltage decays V from the measured output high or  
output low voltage. tDECAY is calculated with test loads CL and IL,  
and with V equal to 0.5 V.  
t
IOL  
TO  
OUTPUT  
PIN  
+1.5V  
50pF  
REFERENCE  
SIGNAL  
tMEASURED  
tENA  
tDIS  
VOH (MEASURED)  
IOH  
VOH (MEASURED)  
VOH (MEASURED) - V  
VOL (MEASURED) + V  
tDECAY  
2.0V  
1.0V  
Figure 30. Equivalent Device Loading for AC Measurements (Includes All  
Fixtures)  
VOL (MEASURED)  
VOL (MEASURED)  
OUTPUT STARTS  
DRIVING  
Output Drive Characteristics  
OUTPUT STOPS  
DRIVING  
Figure 31 shows typical I-V characteristics for the output driv-  
ers of the ADSP-2106x. The curves represent the current drive  
capability of the output drivers as a function of output voltage.  
HIGH IMPEDANCE STATE.  
TEST CONDITIONS CAUSE  
THIS VOLTAGE TO BE  
APPROXIMATELY 1.5V  
Figure 29. Output Enable/Disable  
Output Enable Time  
Output pins are considered to be enabled when they have made  
a transition from a high impedance state to when they start driv-  
ing. The output enable time tENA is the interval from when a  
reference signal reaches a high or low voltage level to when the  
Rev. F  
|
Page 47 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
Output Characteristics (5 V)  
3.5  
3.0  
2.5  
2.0  
1.5  
75  
50  
25  
5.25V, -40°C  
5.0V, +25°C  
0
RISE TIME  
Y = 0.009x + 1.1  
4.75V, +100°C  
-25  
4.75V,+100°C  
-50  
5.0V, +25°C  
-75  
5.25V,  
-40°C  
FALL TIME  
1.0  
-
-
-
100  
Y = 0.005x + 0.6  
0.5  
0
125  
150  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
0.75  
1.50  
2.25  
3.00  
3.75  
V
4.50  
5.25  
LOAD CAPACITANCE  
-pF  
SOURCE VOLTAGE  
-
Figure 33. Typical Output Rise Time (0.8 V to 2.0 V) vs. Load Capacitance  
(VDD = 5 V)  
Figure 31. ADSP-21062 Typical Output Drive Currents (VDD = 5 V)  
5
16.0  
14.0  
12.0  
Y = 0.03x  
-
1.45  
4
3
2
1
RISE TIME  
10.0  
Y = 0.005x + 3.7  
8.0  
FALL TIME  
6.0  
4.0  
NOMINAL  
2.0  
0
Y = 0.0031x + 1.1  
-1  
25  
50  
75  
100  
125  
150  
pF  
175  
200  
0
20  
40  
60  
80  
100 120 140 160 180 200  
pF  
LOAD CAPACITANCE  
-
LOAD CAPACITANCE  
-
Figure 34. Typical Output Delay or Hold vs. Load Capacitance (at Maximum  
Case Temperature) (VDD = 5 V)  
Figure 32. Typical Output Rise Time (10% to 90% VDD) vs. Load Capacitance  
(VDD = 5 V)  
Rev. F  
|
Page 48 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
Output Characteristics (3.3 V)  
18  
100  
16  
3.3V, +25°C  
80  
60  
40  
14  
12  
10  
8
3.6V, -40°C  
Y = 0.0796x + 1.17  
3.0V, +85°C  
VOH  
20  
0
RISE TIME  
3.0V, +85°C  
3.3V, +25°C  
6
4
2
0
-
40  
60  
Y = 0.0467x + 0.55  
3.6V, -40°C  
-
FALL TIME  
VOL  
-
100  
120  
-
0
20  
40  
60  
80 100 120 140 160 180 200  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
LOAD CAPACITANCE  
-pF  
Figure 37. Typical Output Rise Time (10% to 90% VDD) vs. Load Capacitance  
(VDD = 3.3 V)  
Figure 35. ADSP-21062 Typical Output Drive Currents (VDD = 3.3 V)  
5
4
3
9
8
7
Y = 0.0391x + 0.36  
6
Y = 0.0329x  
- 1.65  
5
2
1
RISE TIME  
4
3
2
1
0
Y = 0.0305x + 0.24  
FALL TIME  
NOMINAL  
-
1
25  
50  
75  
100  
125  
150  
pF  
175  
200  
0
20  
40  
60  
80 100 120 140 160 180 200  
pF  
LOAD CAPACITANCE  
-
LOAD CAPACITANCE  
-
Figure 36. Typical Output Delay or Hold vs. Load Capacitance (at Maximum  
Case Temperature) (VDD = 3.3 V)  
Figure 38. Typical Output Rise Time (0.8 V to 2.0 V) vs. Load Capacitance  
(VDD = 3.3 V)  
Rev. F  
|
Page 49 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
Thermal Characteristics for CQFP Package  
ENVIRONMENTAL CONDITIONS  
The ADSP-21060C/ADSP-21060LC are available in 240-lead  
thermally enhanced ceramic QFP (CQFP). There are two pack-  
age versions, one with a copper/tungsten heat slug on top of the  
package (CZ) for air cooling, and one with the heat slug on the  
bottom (CW) for cooling through the board. The ADSP-2106x  
is specified for a case temperature (TCASE). To ensure that the  
The ADSP-2106x processors are rated for performance under  
T
CASE environmental conditions specified in the Operating Con-  
ditions (5 V) on Page 15 and Operating Conditions (3.3 V) on  
Page 18.  
Thermal Characteristics for MQFP_PQ4 and PBGA  
Packages  
T
CASE data sheet specification is not exceeded, a heatsink and/or  
an air flow source may be used. A heatsink should be attached  
with a thermal adhesive.  
The ADSP-21060/ADSP-21060L and ADSP-21062/ADSP-  
21062L are available in 240-lead thermally enhanced  
MQFP_PQ4 and 225-ball plastic ball grid array packages. The  
top surface of the thermally enhanced MQFP_PQ4 contains a  
metal slug from which most of the die heat is dissipated. The  
slug is flush with the top surface of the package. Note that the  
metal slug is internally connected to GND through the device  
substrate.  
T
CASE = TAMB + (PD ꢂ ꢅCA)  
TCASE = Case temperature (measured on top surface of package)  
PD = Power dissipation in W (this value depends upon the spe-  
cific application; a method for calculating PD is shown under  
Power Dissipation).  
CA =Value from Table 38 below.  
Both packages are specified for a case temperature (TCASE). To  
ensure that the TCASE is not exceeded, a heatsink and/or an air-  
flow source may be used. A heatsink should be attached with a  
thermal adhesive.  
Table 39. Thermal Characteristics for Thermally Enhanced  
240-Lead CQFP1  
Parameter  
ADSP-21060CW/ADSP-21060LCW  
Airflow (LFM2)  
Typical  
Unit  
T
CASE = TAMB + (PD ꢂ ꢅCA)  
TCASE = Case temperature (measured on top surface of package)  
CA  
CA  
CA  
CA  
CA  
0
19.5  
16  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
PD =Power dissipation in W (this value depends upon the spe-  
cific application; a method for calculating PD is shown under  
Power Dissipation).  
100  
200  
400  
600  
14  
CA =Value from Table 37 below.  
12  
10  
Table 37. Thermal Characteristics for Thermally Enhanced  
240-Lead MQFP_PQ41  
ADSP-21060CZ/ADSP-21060LCZ  
CA  
CA  
CA  
CA  
CA  
0
20  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Parameter  
Airflow (LFM2)  
Typical  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
100  
200  
400  
600  
16  
CA  
CA  
CA  
CA  
CA  
0
10  
9
14  
100  
200  
400  
600  
11.5  
8
9.5  
7
1 This represents thermal resistance at total power of 5 W. With airflow, no  
variance is seen in CA at 5W.  
6
CA at 0 LFM varies with power.  
ADSP-21060CW/ADSP-21060LCW:  
at 2 W, CA = 23°C/W  
1 This represents thermal resistance at total power of 5 W. With airflow, no  
variance is seen in CA at 5 W.  
CA at 0 LFM varies with power:  
at 3 W, CA = 21.5°C/W  
at 2 W, CA = 14°C/W  
ADSP-21060CZ/ADSP-21060LCZ:  
at 2 W, CA = 24°C/W  
at 3 W, CA = 11°C/W  
2 LFM = Linear feet per minute of airflow.  
at 3 W, CA = 21.5°C/W  
JC = 0.24°C/W for all CQFP models.  
2 LFM = Linear feet per minute of airflow.  
Table 38. Thermal Characteristics for BGA  
Parameter  
CA  
CA  
Airflow (LFM1)  
Typical  
20.70  
15.30  
12.90  
Unit  
°C/W  
°C/W  
°C/W  
0
200  
400  
CA  
1 LFM = Linear feet per minute of airflow.  
Rev. F  
|
Page 50 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
225-BALL PBGA BALL CONFIGURATIONS  
Table 40. ADSP-2106x 225-Ball Metric PBGA Ball Assignments (B-225-2)  
Pin  
Name  
BMS  
ADDR30 A02  
DMAR2  
DT1  
RCLK1  
TCLK0  
RCLK0  
ADRCLK A08  
CS  
CLKIN  
PAGE  
BR3  
DATA47  
DATA44  
DATA42  
MS0  
PBGA  
Pin Number Name  
A01 ADDR25 D01  
ADDR26 D02  
MS2 D03  
ADDR29 D04  
Pin  
PBGA  
Pin Number Name  
ADDR14 G01  
ADDR15 G02  
Pin  
PBGA  
Pin Number Name  
Pin  
PBGA  
Pin Number Name  
Pin  
PBGA  
Pin Number  
N01  
ADDR6  
ADDR5  
ADDR3  
ADDR0  
ICSA  
GND  
VDD  
VDD  
VDD  
K01  
K02  
K03  
K04  
K05  
K06  
K07  
K08  
K09  
K10  
K11  
K12  
K13  
K14  
K15  
L01  
L02  
L03  
L04  
L05  
L06  
L07  
L08  
L09  
L10  
L11  
L12  
L13  
L14  
L15  
M01  
M02  
M03  
M04  
M05  
M06  
M07  
M08  
M09  
M10  
M11  
M12  
M13  
M14  
M15  
EMU  
TDO  
IRQ0  
IRQ1  
N02  
N03  
N04  
N05  
N06  
N07  
N08  
N09  
N10  
N11  
N12  
N13  
N14  
N15  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P08  
P09  
P10  
P11  
P12  
P13  
P14  
P15  
R01  
R02  
R03  
R04  
R05  
R06  
R07  
R08  
R09  
R10  
R11  
R12  
R13  
R14  
R15  
A03  
A04  
A05  
A06  
A07  
ADDR16 G03  
ADDR19 G04  
DMAR1  
TFS1  
CPA  
HBG  
DMAG2  
BR5  
D05  
D06  
D07  
D08  
D09  
D10  
D11  
D12  
D13  
D14  
D15  
GND  
VDD  
VDD  
VDD  
VDD  
VDD  
GND  
DATA22  
DATA25  
DATA24  
DATA23  
G05  
G06  
G07  
G08  
G09  
G10  
G11  
G12  
G13  
G14  
G15  
ID2  
L5DAT1  
L4CLK  
L3CLK  
L3DAT3  
L2DAT0  
L1ACK  
L1DAT3  
L0DAT3  
DATA1  
DATA3  
TRST  
A09  
A10  
A11  
A12  
A13  
A14  
A15  
B01  
B02  
GND  
GND  
BR1  
DATA40  
DATA37  
DATA35  
DATA34  
DATA8  
DATA11  
DATA13  
DATA14  
ADDR2  
ADDR1  
FLAG0  
FLAG3  
RPBA  
GND  
GND  
GND  
GND  
ADDR21 E01  
ADDR22 E02  
ADDR24 E03  
ADDR27 E04  
ADDR12 H01  
ADDR11 H02  
ADDR13 H03  
ADDR10 H04  
SW  
TMS  
EBOOT  
ID0  
ADDR31 B03  
HBR  
DR1  
DT0  
DR0  
REDY  
RD  
ACK  
BR6  
B04  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
B14  
B15  
C01  
C02  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
DATA33  
DATA30  
DATA32  
DATA31  
E05  
E06  
E07  
E08  
E09  
E10  
E11  
E12  
E13  
E14  
E15  
GND  
VDD  
VDD  
VDD  
VDD  
VDD  
GND  
DATA18  
DATA19  
DATA21  
DATA20  
ADDR9  
ADDR8  
ADDR7  
ADDR4  
GND  
VDD  
VDD  
VDD  
VDD  
H05  
H06  
H07  
H08  
H09  
H10  
H11  
H12  
H13  
H14  
H15  
J01  
J02  
J03  
J04  
J05  
J06  
J07  
J08  
J09  
J10  
J11  
J12  
J13  
J14  
J15  
L5CLK  
L5DAT3  
L4DAT0  
L4DAT3  
L3DAT2  
L2CLK  
L2DAT2  
L1DAT0  
L0ACK  
L0DAT1  
DATA0  
TCK  
GND  
NC  
BR2  
DATA4  
DATA7  
DATA9  
DATA10  
FLAG1  
FLAG2  
TIMEXP  
TDI  
LBOOT  
L5ACK  
L5DAT2  
L4DAT2  
L3DAT0  
L2DAT3  
L1DAT1  
L0DAT0  
DATA2  
DATA5  
DATA6  
DATA45  
DATA43  
DATA39  
MS3  
MS1  
ADDR28 C03  
SBTS  
TCLK1  
RFS1  
TFS0  
RFS0  
WR  
DMAG1  
BR4  
DATA46  
DATA41  
DATA38  
DATA36  
ADDR17 F01  
ADDR18 F02  
ADDR20 F03  
ADDR23 F04  
IRQ2  
RESET  
ID1  
C04  
C05  
C06  
C07  
C08  
C09  
C10  
C11  
C12  
C13  
C14  
C15  
GND  
GND  
VDD  
VDD  
VDD  
GND  
GND  
DATA29  
DATA26  
DATA28  
DATA27  
F05  
F06  
F07  
F08  
F09  
F10  
F11  
F12  
F13  
F14  
F15  
L5DAT0  
L4ACK  
L4DAT1  
L3ACK  
L3DAT1  
L2ACK  
L2DAT1  
L1CLK  
L1DAT2  
L0CLK  
L0DAT2  
VDD  
GND  
DATA12  
DATA15  
DATA16  
DATA17  
Rev. F  
|
Page 51 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
DATA42 DATA44 DATA47  
BR3  
PAGE  
CLKIN  
CS  
ADRCLK RCLK0 TCLK0  
RCLK1  
DT1  
ADDR30  
BMS  
DMAR2  
A
B
C
D
E
F
DATA39 DATA43 DATA45  
BR2  
BR6  
ACK  
RD  
REDY  
DR0  
DT0  
DR1  
HBR  
ADDR31  
SW  
MS0  
MS1  
MS3  
DATA36 DATA38 DATA41 DATA46  
DATA34 DATA35 DATA37 DATA40  
BR4  
BR1  
DMAG1  
BR5  
WR  
RFS0  
TFS0  
CPA  
GND  
RFS1  
TFS1  
TCLK1  
ADDR28  
SBTS  
ADDR26 ADDR25  
DMAG2  
ADDR29  
DMAR1  
MS2  
HBG  
DATA31 DATA32 DATA30 DATA33  
NC  
GND  
GND  
GND  
GND  
GND  
ADDR27 ADDR24 ADDR22 ADDR21  
DATA27 DATA28 DATA26 DATA29  
DATA23 DATA24 DATA25 DATA22  
GND  
GND  
GND  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
GND  
VDD  
GND  
GND  
ADDR23 ADDR20 ADDR18 ADDR17  
ADDR19 ADDR16 ADDR15 ADDR14  
G
H
J
DATA20 DATA21 DATA19 DATA18  
DATA17 DATA16 DATA15 DATA12  
GND  
GND  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
GND  
GND  
ADDR10 ADDR13 ADDR11 ADDR12  
ADDR4 ADDR7 ADDR8 ADDR9  
DATA14 DATA13 DATA11 DATA8  
GND  
NC  
GND  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
GND  
GND  
ICSA  
ADDR0 ADDR3 ADDR5 ADDR6  
K
L
DATA10 DATA9  
DATA7  
DATA2  
DATA4  
RPBA  
FLAG3  
TDI  
FLAG0 ADDR1 ADDR2  
DATA6  
DATA5  
DATA1  
L0DAT0 L1DAT1 L2DAT3 L3DAT0 L4DAT2 L5DAT2 L5ACK LBOOT  
TIMEXP FLAG2  
FLAG1  
EMU  
M
N
P
R
DATA3  
DATA0  
L0DAT3 L1DAT3 L1ACK L2DAT0 L3DAT3 L3CLK  
L4CLK L5DAT1  
ID2  
IRQ0  
TDO  
TMS  
IRQ1  
L0DAT1 L0ACK L1DAT0 L2DAT2 L2CLK L3DAT2 L4DAT3 L4DAT0 L5DAT3 L5CLK  
L0CLK L1DAT2 L1CLK L2DAT1 L2ACK L3DAT1 L3ACK L4DAT1 L4ACK L5DAT0  
ID0  
EBOOT  
TRST  
L0DAT2  
ID1  
TCK  
RESET  
IRQ2  
Figure 39. ADSP-21060/ADSP-21062 BGA Pin Assignments (Top View, Summary)  
Rev. F  
|
Page 52 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
240-LEAD MQFP_PQ4/CQFP PIN CONFIGURATIONS  
Table 41. ADSP-2106x MQFP_PQ4, ADSP-21060CW, and ADSP-21060LCW CQFP Pin Assignments (SP-240-2, QS-240-2)  
Pin Name Pin No. Pin Name Pin No. Pin Name  
Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No.  
TDI  
1
ADDR20  
ADDR21  
GND  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
TCLK0  
TFS0  
DR0  
81  
DATA41  
DATA40  
DATA39  
VDD  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
DATA14  
DATA13  
DATA12  
GND  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
L2DAT0  
L2CLK  
L2ACK  
NC  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
TRST  
2
82  
VDD  
3
83  
TDO  
4
ADDR22  
ADDR23  
ADDR24  
VDD  
RCLK0  
RFS0  
VDD  
84  
TIMEXP  
EMU  
5
85  
DATA38  
DATA37  
DATA36  
GND  
DATA11  
DATA10  
DATA9  
VDD  
VDD  
6
86  
L3DAT3  
L3DAT2  
L3DAT1  
L3DAT0  
L3CLK  
L3ACK  
GND  
ICSA  
7
VDD  
87  
FLAG3  
FLAG2  
FLAG1  
FLAG0  
GND  
8
GND  
GND  
ADRCLK  
REDY  
HBG  
88  
9
VDD  
89  
NC  
DATA8  
DATA7  
DATA6  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
ADDR25  
ADDR26  
ADDR27  
GND  
90  
DATA35  
DATA34  
DATA33  
VDD  
91  
CS  
92  
ADDR0  
ADDR1  
VDD  
RD  
93  
DATA5  
DATA4  
DATA3  
VDD  
L4DAT3  
L4DAT2  
L4DAT1  
L4DAT0  
L4CLK  
L4ACK  
VDD  
MS3  
WR  
94  
VDD  
MS2  
GND  
VDD  
95  
GND  
ADDR2  
ADDR3  
ADDR4  
GND  
MS1  
96  
DATA32  
DATA31  
DATA30  
GND  
MS0  
GND  
CLKIN  
ACK  
97  
DATA2  
DATA1  
DATA0  
GND  
SW  
98  
BMS  
99  
ADDR5  
ADDR6  
ADDR7  
VDD  
ADDR28  
GND  
DMAG2  
DMAG1  
PAGE  
VDD  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
DATA29  
DATA28  
DATA27  
VDD  
GND  
GND  
VDD  
VDD  
L0DAT3  
L0DAT2  
L0DAT1  
L0DAT0  
L0CLK  
L0ACK  
VDD  
L5DAT3  
L5DAT2  
L5DAT1  
L5DAT0  
L5CLK  
L5ACK  
GND  
VDD  
ADDR8  
ADDR9  
ADDR10  
GND  
ADDR29  
ADDR30  
ADDR31  
GND  
BR6  
VDD  
BR5  
DATA26  
DATA25  
DATA24  
GND  
BR4  
BR3  
ADDR11  
ADDR12  
ADDR13  
VDD  
SBTS  
BR2  
DMAR2  
DMAR1  
HBR  
BR1  
DATA23  
DATA22  
DATA21  
VDD  
L1DAT3  
L1DAT2  
L1DAT1  
L1DAT0  
L1CLK  
L1ACK  
GND  
ID2  
GND  
VDD  
ID1  
ID0  
ADDR14  
ADDR15  
GND  
DT1  
GND  
DATA47  
DATA46  
DATA45  
VDD  
LBOOT  
RPBA  
TCLK1  
TFS1  
DATA20  
DATA19  
DATA18  
GND  
RESET  
EBOOT  
IRQ2  
ADDR16  
ADDR17  
ADDR18  
VDD  
DR1  
RCLK1  
RFS1  
GND  
DATA44  
DATA43  
DATA42  
GND  
DATA17  
DATA16  
DATA15  
VDD  
VDD  
IRQ1  
GND  
L2DAT3  
L2DAT2  
L2DAT1  
IRQ0  
VDD  
CPA  
TCK  
ADDR19  
DT0  
TMS  
Rev. F  
|
Page 53 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
Table 42. ADSP-21060CZ/21060LCZ CQFP Pin Assignments (QS-240-1)  
Pin Name Pin No. Pin Name Pin No. Pin Name  
Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No.  
GND  
1
DATA29  
GND  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
DMAG2  
ACK  
81  
ADDR28  
BMS  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
ADDR5  
GND  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
GND  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
DATA0  
DATA1  
DATA2  
VDD  
2
82  
VDD  
3
DATA30  
DATA31  
DATA32  
GND  
CLKIN  
GND  
VDD  
83  
SW  
ADDR4  
ADDR3  
ADDR2  
VDD  
L4ACK  
L4CLK  
L4DAT0  
L4DAT1  
L4DAT2  
L4DAT3  
GND  
4
84  
MS0  
5
85  
MS1  
DATA3  
DATA4  
DATA5  
GND  
6
GND  
WR  
86  
MS2  
7
VDD  
87  
MS3  
ADDR1  
ADDR0  
GND  
8
VDD  
RD  
88  
GND  
9
DATA33  
DATA34  
DATA35  
NC  
CS  
89  
ADDR27  
ADDR26  
ADDR25  
VDD  
DATA6  
DATA7  
DATA8  
VDD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
HBG  
90  
FLAG0  
FLAG1  
FLAG2  
FLAG3  
ICSA  
L3ACK  
L3CLK  
L3DAT0  
L3DAT1  
L3DAT2  
L3DAT3  
VDD  
REDY  
ADRCLK  
GND  
VDD  
91  
92  
GND  
93  
GND  
DATA9  
DATA10  
DATA11  
GND  
DATA36  
DATA37  
DATA38  
VDD  
94  
VDD  
VDD  
95  
ADDR24  
ADDR23  
ADDR22  
GND  
EMU  
RFS0  
RCLK0  
DR0  
96  
TIMEXP  
TDO  
97  
NC  
DATA12  
DATA13  
DATA14  
VDD  
DATA39  
DATA40  
DATA41  
GND  
98  
VDD  
L2ACK  
L2CLK  
L2DAT0  
L2DAT1  
L2DAT2  
L2DAT3  
VDD  
TFS0  
TCLK0  
DT0  
99  
ADDR21  
ADDR20  
ADDR19  
VDD  
TRST  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
TDI  
TMS  
DATA15  
DATA16  
DATA17  
GND  
DATA42  
DATA43  
DATA44  
VDD  
CPA  
TCK  
GND  
RFS1  
RCLK1  
DR1  
VDD  
IRQ0  
ADDR18  
ADDR17  
ADDR16  
GND  
IRQ1  
IRQ2  
GND  
DATA18  
DATA19  
DATA20  
VDD  
DATA45  
DATA46  
DATA47  
GND  
EBOOT  
RESET  
RPBA  
LBOOT  
ID0  
GND  
TFS1  
TCLK1  
DT1  
L1ACK  
L1CLK  
L1DAT0  
L1DAT1  
L1DAT2  
L1DAT3  
VDD  
ADDR15  
ADDR14  
VDD  
DATA21  
DATA22  
DATA23  
GND  
VDD  
HBR  
GND  
DMAR1  
DMAR2  
SBTS  
GND  
ADDR31  
ADDR30  
ADDR29  
VDD  
ADDR13  
ADDR12  
ADDR11  
GND  
ID1  
BR1  
ID2  
BR2  
GND  
DATA24  
DATA25  
DATA26  
VDD  
BR3  
L5ACK  
L5CLK  
L5DAT0  
L5DAT1  
L5DAT2  
L5DAT3  
VDD  
L0ACK  
L0CLK  
L0DAT0  
L0DAT1  
L0DAT2  
L0DAT3  
GND  
BR4  
ADDR10  
ADDR9  
ADDR8  
VDD  
BR5  
BR6  
VDD  
VDD  
DATA27  
DATA28  
PAGE  
VDD  
ADDR7  
ADDR6  
DMAG1  
GND  
Rev. F  
|
Page 54 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
OUTLINE DIMENSIONS  
23.20  
23.00 SQ  
22.80  
A1 CORNER  
INDEX AREA  
15 13 11  
14 12 10  
9
7
5
3
1
8
6
4
2
A
B
C
D
E
F
BALL A1  
INDICATOR  
18.00  
20.10  
20.00 SQ  
19.90  
BSC SQ  
G
H
J
TOP VIEW  
DETAIL A  
K
L
1.27  
BSC  
M
N
P
R
0.50 R  
BOTTOM VIEW  
3 PLACES  
2.70 MAX  
1.30  
1.20  
1.10  
DETAIL A  
0.70  
0.60  
0.50  
0.15 MAX  
COPLANARITY  
SEATING  
PLANE  
0.90  
0.75  
0.60  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MS-034-AAJ-2  
Figure 40. 225-Ball Plastic Ball Grid Array [PBGA]  
(B-225-2)  
Dimensions shown in millimeters  
Rev. F  
|
Page 55 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
34.60 BSC  
SQ  
29.50 REF  
SQ  
4.10  
3.78  
3.55  
0.66  
0.56  
0.46  
181  
180  
240  
1
SEATING  
PLANE  
PIN 1  
24.00 REF  
SQ  
HEAT SLUG  
TOP VIEW  
(PINS DOWN)  
32.00 BSC  
SQ  
121  
120  
60  
3.50  
3.40  
3.30  
61  
3.92 u 45°  
0.20  
0.09  
(4 PLACES)  
VIEW A  
0.27 MAX  
0.17 MIN  
0.50  
BSC  
0.38  
0.25  
7°  
0°  
LEAD PITCH  
0.076  
COPLANARITY  
VIEW A  
ROTATED 90° CCW  
COMPLIANT WITH JEDEC STANDARDS MS-029-GA  
Figure 41. 240-Lead Metric Quad Flat Package, Thermally Enhanced “PowerQuad” [MQFP_PQ4]  
(SP-240-2)  
Dimensions shown in millimeters  
Rev. F  
|
Page 56 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
36.60  
36.13 SQ  
35.65  
28.05  
27.80 SQ  
27.55  
32.00 BSC SQ  
PIN 1  
240  
181  
180  
181  
180  
240  
1
INDICATOR  
1
SEAL RING  
LID  
TOP VIEW  
BOTTOM VIEW  
(PINS UP)  
(PINS DOWN)  
HEAT SLUG  
121  
120  
121  
120  
60  
60  
61  
61  
VIEW A  
19.00  
REF SQ  
4.30  
3.62  
2.95  
3.70  
3.22  
2.75  
1.70  
0.15  
0.15  
0.35  
0.30  
0.25  
0.175  
0.156  
0.137  
0.60  
0.40  
0.20  
7°  
-3°  
0.90  
0.75  
0.60  
0.23  
0.20  
0.17  
0.50 BSC  
NOTES:  
1. LEAD FINISH = GOLD PLATE  
2. LEAD SWEEP/LEAD OFFSET = 0.013mm MAX  
(Sweep and/or Offset can be used as the controlling dimension).  
0.180  
0.155  
0.130  
LEAD THICKNESS  
2.06 REF  
VIEW A  
Figure 42. 240-Lead Ceramic Quad Flat Package, Heat Slug Up [CQFP]  
(QS-240-2A)  
Dimensions shown in millimeters  
Rev. F  
|
Page 57 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
2.60  
2.55  
2.50  
75.00 BSC SQ  
29.50 BSC  
16.50 (8×)  
2.05  
3.60  
3.55  
3.50  
61  
120  
121  
120  
121  
61  
60  
60  
SEAL RING  
LID  
65.90  
BSC  
29.50  
BSC  
BOTTOM VIEW  
TOP VIEW  
HEAT SLUG  
180  
181  
1
1
180  
181  
240  
INDEX 1  
GOLD  
240  
INDEX 2  
1.50 DIA  
PLATED  
NO GOLD  
1.22 (4×)  
NONCONDUCTIVE  
CERAMIC TIE BAR  
75.50 BSC SQ  
SIDE VIEW  
70.00 BSC SQ  
0.50  
0.90  
0.80  
0.70  
3.42  
3.17  
2.92  
Figure 43. 240-Lead Ceramic Quad Flat Package, Mounted with Cavity Down [CQFP]  
(QS-240-2B)  
Dimensions shown in millimeters  
Rev. F  
|
Page 58 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
36.60  
36.13 SQ  
35.65  
19.00  
32.00 BSC SQ  
REF SQ  
PIN 1  
240  
181  
180  
181  
180  
240  
1
INDICATOR  
1
SEAL RING  
LID  
TOP VIEW  
BOTTOM VIEW  
(PINS UP)  
(PINS DOWN)  
HEAT SLUG  
121  
120  
121  
120  
60  
60  
61  
61  
28.05  
27.80 SQ  
27.55  
VIEW A  
4.20  
3.52  
2.85  
3.70  
3.22  
2.75  
1.70  
0.15  
0.15  
0.35  
0.30  
0.25  
0.175  
0.156  
0.137  
0.50  
0.30  
0.10  
7°  
-3°  
0.90  
0.75  
0.60  
0.23  
0.20  
0.17  
0.50 BSC  
NOTES:  
1. LEAD FINISH = GOLD PLATE  
2. LEAD SWEEP/LEAD OFFSET = 0.013mm MAX  
(Sweep and/or Offset can be used as the controlling dimension).  
0.180  
0.155  
0.130  
LEAD THICKNESS  
2.06 REF  
VIEW A  
Figure 44. 240-Lead Ceramic Quad Flat Package, Heat Slug Down [CQFP]  
(QS-240-1A)  
Dimensions shown in millimeters  
Rev. F  
|
Page 59 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
2.60  
2.55  
2.50  
75.00 BSC SQ  
29.50 BSC  
16.50 (8×)  
2.05  
3.60  
3.55  
3.50  
61  
120  
121  
120  
121  
61  
60  
60  
SEAL RING  
LID  
65.90  
BSC  
29.50  
BSC  
BOTTOM VIEW  
HEAT SLUG  
TOP VIEW  
180  
181  
1
1
180  
181  
240  
INDEX 1  
GOLD  
240  
INDEX 2  
2.00 DIA  
PLATED  
NO GOLD  
1.22 (4×)  
NONCONDUCTIVE  
CERAMIC TIE BAR  
75.50 BSC SQ  
SIDE VIEW  
70.00 BSC SQ  
0.50  
3.42  
3.17  
2.92  
0.90  
0.80  
0.70  
Figure 45. 240-Lead Ceramic Quad Flat Package, Mounted with Cavity Up [CQFP]  
(QS-240-1B)  
Dimensions shown in millimeters  
SURFACE-MOUNT DESIGN  
Table 43 is provided as an aide to PCB design. For industry-  
standard design recommendations, refer to IPC-7351, Generic  
Requirements for Surface-Mount Design and Land Pattern  
Standard.  
Table 43. BGA Data for Use with Surface-Mount Design  
Package  
Ball Attach Type  
Solder Mask Opening  
Ball Pad Size  
225-Ball Grid Array (PBGA)  
Solder Mask Defined  
0.63 mm diameter  
0.76 mm diameter  
Rev. F  
|
Page 60 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
ORDERING GUIDE  
Temperature  
Range  
Instruction On-Chip Operating  
Model  
Rate  
SRAM  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
2M Bit  
2M Bit  
2M Bit  
2M Bit  
2M Bit  
2M Bit  
2M Bit  
2M Bit  
2M Bit  
2M Bit  
2M Bit  
2M Bit  
2M Bit  
2M Bit  
2M Bit  
2M Bit  
2M Bit  
2M Bit  
Voltage  
Package Description  
Package Option  
QS-240-2A  
ASDP-21060CZ-1331  
ASDP-21060CZZ-1331, 2  
ASDP-21060CZ-1601  
ASDP-21060CZZ-1601, 2  
ASDP-21060CW-1331  
–40C to +100C 33 MHz  
–40C to +100C 33 MHz  
–40C to +100C 40 MHz  
–40C to +100C 40 MHz  
–40C to +100C 33 MHz  
5 V  
240-Lead CQFP [Heat Slug Up]  
240-Lead CQFP [Heat Slug Up]  
240-Lead CQFP [Heat Slug Up]  
240-Lead CQFP [Heat Slug Up]  
5 V  
QS-240-2A  
5 V  
QS-240-2A  
5 V  
QS-240-2A  
5 V  
240-Lead CQFP [Heat Slug Down] QS-240-1A  
240-Lead CQFP [Heat Slug Down] QS-240-1A  
240-Lead CQFP [Heat Slug Down] QS-240-1A  
240-Lead CQFP [Heat Slug Down] QS-240-1A  
ASDP-21060CWZ-1331, 2 –40C to +100C 33 MHz  
ASDP-21060CW-1601  
–40C to +100C 40 MHz  
ASDP-21060CWZ-1601, 2 –40C to +100C 40 MHz  
5 V  
5 V  
5 V  
ADSP-21060KS-133  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
33 MHz  
33 MHz  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
33 MHz  
33 MHz  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
5 V  
240-Lead MQFP_PQ4  
240-Lead MQFP_PQ4  
240-Lead MQFP_PQ4  
240-Lead MQFP_PQ4  
225-Ball PBGA  
SP-240-2  
SP-240-2  
SP-240-2  
SP-240-2  
B-225-2  
B-225-2  
SP-240-2  
SP-240-2  
SP-240-2  
SP-240-2  
B-225-2  
B-225-2  
B-225-2  
B-225-2  
B-225-2  
B-225-2  
ADSP-21060KSZ-1332  
ADSP-21060KS-160  
5 V  
5 V  
ADSP-21060KSZ-1602  
ADSP-21060KB-160  
ADSP-21060KBZ-1602  
ADSP-21060LKS-133  
ADSP-21060LKSZ-1332  
ADSP-21060LKS-160  
ADSP-21060LKSZ-1602  
ADSP-21060LKB-160  
ADSP-21060LKBZ-1602  
ADSP-21060LAB-160  
ADSP-21060LABZ-1602  
ADSP-21060LCB-133  
ADSP-21060LCBZ-1332  
ASDP-21060LCW-1331  
ASDP-21060LCW-1601  
5 V  
5 V  
5 V  
225-Ball PBGA  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
5 V  
240-Lead MQFP_PQ4  
240-Lead MQFP_PQ4  
240-Lead MQFP_PQ4  
240-Lead MQFP_PQ4  
225-Ball PBGA  
225-Ball PBGA  
–40C to +85C 40 MHz  
–40C to +85C 40 MHz  
–40C to +100C 33 MHz  
–40C to +100C 33 MHz  
–40C to +100C 33 MHz  
–40C to +100C 40 MHz  
225-Ball PBGA  
225-Ball PBGA  
225-Ball PBGA  
225-Ball PBGA  
240-Lead CQFP [Heat Slug Down] QS-240-1A  
240-Lead CQFP [Heat Slug Down] QS-240-1A  
240-Lead CQFP [Heat Slug Down] QS-240-1A  
ASDP-21060LCWZ-1601, 2 –40C to +100C 40 MHz  
ADSP-21062KS-133  
ADSP-21062KSZ-1332  
ADSP-21062KS-160  
ADSP-21062KSZ-1602  
ADSP-21062KB-160  
ADSP-21062KBZ-1602  
ADSP-21062CS-160  
ADSP-21062CSZ-1602  
ADSP-21062LKS-133  
ADSP-21062LKSZ-1332  
ADSP-21062LKS-160  
ADSP-21062LKSZ-1602  
ADSP-21062LKB-160  
ADSP-21062LKBZ-1602  
ADSP-21062LAB-160  
ADSP-21062LABZ-1602  
ADSP-21062LCS-160  
ADSP-21062LCSZ-1602  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
33 MHz  
33 MHz  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
240-Lead MQFP_PQ4  
240-Lead MQFP_PQ4  
240-Lead MQFP_PQ4  
240-Lead MQFP_PQ4  
225-Ball PBGA  
SP-240-2  
SP-240-2  
SP-240-2  
SP-240-2  
B-225-2  
B-225-2  
SP-240-2  
SP-240-2  
SP-240-2  
SP-240-2  
SP-240-2  
SP-240-2  
B-225-2  
B-225-2  
B-225-2  
B-225-2  
SP-240-2  
SP-240-2  
5 V  
5 V  
5 V  
5 V  
5 V  
225-Ball PBGA  
–40C to +100C 40 MHz  
–40C to +100C 40 MHz  
5 V  
240-Lead MQFP_PQ4  
240-Lead MQFP_PQ4  
240-Lead MQFP_PQ4  
240-Lead MQFP_PQ4  
240-Lead MQFP_PQ4  
240-Lead MQFP_PQ4  
225-Ball PBGA  
5 V  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
–40C to 85C  
–40C to 85C  
33 MHz  
33 MHz  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
225-Ball PBGA  
225-Ball PBGA  
225-Ball PBGA  
–40C to +100C 40 MHz  
–40C to +100C 40 MHz  
240-Lead MQFP_PQ4  
240-Lead MQFP_PQ4  
1 Model refers to package with formed leads. For model numbers of unformed lead versions (QS-240-1B, QS-240-2B), contact Analog Devices or an Analog Devices sales  
representative.  
2 Z = RoHS Compliant Part.  
Rev. F  
|
Page 61 of 64  
|
March 2008  
 
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
Rev. F  
|
Page 62 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
Rev. F  
|
Page 63 of 64  
|
March 2008  
ADSP-21060/ADSP-21060L/ADSP-21062/ADSP-21062L/ADSP-21060C/ADSP-21060LC  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00167-0-3/08(F)  
Rev. F  
|
Page 64 of 64  
|
March 2008  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY