ADSP-21363WYSWZ-2A [ADI]

IC 16-BIT, 55.55 MHz, OTHER DSP, PQFP144, MS-026BFB-HD, LQFP-144, Digital Signal Processor;
ADSP-21363WYSWZ-2A
型号: ADSP-21363WYSWZ-2A
厂家: ADI    ADI
描述:

IC 16-BIT, 55.55 MHz, OTHER DSP, PQFP144, MS-026BFB-HD, LQFP-144, Digital Signal Processor

时钟 外围集成电路
文件: 总60页 (文件大小:1333K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SHARC Processors  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
SUMMARY  
DEDICATED AUDIO COMPONENTS  
High performance 32-bit/40-bit floating point processor  
optimized for high performance audio processing  
Single-instruction, multiple-data (SIMD) computational  
architecture  
S/PDIF-compatible digital audio receiver/transmitter  
8 channels of asynchronous sample rate converters (SRC)  
16 PWM outputs configured as four groups of four outputs  
ROM-based security features include:  
On-chip memory—3M bits of on-chip SRAM  
JTAG access to memory permitted with a 64-bit key  
Protected memory regions that can be assigned to limit  
access under program control to sensitive code  
PLL has a wide variety of software and hardware multi-  
plier/divider ratios  
Code compatible with all other members of the SHARC family  
The ADSP-2136x processors are available with up to 333 MHz  
core instruction rate with unique audiocentric peripherals  
such as the digital applications interface, S/PDIF trans-  
ceiver, DTCP (digital transmission content protection  
protocol), serial ports, precision clock generators, and  
more. For complete ordering information, see Ordering  
Guide on Page 56.  
Available in 136-ball CSP_BGA and 144-lead LQFP_EP  
packages  
Internal Memory  
SIMD Core  
Block 0  
RAM/ROM  
Block 1  
RAM/ROM  
Block 2  
RAM  
Block 3  
RAM  
Instruction  
Cache  
5 stage  
Sequencer  
B2D  
64-BIT  
B0D  
64-BIT  
B3D  
64-BIT  
B1D  
64-BIT  
S
DAG1/2  
PEx  
Timer  
PEy  
DMD 64-BIT  
PMD 64-BIT  
DMD 64-BIT  
PMD 64-BIT  
Core Bus  
Cross Bar  
Internal Memory I/F  
FLAGx/IRQx/  
TMREXP  
JTAG  
PERIPHERAL BUS  
32-BIT  
IOD 32-BIT  
MTM/  
DTCP  
IOD BUS  
PERIPHERAL BUS  
CORE TIMER ASRC S/PDIF PCG  
FLAGS Tx/Rx  
Core  
Flags  
PDAP/ SPORT  
IDP7-0  
PWM  
3-0  
SPI B  
PP  
SPI  
2
-
0
3-0  
A-B  
5
-
0
DAI Routing/Pins  
PP Pin MUX  
DAI Peripherals  
Peripherals  
Figure 1. Functional Block Diagram  
SHARC and the SHARC logo are registered trademarks of Analog Devices, Inc.  
Rev. J Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
TABLE OF CONTENTS  
Summary ............................................................... 1  
Dedicated Audio Components .................................... 1  
General Description ................................................. 3  
SHARC Family Core Architecture ............................ 4  
Family Peripheral Architecture ................................ 6  
I/O Processor Features ........................................... 8  
System Design ...................................................... 8  
Development Tools ............................................... 9  
Additional Information ........................................ 10  
Related Signal Chains .......................................... 10  
Pin Function Descriptions ....................................... 11  
Specifications ........................................................ 14  
Operating Conditions .......................................... 14  
Electrical Characteristics ....................................... 15  
Package Information ........................................... 16  
ESD Caution ...................................................... 16  
Maximum Power Dissipation ................................. 16  
Absolute Maximum Ratings ................................... 16  
Timing Specifications ........................................... 16  
Output Drive Currents ......................................... 46  
Test Conditions .................................................. 46  
Capacitive Loading .............................................. 46  
Thermal Characteristics ........................................ 47  
144-Lead LQFP_EP Pin Configurations ....................... 48  
136-Ball BGA Pin Configurations ............................... 50  
Package Dimensions ............................................... 53  
Surface-Mount Design .......................................... 54  
Automotive Products .............................................. 55  
Ordering Guide ..................................................... 56  
REVISION HISTORY  
7/13—Revision I to Revision J  
Updated Development Tools .......................................9  
Added Nominal Value column in Operating Conditions .. 14  
Changed Max values in Table 30 in Pulse-Width Modulation  
Generators ............................................................ 35  
Updated Ordering Guide .......................................... 56  
Rev. J  
|
Page 2 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
GENERAL DESCRIPTION  
The ADSP-2136x SHARC® processor is a member of the SIMD  
SHARC family of DSPs that feature Analog Devices, Inc., Super  
Harvard Architecture. The processor is source code-compatible  
with the ADSP-2126x and ADSP-2116x DSPs, as well as with  
first generation ADSP-2106x SHARC processors in SISD  
(single-instruction, single-data) mode. The ADSP-2136x are  
32-/40-bit floating-point processors optimized for high  
performance automotive audio applications. They contain a  
large on-chip SRAM and ROM, multiple internal buses to elim-  
inate I/O bottlenecks, and an innovative digital audio interface  
(DAI).  
Table 1 shows performance benchmarks for these devices.  
Table 2 shows the features of the individual product offerings.  
Table 1. Benchmarks (at 333 MHz)  
Speed  
Benchmark Algorithm  
(at 333 MHz)  
1024 Point Complex FFT (Radix 4, with reversal) 27.9 μs  
FIR Filter (per tap)1  
IIR Filter (per biquad)1  
1.5 ns  
6.0 ns  
Matrix Multiply (pipelined)  
[3×3] × [3×1]  
[4×4] × [4×1]  
As shown in the functional block diagram on Page 1, the  
ADSP-2136x uses two computational units to deliver a signifi-  
cant performance increase over the previous SHARC processors  
on a range of signal processing algorithms. With its SIMD com-  
putational hardware, the ADSP-2136x can perform two  
GFLOPS running at 333 MHz.  
13.5 ns  
23.9 ns  
Divide (y/x)  
10.5 ns  
16.3 ns  
Inverse Square Root  
1 Assumes two files in multichannel SIMD mode.  
Table 2. ADSP-2136x Family Features  
Feature  
ADSP-21362  
3M bit  
4M bit  
No  
ADSP-21363  
3M bit  
4M bit  
No  
ADSP-21364  
3M bit  
4M bit  
No  
ADSP-21365  
3M bit  
4M bit  
Yes  
ADSP-21366  
3M bit  
4M bit  
Yes  
RAM  
ROM  
Audio Decoders in ROM1  
Pulse-Width Modulation  
S/PDIF  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
DTCP2  
Yes  
No  
No  
Yes  
No  
SRC SNR Performance  
–128 dB  
No SRC  
–140 dB  
–128 dB  
–128 dB  
1 Audio decoding algorithms include PCM, Dolby Digital EX, Dolby Pro Logic IIx, DTS 96/24, Neo:6, DTS ES, MPEG-2 AAC, MP3, and functions like bass management, delay,  
speaker equalization, graphic equalization, and more. Decoder/post-processor algorithm combination support varies depending upon the chip version and the system  
configurations. Please visit www.analog.com for complete information.  
2 The ADSP-21362 and ADSP-21365 processors provide the Digital Transmission Content Protection protocol, a proprietary security protocol. Contact your Analog Devices  
sales office for more information.  
The diagram on Page 1 shows the two clock domains that make  
up the ADSP-2136x processors. The core clock domain contains  
the following features:  
The diagram on Page 1 also shows the following architectural  
features:  
• I/O processor that handles 32-bit DMA for the peripherals  
• Six full duplex serial ports  
• Two processing elements, each of which comprises an  
ALU, multiplier, shifter, and data register file  
• Two SPI-compatible interface ports—primary on dedi-  
cated pins, secondary on DAI pins  
• Data address generators (DAG1, DAG2)  
• Program sequencer with instruction cache  
• 8-bit or 16-bit parallel port that supports interfaces to off-  
chip memory peripherals  
• PM and DM buses capable of supporting four 32-bit data  
transfers between memory and the core at every core pro-  
cessor cycle  
• Digital audio interface that includes two precision clock  
generators (PCG), an input data port with eight serial inter-  
faces (IDP), an S/PDIF receiver/transmitter, 8-channel  
asynchronous sample rate converter (ASRC), DTCP  
cipher, six serial ports, a 20-bit parallel input data port  
(PDAP), 10 interrupts, six flag outputs, six flag inputs,  
three timers, and a flexible signal routing unit (SRU)  
• One periodic interval timer with pinout  
• On-chip SRAM (3M bit)  
• On-chip mask-programmable ROM (4M bit)  
• JTAG test access port for emulation and boundary scan.  
The JTAG provides software debug through user break-  
points, which allow flexible exception handling.  
Rev. J  
|
Page 3 of 60  
|
July 2013  
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Entering SIMD mode also has an effect on the way data is trans-  
SHARC FAMILY CORE ARCHITECTURE  
ferred between memory and the processing elements. When in  
SIMD mode, twice the data bandwidth is required to sustain  
computational operation in the processing elements. Because of  
this requirement, entering SIMD mode also doubles the  
bandwidth between memory and the processing elements.  
When using the DAGs to transfer data in SIMD mode, two data  
values are transferred with each access of memory or  
the register file.  
The ADSP-2136x is code-compatible at the assembly level with  
the ADSP-2126x, ADSP-21160, and ADSP-21161, and with the  
first generation ADSP-2106x SHARC processors. The  
ADSP-2136x shares architectural features with the ADSP-2126x  
and ADSP-2116x SIMD SHARC processors, as shown in  
Figure 2 and detailed in the following sections.  
SIMD Computational Engine  
The processor contains two computational processing elements  
that operate as a single-instruction, multiple-data (SIMD)  
engine. The processing elements are referred to as PEX and PEY  
and each contains an ALU, multiplier, shifter, and register file.  
PEX is always active, and PEY can be enabled by setting the  
PEYEN mode bit in the MODE1 register. When this mode is  
enabled, the same instruction is executed in both processing ele-  
ments, but each processing element operates on different data.  
This architecture is efficient at executing math intensive signal  
processing algorithms.  
Independent, Parallel Computation Units  
Within each processing element is a set of computational units.  
The computational units consist of an arithmetic/logic unit  
(ALU), multiplier, and shifter. These units perform all opera-  
tions in a single cycle. The three units within each processing  
element are arranged in parallel, maximizing computational  
throughput. Single multifunction instructions execute parallel  
ALU and multiplier operations. In SIMD mode, the parallel  
ALU and multiplier operations occur in both processing  
elements. These computation units support IEEE 32-bit,  
single-precision floating-point, 40-bit extended-precision  
floating-point, and 32-bit fixed-point data formats.  
S
JTAG  
FLAG TIMER INTERRUPT CACHE  
SIMD Core  
PM ADDRESS 24  
DMD/PMD 64  
5 STAGE  
PROGRAM SEQUENCER  
PM DATA 48  
DAG2  
16x32  
DAG1  
16x32  
PM ADDRESS 32  
SYSTEM  
I/F  
DM ADDRESS 32  
PM DATA 64  
USTAT  
4x32-BIT  
PX  
64-BIT  
DM DATA 64  
DATA  
SWAP  
RF  
Rx/Fx  
PEx  
RF  
Sx/SFx  
PEy  
ALU  
SHIFTER  
MULTIPLIER  
MULTIPLIER  
ALU  
SHIFTER  
16x40-BIT  
16x40-BIT  
MRB  
80-BIT  
MSB  
80-BIT  
MRF  
80-BIT  
MSF  
80-BIT  
ASTATy  
STYKy  
ASTATx  
STYKx  
Figure 2. SHARC Core Block Diagram  
Rev. J  
|
Page 4 of 60  
|
July 2013  
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
processing, and are commonly used in digital filters and Fourier  
transforms. The two DAGs contain sufficient registers to allow  
the creation of up to 32 circular buffers (16 primary register sets,  
16 secondary). The DAGs automatically handle address pointer  
wraparound, reduce overhead, increase performance, and sim-  
plify implementation. Circular buffers can start and end at any  
memory location.  
Data Register File  
Each processing element contains a general-purpose data regis-  
ter file. The register files transfer data between the computation  
units and the data buses, and store intermediate results. These  
10-port, 32-register (16 primary, 16 secondary) files, combined  
with the ADSP-2136x enhanced Harvard architecture, allow  
unconstrained data flow between computation units and inter-  
nal memory. The registers in PEX are referred to as R0–R15 and  
in PEY as S0–S15.  
Flexible Instruction Set  
The 48-bit instruction word accommodates a variety of parallel  
operations for concise programming. For example, the  
processor can conditionally execute a multiply, an add, and a  
subtract in both processing elements while branching and fetch-  
ing up to four 32-bit values from memory—all in a single  
instruction.  
Context Switch  
Many of the processor’s registers have secondary registers that  
can be activated during interrupt servicing for a fast context  
switch. The data registers in the register file, the DAG registers,  
and the multiplier result register all have secondary registers.  
The primary registers are active at reset, while the secondary  
registers are activated by control bits in a mode control register.  
On-Chip Memory  
The processor contains 3M bits of internal SRAM and 4M bits  
of internal ROM. Each block can be configured for different  
combinations of code and data storage (see Table 3). Each  
memory block supports single-cycle, independent accesses by  
the core processor and I/O processor. The processor’s memory  
architecture, in combination with its separate on-chip buses,  
allows two data transfers from the core and one from the I/O  
processor, in a single cycle.  
Universal Registers  
The universal registers are general purpose registers. The  
USTAT (4) registers allow easy bit manipulations (Set, Clear,  
Toggle, Test, XOR) for all system registers (control/status) of  
the core.  
The data bus exchange register (PX) permits data to be passed  
between the 64-bit PM data bus and the 64-bit DM data bus, or  
between the 40-bit register file and the PM/DM data bus. These  
registers contain hardware to handle the data width difference.  
The SRAM can be configured as a maximum of 96K words of  
32-bit data, 192K words of 16-bit data, 64K words of 48-bit  
instructions (or 40-bit data), or combinations of different word  
sizes up to 3M bits. All of the memory can be accessed as 16-bit,  
32-bit, 48-bit, or 64-bit words. A 16-bit floating-point storage  
format is supported that effectively doubles the amount of data  
that can be stored on-chip. Conversion between the 32-bit  
floating-point and 16-bit floating-point formats is performed in  
a single instruction. While each memory block can store combi-  
nations of code and data, accesses are most efficient when one  
block stores data using the DM bus for transfers, and the other  
block stores instructions and data using the PM bus for  
transfers.  
Timer  
A core timer that can generate periodic software interrupts. The  
core timer can be configured to use FLAG3 as a timer expired  
signal.  
Single-Cycle Fetch of Instruction and Four Operands  
The processor features an enhanced Harvard architecture in  
which the data memory (DM) bus transfers data and the pro-  
gram memory (PM) bus transfers both instructions and data  
(see Figure 2). With the its separate program and data memory  
buses and on-chip instruction cache, the processor can simulta-  
neously fetch four operands (two over each data bus) and one  
instruction (from the cache), all in a single cycle.  
Using the DM bus and PM buses, with one bus dedicated to  
each memory block, assures single-cycle execution with two  
data transfers. In this case, the instruction must be available in  
the cache.  
Instruction Cache  
On-Chip Memory Bandwidth  
The processor includes an on-chip instruction cache that  
enables three-bus operation for fetching an instruction and four  
data values. The cache is selective—only the instructions whose  
fetches conflict with PM bus data accesses are cached. This  
cache allows full-speed execution of core looped operations  
such as digital filter multiply-accumulates, and FFT butterfly  
processing.  
The internal memory architecture allows three accesses at the  
same time to any of the four blocks, assuming no block con-  
flicts. The total bandwidth is gained with DMD and PMD buses  
(2 × 64-bits, core CLK) and the IOD bus (32-bit, PCLK).  
ROM-Based Security  
The processor has a ROM security feature that provides hard-  
ware support for securing user software code by preventing  
unauthorized reading from the internal code. When using this  
feature, the processor does not boot-load any external code, exe-  
cuting exclusively from internal ROM. Additionally, the  
processor is not freely accessible via the JTAG port. Instead, a  
unique 64-bit key, which must be scanned in through the JTAG  
Data Address Generators with Zero-Overhead Hardware  
Circular Buffer Support  
The processor’s two data address generators (DAGs) are used  
for indirect addressing and implementing circular data buffers  
in hardware. Circular buffers allow efficient programming of  
delay lines and other data structures required in digital signal  
Rev. J  
|
Page 5 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Table 3. ADSP-2136x Internal Memory Space  
IOP Registers 0x0000 0000–0003 FFFF  
Extended Precision Normal or  
Long Word (64 Bits)  
Instruction Word (48 Bits)  
Normal Word (32 Bits)  
Short Word (16 Bits)  
Block 0 ROM  
Block 0 ROM  
Block 0 ROM  
Block 0 ROM  
0x0004 0000–0x0004 7FFF  
0x0008 0000–0x0008 AAA9  
0x0008 0000–0x0008 FFFF  
0x0010 0000–0x0011 FFFF  
Reserved  
Reserved  
Reserved  
0x0004 8000–0x0004 BFFF  
0x0009 0000–0x0009 7FFF  
0x0012 0000–0x0012 FFFF  
Block 0 SRAM  
Block 0 SRAM  
Block 0 SRAM  
Block 0 SRAM  
0x0004 C000–0x0004 FFFF  
0x0009 0000–0x0009 5554  
0x0009 8000–0x0009 FFFF  
0x0013 0000–0x0013 FFFF  
Block 1 ROM  
Block 1 ROM  
Block 1 ROM  
Block 1 ROM  
0x0005 0000–0x0005 7FFF  
0x000A 0000–0x000A AAA9  
0x000A 0000–0x000A FFFF  
0x0014 0000–0x0015 FFFF  
Reserved  
Reserved  
Reserved  
0x0005 8000–0x0005 BFFF  
0x000B 0000–0x000B 7FFF  
0x0016 0000–0x0016 FFFF  
Block 1 SRAM  
Block 1 SRAM  
Block 1 SRAM  
Block 1 SRAM  
0x0005 C000–0x0005 FFFF  
0x000B 0000–0x000B 5554  
0x000B 8000–0x000B FFFF  
0x0017 0000–0x0017 FFFF  
Block 2 SRAM  
Block 2 SRAM  
Block 2 SRAM  
Block 2 SRAM  
0x0006 0000–0x0006 1FFF  
0x000C 0000–0x000C 2AA9  
0x000C 0000–0x000C 3FFF  
0x0018 0000–0x0018 7FFF  
Reserved  
Reserved  
Reserved  
0x0006 2000–0x0006 FFFF  
0x000C 4000–0x000D FFFF  
0x0018 8000–0x001B FFFF  
Block 3 SRAM  
Block 3 SRAM  
Block 3 SRAM  
Block 3 SRAM  
0x0007 0000–0x0007 1FFF  
0x000E 0000–0x000E 2AA9  
0x000E 0000–0x000E 3FFF  
0x001C 0000–0x001C 7FFF  
Reserved  
Reserved  
Reserved  
0x0007 2000–0x0007 FFFF  
0x000E 4000–0x000F FFFF  
0x001C 8000–0x001F FFFF  
Reserved  
0x0020 0000–0xFFFF FFFF  
or test access port, is assigned to each customer. The device  
ignores a wrong key. Emulation features and external boot  
modes are only available after the correct key is scanned.  
Serial Peripheral (Compatible) Interface  
The processors contain two serial peripheral interface ports  
(SPIs). The SPI is an industry-standard synchronous serial link,  
enabling the processor’s SPI-compatible port to communicate  
with other SPI-compatible devices. The SPI consists of two data  
pins, one device select pin, and one clock pin. It is a full-duplex  
synchronous serial interface, supporting both master and slave  
modes and can operate at a maximum baud rate of fPCLK/4.  
FAMILY PERIPHERAL ARCHITECTURE  
The ADSP-2136x family contains a rich set of peripherals that  
support a wide variety of applications, including high quality  
audio, medical imaging, communications, military, test equip-  
ment, 3D graphics, speech recognition, monitor control,  
imaging, and other applications.  
The SPI port can operate in a multimaster environment by  
interfacing with up to four other SPI-compatible devices, either  
acting as a master or slave device. The ADSP-2136x SPI-  
compatible peripheral implementation also features program-  
mable baud rate, clock phase, and polarities. The SPI-  
compatible port uses open drain drivers to support a multimas-  
ter configuration and to avoid data contention.  
Parallel Port  
The parallel port provides interfaces to SRAM and peripheral  
devices. The multiplexed address and data pins (AD15–0) can  
access 8-bit devices with up to 24 bits of address, or 16-bit  
devices with up to 16 bits of address. In either mode, 8-bit or  
16-bit, the maximum data transfer rate is fPCLK/4.  
Pulse-Width Modulation  
DMA transfers are used to move data to and from internal  
memory. Access to the core is also facilitated through the paral-  
lel port register read/write functions. The RD, WR, and ALE  
(address latch enable) pins are the control pins for the  
parallel port.  
The entire PWM module has four groups of four PWM outputs  
each. Therefore, this module generates 16 PWM outputs in  
total. Each PWM group produces two pairs of PWM signals on  
the four PWM outputs.  
The PWM module is a flexible, programmable, PWM waveform  
generator that can be programmed to generate the required  
switching patterns for various applications related to motor and  
engine control or audio power control. The PWM generator can  
Rev. J  
|
Page 6 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
generate either center-aligned or edge-aligned PWM wave-  
Serial ports operate in four modes:  
• Standard DSP serial mode  
• Multichannel (TDM) mode  
• I2S mode  
forms. In addition, it can generate complementary signals on  
two outputs in paired mode or independent signals in non-  
paired mode (applicable to a single group of four PWM  
waveforms).  
The PWM generator is capable of operating in two distinct  
modes while generating center-aligned PWM waveforms: single  
update mode or double update mode. In single update mode,  
the duty cycle values are programmable only once per PWM  
period. This results in PWM patterns that are symmetrical  
about the midpoint of the PWM period. In double update  
mode, a second updating of the PWM registers is implemented  
at the midpoint of the PWM period. In this mode, it is possible  
to produce asymmetrical PWM patterns that produce lower  
harmonic distortion in 3-phase PWM inverters.  
• Left-justified sample pair mode  
S/PDIF-Compatible Digital Audio Receiver/Transmitter  
The S/PDIF transmitter has no separate DMA channels. It  
receives audio data in serial format and converts it into a  
biphase encoded signal. The serial data input to the transmitter  
can be formatted as left-justified, I2S, or right-justified with  
word widths of 16, 18, 20, or 24 bits.  
The serial data, clock, and frame sync inputs to the S/PDIF  
transmitter are routed through the signal routing unit (SRU).  
They can come from a variety of sources such as the SPORTs,  
external pins, the precision clock generators (PCGs), or the  
sample rate converters (SRC) and are controlled by the SRU  
control registers.  
Digital Audio Interface (DAI)  
The digital audio interface (DAI) provides the ability to connect  
various peripherals to any of the DSP’s DAI pins (DAI_P20–1).  
Programs make these connections using the signal routing unit  
(SRU, shown in Figure 1).  
Digital Transmission Content Protection (DTCP)  
The SRU is a matrix routing unit (or group of multiplexers) that  
enables the peripherals provided by the DAI to be intercon-  
nected under software control. This allows easy use of the  
DAI-associated peripherals for a wider variety of applications by  
using a larger set of algorithms than is possible with nonconfig-  
urable signal paths.  
The DTCP specification defines a cryptographic protocol for  
protecting audio entertainment content from illegal copying,  
intercepting, and tampering as it traverses high performance  
digital buses, such as the IEEE 1394 standard. Only legitimate  
entertainment content delivered to a source device via another  
approved copy protection system (such as the DVD content  
scrambling system) is protected by this copy protection system.  
This feature is available on the ADSP-21362 and  
The DAI includes six serial ports, an S/PDIF receiver/transmit-  
ter, a DTCP cipher, a precision clock generator (PCG), eight  
channels of asynchronous sample rate converters, an input data  
port (IDP), an SPI port, six flag outputs and six flag inputs, and  
three timers. The IDP provides an additional input path to the  
ADSP-2136x core, configurable as either eight channels of I2S  
serial data or as seven channels plus a single 20-bit wide syn-  
chronous parallel data acquisition port. Each data channel has  
its own DMA channel that is independent from the processor’s  
serial ports.  
ADSP-21365 processors only. Licensing through DTLA is  
required for these products. Visit www.dtcp.com for more  
information.  
Memory-to-Memory (MTM)  
If the DTCP module is not used, the memory-to-memory DMA  
module allows internal memory copies for a standard DMA.  
Synchronous/Asynchronous Sample Rate Converter (SRC)  
Serial Ports  
The sample rate converter (SRC) contains four SRC blocks and  
is the same core as that used in the AD1896 192 kHz stereo  
asynchronous sample rate converter and provides up to 140 dB  
SNR. The SRC block is used to perform synchronous or  
asynchronous sample rate conversion across independent stereo  
channels, without using internal processor resources. The four  
SRC blocks can also be configured to operate together to con-  
vert multichannel audio data without phase mismatches.  
Finally, the SRC is used to clean up audio data from jittery clock  
sources such as the S/PDIF receiver.  
The processor features six synchronous serial ports that provide  
an inexpensive interface to a wide variety of digital and mixed-  
signal peripheral devices such as Analog Devices’ AD183x fam-  
ily of audio codecs, ADCs, and DACs. The serial ports are made  
up of two data lines, a clock, and a frame sync and they can  
operate at maximum fPCLK/4. The data lines can be pro-  
grammed to either transmit or receive and each data line has a  
dedicated DMA channel.  
Serial ports are enabled via 12 programmable and simultaneous  
receive or transmit pins that support up to 24 transmit or 24  
receive channels of audio data when all six SPORTs are enabled,  
or six full duplex TDM streams of 128 channels per frame.  
The S/PDIF and SRC are not available on the ADSP-21363  
models.  
Input Data Port (IDP)  
Serial port data can be automatically transferred to and from  
on-chip memory via dedicated DMA channels. Each of the  
serial ports can work in conjunction with another serial port to  
provide TDM support. One SPORT provides two transmit sig-  
nals while the other SPORT provides the two receive signals.  
The frame sync and clock are shared.  
The IDP provides up to eight serial input channels—each with  
its own clock, frame sync, and data inputs. The eight channels  
are automatically multiplexed into a single 32-bit by eight-deep  
FIFO. Data is always formatted as a 64-bit frame and divided  
into two 32-bit words. The serial protocol is designed to receive  
Rev. J  
|
Page 7 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
audio channels in I2S, left-justified sample pair, or right-justi-  
fied mode. One frame sync cycle indicates one 64-bit left/right  
pair, but data is sent to the FIFO as 32-bit words (that is, one-  
half of a frame at a time). The processor supports 24- and 32-bit  
I2S, 24- and 32-bit left-justified, and 24-, 20-, 18- and 16-bit  
right-justified formats.  
SYSTEM DESIGN  
The following sections provide an introduction to system design  
options and power supply issues.  
Program Booting  
The internal memory of the processor boots at system power-up  
from an 8-bit EPROM via the parallel port, an SPI master, an  
SPI slave, or an internal boot. Booting is determined by the boot  
configuration (BOOT_CFG1–0) pins in Table 5. Selection of the  
boot source is controlled via the SPI as either a master or slave  
device, or it can immediately begin executing from ROM.  
Precision Clock Generator (PCG)  
The precision clock generators (PCG) consist of two units, each  
of which generates a pair of signals (clock and frame sync)  
derived from a clock input signal. The units, A and B, are identi-  
cal in functionality and operate independently of each other.  
The two signals generated by each unit are normally used as a  
serial bit clock/frame sync pair.  
Table 5. Boot Mode Selection  
BOOT_CFG1–0  
Booting Mode  
Peripheral Timers  
00  
01  
10  
11  
SPI Slave Boot  
The following three general-purpose timers can generate peri-  
odic interrupts and be independently set to operate in one of  
three modes:  
SPI Master Boot  
Parallel Port Boot via EPROM  
No booting occurs. Processor executes  
from internal ROM after reset.  
• Pulse waveform generation mode  
• Pulse width count/capture mode  
• External event watchdog mode  
Phase-Locked Loop  
Each general-purpose timer has one bidirectional pin and four  
registers that implement its mode of operation: a 6-bit configu-  
ration register, a 32-bit count register, a 32-bit period register,  
and a 32-bit pulse width register. A single control and status  
register enables or disables all three general-purpose timers  
independently.  
The processors use an on-chip phase-locked loop (PLL) to gen-  
erate the internal clock for the core. On power-up, the  
CLK_CFG1–0 pins are used to select ratios of 32:1, 16:1, and  
6:1. After booting, numerous other ratios can be selected via  
software control.  
The ratios are made up of software configurable numerator val-  
ues from 1 to 64 and software configurable divisor values of 1, 2,  
4, and 8.  
I/O PROCESSOR FEATURES  
The processor’s I/O provides many channels of DMA and con-  
trols the extensive set of peripherals described in the previous  
sections.  
Power Supplies  
The processor has a separate power supply connection for the  
internal (VDDINT), external (VDDEXT), and analog (AVDD/AVSS  
)
DMA Controller  
power supplies. The internal and analog supplies must meet the  
1.2 V requirement for K, B, and Y grade models, and the 1.0 V  
requirement for Y models. (For information on the temperature  
ranges offered for this product, see Operating Conditions on  
Page 14, Package Information on Page 16, and Ordering Guide  
on Page 56.) The external supply must meet the 3.3 V require-  
ment. All external supply pins must be connected to the same  
power supply.  
The processor’s on-chip DMA controllers allow data transfers  
without processor intervention. The DMA controller operates  
independently and invisibly to the processor core, allowing  
DMA operations to occur while the core is simultaneously exe-  
cuting its program instructions. DMA transfers can occur  
between the processor’s internal memory and its serial ports, the  
SPI-compatible (serial peripheral interface) ports, the IDP  
(input data port), the parallel data acquisition port (PDAP), or  
the parallel port (PP). See Table 4.  
Note that the analog supply pin (AVDD) powers the processor’s  
internal clock generator PLL. To produce a stable clock, it is rec-  
ommended that PCB designs use an external filter circuit for the  
Table 4. DMA Channels  
A
VDD pin. Place the filter components as close as possible to the  
Peripheral  
SPORTs  
ADSP-2136x  
AVDD/AVSS pins. For an example circuit, see Figure 3. (A  
recommended ferrite chip is the muRata BLM18AG102SN1D.)  
To reduce noise coupling, the PCB should use a parallel pair of  
power and ground planes for VDDINT and GND. Use wide traces  
12  
8
IDP/PDAP  
SPI  
2
to connect the bypass capacitors to the analog power (AVDD  
and ground (AVSS) pins. Note that the AVDD and AVSS pins  
)
MTM/DTCP  
Parallel Port  
Total DMA Channels  
2
1
specified in Figure 3 are inputs to the processor and not the ana-  
log ground plane on the board—the AVSS pin should connect  
directly to digital ground (GND) at the chip.  
25  
Rev. J  
|
Page 8 of 60  
|
July 2013  
 
 
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
features. Also available are various EZ-Extenders®, which are  
ADSP-213xx  
daughter cards delivering additional specialized functionality,  
100nF  
10nF  
1nF  
A
V
VDD  
including audio and video processing. For more information  
visit www.analog.com and search on “ezkit” or “ezextender”.  
DDINT  
HIGH-Z FERRITE  
BEAD CHIP  
EZ-KIT Lite Evaluation Kits  
A
VSS  
For a cost-effective way to learn more about developing with  
Analog Devices processors, Analog Devices offer a range of EZ-  
KIT Lite evaluation kits. Each evaluation kit includes an EZ-KIT  
Lite evaluation board, directions for downloading an evaluation  
version of the available IDE(s), a USB cable, and a power supply.  
The USB controller on the EZ-KIT Lite board connects to the  
USB port of the user’s PC, enabling the chosen IDE evaluation  
suite to emulate the on-board processor in-circuit. This permits  
the customer to download, execute, and debug programs for the  
EZ-KIT Lite system. It also supports in-circuit programming of  
the on-board Flash device to store user-specific boot code,  
enabling standalone operation. With the full version of Cross-  
Core Embedded Studio or VisualDSP++ installed (sold  
separately), engineers can develop software for supported EZ-  
KITs or any custom system utilizing supported Analog Devices  
processors.  
LOCATE ALL COMPONENTS  
CLOSE TO A AND A PINS  
VDD  
VSS  
Figure 3. Analog Power (AVDD) Filter Circuit  
Target Board JTAG Emulator Connector  
Analog Devices’ DSP Tools product line of JTAG emulators  
uses the IEEE 1149.1 JTAG test access port of the processor to  
monitor and control the target board processor during emula-  
tion. Analog Devices’ DSP Tools product line of JTAG  
emulators provides emulation at full processor speed, allowing  
inspection and modification of memory, registers, and proces-  
sor stacks. The processor’s JTAG interface ensures that the  
emulator does not affect target system loading or timing.  
For complete information on Analog Devices’ SHARC DSP  
Tools product line of JTAG emulator operation, refer to the  
appropriate emulator user’s guide.  
Software Add-Ins for CrossCore Embedded Studio  
Analog Devices offers software add-ins which seamlessly inte-  
grate with CrossCore Embedded Studio to extend its capabilities  
and reduce development time. Add-ins include board support  
packages for evaluation hardware, various middleware pack-  
ages, and algorithmic modules. Documentation, help,  
configuration dialogs, and coding examples present in these  
add-ins are viewable through the CrossCore Embedded Studio  
IDE once the add-in is installed.  
DEVELOPMENT TOOLS  
Analog Devices supports its processors with a complete line of  
software and hardware development tools, including integrated  
development environments (which include CrossCore® Embed-  
ded Studio and/or VisualDSP++®), evaluation products,  
emulators, and a wide variety of software add-ins.  
Integrated Development Environments (IDEs)  
Board Support Packages for Evaluation Hardware  
For C/C++ software writing and editing, code generation, and  
debug support, Analog Devices offers two IDEs.  
Software support for the EZ-KIT Lite evaluation boards and EZ-  
Extender daughter cards is provided by software add-ins called  
Board Support Packages (BSPs). The BSPs contain the required  
drivers, pertinent release notes, and select example code for the  
given evaluation hardware. A download link for a specific BSP is  
located on the web page for the associated EZ-KIT or EZ-  
Extender product. The link is found in the Product Download  
area of the product web page.  
The newest IDE, CrossCore Embedded Studio, is based on the  
EclipseTM framework. Supporting most Analog Devices proces-  
sor families, it is the IDE of choice for future processors,  
including multicore devices. CrossCore Embedded Studio  
seamlessly integrates available software add-ins to support real  
time operating systems, file systems, TCP/IP stacks, USB stacks,  
algorithmic software modules, and evaluation hardware board  
support packages. For more information visit  
Middleware Packages  
www.analog.com/cces.  
Analog Devices separately offers middleware add-ins such as  
real time operating systems, file systems, USB stacks, and  
TCP/IP stacks. For more information see the following web  
pages:  
The other Analog Devices IDE, VisualDSP++, supports proces-  
sor families introduced prior to the release of CrossCore  
Embedded Studio. This IDE includes the Analog Devices VDK  
real time operating system and an open source TCP/IP stack.  
For more information visit www.analog.com/visualdsp. Note  
that VisualDSP++ will not support future Analog Devices  
processors.  
www.analog.com/ucos3  
www.analog.com/ucfs  
www.analog.com/ucusbd  
www.analog.com/lwip  
EZ-KIT Lite Evaluation Board  
For processor evaluation, Analog Devices provides wide range  
of EZ-KIT Lite® evaluation boards. Including the processor and  
key peripherals, the evaluation board also supports on-chip  
emulation capabilities and other evaluation and development  
Algorithmic Modules  
To speed development, Analog Devices offers add-ins that per-  
form popular audio and video processing algorithms. These are  
available for use with both CrossCore Embedded Studio and  
Rev. J  
|
Page 9 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
VisualDSP++. For more information visit www.analog.com and  
search on “Blackfin software modules” or “SHARC software  
modules”.  
Designing an Emulator-Compatible DSP Board (Target)  
For embedded system test and debug, Analog Devices provides  
a family of emulators. On each JTAG DSP, Analog Devices sup-  
plies an IEEE 1149.1 JTAG Test Access Port (TAP). In-circuit  
emulation is facilitated by use of this JTAG interface. The emu-  
lator accesses the processor’s internal features via the  
processor’s TAP, allowing the developer to load code, set break-  
points, and view variables, memory, and registers. The  
processor must be halted to send data and commands, but once  
an operation is completed by the emulator, the DSP system is set  
to run at full speed with no impact on system timing. The emu-  
lators require the target board to include a header that supports  
connection of the DSP’s JTAG port to the emulator.  
For details on target board design issues including mechanical  
layout, single processor connections, signal buffering, signal ter-  
mination, and emulator pod logic, see the Engineer-to-Engineer  
Note “Analog Devices JTAG Emulation Technical Reference”  
(EE-68) on the Analog Devices website (www.analog.com)—use  
site search on “EE-68.” This document is updated regularly to  
keep pace with improvements to emulator support.  
ADDITIONAL INFORMATION  
This data sheet provides a general overview of the  
processor’s architecture and functionality. For detailed informa-  
tion on the ADSP-2136x family core architecture and  
instruction set, refer to the ADSP-2136x SHARC Processor  
Hardware Reference and the ADSP-2136x SHARC Processor  
Programming Reference.  
RELATED SIGNAL CHAINS  
A signal chain is a series of signal-conditioning electronic com-  
ponents that receive input (data acquired from sampling either  
real-time phenomena or from stored data) in tandem, with the  
output of one portion of the chain supplying input to the next.  
Signal chains are often used in signal processing applications to  
gather and process data or to apply system controls based on  
analysis of real-time phenomena. For more information about  
this term and related topics, see the “signal chain” entry in the  
Glossary of EE Terms on the Analog Devices website.  
Analog Devices eases signal processing system development by  
providing signal processing components that are designed to  
work together well. A tool for viewing relationships between  
specific applications and related components is available on the  
www.analog.com website.  
TM  
The Circuits from the Lab site  
(http://www.analog.com/signalchains) provides:  
• Graphical circuit block diagram presentation of signal  
chains for a variety of circuit types and applications  
• Drill down links for components in each chain to selection  
guides and application information  
• Reference designs applying best practice design techniques  
Rev. J  
|
Page 10 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
PIN FUNCTION DESCRIPTIONS  
The processor’s pin definitions are listed below. Inputs identi-  
fied as synchronous (S) must meet timing requirements with  
respect to CLKIN (or with respect to TCK for TMS and TDI).  
Inputs identified as asynchronous (A) can be asserted asynchro-  
nously to CLKIN (or to TCK for TRST). Tie or pull unused  
inputs to VDDEXT or GND, except for the following:  
DAI_Px, SPICLK, MISO, MOSI, EMU, TMS, TRST, TDI, and  
AD15–0. Note: These pins have pull-up resistors.  
Table 6. Pin Descriptions  
State During and  
Pin  
Type  
After Reset  
Function  
AD15–0  
I/O/T  
(pu)  
Three-state with  
pull-up enabled  
Parallel Port Address/Data. The ADSP-2136x parallel port and its corresponding DMA  
unit output addresses and data for peripherals on these multiplexed pins. The multiplex  
state is determined by the ALE pin. The parallel port can operate in either 8-bit or 16-bit  
mode. Each AD pin has a 22.5 kΩ internal pull-up resistor. For details about the AD pin  
operation, refer to the ADSP-2136x SHARC Processor Hardware Reference.  
For 8-bit mode: ALE is automatically asserted whenever a change occurs in the upper 16  
external address bits, ADDR23–8; ALE is used in conjunction with an external latch to  
retain the values of the ADDR23–8.  
For detailed information on I/O operations and pin multiplexing, refer to the ADSP-2136x  
SHARC Processor Hardware Reference.  
RD  
O
(pu)  
Three-state, driven Parallel Port Read Enable. RD is asserted low whenever the processor reads 8-bit or 16-  
high1  
bit data from an external memory device. When AD15–0 are flags, this pin remains  
deasserted. RD has a 22.5 kΩ internal pull-up resistor.  
WR  
ALE  
O
(pu)  
Three-state, driven Parallel Port Write Enable. WR is asserted low whenever the processor writes 8-bit or  
high1  
16-bit data to an external memory device. When AD15–0 are flags, this pin remains  
deasserted. WR has a 22.5 kΩ internal pull-up resistor.  
O
(pd)  
Three-state, driven Parallel Port Address Latch Enable. ALE is asserted whenever the processor drives a  
low1  
new address on the parallel port address pins. On reset, ALE is active high. However, it  
can be reconfigured using software to be active low. When AD15–0 are flags, this pin  
remains deasserted. ALE has a 20 kΩ internal pull-down resistor.  
FLAG[0]/IRQ0/SPI I/O  
FLG[0]  
FLAG[0] INPUT  
FLAG[1] INPUT  
FLAG[2] INPUT  
FLAG[3] INPUT  
FLAG0/Interrupt Request0/SPI0 Slave Select.  
FLAG1/Interrupt Request1/SPI1 Slave Select.  
FLAG2/Interrupt Request 2/SPI2 Slave Select.  
FLAG3/Timer Expired/SPI3 Slave Select.  
FLAG[1]/IRQ1/SPI I/O  
FLG[1]  
FLAG[2]/IRQ2/SPI I/O  
FLG[2]  
FLAG[3]/TMREXP/ I/O  
SPIFLG[3]  
DAI_P20–1  
I/O/T  
(pu)  
Three-state with  
programmable  
pull-up  
Digital Audio Interface Pins. These pins provide the physical interface to the SRU. The  
SRU configuration registers define the combination of on-chip peripheral inputs or  
outputs connected to the pin and to the pin’s output enable. The configuration registers  
of these peripherals then determine the exact behavior of the pin. Any input or output  
signal present in the SRU can be routed to any of these pins. The SRU provides the  
connection from the serial ports, input data port, precision clock generators and timers,  
sample rate converters and SPI to the DAI_P20–1 pins. These pins have internal 22.5 kΩ  
pull-up resistors that are enabled on reset. These pull-ups can be disabled using the  
DAI_PIN_PULLUP register.  
The following symbols appear in the Type column of Table 6: A = asynchronous, G = ground, I = input, O = output, P = power supply,  
S = synchronous, (A/D) = active drive, (O/D) = open drain, and T = three-state, (pd) = pull-down resistor, (pu) = pull-up resistor.  
Rev. J  
|
Page 11 of 60  
|
July 2013  
 
 
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Table 6. Pin Descriptions (Continued)  
State During and  
Pin  
Type  
After Reset  
Function  
SPICLK  
I/O  
(pu)  
Three-state with  
pull-up enabled,  
Serial Peripheral Interface Clock Signal. Driven by the master, this signal controls the  
rate at which data is transferred. The master can transmit data at a variety of baud rates.  
driven high in SPI- SPICLK cycles once for each bit transmitted. SPICLK is a gated clock active during data  
master boot mode transfers, only for the length of the transferred word. Slave devices ignore the serial clock  
if the slave select input is driven inactive (high). SPICLK is used to shift out and shift in  
the data driven on the MISO and MOSI lines. The data is always shifted out on one clock  
edge and sampled on the opposite edge of the clock. Clock polarity and clock phase  
relativetodataareprogrammableintotheSPICTLcontrolregisteranddefinethetransfer  
format. SPICLK has a 22.5 kΩ internal pull-up resistor.  
SPIDS  
I
Input only  
Serial Peripheral Interface Slave Device Select. An active low signal used to select the  
processor as an SPI slave device. This input signal behaves like a chip select, and is  
provided by the master device for the slave devices. In multimaster mode the processor’s  
SPIDS signal can be driven by a slave device to signal to the processor (as SPI master)  
that an error has occurred, as some other device is also trying to be the master device. If  
asserted low when the device is in master mode, it is considered a multimaster error. For  
a single-master, multiple-slave configuration where flag pins are used, this pin must be  
tied or pulled high to VDDEXT on the master device. For processor to processor SPI inter-  
action, any of the master processor’s flag pins can be used to drive the SPIDS signal on  
the SPI slave device.  
MOSI  
MISO  
I/O (O/D)  
(pu)  
Three-state with  
pull-up enabled,  
driven low in SPI-  
SPI Master Out Slave In. If the ADSP-2136x is configured as a master, the MOSI pin  
becomes a data transmit (output) pin, transmitting output data. If the processor is  
configured as a slave, the MOSI pin becomes a data receive (input) pin, receiving input  
master boot mode data. In an SPI interconnection, the data is shifted out from the MOSI output pin of the  
master and shifted into the MOSI input(s) of the slave(s). MOSI has a 22.5 kΩ internal pull-  
up resistor.  
I/O (O/D)  
(pu)  
Three-state with  
pull-up enabled  
SPI Master In Slave Out. If the ADSP-2136x is configured as a master, the MISO pin  
becomes a data receive (input) pin, receiving input data. If the processor is configured  
as a slave, the MISO pin becomes a data transmit (output) pin, transmitting output data.  
In an SPI interconnection, the data is shifted out from the MISO output pin of the slave  
and shifted into the MISO input pin of the master. MISO has a 22.5 kΩ internal pull-up  
resistor. MISO can be configured as O/D by setting the OPD bit in the SPICTL register.  
Note: Only one slave is allowed to transmit data at any given time. To enable broadcast  
transmission to multiple SPI slaves, the processor’s MISO pin can be disabled by setting  
Bit 5 (DMISO) of the SPICTL register equal to 1.  
CLKIN  
I
Input only  
Local Clock In. Used in conjunction with XTAL. CLKIN is the ADSP-2136x clock input. It  
configures the ADSP-2136x to use either its internal clock generator or an external clock  
source. Connecting the necessary components to CLKIN and XTAL enables the internal  
clock generator. Connecting the external clock to CLKIN while leaving XTAL uncon-  
nected configures the processors to use the external clock source such as an external  
clockoscillator. ThecoreisclockedeitherbythePLLoutputorthisclockinputdepending  
on the CLK_CFG1–0 pin settings. CLKIN should not be halted, changed, or operated  
below the specified frequency.  
XTAL  
O
I
Output only2  
Input only  
Crystal Oscillator Terminal. Used in conjunction with CLKIN to drive an external crystal.  
CLK_CFG1–0  
Core to CLKIN Ratio Control. These pins set the start up clock frequency. Note that the  
operating frequency can be changed by programming the PLL multiplier and divider in  
the PMCTL register at any time after the core comes out of reset. The allowed values are:  
00 = 6:1  
01 = 32:1  
10 = 16:1  
11 = reserved.  
The following symbols appear in the Type column of Table 6: A = asynchronous, G = ground, I = input, O = output, P = power supply,  
S = synchronous, (A/D) = active drive, (O/D) = open drain, and T = three-state, (pd) = pull-down resistor, (pu) = pull-up resistor.  
Rev. J  
|
Page 12 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Table 6. Pin Descriptions (Continued)  
State During and  
After Reset  
Pin  
Type  
Function  
BOOT_CFG1–0  
I
Input only  
Boot Configuration Select. This pin is used to select the boot mode for the processor.  
The BOOT_CFG pins must be valid before reset is asserted. For a description of the boot  
mode, refer to Table 5, Boot Mode Selection.  
RESETOUT  
RESET  
O
Output only  
Input only  
Reset Out. Drives out the core reset signal to an external device.  
I/A  
Processor Reset. Resets the ADSP-2136x to a known state. Upon deassertion, there is a  
4096 CLKIN cycle latency for the PLL to lock. After this time, the core begins program  
execution from the hardware reset vector address. The RESET input must be asserted  
(low) at power-up.  
TCK  
TMS  
TDI  
I
Input only3  
Test Clock (JTAG). Provides a clock for JTAG boundary scan. TCK must be asserted  
(pulsed low) after power-up or held low for proper operation of the processors.  
I/S  
(pu)  
Three-state with  
pull-up enabled  
Test Mode Select (JTAG). Used to control the test state machine. TMS has a 22.5 kΩ  
internal pull-up resistor.  
I/S  
(pu)  
Three-state with  
pull-up enabled  
Test Data Input (JTAG). Provides serial data for the boundary scan logic. TDI has a  
22.5 kΩ internal pull-up resistor.  
TDO  
TRST  
O
Three-state4  
Test Data Output (JTAG). Serial scan output of the boundary scan path.  
I/A  
(pu)  
Three-state with  
pull-up enabled  
Test Reset (JTAG). Resets the test state machine. TRST must be asserted (pulsed low)  
after power-up or held low for proper operation of the ADSP-2136x. TRST has a 22.5 kΩ  
internal pull-up resistor.  
EMU  
O (O/D)  
(pu)  
Three-state with  
pull-up enabled  
Emulation Status. Must be connected to the processor’s JTAG emulators target board  
connector only. EMU has a 22.5 kΩ internal pull-up resistor.  
VDDINT  
VDDEXT  
AVDD  
P
P
P
Core Power Supply. Supplies the processor’s core.  
I/O Power Supply.  
Analog Power Supply. Supplies the processor’s internal PLL (clock generator). This pin  
has the same specifications as VDDINT, except that added filtering circuitry is required. For  
more information, see Power Supplies on Page 8.  
AVSS  
G
G
Analog Power Supply Return.  
Power Supply Return.  
GND  
The following symbols appear in the Type column of Table 6: A = asynchronous, G = ground, I = input, O = output, P = power supply,  
S = synchronous, (A/D) = active drive, (O/D) = open drain, and T = three-state, (pd) = pull-down resistor, (pu) = pull-up resistor.  
1 RD, WR, and ALE are three-stated (and not driven) only when RESET is active.  
2 Output only is a three-state driver with its output path always enabled.  
3 Input only is a three-state driver with both output path and pull-up disabled.  
4 Three-state is a three-state driver with pull-up disabled.  
Rev. J  
|
Page 13 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
SPECIFICATIONS  
Specifications are subject to change without notice.  
OPERATING CONDITIONS  
K Grade  
B Grade  
Y Grade  
Parameter Description  
Min Nom Max  
Min Nom Max  
Min Nom Max  
Unit  
VDDINT  
Internal (Core) Supply  
Voltage  
1.14 1.2  
1.26  
1.14 1.2  
1.26  
0.95 1.0  
1.05  
V
AVDD  
Analog (PLL) Supply Voltage 1.14 1.2  
External (I/O) Supply Voltage 3.13 3.3  
1.26  
3.47  
1.14 1.2  
3.13 3.3  
1.26  
3.47  
0.95 1.0  
3.13 3.3  
1.05  
V
V
V
VDDEXT  
3.47  
1
VIH  
High Level Input Voltage @  
DDEXT = Max  
2.0  
–0.5  
1.74  
–0.5  
0
VDDEXT + 0.5 2.0  
+0.8 –0.5  
DDEXT + 0.5 1.74  
VDDEXT + 0.5 2.0  
VDDEXT + 0.5  
V
1
VIL  
Low Level Input Voltage @  
VDDEXT = Min  
+0.8  
–0.5  
+0.8  
V
2
VIH_CLKIN  
VIL_CLKIN  
High Level Input Voltage @  
VDDEXT = Max  
V
VDDEXT + 0.5 1.74  
VDDEXT + 0.5  
+1.19  
V
Low Level Input Voltage @  
VDDEXT = Min  
+1.19  
+110  
+110  
–0.5  
–40  
–40  
+1.19  
+125  
+125  
–0.5  
–40  
–40  
V
3, 4  
TJ  
Junction Temperature  
136-Ball CSP_BGA  
+125  
°C  
°C  
3, 4  
TJ  
Junction Temperature  
144-Lead LQFP_EP  
0
+125  
1 Applies to input and bidirectional pins: AD15–0, FLAG3–0, DAI_Px, SPICLK, MOSI, MISO, SPIDS, BOOT_CFGx, CLK_CFGx, RESET, TCK, TMS, TDI, and TRST.  
2 Applies to input pin CLKIN.  
3 See Thermal Characteristics on Page 47 for information on thermal specifications.  
4 See the Engineer-to-Engineer Note “Estimating Power for the ADSP-21362 SHARC Processors” (EE-277) for further information.  
Rev. J  
|
Page 14 of 60  
|
July 2013  
 
 
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
ELECTRICAL CHARACTERISTICS  
Parameter  
Description  
Test Conditions  
Min  
Max  
Unit  
1
VOH  
High Level Output Voltage  
Low Level Output Voltage  
High Level Input Current  
Low Level Input Current  
@ VDDEXT = Min, IOH = –1.0 mA2  
@ VDDEXT = Min, IOL = 1.0 mA2  
@ VDDEXT = Max, VIN = VDDEXT Max  
@ VDDEXT = Max, VIN = 0 V  
@ VDDEXT = Max, VIN = 0 V  
@ VDDEXT = Max, VIN = VDDEXT Max  
@ VDDEXT = Max, VIN = 0 V  
@ VDDEXT = Max, VIN = 0 V  
tCCLK = Min, VDDINT = Nom  
AVDD = Max  
2.4  
V
1
VOL  
0.4  
10  
V
3, 4  
IIH  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
pF  
3
IIL  
10  
4
IILPU  
Low Level Input Current Pull-Up  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current Pull-Up  
Supply Current (Internal)  
Supply Current (Analog)  
200  
10  
5, 6  
IOZH  
5
IOZL  
10  
6
IOZLPU  
200  
800  
10  
7, 8  
IDD-INTYP  
9
IAVDD  
10, 11  
CIN  
Input Capacitance  
fIN = 1 MHz, TCASE = 25°C, VIN = 1.2 V  
4.7  
1 Applies to output and bidirectional pins: AD15–0, RD, WR, ALE, FLAG3–0, DAI_Px, SPICLK, MOSI, MISO, EMU, TDO, and XTAL.  
2 See Output Drive Currents on Page 46 for typical drive current capabilities.  
3 Applies to input pins: SPIDS, BOOT_CFGx, CLK_CFGx, TCK, RESET, and CLKIN.  
4 Applies to input pins with 22.5 kΩ internal pull-ups: TRST, TMS, TDI.  
5 Applies to three-stateable pins: FLAG3–0.  
6 Applies to three-stateable pins with 22.5 kΩ pull-ups: AD15–0, DAI_Px, SPICLK, EMU, MISO, and MOSI.  
7 Typical internal current data reflects nominal operating conditions.  
8 See the Engineer-to-Engineer Note “Estimating Power for the ADSP-21362 SHARC Processors” (EE-277) for further information.  
9 Characterized, but not tested.  
10Applies to all signal pins.  
11Guaranteed, but not tested.  
Rev. J  
|
Page 15 of 60  
|
July 2013  
 
 
 
 
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device  
reliability.  
PACKAGE INFORMATION  
The information presented in Figure 4 provides details about  
the package branding for the ADSP-2136x processor. For a  
complete listing of product availability, see Ordering Guide on  
Page 56.  
Table 8. Absolute Maximum Ratings  
Parameter  
Rating  
Internal (Core) Supply Voltage (VDDINT  
)
–0.3 V to +1.5 V  
–0.3 V to +1.5 V  
–0.3 V to +4.6 V  
–0.5 V to +3.8 V  
–0.5 V to VDDEXT + 0.5 V  
200 pF  
Analog (PLL) Supply Voltage (AVDD  
)
a
External (I/O) Supply Voltage (VDDEXT  
Input Voltage  
)
ADSP-2136x  
tppZ-cc  
vvvvvv.x n.n  
Output Voltage Swing  
#yyww country_of_origin  
Load Capacitance  
Storage Temperature Range  
Junction Temperature While Biased  
–65°C to +150°C  
125°C  
S
Figure 4. Typical Package Brand  
TIMING SPECIFICATIONS  
Table 7. Package Brand Information  
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results  
for an individual device, the values given in this data sheet  
reflect statistical variations and worst cases. Consequently, it is  
not meaningful to add parameters to derive longer times. For  
voltage reference levels, see Figure 39 on Page 46 under Test  
Conditions.  
Brand Key  
Field Description  
Temperature Range  
Package Type  
t
pp  
Z
RoHS Compliant Designation  
See Ordering Guide  
Assembly Lot Code  
Silicon Revision  
cc  
vvvvvv.x  
n.n  
Switching Characteristics specify how the processor changes its  
signals. Circuitry external to the processor must be designed for  
compatibility with these signal characteristics. Switching char-  
acteristics describe what the processor will do in a given  
circumstance. Use switching characteristics to ensure that any  
timing requirement of a device connected to the processor (such  
as memory) is satisfied.  
#
RoHS Compliant Designation  
Date Code  
yyww  
ESD CAUTION  
Timing Requirements apply to signals that are controlled by cir-  
cuitry external to the processor, such as the data input for a read  
operation. Timing requirements guarantee that the processor  
operates correctly with other devices.  
ESD (electrostatic discharge) sensitive device.  
Charged devices and circuit boards can discharge  
without detection. Although this product features  
patented or proprietary protection circuitry, damage  
may occur on devices subjected to high energy ESD.  
Therefore, proper ESD precautions should be taken to  
avoid performance degradation or loss of functionality.  
Core Clock Requirements  
The processor’s internal clock (a multiple of CLKIN) provides  
the clock signal for timing internal memory, processor core, and  
serial ports. During reset, program the ratio between the proces-  
sor’s internal clock frequency and external (CLKIN) clock  
frequency with the CLK_CFG1–0 pins.  
MAXIMUM POWER DISSIPATION  
See the Engineer-to-Engineer Note “Estimating Power for the  
ADSP-21362 SHARC Processors” (EE-277) for detailed thermal  
and power information regarding maximum power dissipation.  
For information on package thermal specifications, see Thermal  
Characteristics on Page 47.  
The processor’s internal clock switches at higher frequencies  
than the system input clock (CLKIN). To generate the internal  
clock, the processor uses an internal phase-locked loop (PLL,  
see Figure 5). This PLL-based clocking minimizes the skew  
between the system clock (CLKIN) signal and the processor’s  
internal clock.  
ABSOLUTE MAXIMUM RATINGS  
Stresses greater than those listed in Table 8 may cause perma-  
nent damage to the device. These are stress ratings only;  
functional operation of the device at these or any other condi-  
tions greater than those indicated in the operational sections of  
Voltage Controlled Oscillator  
In application designs, the PLL multiplier value should be  
selected in such a way that the VCO frequency never exceeds  
f
VCO specified in Table 11.  
Rev. J  
|
Page 16 of 60  
|
July 2013  
 
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
• The product of CLKIN and PLLM must never exceed 1/2  
fVCO (max) in Table 11 if the input divider is not enabled  
(INDIV = 0).  
fINPUT = CLKIN ÷ 2 when the input divider is enabled  
Note the definitions of the clock periods that are a function of  
CLKIN and the appropriate ratio control shown in Table 9. All  
of the timing specifications for the ADSP-2136x peripherals are  
defined in relation to tPCLK. Refer to the peripheral specific sec-  
tion for each peripheral’s timing information.  
• The product of CLKIN and PLLM must never exceed fVCO  
(max) in Table 11 if the input divider is enabled  
(INDIV = 1).  
The VCO frequency is calculated as follows:  
Table 9. Clock Periods  
f
f
VCO = 2 × PLLM × fINPUT  
CCLK = (2 × PLLM × fINPUT) ÷ (2 × PLLN)  
Timing  
Requirements  
Description  
where:  
VCO = VCO output  
tCK  
CLKIN Clock Period  
f
tCCLK  
tPCLK  
Processor Core Clock Period  
Peripheral Clock Period = 2 × tCCLK  
PLLM = Multiplier value programmed in the PMCTL register.  
During reset, the PLLM value is derived from the ratio selected  
using the CLK_CFG pins in hardware.  
Figure 5 shows core to CLKIN relationships with external oscil-  
lator or crystal. The shaded divider/multiplier blocks denote  
where clock ratios can be set through hardware or software  
using the power management control register (PMCTL). For  
more information, refer to the ADSP-2136x SHARC Processor  
Hardware Reference.  
PLLN = 1, 2, 4, 8 based on the PLLD value programmed on the  
PMCTL register. During reset this value is 1.  
f
f
INPUT = Input frequency to the PLL.  
INPUT = CLKIN when the input divider is disabled or  
PLL  
fVCO  
LOOP  
FILTER  
PLL  
DIVIDER  
CLKIN  
BUF  
CLKIN  
DIVIDER  
CCLK  
VCO  
fINPUT  
fCCLK  
XTAL  
CLK_CFGx/  
PMCTL (2 × PLLM)  
PMCTL  
(2 × PLLN)  
DIVIDE  
BY 2  
PMCTL  
(INDIV)  
PMCTL  
(PLLBP)  
PCLK  
fVCO ÷ (2 × PLLM)  
PMCTL (CLKOUTEN)  
CLKOUT (TEST ONLY)*  
RESETOUT  
BUF  
DELAY OF  
4096 CLKIN  
RESETOUT  
RESET  
CYCLES  
CORERST  
*CLKOUT (TEST ONLY) FREQUENCY IS THE SAME AS fINPUT.  
THIS SIGNAL IS NOT SPECIFIED OR SUPPORTED FOR ANY DESIGN.  
Figure 5. Core Clock and System Clock Relationship to CLKIN  
Rev. J  
|
Page 17 of 60  
|
July 2013  
 
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Power-Up Sequencing  
The timing requirements for processor startup are given in  
Table 10. Note that during power-up, when the VDDINT power  
supply comes up after VDDEXT, a leakage current of the order of  
three-state leakage current pull-up, pull-down, may be observed  
on any pin, even if that is an input only (for example the RESET  
pin) until the VDDINT rail has powered up.  
Table 10. Power-Up Sequencing Timing Requirements (Processor Startup)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tRSTVDD  
RESET Low Before VDDINT/VDDEXT On  
VDDINT On Before VDDEXT  
0
ns  
tIVDDEVDD  
–50  
0
102  
+200  
200  
ms  
ms  
μs  
1
tCLKVDD  
CLKIN Valid After VDDINT/VDDEXT Valid  
CLKIN Valid Before RESET Deasserted  
PLL Control Setup Before RESET Deasserted  
tCLKRST  
tPLLRST  
20  
μs  
Switching Characteristic  
3, 4  
tCORERST  
Core Reset Deasserted After RESET Deasserted  
4096tCK + 2 tCCLK  
1 Valid VDDINT/VDDEXT assumes thatthesuppliesarefullyrampedto their1.2Vrailsand3.3Vrails. Voltagerampratescanvaryfrommicrosecondsto hundredsofmilliseconds,  
depending on the design of the power supply subsystem.  
2 Assumes a stable CLKIN signal, after meeting worst-case start-up timing of crystal oscillators. Refer to your crystal oscillator manufacturer’s data sheet for start-up time.  
Assume a 25 ms maximum oscillator start-up time if using the XTAL pin and internal oscillator circuit in conjunction with an external crystal.  
3 Applies after the power-up sequence is complete. Subsequent resets require a minimum of 4 CLKIN cycles for RESET to be held low to properly initialize and propagate  
default states at all I/O pins.  
4 The 4096 cycle count depends on tSRST specification in Table 12. If setup time is not met, 1 additional CLKIN cycle can be added to the core reset time, resulting in 4097 cycles  
maximum.  
tRSTVDD  
RESET  
V
DDINT  
tIVDDEVDD  
V
DDEXT  
tCLKVDD  
CLKIN  
tCLKRST  
CLK_CFG1–0  
RESETOUT  
tPLLRST  
tCORERST  
Figure 6. Power-Up Sequencing  
Rev. J  
|
Page 18 of 60  
|
July 2013  
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Clock Input  
Table 11. Clock Input  
200 MHz1  
Max  
333 MHz2  
Max  
Parameter  
Unit  
Min  
Min  
Timing Requirements  
tCK  
CLKIN Period  
303  
100  
18  
100  
ns  
tCKL  
tCKH  
tCKRF  
tCCLK  
CLKIN Width Low  
12.5  
12.5  
7.5  
7.5  
ns  
CLKIN Width High  
CLKIN Rise/Fall (0.4 V to 2.0 V)  
CCLK Period  
ns  
3
3
ns  
4
5.0  
10  
3.0  
10  
ns  
5
tVCO  
VCO Frequency  
200  
–250  
600  
+250  
200  
–250  
800  
+250  
MHz  
ps  
6, 7  
tCKJ  
CLKIN Jitter Tolerance  
1 Applies to all 200 MHz models. See Ordering Guide on Page 56.  
2 Applies to all 333 MHz models. See Ordering Guide on Page 56.  
3 Applies only for CLK_CFG1–0 = 00 and default values for PLL control bits in the PMCTL register.  
4 Any changes to PLL control bits in the PMCTL register must meet core clock timing specification tCCLK  
5 See Figure 5 on Page 17 for VCO diagram.  
.
6 Actual input jitter should be combined with AC specifications for accurate timing analysis.  
7 Jitter specification is maximum peak-to-peak time interval error (TIE) jitter.  
tCKJ  
tCK  
CLKIN  
tCKH  
tCKL  
Figure 7. Clock Input  
Clock Signals  
The processor can use an external clock or a crystal. Refer to the  
CLKIN pin description in Table 6 on Page 11. The user applica-  
tion program can configure the processor to use its internal  
clock generator by connecting the necessary components to the  
CLKIN and XTAL pins. Figure 8 shows the component connec-  
tions used for a fundamental frequency crystal operating in  
parallel mode.  
ADSP-2136x  
R1  
XTAL  
CLKIN  
1MΩ*  
R2  
47Ω  
*
C1  
22pF  
C2  
22pF  
Y1  
Note that the clock rate is achieved using a 16.67 MHz crystal  
and a PLL multiplier ratio 16:1. (CCLK:CLKIN achieves a clock  
speed of 266.72 MHz.) To achieve the full core clock rate, pro-  
grams need to configure the multiplier bits in the  
PMCTL register.  
24.576MHz  
R2 SHOULD BE CHOSEN TO LIMIT CRYSTAL  
DRIVE POWER. REFER TO CRYSTAL  
MANUFACTURER’S SPECIFICATIONS.  
*TYPICAL VALUES  
Figure 8. Recommended Circuit for Fundamental Mode Crystal Operation  
Rev. J  
|
Page 19 of 60  
|
July 2013  
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Reset  
Table 12. Reset  
Parameter  
Min  
Unit  
Timing Requirements  
1
tWRST  
RESET Pulse Width Low  
4 × tCK  
8
ns  
ns  
tSRST  
RESET Setup Before CLKIN Low  
1 Applies after the power-up sequence is complete. At power-up, the processor’s internal phase-locked loop requires no more than 100 μs while RESET is low, assuming stable  
VDD and CLKIN (not including start-up time of external clock oscillator).  
CLKIN  
tWRST  
tSRST  
RESET  
Figure 9. Reset  
Interrupts  
The following timing specification applies to the FLAG0,  
FLAG1, and FLAG2 pins when they are configured as IRQ0,  
IRQ1, and IRQ2 interrupts.  
Table 13. Interrupts  
Parameter  
Min  
Unit  
Timing Requirement  
tIPW  
IRQx Pulse Width  
2 × tPCLK +2  
ns  
INTERRUPT  
INPUTS  
tIPW  
Figure 10. Interrupts  
Rev. J  
|
Page 20 of 60  
|
July 2013  
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Core Timer  
The following timing specification applies to FLAG3 when it is  
configured as the core timer (TMREXP pin).  
Table 14. Core Timer  
Parameter  
Min  
Unit  
Switching Characteristic  
tWCTIM  
TMREXP Pulse Width  
2 × tPCLK – 1  
ns  
tWCTIM  
FLAG3  
(TMREXP)  
Figure 11. Core Timer  
Timer PWM_OUT Cycle Timing  
The following timing specification applies to Timer0, Timer1,  
and Timer2 in PWM_OUT (pulse-width modulation) mode.  
Timer signals are routed to the DAI_P20–1 pins through the  
SRU. Therefore, the timing specifications provided below are  
valid at the DAI_P20–1 pins.  
Table 15. Timer PWM_OUT Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristic  
tPWMO  
Timer Pulse Width Output  
2 × tPCLK – 1  
2 × (231 – 1) × tPCLK  
ns  
tPWMO  
PWM  
OUTPUTS  
Figure 12. Timer PWM_OUT Timing  
Rev. J  
|
Page 21 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Timer WDTH_CAP Timing  
The following timing specification applies to Timer0, Timer1,  
and Timer2 in WDTH_CAP (pulse width count and capture)  
mode. Timer signals are routed to the DAI_P20–1 pins through  
the SRU. Therefore, the timing specification provided below are  
valid at the DAI_P20–1 pins.  
Table 16. Timer Width Capture Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirement  
tPWI  
Timer Pulse Width  
2 × tPCLK  
2 × (231– 1) × tPCLK  
ns  
tPWI  
TIMER  
CAPTURE  
INPUTS  
Figure 13. Timer Width Capture Timing  
DAI Pin to Pin Direct Routing  
For direct pin connections only (for example, DAI_PB01_I to  
DAI_PB02_O).  
Table 17. DAI Pin to Pin Routing  
Parameter  
Min  
Max  
10  
Unit  
Timing Requirement  
tDPIO  
Delay DAI Pin Input Valid to DAI Output Valid  
1.5  
ns  
DAI_Pn  
DAI_Pm  
tDPIO  
Figure 14. DAI Pin to Pin Direct Routing  
Rev. J  
|
Page 22 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
inputs and outputs are not directly routed to/from DAI pins (via  
pin buffers) there is no timing data available. All timing param-  
eters and switching characteristics apply to external DAI pins  
(DAI_P01 through DAI_P20).  
Precision Clock Generator (Direct Pin Routing)  
This timing is only valid when the SRU is configured such that  
the precision clock generator (PCG) takes its inputs directly  
from the DAI pins (via pin buffers) and sends its outputs  
directly to the DAI pins. For the other cases, where the PCG’s  
Table 18. Precision Clock Generator (Direct Pin Routing)  
K and B Grade  
Y Grade  
Parameter  
Min  
Max  
Max  
Unit  
Timing Requirements  
tPCGIP  
tSTRIG  
Input Clock Period  
tPCLK × 4  
4.5  
ns  
ns  
PCG Trigger Setup Before Falling  
Edge of PCG Input Clock  
tHTRIG  
PCG Trigger Hold After Falling  
Edge of PCG Input Clock  
3
ns  
Switching Characteristics  
tDPCGIO PCG Output Clock and Frame Sync  
Active Edge Delay After PCG Input 2.5  
Clock  
10  
10  
ns  
ns  
tDTRIGCLK PCG Output Clock Delay After PCG 2.5 + (2.5 × tPCGIP  
Trigger  
)
10 + (2.5 × tPCGIP  
)
12 + (2.5 × tPCGIP)  
tDTRIGFS PCG Frame Sync Delay After PCG  
2.5 + ((2.5 + D – PH) × tPCGIP) 10 + ((2.5 + D – PH) × tPCGIP) 12 + ((2.5 + D – PH) × tPCGIP) ns  
Trigger  
1
tPCGOP  
Output Clock Period  
2 × tPCGIP – 1 ns  
D = FSxDIV, PH = FSxPHASE. For more information, refer to the ADSP-2136x SHARC Processor Hardware Reference, “Precision Clock Gener-  
ators” chapter.  
1 In normal mode, tPCGOP (min) = 2 × tPCGIP  
.
tSTRIG  
tHTRIG  
DAI_Pn  
PCG_TRIGx_I  
tPCGIP  
DAI_Pm  
PCG_EXTx_I  
(CLKIN)  
tDPCGIO  
DAI_Py  
PCG_CLKx_O  
tDTRIGCLK  
tPCGOP  
tDPCGIO  
DAI_Pz  
PCG_FSx_O  
tDTRIGFS  
Figure 15. Precision Clock Generator (Direct Pin Routing)  
Rev. J  
|
Page 23 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Flags  
The timing specifications provided below apply to the FLAG3–0  
and DAI_P20–1 pins, the parallel port, and the serial peripheral  
interface (SPI). See Table 6 on Page 11 for more information on  
flag use.  
Table 19. Flags  
Parameter  
Timing Requirement  
tFIPW  
Min  
Unit  
ns  
FLAG3–0 IN Pulse Width  
2 × tPCLK + 3  
2 × tPCLK – 1  
Switching Characteristic  
tFOPW FLAG3–0 OUT Pulse Width  
ns  
FLAG  
INPUTS  
tFIPW  
FLAG  
OUTPUTS  
tFOPW  
Figure 16. Flags  
Rev. J  
|
Page 24 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Memory Read—Parallel Port  
Use these specifications for asynchronous interfacing to memo-  
ries (and memory-mapped peripherals) when the processor is  
accessing external memory space.  
Table 20. 8-Bit Memory Read Cycle  
K and B Grade  
Max  
Y Grade  
Max  
Parameter  
Min  
Min  
Unit  
Timing Requirements  
tDRS  
tDRH  
tDAD  
AD7–0 Data Setup Before RD High  
AD7–0 Data Hold After RD High  
AD15–8 Address to AD7–0 Data Valid  
3.3  
0
4.5  
0
ns  
ns  
D + tPCLK – 5.0  
D + tPCLK – 5.0 ns  
Switching Characteristics  
tALEW ALE Pulse Width  
AD15–0 Address Setup Before ALE Deasserted tPCLK – 2.5  
2 × tPCLK – 2.0  
2 × tPCLK – 2.0  
tPCLK – 2.5  
ns  
ns  
ns  
1
tADAS  
tRRH  
Delay Between RD Rising Edge to Next  
Falling Edge  
H + tPCLK – 1.4  
H + tPCLK – 1.4  
tALERW  
tRWALE  
ALE Deasserted to Read Asserted  
Read Deasserted to ALE Asserted  
AD15–0 Address Hold After ALE Deasserted  
ALE Deasserted to AD7–0 Address in High-Z  
RD Pulse Width  
2 × tPCLK – 3.8  
F + H + 0.5  
tPCLK – 2.3  
tPCLK  
2 × tPCLK – 3.8  
F + H + 0.5  
tPCLK – 2.3  
tPCLK  
ns  
ns  
ns  
1
tADAH  
1
tALEHZ  
tRW  
tPCLK + 3.0  
tPCLK + 3.8  
ns  
ns  
ns  
ns  
ns  
D – 2.0  
D – 2.0  
tRDDRV  
tADRH  
tDAWH  
AD7–0 ALE Address Drive After Read High  
AD15–8 Address Hold After RD High  
AD15–8 Address to RD High  
F + H + tPCLK – 2.3  
H
F + H + tPCLK – 2.3  
H
D + tPCLK – 4.0  
D + tPCLK – 4.0  
D = (The value set by the PPDUR Bits (5–1) in the PPCTL register) × tPCLK  
H = tPCLK (if a hold cycle is specified, else H = 0)  
F = 7 × tPCLK (if FLASH_MODE is set, else F = 0)  
1 On reset, ALE is an active high cycle. However, it can be configured by software to be active low.  
tRWALE  
tALEW  
tALERW  
ALE  
tRRH  
tRW  
RD  
WR  
tRDDRV  
tDAWH  
tADAS  
tADAH  
tADRH  
VALID  
AD15–8  
VALID ADDRESS  
VALID ADDRESS  
VALID ADDRESS  
VALID ADDRESS  
ADDRESS  
tDAD  
tDRS tDRH  
VALID  
VALID  
DATA  
VALID  
DATA  
AD7–0  
ADDRESS  
tALEHZ  
NOTE: MEMORY READS ALWAYS OCCUR IN GROUPS OF FOUR BETWEEN ALE CYCLES. THIS FIGURE SHOWS ONLY  
TWO MEMORY READS TO PROVIDE THE NECESSARY TIMING INFORMATION.  
Figure 17. Read Cycle for 8-Bit Memory Timing  
Rev. J  
|
Page 25 of 60  
|
July 2013  
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Table 21. 16-Bit Memory Read Cycle  
K and B Grade  
Y Grade  
Max  
Parameter  
Min  
Max  
Min  
Unit  
Timing Requirements  
tDRS  
tDRH  
Switching Characteristics  
tALEW ALE Pulse Width  
AD15–0 Data Setup Before RD High  
3.3  
0
4.5  
0
ns  
ns  
AD15–0 Data Hold After RD High  
2 × tPCLK – 2.0  
2 × tPCLK – 2.0  
tPCLK – 2.5  
ns  
ns  
ns  
ns  
1
tADAS  
AD15–0 Address Setup Before ALE Deasserted tPCLK – 2.5  
tALERW  
ALE Deasserted to Read Asserted  
2 × tPCLK – 3.8  
H + tPCLK – 1.4  
2 × tPCLK – 3.8  
H + tPCLK – 1.4  
2
tRRH  
Delay Between RD Rising Edge to Next Falling  
Edge  
tRWALE  
Read Deasserted to ALE Asserted  
F + H + 0.5  
F + H + 0.5  
ns  
ns  
ns  
tRDDRV  
ALE Address Drive After Read High  
AD15–0 Address Hold After ALE Deasserted  
F + H + tPCLK – 2.3  
tPCLK – 2.3  
F + H + tPCLK – 2.3  
tPCLK – 2.3  
1
tADAH  
tALEHZ1  
tRW  
ALE Deasserted to Address/Data15–0 in High-Z tPCLK  
RD Pulse Width D – 2.0  
tPCLK + 3.0 tPCLK  
D – 2.0  
tPCLK + 3.8 ns  
ns  
D = (The value set by the PPDUR Bits (5–1) in the PPCTL register) × tPCLK  
H = tPCLK (if a hold cycle is specified, else H = 0)  
F = 7 × tPCLK (if FLASH_MODE is set, else F = 0)  
1 On reset, ALE is an active high cycle. However, it can be configured by software to be active low.  
2 This parameter is only available when in EMPP = 0 mode.  
tRWALE  
tALEW  
tALERW  
ALE  
tRRH  
tRW  
RD  
WR  
tRDDRV  
tALEHZ  
tADAH  
tDRS  
tDRH  
tADAS  
VALID  
AD15–0  
VALID ADDRESS  
VALID DATA  
VALID DATA  
ADDRESS  
NOTE: FOR 16-BIT MEMORY READS, WHEN EMPP ϶ 0, ONLY ONE RD PULSE OCCURS BETWEEN ALE CYCLES.  
WHEN EMPP = 0, MULTIPLE RD PULSES OCCUR BETWEEN ALE CYCLES. FOR COMPLETE INFORMATION,  
SEE THE ADSP-2136x SHARC PROCESSOR HARDWARE REFERENCE.  
Figure 18. Read Cycle for 16-Bit Memory Timing  
Rev. J  
|
Page 26 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Memory Write—Parallel Port  
Use these specifications for asynchronous interfacing to memo-  
ries (and memory-mapped peripherals) when the processor is  
accessing external memory space.  
Table 22. 8-Bit Memory Write Cycle  
K and B Grade  
Min  
Y Grade  
Parameter  
Min  
Unit  
Switching Characteristics  
tALEW  
ALE Pulse Width  
2 × tPCLK – 2.0  
tPCLK – 2.8  
2 × tPCLK – 3.8  
H + 0.5  
2 × tPCLK – 2.0  
tPCLK – 2.8  
2 × tPCLK – 3.8  
H + 0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
tADAS  
tALERW  
tRWALE  
tWRH  
AD15–0 Address Setup Before ALE Deasserted  
ALE Deasserted to Write Asserted  
Write Deasserted to ALE Asserted  
Delay Between WR Rising Edge to Next WR Falling Edge  
AD15–0 Address Hold After ALE Deasserted  
WR Pulse Width  
F + H + tPCLK – 2.3  
tPCLK – 0.5  
D – F – 2.0  
tPCLK – 2.8  
H
F + H + tPCLK – 2.3  
tPCLK – 0.5  
D – F – 2.0  
tPCLK – 3.5  
H
1
tADAH  
tWW  
tADWL  
tADWH  
tDWS  
AD15–8 Address to WR Low  
AD15–8 Address Hold After WR High  
AD7–0 Data Setup Before WR High  
AD7–0 Data Hold After WR High  
AD15–8 Address to WR High  
D – F + tPCLK – 4.0  
H
D – F + tPCLK – 4.0  
H
tDWH  
tDAWH  
D – F + tPCLK – 4.0  
D – F + tPCLK – 4.0  
D = (The value set by the PPDUR Bits (5–1) in the PPCTL register) × tPCLK  
H = tPCLK (if a hold cycle is specified, else H = 0)  
.
F = 7 × tPCLK (if FLASH_MODE is set, else F = 0). If FLASH_MODE is set, D must be 9 × tPCLK  
.
1 On reset, ALE is an active high cycle. However, it can be configured by software to be active low.  
tALERW  
tALEW  
ALE  
tRWALE  
tWW  
WR  
tWRH  
tADWL  
tDAWH  
RD  
tADAS  
tADAH  
tADWH  
VALID  
ADDRESS  
AD15  
AD7  
-8  
VALID ADDRESS  
VALID ADDRESS  
tDWH  
tDWS  
VALID  
ADDRESS  
VALID DATA  
VALID DATA  
-0  
NOTE: MEMORY WRITES ALWAYS OCCUR IN GROUPS OF FOUR BETWEEN ALE CYCLES. THIS FIGURE  
SHOWS ONLY TWO MEMORY WRITES TO PROVIDE THE NECESSARY TIMING INFORMATION.  
Figure 19. Write Cycle for 8-Bit Memory Timing  
Rev. J  
|
Page 27 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Table 23. 16-Bit Memory Write Cycle  
K and B Grade  
Y Grade  
Parameter  
Min  
Min  
Unit  
Switching Characteristics  
tALEW  
ALE Pulse Width  
2 × tPCLK – 2.0  
tPCLK – 2.5  
2 × tPCLK – 2.0  
tPCLK – 2.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
tADAS  
AD15–0 Address Setup Before ALE Deasserted  
ALE Deasserted to Write Asserted  
tALERW  
2 × tPCLK – 3.8  
H + 0.5  
2 × tPCLK – 3.8  
H + 0.5  
tRWALE  
Write Deasserted to ALE Asserted  
2
tWRH  
Delay Between WR Rising Edge to Next WR Falling Edge  
AD15–0 Address Hold After ALE Deasserted  
WR Pulse Width  
F + H + tPCLK – 2.3  
tPCLK – 2.3  
F + H + tPCLK – 2.3  
tPCLK – 2.3  
1
tADAH  
tWW  
D – F – 2.0  
D – F + tPCLK – 4.0  
H
D – F – 2.0  
D – F + tPCLK – 4.0  
H
tDWS  
tDWH  
AD15–0 Data Setup Before WR High  
AD15–0 Data Hold After WR High  
D = (the value set by the PPDUR Bits (5–1) in the PPCTL register) × tPCLK  
H = tPCLK (if a hold cycle is specified, else H = 0)  
.
F = 7 × tPCLK (if FLASH_MODE is set, else F = 0). If FLASH_MODE is set, D must be 9 × tPCLK  
PCLK = (peripheral) clock period = 2 × tCCLK  
.
t
1 On reset, ALE is an active high cycle. However, it can be configured by software to be active low.  
2 This parameter is only available when in EMPP = 0 mode.  
tALEW  
tALERW  
ALE  
tRWALE  
tWW  
WR  
RD  
tWRH  
tDWH  
tADAS  
tADAH  
VALID  
ADDRESS  
VALID  
ADDRESS  
AD15-0  
VALID DATA  
tDWS  
VALID DATA  
NOTE: FOR 16-BIT MEMORY WRITES, WHEN EMPP  0, ONLY ONE WR PULSE OCCURS BETWEEN ALE CYCLES.  
WHEN EMPP = 0, MULTIPLE WR PULSES OCCUR BETWEEN ALE CYCLES. FOR COMPLETE INFORMATION,  
SEE THE ADSP-2136x SHARC PROCESSOR HARDWARE REFERENCE.  
Figure 20. Write Cycle for 16-Bit Memory Timing  
Rev. J  
|
Page 28 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Serial Ports  
To determine whether communication is possible between two  
devices at clock speed n, the following specifications must be  
confirmed: 1) frame sync (FS) delay and frame sync setup and  
hold, 2) data delay and data setup and hold, and 3) serial clock  
(SCLK) width.  
Serial port signals are routed to the DAI_P20–1 pins using the  
SRU. Therefore, the timing specifications provided below are  
valid at the DAI_P20–1 pins.  
Table 24. Serial Ports—External Clock  
K and B Grade  
Max  
Y Grade  
Max  
Parameter  
Min  
Unit  
Timing Requirements  
1
tSFSE  
Frame Sync Setup Before SCLK  
(Externally Generated Frame Sync in Either Transmit or Receive Mode)  
2.5  
ns  
1
1
tHFSE  
Frame Sync Hold After SCLK  
(Externally Generated Frame Sync in Either Transmit or Receive Mode)  
2.5  
2.5  
2.5  
ns  
ns  
ns  
ns  
ns  
tSDRE  
Receive Data Setup Before Receive SCLK  
Receive Data Hold After SCLK  
SCLK Width  
1
tHDRE  
tSCLKW  
tSCLK  
(tPCLK × 4) ÷ 2 – 2  
tPCLK × 4  
SCLK Period  
Switching Characteristics  
2
tDFSE  
Frame Sync Delay After SCLK  
(Internally Generated Frame Sync in Either Transmit or Receive Mode)  
9.5  
9.5  
11  
11  
ns  
2
tHOFSE  
Frame Sync Hold After SCLK  
(Internally Generated Frame Sync in Either Transmit or Receive Mode)  
2
2
ns  
ns  
ns  
2
tDDTE  
Transmit Data Delay After Transmit SCLK  
Transmit Data Hold After Transmit SCLK  
2
tHDTE  
1 Referenced to sample edge.  
2 Referenced to drive edge.  
Table 25. Serial Ports—Internal Clock  
K and B Grade  
Max  
Y Grade  
Max  
Parameter  
Min  
Unit  
Timing Requirements  
1
tSFSI  
Frame Sync Setup Before SCLK  
(Externally Generated Frame Sync in Either Transmit or Receive Mode)  
7
ns  
1
tHFSI  
Frame Sync Hold After SCLK  
(Externally Generated Frame Sync in Either Transmit or Receive Mode)  
2.5  
7
ns  
ns  
ns  
1
tSDRI  
Receive Data Setup Before SCLK  
Receive Data Hold After SCLK  
1
tHDRI  
2.5  
Switching Characteristics  
2
tDFSI  
Frame Sync Delay After SCLK (Internally Generated Frame Sync in Transmit Mode)  
3
8
3
3.5  
9.5  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
2
tHOFSI  
Frame Sync Hold After SCLK (Internally Generated Frame Sync in Transmit Mode) –1.0  
Frame Sync Delay After SCLK (Internally Generated Frame Sync in Receive Mode)  
2
tDFSIR  
2
tHOFSIR Frame Sync Hold After SCLK (Internally Generated Frame Sync in Receive Mode) –1.0  
2
tDDTI  
Transmit Data Delay After SCLK  
Transmit Data Hold After SCLK  
2
tHDTI  
–1.0  
tSCLKIW Transmit or Receive SCLK Width  
2 × tPCLK – 2 2 × tPCLK + 2 2 × tPCLK + 2 ns  
1 Referenced to the sample edge.  
2 Referenced to drive edge.  
Rev. J  
|
Page 29 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
DATA RECEIVE—INTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
DATA RECEIVE—EXTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
tSCLKIW  
tSCLKW  
DAI_P20–1  
(SCLK)  
DAI_P20–1  
(SCLK)  
tDFSI  
tDFSE  
tHOFSI  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
DAI_P20–1  
(FS)  
DAI_P20–1  
(FS)  
tSDRI  
tHDRI  
tSDRE  
tHDRE  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
DATA TRANSMIT—INTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
DATA TRANSMIT—EXTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
tSCLKIW  
tSCLKW  
DAI_P20–1  
(SCLK)  
DAI_P20–1  
(SCLK)  
tDFSI  
tDFSE  
tHOFSI  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
DAI_P20–1  
(FS)  
DAI_P20–1  
(FS)  
tDDTI  
tDDTE  
tHDTI  
tHDTE  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
Figure 21. Serial Ports  
Rev. J  
|
Page 30 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Table 26. Serial Ports—External Late Frame Sync  
K and B Grade  
Max  
Y Grade  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
1
tDDTLFSE  
Data Delay from Late External Transmit Frame Sync  
or External Receive FS with MCE = 1, MFD = 0  
9
10.5  
ns  
ns  
1
tDDTENFS  
Data Enable for MCE = 1, MFD = 0  
0.5  
1 The tDDTLFSE and tDDTENFS parameters apply to left-justified sample pair as well as serial mode, and MCE = 1, MFD = 0.  
EXTERNAL RECEIVE FS WITH MCE = 1, MFD = 0  
DRIVE  
SAMPLE  
DRIVE  
DAI_P20–1  
(SCLK)  
tHFSE/I  
tSFSE/I  
DAI_P20–1  
(FS)  
tDDTE/I  
tDDTENFS  
tHDTE/I  
DAI_P20–1  
(DATA CHANNEL  
A/B)  
1ST BIT  
2ND BIT  
tDDTLFSE  
LATE EXTERNAL TRANSMIT FS  
SAMPLE DRIVE  
DRIVE  
DAI_P20–1  
(SCLK)  
tHFSE/I  
tSFSE/I  
DAI_P20–1  
(FS)  
tDDTE/I  
tDDTENFS  
tHDTE/I  
DAI_P20–1  
(DATA CHANNEL  
A/B)  
1ST BIT  
2ND BIT  
tDDTLFSE  
Figure 22. External Late Frame Sync  
Rev. J  
|
Page 31 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Table 27. Serial Ports—Enable and Three-State  
K and B Grade  
Y Grade  
Parameter  
Min  
2
Max  
Max  
Unit  
Switching Characteristics  
1
tDDTEN  
Data Enable from External Transmit SCLK  
ns  
ns  
ns  
1
tDDTTE  
Data Disable from External Transmit SCLK  
7
8.5  
1
tDDTIN  
Data Enable from Internal Transmit SCLK  
–1  
1 Referenced to drive edge.  
DRIVE EDGE  
DRIVE EDGE  
DAI_P20–1  
(SCLK, EXT)  
tDDTEN  
tDDTTE  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
DRIVE EDGE  
DAI_P20–1  
(SCLK, INT)  
tDDTIN  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
Figure 23. Enable and Three-State  
Rev. J  
|
Page 32 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Input Data Port (IDP)  
The timing requirements for the IDP are given in Table 28. IDP  
signals are routed to the DAI_P20–1 pins using the SRU. There-  
fore, the timing specifications provided below are valid at the  
DAI_P20–1 pins.  
Table 28. IDP  
Parameter  
Min  
Unit  
Timing Requirements  
1
tSISFS  
Frame Sync Setup Before Clock Rising Edge  
Frame Sync Hold After Clock Rising Edge  
Data Setup Before Clock Rising Edge  
Data Hold After Clock Rising Edge  
Clock Width  
3
ns  
ns  
ns  
ns  
ns  
ns  
1
tSIHFS  
3
1
tSISD  
3
1
tSIHD  
tIDPCLKW  
tIDPCLK  
3
(tPCLK × 4) ÷ 2 – 1  
tPCLK × 4  
Clock Period  
1
The data, clock, and frame sync signals can come from any of the DAI pins. Clock and frame sync can also come via the PCGs or SPORTs. The PCG’s input can be either  
CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tIDPCLK  
tIDPCLKW  
DAI_P20–1  
(SCLK)  
tSISFS  
tSIHFS  
DAI_P20–1  
(FS)  
tSISD  
tSIHD  
DAI_P20–1  
(SDATA)  
Figure 24. IDP Master Timing  
Rev. J  
|
Page 33 of 60  
|
July 2013  
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Parallel Data Acquisition Port (PDAP)  
The timing requirements for the PDAP are provided in  
Table 29. PDAP is the parallel mode operation of Channel 0 of  
the IDP. For details on the operation of the IDP, refer to the  
ADSP-2136x SHARC Processor Hardware Reference, “Input  
Data Port” chapter.  
Note that the most significant 16 bits of external 20-bit PDAP  
data can be provided through either the parallel port AD15–0  
pins or the DAI_P20–5 pins. The remaining 4 bits can only be  
sourced through DAI_P4–1. The timing below is valid at the  
DAI_P20–1 pins or at the AD15–0 pins.  
Table 29. Parallel Data Acquisition Port (PDAP)  
Parameter  
Min  
Unit  
Timing Requirements  
1
tSPCLKEN  
PDAP_CLKEN Setup Before PDAP_CLK Sample Edge  
PDAP_CLKEN Hold After PDAP_CLK Sample Edge  
PDAP_DAT Setup Before SCLK PDAP_CLK Sample Edge  
PDAP_DAT Hold After SCLK PDAP_CLK Sample Edge  
Clock Width  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
1
tHPCLKEN  
2.5  
1
tPDSD  
3.0  
1
tPDHD  
2.5  
tPDCLKW  
tPDCLK  
(tPCLK × 4) ÷ 2 – 3  
tPCLK × 4  
Clock Period  
Switching Characteristics  
tPDHLDD Delay of PDAP Strobe After Last PDAP_CLK Capture Edge for a Word  
tPDSTRB PDAP Strobe Pulse Width  
2 × tPCLK – 1  
ns  
ns  
2 × tPCLK – 1.5  
1 Data source pins are AD15–0 and DAI_P4–1, or DAI pins. Source pins for serial clock and frame sync are DAI pins.  
SAMPLE EDGE  
tPDCLK  
tPDCLKW  
DAI_P20–1  
(PDAP_CLK)  
tHPHOLD  
tSPHOLD  
DAI_P20–1  
(PDAP_HOLD)  
tPDHD  
tPDSD  
DAI_P20–1/  
ADDR23–4  
(PDAP_DATA)  
tPDHLDD  
tPDSTRB  
DAI_P20–1  
(PDAP_STROBE)  
Figure 25. PDAP Timing  
Rev. J  
|
Page 34 of 60  
|
July 2013  
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Pulse-Width Modulation Generators  
Table 30. PWM Timing1  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tPWMW  
tPWMP  
PWM Output Pulse Width  
PWM Output Period  
tPCLK – 2  
(216 – 2) × tPCLK  
(216 – 1) × tPCLK  
ns  
ns  
2 × tPCLK – 1.5  
1 Note that the PWM output signals are shared on the parallel port bus (AD15-0 pins).  
tPWMW  
PWM  
OUTPUTS  
tPWMP  
Figure 26. PWM Timing  
Sample Rate Converter—Serial Input Port  
The SRC input signals are routed from the DAI_P20–1 pins  
using the SRU. Therefore, the timing specifications provided in  
Table 31 are valid at the DAI_P20–1 pins. This feature is not  
available on the ADSP-21363 models.  
Table 31. SRC, Serial Input Port  
Parameter  
Min  
Unit  
Timing Requirements  
1
tSRCSFS  
Frame Sync Setup Before Serial Clock Rising Edge  
Frame Sync Hold After Serial Clock Rising Edge  
SDATA Setup Before Serial Clock Rising Edge  
SDATA Hold After Serial Clock Rising Edge  
Clock Width  
3
ns  
ns  
ns  
ns  
ns  
ns  
1
tSRCHFS  
3
1
tSRCSD  
3
1
tSRCHD  
tSRCCLKW  
tSRCCLK  
3
36  
80  
Clock Period  
1
The data, serial clock, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync signals can also come via the PCGs or SPORTs. The PCG’s  
input can be either CLKIN or any of the DAI pins.  
Rev. J  
|
Page 35 of 60  
|
July 2013  
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
SAMPLE EDGE  
tSRCCLK  
DAI_P20–1  
(SCLK)  
tSRCCLKW  
tSRCSFS  
tSRCHFS  
DAI_P20–1  
(FS)  
tSRCSD  
tSRCHD  
DAI_P20–1  
(SDATA)  
Figure 27. SRC Serial Input Port Timing  
Rev. J  
|
Page 36 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Sample Rate Converter—Serial Output Port  
For the serial output port, the frame-sync is an input and should  
meet setup and hold times with regard to the serial clock on the  
output port. The serial data output has a hold time and delay  
specification with regard to serial clock. Note that the serial  
clock rising edge is the sampling edge and the falling edge is the  
drive edge.  
Table 32. SRC, Serial Output Port  
K and B Grade  
Max  
Y Grade  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSRCSFS  
Frame Sync Setup Before Serial Clock Rising Edge  
Frame Sync Hold After Serial Clock Rising Edge  
3
3
ns  
ns  
1
tSRCHFS  
Switching Characteristics  
1
tSRCTDD  
Transmit Data Delay After Serial Clock Falling Edge  
Transmit Data Hold After Serial Clock Falling Edge  
10.5  
12.5  
ns  
ns  
1
tSRCTDH  
2
1
The data, serial clock, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync can also come via PCG or SPORTs. PCG’s input can be  
either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tSRCCLK  
DAI_P20–1  
(SCLK)  
tSRCCLKW  
tSRCSFS  
tSRCHFS  
DAI_P20–1  
(FS)  
tSRCTDD  
tSRCTDH  
DAI_P20–1  
(SDATA)  
Figure 28. SRC Serial Output Port Timing  
Rev. J  
|
Page 37 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
S/PDIF Transmitter  
Serial data input to the S/PDIF transmitter can be formatted as  
left justified, I2S, or right justified with word widths of 16-, 18-,  
20-, or 24-bits. The following sections provide timing for the  
transmitter.  
S/PDIF Transmitter-Serial Input Waveforms  
Figure 29 shows the right-justified mode. Frame sync is high for  
the left channel and low for the right channel. Data is valid on  
the rising edge of serial clock. The MSB is delayed the minimum  
in 24-bit output mode or the maximum in 16-bit output mode  
from a frame sync transition, so that when there are 64 serial  
clock periods per frame sync period, the LSB of the data is right-  
justified to the next frame sync transition.  
Table 33. S/PDIF Transmitter Right-Justified Mode  
Parameter  
Timing Requirement  
tRJD  
Nominal  
Unit  
FS to MSB Delay in Right-Justified Mode  
16-Bit Word Mode  
18-Bit Word Mode  
20-Bit Word Mode  
24-Bit Word Mode  
16  
14  
12  
8
SCLK  
SCLK  
SCLK  
SCLK  
LEFT/RIGHT CHANNEL  
DAI_P20–1  
FS  
DAI_P20–1  
SCLK  
tRJD  
DAI_P20–1  
SDATA  
LSB  
MSB  
MSB–1 MSB–2  
LSB+2 LSB+1  
LSB  
Figure 29. Right-Justified Mode  
Rev. J  
|
Page 38 of 60  
|
July 2013  
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Figure 30 shows the default I2S-justified mode. The frame sync  
is low for the left channel and high for the right channel. Data is  
valid on the rising edge of serial clock. The MSB is left-justified  
to the frame sync transition but with a delay.  
Table 34. S/PDIF Transmitter I2S Mode  
Parameter  
Nominal  
Unit  
Timing Requirement  
tI2SD  
FS to MSB Delay in I2S Mode  
1
SCLK  
LEFT/RIGHT CHANNEL  
DAI_P20–1  
FS  
DAI_P20–1  
SCLK  
tI2SD  
DAI_P20–1  
SDATA  
MSB  
MSB–1 MSB–2  
LSB+2 LSB+1  
LSB  
Figure 30. I2S-Justified Mode  
Figure 31 shows the left-justified mode. The frame sync is high  
for the left channel and low for the right channel. Data is valid  
on the rising edge of serial clock. The MSB is left-justified to the  
frame sync transition with no delay.  
Table 35. S/PDIF Transmitter Left-Justified Mode  
Parameter  
Nominal  
Unit  
Timing Requirement  
tLJD  
FS to MSB Delay in Left-Justified Mode  
0
SCLK  
DAI_P20–1  
FS  
LEFT/RIGHT CHANNEL  
DAI_P20–1  
SCLK  
tLJD  
DAI_P20–1  
SDATA  
MSB  
MSB–1 MSB–2  
LSB+2 LSB+1  
LSB  
Figure 31. Left-Justified Mode  
Rev. J  
|
Page 39 of 60  
|
July 2013  
 
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
S/PDIF Transmitter Input Data Timing  
The timing requirements for the S/PDIF transmitter are given  
in Table 36. Input signals are routed to the DAI_P20–1 pins  
using the SRU. Therefore, the timing specifications provided  
below are valid at the DAI_P20–1 pins.  
Table 36. S/PDIF Transmitter Input Data Timing  
K Grade  
Y Grade  
Max  
Parameter  
Min  
Max  
Min  
Unit  
Timing Requirements  
1
tSISFS  
Frame Sync Setup Before Serial Clock Rising Edge  
3
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
tSIHFS  
Frame Sync Hold After Serial Clock Rising Edge  
Data Setup Before Serial Clock Rising Edge  
Data Hold After Serial Clock Rising Edge  
Transmit Clock Width  
3
3
1
tSISD  
3
3
1
tSIHD  
3
3
tSITXCLKW  
tSITXCLK  
tSISCLKW  
tSISCLK  
9
9.5  
20  
36  
80  
Transmit Clock Period  
20  
36  
80  
Clock Width  
Clock Period  
1
The serial clock, data and frame sync signals can come from any of the DAI pins.The serial clock and frame sync signals can also come via PCG or SPORTs. PCG’s input can  
be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tSITXCLKW  
tSITXCLK  
DAI_P20–1  
(TxCLK)  
tSISCLK  
tSISCLKW  
DAI_P20–1  
(SCLK)  
tSISFS  
tSIHFS  
DAI_P20–1  
(FS)  
tSISD  
tSIHD  
DAI_P20–1  
(SDATA)  
Figure 32. S/PDIF Transmitter Input Timing  
Oversampling Clock (TxCLK) Switching Characteristics  
The S/PDIF transmitter requires an oversampling clock input.  
This high frequency clock (TxCLK) input is divided down to  
generate the internal biphase clock.  
Table 37. Oversampling Clock (TxCLK) Switching Characteristics  
Parameter  
Max  
Unit  
Frequency for TxCLK = 384 × Frame Sync  
Frequency for TxCLK = 256 × Frame Sync  
Frame Rate (FS)  
Oversampling Ratio × Frame Sync <= 1/tSITXCLK MHz  
49.2  
MHz  
kHz  
192.0  
Rev. J  
|
Page 40 of 60  
|
July 2013  
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
S/PDIF Receiver  
The following section describes timing as it relates to the  
S/PDIF receiver. This feature is not available on the  
ADSP-21363 processors.  
Internal Digital PLL Mode  
In the internal digital phase-locked loop mode the internal PLL  
(digital PLL) generates the 512 × FS clock.  
Table 38. S/PDIF Receiver Output Timing (Internal Digital PLL Mode)  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tDFSI  
Frame Sync Delay After Serial Clock  
Frame Sync Hold After Serial Clock  
Transmit Data Delay After Serial Clock  
Transmit Data Hold After Serial Clock  
Transmit Serial Clock Width  
5
5
ns  
ns  
ns  
ns  
ns  
tHOFSI  
tDDTI  
–2  
tHDTI  
–2  
38  
1
tSCLKIW  
1 Serial clock frequency is 64 ×FS where FS = the frequency of frame sync.  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKIW  
DAI_P20–1  
(SCLK)  
tDFSI  
tHOFSI  
DAI_P20–1  
(FS)  
tDDTI  
tHDTI  
DAI_P20–1  
(DATA CHANNEL  
A/B)  
Figure 33. S/PDIF Receiver Internal Digital PLL Mode Timing  
Rev. J  
|
Page 41 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
SPI Interface—Master  
The processor contains two SPI ports. The primary has dedi-  
cated pins and the secondary is available through the DAI. The  
timing provided in Table 39 and Table 40 applies to both ports.  
Table 39. SPI Interface Protocol—Master Switching and Timing Specifications  
K and B Grade  
Y Grade  
Parameter  
Min  
Max Min  
Max  
Unit  
Timing Requirements  
tSSPIDM  
tSSPIDM  
tHSPIDM  
Data Input Valid to SPICLK Edge (Data Input Setup Time)  
5.2  
8.2  
2
6.2  
9.5  
2
ns  
ns  
ns  
Data Input Valid to SPICLK Edge (Data Input Setup Time) (SPI2)  
SPICLK Last Sampling Edge to Data Input Not Valid  
Switching Characteristics  
tSPICLKM  
tSPICHM  
tSPICLM  
tDDSPIDM  
tDDSPIDM  
tHDSPIDM  
tSDSCIM  
tSDSCIM  
tHDSM  
Serial Clock Cycle  
8 × tPCLK – 2  
4 × tPCLK – 2  
4 × tPCLK – 2  
8 × tPCLK – 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial Clock High Period  
4 × tPCLK – 2  
4 × tPCLK – 2  
Serial Clock Low Period  
SPICLK Edge to Data Out Valid (Data Out Delay Time)  
SPICLK Edge to Data Out Valid (Data Out Delay Time) (SPI2)  
SPICLK Edge to Data Out Not Valid (Data Out Hold Time)  
FLAG3–0IN (SPI Device Select) Low to First SPICLK Edge  
FLAG3–0IN (SPI Device Select) Low to First SPICLK Edge (SPI2)  
Last SPICLK Edge to FLAG3–0IN High  
3.0  
8.0  
3.0  
9.5  
4 × tPCLK – 2  
4 × tPCLK – 2.5  
4 × tPCLK – 2.5  
4 × tPCLK – 2  
4 × tPCLK – 1  
4 × tPCLK – 2  
4 × tPCLK – 3.0  
4 × tPCLK – 3.0  
4 × tPCLK – 2  
4 × tPCLK – 1  
tSPITDM  
Sequential Transfer Delay  
DPI  
(OUTPUT)  
tSDSCIM  
tSPICHM  
tSPICLM  
tSPICLKM  
tHDSM  
tSPITDM  
SPICLK  
(CP = 0,  
CP = 1)  
(OUTPUT)  
tHDSPIDM  
tDDSPIDM  
MOSI  
(OUTPUT)  
tSSPIDM  
tHSPIDM  
tSSPIDM  
CPHASE = 1  
tHSPIDM  
MISO  
(INPUT)  
tDDSPIDM  
tHDSPIDM  
MOSI  
(OUTPUT)  
tSSPIDM  
tHSPIDM  
CPHASE = 0  
MISO  
(INPUT)  
Figure 34. SPI Master Timing  
Rev. J  
|
Page 42 of 60  
|
July 2013  
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
SPI Interface—Slave  
Table 40. SPI Interface Protocol—Slave Switching and Timing Specifications  
K and B Grade  
Max  
Y Grade  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSPICLKS  
tSPICHS  
tSPICLS  
tSDSCO  
Serial Clock Cycle  
4 × tPCLK – 2  
2 × tPCLK – 2  
2 × tPCLK – 2  
ns  
ns  
ns  
Serial Clock High Period  
Serial Clock Low Period  
SPIDS Assertion to First SPICLK Edge  
CPHASE = 0  
CPHASE = 1  
2 × tPCLK  
2 × tPCLK  
ns  
ns  
tHDS  
Last SPICLK Edge to SPIDS Not Asserted, CPHASE = 0  
Data Input Valid to SPICLK Edge (Data Input Setup Time)  
SPICLK Last Sampling Edge to Data Input Not Valid  
SPIDS Deassertion Pulse Width (CPHASE = 0)  
2 × tPCLK  
ns  
ns  
ns  
ns  
tSSPIDS  
tHSPIDS  
tSDPPW  
2
2
2 × tPCLK  
Switching Characteristics  
tDSOE SPIDS Assertion to Data Out Active  
0
0
0
0
5
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
tDSOE  
tDSDHI  
SPIDS Assertion to Data Out Active (SPI2)  
8
9
SPIDS Deassertion to Data High Impedance  
SPIDS Deassertion to Data High Impedance (SPI2)  
SPICLK Edge to Data Out Valid (Data Out Delay Time)  
5
5.5  
10  
11.0  
1
tDSDHI  
8.6  
9.5  
tDDSPIDS  
tHDSPIDS  
tDSOV  
SPICLK Edge to Data Out Not Valid (Data Out Hold Time) 2 × tPCLK  
SPIDS Assertion to Data Out Valid (CPHASE = 0)  
5 × tPCLK  
5 × tPCLK  
1 The timing for these parameters applies when the SPI is routed through the signal routing unit. For more information, refer to the ADSP-2136x SHARC Processor Hardware  
Reference, “Serial Peripheral Interface Port” chapter.  
Rev. J  
|
Page 43 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
SPIDS  
(INPUT)  
tSPICHS  
tSPICLS  
tSPICLKS  
tHDS  
tSDPPW  
SPICLK  
(CP = 0,  
CP = 1)  
(INPUT)  
tSDSCO  
tDSOE  
tDSDHI  
tHDSPIDS  
tDDSPIDS  
tDDSPIDS  
MISO  
(OUTPUT)  
tSSPIDS tHSPIDS  
CPHASE = 1  
MOSI  
(INPUT)  
tHDSPIDS  
tDSDHI  
MISO  
(OUTPUT)  
tDSOV  
tHSPIDS  
CPHASE = 0  
tSSPIDS  
MOSI  
(INPUT)  
Figure 35. SPI Slave Timing  
Rev. J  
|
Page 44 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
JTAG Test Access Port and Emulation  
Table 41. JTAG Test Access Port and Emulation  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tTCK  
TCK Period  
tCK  
ns  
ns  
ns  
ns  
ns  
ns  
tSTAP  
tHTAP  
TDI, TMS Setup Before TCK High  
TDI, TMS Hold After TCK High  
System Inputs Setup Before TCK High  
System Inputs Hold After TCK High  
TRST Pulse Width  
5
6
1
tSSYS  
7
1
tHSYS  
tTRSTW  
Switching Characteristics  
tDTDO TDO Delay from TCK Low  
System Outputs Delay After TCK Low  
18  
4 × tCK  
7
ns  
ns  
2
tDSYS  
tCK ÷ 2 + 7  
1 System Inputs = ADDR15–0, SPIDS, CLK_CFG1–0, RESET, BOOT_CFG1–0, MISO, MOSI, SPICLK, DAI_Px, and FLAG3–0.  
2 System Outputs = MISO, MOSI, SPICLK, DAI_Px, ADDR15–0, RD, WR, FLAG3–0, EMU, and ALE.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 36. IEEE 1149.1 JTAG Test Access Port  
Rev. J  
|
Page 45 of 60  
|
July 2013  
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
OUTPUT DRIVE CURRENTS  
CAPACITIVE LOADING  
Figure 37 shows typical I-V characteristics for the output driv-  
ers of the processor. The curves represent the current drive  
capability of the output drivers as a function of output voltage.  
Output delays and holds are based on standard capacitive loads:  
30 pF on all pins (see Figure 38). Figure 42 shows graphically  
how output delays and holds vary with load capacitance. The  
graphs of Figure 40, Figure 41, and Figure 42 may not be linear  
outside the ranges shown for Typical Output Delay versus Load  
Capacitance and Typical Output Rise Time (20% to 80%,  
V = Min) versus Load Capacitance.  
40  
V
OH  
30  
3.3V, +25°C  
3.47V, -45°C  
20  
12  
10  
10  
0
3.11V, +125°C  
RISE  
y = 0.0467x + 1.6323  
FALL  
-
10  
8
3.11V, +125°C  
-
20  
3.3V, +25°C  
3.5  
6
V
-
-
30  
OL  
0.5  
3.47V,  
-
45°C  
4
40  
y = 0.045x + 1.524  
0
1.0  
1.5  
2.0  
2.5  
3.0  
SWEEP (V  
) VOLTAGE (V)  
DDEXT  
2
0
Figure 37. ADSP-2136x Typical Drive  
50  
100  
150  
200  
250  
0
TEST CONDITIONS  
LOAD CAPACITANCE (pF)  
The ac signal specifications (timing parameters) appear in  
Table 12 on Page 20 through Table 41 on Page 45. These include  
output disable time, output enable time, and capacitive loading.  
The timing specifications for the SHARC apply for the voltage  
reference levels in Figure 38.  
Figure 40. Typical Output Rise/Fall Time  
(20% to 80%, VDDEXT = Max)  
12  
10  
Timing is measured on signals when they cross the 1.5 V level as  
described in Figure 39. All delays (in nanoseconds) are mea-  
sured between the point that the first signal reaches 1.5 V and  
the point that the second signal reaches 1.5 V.  
RISE  
y = 0.049x + 1.5105  
FALL  
8
6
TO  
OUTPUT  
PIN  
ꢀꢁȍ  
V
LOAD  
y = 0.0482x + 1.4604  
30pF  
4
2
Figure 38. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures)  
0
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
INPUT  
OR  
1.5V  
1.5V  
OUTPUT  
Figure 41. Typical Output Rise/Fall Time  
(20% to 80%, VDDEXT = Min)  
Figure 39. Voltage Reference Levels for AC Measurements  
Rev. J  
|
Page 46 of 60  
|
July 2013  
 
 
 
 
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Values of θJC are provided for package comparison and PCB  
design considerations when an exposed pad is required. Note  
that the thermal characteristics values provided in Table 42  
through Table 44 are modeled values.  
10  
8
y = 0.0488x  
-1.5923  
6
Table 42. Thermal Characteristics for BGA (No Thermal vias  
in PCB)  
4
Parameter  
θJA  
Condition  
Typical  
25.40  
21.90  
20.90  
5.07  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
2
0
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
θJMA  
θJMA  
θJC  
-
-
2
4
ΨJT  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
0.140  
0.330  
0.410  
0
50  
100  
150  
200  
ΨJMT  
ΨJMT  
LOAD CAPACITANCE (pF)  
Figure 42. Typical Output Delay or Hold versus Load Capacitance  
(at Ambient Temperature)  
Table 43. Thermal Characteristics for BGA (Thermal vias in  
PCB)  
Parameter  
θJA  
Condition  
Typical  
23.40  
20.00  
19.20  
5.00  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
THERMAL CHARACTERISTICS  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
The processor is rated for performance over the temperature  
range specified in Operating Conditions on Page 14.  
θJMA  
θJMA  
θJC  
Table 42 through Table 44 airflow measurements comply with  
JEDEC standards JESD51-2 and JESD51-6 and the junction-to-  
board measurement complies with JESD51-8. Test board and  
thermal via design comply with JEDEC standards JESD51-9  
(BGA) and JESD51-5 (LQFP_EP). The junction-to-case mea-  
surement complies with MIL-STD-883. All measurements use a  
2S2P JEDEC test board.  
ΨJT  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
0.130  
0.300  
0.360  
ΨJMT  
ΨJMT  
Table 44. Thermal Characteristics for LQFP_EP (with  
Exposed Pad Soldered to PCB)  
Industrial applications using the BGA package require thermal  
vias, to an embedded ground plane, in the PCB. Refer to JEDEC  
standard JESD51-9 for printed circuit board thermal ball land  
and thermal via design information.  
Parameter  
θJA  
Condition  
Typical  
16.80  
14.20  
13.50  
7.25  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
θJMA  
θJMA  
θJC  
Industrial applications using the LQFP_EP package require  
thermal trace squares and thermal vias, to an embedded ground  
plane, in the PCB. Refer to JEDEC standard JESD51-5 for more  
information.  
ΨJT  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
0.51  
To determine the junction temperature of the device while on  
the application PCB, use:  
ΨJMT  
ΨJMT  
0.72  
0.80  
TJ = TT + JT PD  
where:  
TJ = junction temperature (°C)  
TT = case temperature (°C) measured at the top center of the  
package  
ΨJT = junction-to-top (of package) characterization parameter  
is the typical value from Table 42 through Table 44.  
P
D = power dissipation. See the Engineer-to-Engineer Note  
Estimating Power for the ADSP-21362 SHARC Processors”  
(EE-277) for more information.  
Values of θJA are provided for package comparison and PCB  
design considerations.  
Rev. J  
|
Page 47 of 60  
|
July 2013  
 
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
144-LEAD LQFP_EP PIN CONFIGURATIONS  
The following table shows the processor’s pin names and, when  
applicable, their default function after reset in parentheses.  
Table 45. LQFP_EP Pin Assignments  
Pin Name  
VDDINT  
CLK_CFG0  
CLK_CFG1  
BOOT_CFG0  
BOOT_CFG1  
GND  
Pin No.  
1
Pin Name  
VDDINT  
GND  
Pin No.  
37  
Pin Name  
VDDEXT  
Pin No.  
73  
Pin Name  
GND  
Pin No.  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145*  
2
38  
GND  
74  
VDDINT  
GND  
3
RD  
39  
VDDINT  
75  
4
ALE  
40  
GND  
76  
VDDINT  
GND  
5
AD15  
AD14  
AD13  
GND  
41  
DAI_P10 (SD2B)  
DAI_P11 (SD3A)  
DAI_P12 (SD3B)  
DAI_P13 (SCLK3)  
DAI_P14 (SFS3)  
DAI_P15 (SD4A)  
VDDINT  
77  
6
42  
78  
VDDINT  
GND  
VDDEXT  
GND  
7
43  
79  
8
44  
80  
VDDEXT  
GND  
VDDINT  
GND  
9
VDDEXT  
AD12  
VDDINT  
GND  
45  
81  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
46  
82  
VDDINT  
GND  
VDDINT  
GND  
47  
83  
48  
GND  
84  
VDDINT  
RESET  
SPIDS  
GND  
VDDINT  
GND  
AD11  
AD10  
AD9  
49  
GND  
85  
50  
DAI_P16 (SD4B)  
DAI_P17 (SD5A)  
DAI_P18 (SD5B)  
DAI_P19 (SCLK5)  
VDDINT  
86  
FLAG0  
FLAG1  
AD7  
51  
87  
AD8  
52  
88  
VDDINT  
SPICLK  
MISO  
MOSI  
GND  
DAI_P1 (SD0A) 53  
89  
GND  
VDDINT  
GND  
54  
55  
90  
VDDINT  
GND  
GND  
91  
DAI_P2 (SD0B) 56  
DAI_P3 (SCLK0) 57  
GND  
92  
VDDEXT  
GND  
VDDEXT  
93  
VDDINT  
VDDEXT  
Avdd  
GND  
58  
59  
60  
61  
62  
DAI_P20 (SFS5)  
GND  
94  
VDDINT  
AD6  
VDDEXT  
95  
VDDINT  
VDDINT  
96  
Avss  
AD5  
GND  
FLAG2  
97  
GND  
AD4  
DAI_P4 (SFS0)  
FLAG3  
98  
RESETOUT  
EMU  
VDDINT  
GND  
DAI_P5 (SD1A) 63  
DAI_P6 (SD1B) 64  
DAI_P7 (SCLK1) 65  
VDDINT  
99  
GND  
100  
101  
102  
103  
104  
105  
106  
107  
108  
TDO  
AD3  
VDDINT  
TDI  
AD2  
VDDINT  
66  
67  
68  
69  
70  
GND  
TRST  
VDDEXT  
GND  
GND  
VDDINT  
TCK  
VDDINT  
GND  
TMS  
AD1  
GND  
VDDINT  
GND  
AD0  
DAI_P8 (SFS1)  
GND  
CLKIN  
XTAL  
WR  
DAI_P9 (SD2A) 71  
VDDINT 72  
VDDINT  
VDDINT  
VDDINT  
VDDEXT  
GND  
*The ePAD is electrically connected to GND inside the chip (see Figure 43 and Figure 44), therefore connecting the pad to GND is optional.  
For better thermal performance the ePAD should be soldered to the board and thermally connected to the GND plane with vias.  
Rev. J  
|
Page 48 of 60  
|
July 2013  
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Figure 43 shows the top view of the 144-lead LQFP_EP pin con-  
figuration. Figure 44 shows the bottom view of the 144-lead  
LQFP_EP lead configuration.  
LEAD 144  
LEAD 1  
LEAD 109  
LEAD 108  
LEAD 1 INDICATOR  
ADSP-2136x  
144-LEAD LQFP_EP  
TOP VIEW  
LEAD 36  
LEAD 73  
LEAD 37  
LEAD 72  
Figure 43. 144-Lead LQFP_EP Lead Configuration (Top View)  
LEAD 109  
LEAD 144  
LEAD 108  
LEAD 1  
ADSP-2136x  
144-LEAD LQFP_EP  
GND PAD  
LEAD 1 INDICATOR  
(LEAD 145)  
BOTTOM VIEW  
LEAD 73  
LEAD 36  
LEAD 72  
LEAD 37  
Figure 44. 144-Lead LQFP_EP Lead Configuration (Bottom View)  
Rev. J  
|
Page 49 of 60  
|
July 2013  
 
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
136-BALL BGA PIN CONFIGURATIONS  
The following table shows the processor’s ball names and, when  
applicable, their default function after reset in parentheses.  
Table 46. BGA Pin Assignments  
Ball Name  
CLK_CFG0  
XTAL  
Ball No. Ball Name  
Ball No. Ball Name  
Ball No. Ball Name  
Ball No.  
D01  
D02  
D04  
D05  
D06  
D09  
D10  
D11  
D13  
D14  
A01  
A02  
A03  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A14  
E01  
E02  
E04  
E05  
E06  
E09  
E10  
E11  
E13  
E14  
CLK_CFG1  
GND  
B01  
B02  
B03  
B04  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
B14  
F01  
F02  
F04  
F05  
F06  
F09  
F10  
F11  
F13  
F14  
BOOT_CFG1  
BOOT_CFG0  
GND  
C01  
C02  
C03  
C12  
C13  
C14  
VDDINT  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDINT  
TMS  
VDDEXT  
CLKIN  
TRST  
TCK  
GND  
TDI  
GND  
RESETOUT  
TDO  
AVSS  
VDDINT  
AVDD  
EMU  
VDDEXT  
SPICLK  
RESET  
VDDINT  
GND  
MOSI  
MISO  
SPIDS  
VDDINT  
GND  
GND  
GND  
GND  
VDDINT  
GND  
FLAG1  
FLAG0  
GND  
AD7  
G01  
G02  
G13  
G14  
AD6  
H01  
H02  
H13  
H14  
VDDINT  
VDDEXT  
GND  
VDDEXT  
DAI_P18 (SD5B)  
DAI_P17 (SD5A)  
GND  
GND  
DAI_P19 (SCLK5)  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
FLAG2  
DAI_P20 (SFS5)  
FLAG3  
Rev. J  
|
Page 50 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Table 46. BGA Pin Assignments (Continued)  
Ball Name  
AD5  
Ball No. Ball Name  
Ball No. Ball Name  
Ball No. Ball Name  
Ball No.  
M01  
J01  
AD3  
K01  
K02  
K04  
K05  
K06  
K09  
K10  
K11  
K13  
K14  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P08  
P09  
P10  
P11  
P12  
P13  
P14  
AD2  
L01  
L02  
L04  
L05  
L06  
L09  
L10  
L11  
L13  
L14  
AD0  
AD4  
J02  
VDDINT  
AD1  
WR  
M02  
GND  
J04  
GND  
GND  
GND  
M03  
GND  
J05  
GND  
GND  
GND  
M12  
GND  
J06  
GND  
GND  
DAI_P12 (SD3B)  
DAI_P13 (SCLK3)  
M13  
GND  
J09  
GND  
GND  
M14  
GND  
J10  
GND  
GND  
GND  
J11  
GND  
GND  
VDDINT  
J13  
GND  
GND  
DAI_P16 (SD4B)  
AD15  
J14  
DAI_P15 (SD4A)  
AD14  
DAI_P14 (SFS3)  
N01  
N02  
N03  
N04  
N05  
N06  
N07  
N08  
N09  
N10  
N11  
N12  
N13  
N14  
ALE  
AD13  
RD  
AD12  
VDDINT  
AD11  
VDDEXT  
AD8  
AD10  
AD9  
VDDINT  
DAI_P1 (SD0A)  
DAI_P3 (SCLK0)  
DAI_P5 (SD1A)  
DAI_P6 (SD1B)  
DAI_P7 (SCLK1)  
DAI_P8 (SFS1)  
DAI_P9 (SD2A)  
DAI_P11 (SD3A)  
DAI_P2 (SD0B)  
VDDEXT  
DAI_P4 (SFS0)  
VDDINT  
VDDINT  
GND  
DAI_P10 (SD2B)  
Figure 45 and Figure 46 show BGA pin assignments from the  
bottom and top, respectively.  
Note: Use the center block of ground pins to provide thermal  
pathways to your printed circuit board’s ground plane.  
Rev. J  
|
Page 51 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
M
N
P
M
N
P
KEY  
KEY  
V
V
A
VDD  
DDINT  
V
A
VDD  
GND  
DDINT  
GND  
A
A
I/O SIGNALS  
DDEXT  
VSS  
V
I/O SIGNALS  
DDEXT  
VSS  
Figure 45. BGA Pin Assignments (Bottom View, Summary)  
Figure 46. BGA Pin Assignments (Top View, Summary)  
Rev. J  
|
Page 52 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
PACKAGE DIMENSIONS  
The processor is available in 136-ball BGA and 144-lead  
exposed pad (LQFP_EP) packages.  
22.20  
22.00 SQ  
21.80  
20.20  
20.00 SQ  
19.80  
1.60 MAX  
0.75  
0.60  
0.45  
109  
108  
109  
108  
144  
144  
1
1
SEATING  
PLANE  
PIN 1  
EXPOSED*  
PAD  
8.80 SQ  
1.45  
1.40  
1.35  
0.20  
0.15  
0.09  
0.15  
0.10  
0.05  
TOP VIEW  
BOTTOM VIEW  
(PINS UP)  
7°  
3.5°  
0°  
(PINS DOWN)  
36  
73  
73  
36  
72  
72  
0.08  
37  
37  
COPLANARITY  
0.27  
0.22  
0.17  
VIEW A  
0.50  
VIEW A  
BSC  
LEAD PITCH  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BFB-HD  
*
EXPOSED PAD IS COINCIDENT WITH BOTTOM SURFACE AND  
DOES NOT PROTRUDE BEYOND IT. EXPOSED PAD IS CENTERED.  
Figure 47. 144-Lead Low Profile Quad Flat Package, Exposed Pad [LQFP_EP1]  
(SW-144-1)  
Dimensions shown in millimeters  
1 For information relating to the exposed pad on the SW-144-1 package, see the table endnote on Page 48.  
Rev. J  
|
Page 53 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
12.10  
12.00 SQ  
11.90  
A1 BALL  
CORNER  
A1 BALL  
CORNER  
13  
11  
9
7
5
3
1
2
14  
12  
10  
8
6
4
A
B
C
D
E
F
10.40  
BSC SQ  
G
H
J
0.80  
BSC  
K
L
M
N
P
BOTTOM VIEW  
DETAIL A  
TOP VIEW  
1.31  
1.21  
1.10  
DETAIL A  
1.70 MAX  
0.25 MIN  
*
0.50  
0.45  
0.40  
COPLANARITY  
0.12  
SEATING  
PLANE  
BALL DIAMETER  
*
COMPLIANT WITH JEDEC STANDARDS MO-275-GGAA-1  
WITH EXCEPTION TO BALL DIAMETER.  
Figure 48. 136-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-136-1)  
Dimensions shown in millimeters  
SURFACE-MOUNT DESIGN  
Table 47 is provided as an aid to PCB design. For industry stan-  
dard design recommendations, refer to IPC-7351, Generic  
Requirements for Surface-Mount Design and Land Pattern  
Standard.  
Table 47. BGA Data for Use with Surface-Mount Design  
Package Solder Mask  
Package  
Package Ball Attach Type  
Opening  
Package Ball Pad Size  
0.53 mm diameter  
136-Ball CSP_BGA (BC-136-1)  
Solder Mask Defined  
0.40 mm diameter  
Rev. J  
|
Page 54 of 60  
|
July 2013  
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
AUTOMOTIVE PRODUCTS  
Some ADSP-2136x models are available for automotive applica-  
tions with controlled manufacturing. Note that these special  
models may have specifications that differ from the general  
release models.  
The automotive grade products shown in Table 48 are available  
for use in automotive applications. Contact your local ADI  
account representative or authorized ADI product distributor  
for specific product ordering information. Note that all automo-  
tive products are RoHS compliant.  
Table 48. Automotive Products  
Temperature  
Range1  
Instruction On-Chip  
Package  
Option  
Model  
Notes  
2
Rate  
SRAM  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
ROM  
Package Description  
136-Ball CSP_BGA  
144-Lead LQFP_EP  
144-Lead LQFP_EP  
136-Ball CSP_BGA  
144-Lead LQFP_EP  
144-Lead LQFP_EP  
136-Ball CSP_BGA  
144-Lead LQFP_EP  
144-Lead LQFP_EP  
144-Lead LQFP_EP  
144-Lead LQFP_EP  
144-Lead LQFP_EP  
136-Ball CSP_BGA  
144-Lead LQFP_EP  
144-Lead LQFP_EP  
AD21362WBBCZ1xx  
AD21362WBSWZ1xx  
AD21362WYSWZ2xx  
AD21363WBBCZ1xx  
AD21363WBSWZ1xx  
AD21363WYSWZ2xx  
AD21364WBBCZ1xx  
AD21364WBSWZ1xx  
AD21364WYSWZ2xx  
AD21365WBSWZ1xxA  
AD21365WBSWZ1xxF  
AD21365WYSWZ2xxA  
AD21366WBBCZ1xxA  
AD21366WBSWZ1xxA  
AD21366WYSWZ2xxA  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +105°C  
333 MHz  
333 MHz  
200 MHz  
333 MHz  
333 MHz  
200 MHz  
333 MHz  
333 MHz  
200 MHz  
333 MHz  
333 MHz  
200 MHz  
333 MHz  
333 MHz  
200 MHz  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
BC-136-1  
SW-144-1  
SW-144-1  
BC-136-1  
SW-144-1  
SW-144-1  
BC-136-1  
SW-144-1  
SW-144-1  
SW-144-1  
SW-144-1  
SW-144-1  
BC-136-1  
SW-144-1  
SW-144-1  
2
2
2, 3, 4  
2, 3, 4  
2, 3, 4  
3, 4  
3, 4  
3, 4  
1 Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 14 for junction temperature (TJ)  
specification which is the only temperature specification.  
2 License from DTLA required for these products.  
3 Available with a wide variety of audio algorithm combinations sold as part of a chipset and bundled with necessary software. For a complete list, visit our website at  
www.analog.com/sharc.  
4 License from Dolby Laboratories, Inc., and Digital Theater Systems (DTS) required for these products.  
Rev. J  
|
Page 55 of 60  
|
July 2013  
 
 
 
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
ORDERING GUIDE  
Temperature  
Range2  
Instruction  
Rate  
On-Chip  
SRAM  
Package  
Description  
Package  
Option  
Model1  
Notes  
ROM  
ADSP-21363KBC-1AA  
ADSP-21363KBCZ-1AA  
ADSP-21363KSWZ-1AA  
ADSP-21363BBC-1AA  
ADSP-21363BBCZ-1AA  
ADSP-21363BSWZ-1AA  
ADSP-21363YSWZ-2AA  
ADSP-21364KBCZ-1AA  
ADSP-21364KSWZ-1AA  
ADSP-21364BBCZ-1AA  
ADSP-21364BSWZ-1AA  
ADSP-21364YSWZ-2AA  
ADSP-21366KBCZ-1AR  
ADSP-21366KBCZ-1AA  
ADSP-21366KSWZ-1AA  
1 Z = RoHS compliant part.  
0°C to +70°C  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
200 MHz  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
200 MHz  
333 MHz  
333 MHz  
333 MHz  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
3M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
4M Bit  
136-Ball CSP_BGA  
136-Ball CSP_BGA  
BC-136-1  
BC-136-1  
0°C to +70°C  
0°C to +70°C  
144-Lead LQFP_EP SW-144-1  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +105°C  
0°C to +70°C  
136-Ball CSP_BGA  
136-Ball CSP_BGA  
BC-136-1  
BC-136-1  
144-Lead LQFP_EP SW-144-1  
144-Lead LQFP_EP SW-144-1  
3
136-Ball CSP_BGA  
144-Lead LQFP_EP SW-144-1  
136-Ball CSP_BGA BC-136-1  
BC-136-1  
0°C to +70°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +105°C  
0°C to +70°C  
144-Lead LQFP_EP SW-144-1  
144-Lead LQFP_EP SW-144-1  
3, 4, 5  
3, 4  
136-Ball CSP_BGA  
136-Ball CSP_BGA  
BC-136-1  
BC-136-1  
0°C to +70°C  
3, 4  
0°C to +70°C  
144-Lead LQFP_EP SW-144-1  
2 Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 14 for junction temperature (TJ)  
specification which is the only temperature specification.  
3 License from Dolby Laboratories, Inc., and Digital Theater Systems (DTS) required for these products.  
4 Available with a wide variety of audio algorithm combinations sold as part of a chipset and bundled with necessary software. For a complete list, visit our website at  
www.analog.com/sharc.  
5 R = Tape and reel.  
Rev. J  
|
Page 56 of 60  
|
July 2013  
 
 
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Rev. J  
|
Page 57 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Rev. J  
|
Page 58 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
Rev. J  
|
Page 59 of 60  
|
July 2013  
ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366  
©2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06359-0-7/13(J)  
Rev. J  
|
Page 60 of 60  
|
July 2013  

相关型号:

ADSP-21363YSWZ-2AA

SHARC Processors
ADI

ADSP-21364

SHARC Processor
ADI

ADSP-21364BBC-1AA

SHARC Processor
ADI

ADSP-21364BBCZ-1AA

SHARC Processor
ADI

ADSP-21364BSQZ-1AA

IC 16-BIT, 55.55 MHz, OTHER DSP, PQFP144, LEAD FREE, MS-026BFB-HD, LQFP-144, Digital Signal Processor
ADI

ADSP-21364BSWZ-1AA

SHARC Processors
ADI

ADSP-21364KBC-1AA

SHARC Processor
ADI

ADSP-21364KBC-1AX

IC 16-BIT, 55.55 MHz, OTHER DSP, PBGA136, MO-205AE, BGA-136, Digital Signal Processor
ADI

ADSP-21364KBCZ-1AA

SHARC Processor
ADI

ADSP-21364KBCZ-1AX

IC 16-BIT, 55.55 MHz, OTHER DSP, PBGA136, LEAD FREE, MO-205AE, BGA-136, Digital Signal Processor
ADI

ADSP-21364KSQZ-1AA

16-BIT, 55.55 MHz, OTHER DSP, PQFP144, LEAD FREE, MS-026BFB-HD, LQFP-144
ROCHESTER

ADSP-21364KSQZ-1AX

IC 16-BIT, 55.55 MHz, OTHER DSP, PQFP144, LEAD FREE, MS-026BFB-HD, LQFP-144, Digital Signal Processor
ADI