ADSP-2163KS-100 [ADI]

DSP Microcomputers with ROM; DSP与微型计算机的ROM
ADSP-2163KS-100
型号: ADSP-2163KS-100
厂家: ADI    ADI
描述:

DSP Microcomputers with ROM
DSP与微型计算机的ROM

计算机
文件: 总39页 (文件大小:245K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
DSP Microcomputers with ROM  
ADSP-216x  
FUNCTIONAL BLOCK DIAGRAM  
SUMMARY  
16-Bit Fixed-Point DSP Microprocessors with  
On-Chip Memory  
Enhanced Harvard Architecture for Three-Bus  
Performance: Instruction Bus and Dual Data Buses  
Independent Computation Units: ALU, Multiplier/  
Accumulator and Shifter  
Single-Cycle Instruction Execution and Multifunction  
Instructions  
On-Chip Program Memory ROM and Data Memory RAM  
Integrated I/O Peripherals: Serial Ports, Timer  
MEMORY  
DATA ADDRESS  
PROGRAM  
SEQUENCER  
GENERATORS  
DATA  
MEMORY  
PROGRAM  
MEMORY  
DAG 2  
DAG 1  
PROGRAM MEMORY ADDRESS  
DATA MEMORY ADDRESS  
EXTERNAL  
ADDRESS  
BUS  
PROGRAM MEMORY DATA  
DATA MEMORY DATA  
EXTERNAL  
DATA  
BUS  
FEATURES  
ARITHMETIC UNITS  
SERIAL PORTS  
SPORT 0 SPORT 1  
TIMER  
25 MIPS, 40 ns Maximum Instruction Rate (5 V)  
Separate On-Chip Buses for Program and Data Memory  
Program Memory Stores Both Instructions and Data  
(Three-Bus Performance)  
ALU MAC SHIFTER  
ADSP-2100 CORE  
Dual Data Address Generators with Modulo and  
Bit-Reverse Addressing  
Efficient Program Sequencing with Zero-Overhead  
Looping: Single-Cycle Loop Setup  
Double-Buffered Serial Ports with Companding Hardware,  
Automatic Data Buffering and Multichannel Operation  
Three Edge- or Level-Sensitive Interrupts  
Low Power IDLE Instruction  
Fabricated in a high speed, submicron, double-layer metal  
CMOS process, the highest-performance ADSP-216x proces-  
sors operate at 25 MHz with a 40 ns instruction cycle time.  
Every instruction can execute in a single cycle. Fabrication in  
CMOS results in low power dissipation.  
PLCC and MQFP Packages  
The ADSP-2100 Family’s flexible architecture and compre-  
hensive instruction set support a high degree of parallelism.  
In one cycle the ADSP-216x can perform all of the following  
operations:  
GENERAL DESCRIPTION  
The ADSP-216x Family processors are single-chip micro-  
computers optimized for digital signal processing (DSP)  
and other high speed numeric processing applications. The  
ADSP-216x processors are all built upon a common core with  
ADSP-2100. Each processor combines the core DSP architec-  
ture—computation units, data address generators and program  
sequencer—with features such as on-chip program ROM and  
data memory RAM, a programmable timer and two serial ports.  
The ADSP-2165/ADSP-2166 also adds program memory and  
power-down mode.  
Generate the next program address  
Fetch the next instruction  
Perform one or two data moves  
Update one or two data address pointers  
Perform a computation  
Receive and transmit data via one or two serial ports  
Table I shows the features of each ADSP-216x processor.  
The ADSP-216x series are memory-variant versions of the  
ADSP-2101 and ADSP-2103 that contain factory-programmed  
on-chip ROM program memory. These devices offer different  
amounts of on-chip memory for program and data storage.  
Table I shows the features available in the ADSP-216x series of  
custom ROM-coded processors.  
This data sheet describes the following ADSP-216x Family  
processors:  
ADSP-2161/ADSP-2162/  
ADSP-2163/ADSP-2164  
ADSP-2165/ADSP-2166  
Custom ROM-programmed DSPs:  
ROM-programmed ADSP-216x  
processors with power-down and  
larger on-chip memories (12K Pro-  
gram Memory ROM, 1K Program  
Memory RAM, 4K Data Memory  
RAM)  
The ADSP-216x products eliminate the need for an external  
boot EPROM in your system, and can also eliminate the need  
for any external program memory by fitting the entire applica-  
tion program in on-chip ROM. These devices thus provide an  
excellent option for volume applications where board space and  
system cost constraints are of critical concern.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
ADSP-216x  
TABLE OF CONTENTS  
TEST CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Output Disable Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Output Enable Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
TIMING PARAMETERS  
SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . .  
Development Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Additional Information . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ARCHITECTURE OVERVIEW . . . . . . . . . . . . . . . . . . . .  
1
1
1
3
3
3
(ADSP-2161/ADSP-2163/ADSP-2165) . . . . . . . . . . . . . . 21  
GENERAL NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
TIMING NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
MEMORY REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . 21  
CLOCK SIGNALS AND RESET . . . . . . . . . . . . . . . . . . . 22  
INTERRUPTS AND FLAGS . . . . . . . . . . . . . . . . . . . . . . 23  
BUS REQUEST/BUS GRANT . . . . . . . . . . . . . . . . . . . . . 24  
MEMORY READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
MEMORY WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
SERIAL PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
TIMING PARAMETERS  
(ADSP-2162/ADSP-2164/ADSP-2166) . . . . . . . . . . . . . . 28  
GENERAL NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
TIMING NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
MEMORY REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . 28  
CLOCK SIGNALS AND RESET . . . . . . . . . . . . . . . . . . . 29  
INTERRUPTS AND FLAGS . . . . . . . . . . . . . . . . . . . . . . . 30  
BUS REQUEST/BUS GRANT . . . . . . . . . . . . . . . . . . . . . 31  
MEMORY READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
MEMORY WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
SERIAL PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
PIN CONFIGURATIONS  
Serial Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
SYSTEM INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
PIN FUNCTION DESCRIPTIONS . . . . . . . . . . . . . . . . . . 6  
Program Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Program Memory Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Data Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Data Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
POWER-DOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power-Down Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Entering Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Exiting Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Low Power IDLE Instruction . . . . . . . . . . . . . . . . . . . . . . . 10  
ADSP-216x Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Ordering Procedure for ADSP-216x ROM Processors . . . . 10  
Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
SPECIFICATIONS–RECOMMENDED OPERATING  
CONDITIONS  
(ADSP-2161/ADSP-2163/ADSP-2165) . . . . . . . . . . . . . . 13  
ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . 13  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . 13  
SPECIFICATIONS–SUPPLY CURRENT AND POWER  
(ADSP-2161/ADSP-2163/ADSP-2165) . . . . . . . . . . . . . . 14  
POWER DISSIPATION EXAMPLE . . . . . . . . . . . . . . . . . 15  
ENVIRONMENTAL CONDITIONS . . . . . . . . . . . . . . . . 15  
CAPACITIVE LOADING . . . . . . . . . . . . . . . . . . . . . . . . . 15  
SPECIFICATIONS–  
68-Lead PLCC (ADSP-216x) . . . . . . . . . . . . . . . . . . . . . 35  
80-Lead MQFP (ADSP-216x) . . . . . . . . . . . . . . . . . . . . . 36  
PACKAGE OUTLINE DIMENSIONS  
68-Lead PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
80-Lead MQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
(ADSP-2161/ADSP-2163/ADSP-2165) . . . . . . . . . . . . . . 16  
TEST CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Output Disable Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Output Enable Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
SPECIFICATIONS–RECOMMENDED OPERATING  
CONDITIONS  
(ADSP-2162/ADSP-2164/ADSP-2166) . . . . . . . . . . . . . . 17  
ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . 17  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . 17  
SPECIFICATIONS–SUPPLY CURRENT AND POWER  
(ADSP-2162/ADSP-2164/ADSP-2166) . . . . . . . . . . . . . . 18  
POWER DISSIPATION EXAMPLE . . . . . . . . . . . . . . . . . 19  
ENVIRONMENTAL CONDITIONS . . . . . . . . . . . . . . . . 19  
CAPACITIVE LOADING . . . . . . . . . . . . . . . . . . . . . . . . . 19  
–2–  
REV. 0  
ADSP-216x  
Table I. ADSP-216x ROM-Programmed Processor Features  
Feature  
2161  
2162  
2163  
2164  
2165  
2166  
Data Memory (RAM)  
Program Memory (ROM)  
Program Memory (RAM)  
Timer  
Serial Port 0 (Multichannel)  
Serial Port 1  
1/2K  
8K  
1/2K  
8K  
1/2K  
4K  
1/2K  
4K  
4K  
12K  
1K  
4K  
12K  
1K  
Supply Voltage  
5 V  
3.3 V  
5 V  
3.3 V  
5 V  
3.3 V  
Speed Grades (Instruction Cycle Time)  
10.24 MHz (97.6 ns)  
13.00 MHz (76.9 ns)  
16.67 MHz (60 ns)  
20.00 MHz (50 ns)  
25 MHz (40 ns)  
Packages  
68-Lead PLCC  
80-Lead MQFP  
Temperature Grades  
K Commercial, 0°C to +70°C  
B Industrial, –40°C to +85°C  
ARCHITECTURE OVERVIEW  
Development Tools  
Figure 1 shows a block diagram of the ADSP-216x architecture.  
The processors contain three independent computational units:  
the ALU, the multiplier/accumulator (MAC), and the shifter.  
The computational units process 16-bit data directly and have  
provisions to support multiprecision computations. The ALU  
performs a standard set of arithmetic and logic operations;  
division primitives are also supported. The MAC performs  
single-cycle multiply, multiply/add, and multiply/subtract opera-  
tions. The shifter performs logical and arithmetic shifts, normal-  
ization, denormalization, and derive exponent operations. The  
shifter can be used to efficiently implement numeric format control  
including multiword floating-point representations.  
The ADSP-216x processors are supported by a complete set of  
tools for system development. The ADSP-2100 Family Devel-  
opment Software includes C and assembly language tools that  
allow programmers to write code for any of the ADSP-216x  
processors. The ANSI C compiler generates ADSP-216x assem-  
bly source code, while the runtime C library provides ANSI-  
standard and custom DSP library routines. The ADSP-216x  
assembler produces object code modules that the linker com-  
bines into an executable file. The processor simulators provide  
an interactive instruction-level simulation with a reconfigurable,  
windowed user interface. A PROM splitter utility generates  
PROM programmer compatible files.  
EZ-ICE® in-circuit emulators allow debugging of ADSP-21xx  
systems by providing a full range of emulation functions such  
as modification of memory and register values and execution  
breakpoints. EZ-LAB® demonstration boards are complete DSP  
systems that execute EPROM-based programs.  
The internal result (R) bus directly connects the computational  
units so that the output of any unit may be used as the input of  
any unit on the next cycle.  
A powerful program sequencer and two dedicated data address  
generators ensure efficient use of these computational units.  
The sequencer supports conditional jumps, subroutine calls,  
and returns in a single cycle. With internal loop counters and  
loop stacks, the ADSP-216x executes looped code with zero  
overhead—no explicit jump instructions are required to main-  
tain the loop.  
The EZ-Kit Lite is a very low-cost evaluation/development  
platform that contains both the hardware and software needed  
to evaluate the ADSP-21xx architecture.  
Additional details and ordering information are available in the  
ADSP-2100 Family Software & Hardware Development Tools data  
sheet (ADDS-21xx-TOOLS). This data sheet can be requested  
from any Analog Devices sales office or distributor.  
Two data address generators (DAGs) provide addresses for  
simultaneous dual operand fetches (from data memory and  
program memory). Each DAG maintains and updates four  
address pointers. Whenever the pointer is used to access data  
(indirect addressing), it is post-modified by the value of one of  
four modify registers. A length value may be associated with  
each pointer to implement automatic modulo addressing for  
circular buffers. The circular buffering feature is also used by  
the serial ports for automatic data transfers to (and from) on-  
chip memory.  
Additional Information  
This data sheet provides a general overview of ADSP-216x  
processor functionality. For detailed design information on the  
architecture and instruction set, refer to the ADSP-2100 Family  
User’s Manual, Third Edition, available from Analog Devices.  
EZ-ICE and EZ-LAB are registered trademarks of Analog Devices, Inc.  
REV. 0  
–3–  
ADSP-216x  
INSTRUCTION  
REGISTER  
PROGRAM  
MEMORY  
DATA  
MEMORY  
BOOT  
ADDRESS  
GENERATOR  
DATA  
DATA  
SRAM  
& ROM  
SRAM  
ADDRESS  
GENERATOR  
#2  
ADDRESS  
GENERATOR  
#1  
TIMER  
PROGRAM  
SEQUENCER  
24  
16  
PMA BUS  
PMA BUS  
PMA BUS  
DMA BUS  
14  
14  
EXTERNAL  
ADDRESS  
BUS  
MUX  
MUX  
14  
PMD BUS  
DMD BUS  
PMA BUS  
PMA BUS  
24  
16  
24  
EXTERNAL  
DATA  
BUS  
BUS  
EXCHANGE  
16  
COMPANDING  
CIRCUITRY  
INPUT REGS  
SHIFTER  
INPUT REGS  
INPUT REGS  
ALU  
MAC  
OUTPUT REGS  
16  
TRANSMIT REG  
TRANSMIT REG  
RECEIVE REG  
RECEIVE REG  
OUTPUT REGS  
OUTPUT REGS  
SERIAL  
PORT 1  
SERIAL  
PORT 0  
R BUS  
5
5
Figure 1. ADSP-216x Block Diagram  
Efficient data transfer is achieved with the use of five internal  
buses:  
external boot memory. Multiple programs can be selected and  
loaded from the EPROM with no additional hardware.  
Program Memory Address (PMA) Bus  
Program Memory Data (PMD) Bus  
Data Memory Address (DMA) Bus  
Data Memory Data (DMD) Bus  
Result (R) Bus  
The data receive and transmit pins on SPORT1 (Serial Port 1)  
can be alternatively configured as a general-purpose input flag  
and output flag. You can use these pins for event signalling to  
and from an external device.  
A programmable interval timer can generate periodic interrupts.  
A 16-bit count register (TCOUNT) is decremented every n  
cycles, where n–1 is a scaling value stored in an 8-bit register  
(TSCALE). When the value of the count register reaches zero,  
an interrupt is generated and the count register is reloaded from  
a 16-bit period register (TPERIOD).  
The two address buses (PMA, DMA) share a single external  
address bus, allowing memory to be expanded off-chip, and the  
two data buses (PMD, DMD) share a single external data bus.  
The BMS, DMS and PMS signals indicate which memory space  
is using the external buses.  
Program memory can store both instructions and data, permit-  
ting the ADSP-216x to fetch two operands in a single cycle,  
one from program memory and one from data memory. The  
processor can fetch an operand from on-chip program memory  
and the next instruction in the same cycle.  
Serial Ports  
The ADSP-216x processors include two synchronous serial  
ports (SPORTs) for serial communications and multiprocessor  
communication. All of the ADSP-216x processors have two  
serial ports (SPORT0, SPORT1).  
The memory interface supports slow memories and memory-  
mapped peripherals with programmable wait state generation.  
External devices can gain control of the processor’s buses with  
the use of the bus request/grant signals (BR, BG).  
The serial ports provide a complete synchronous serial interface  
with optional companding in hardware. A wide variety of  
framed or frameless data transmit and receive modes of opera-  
tion are available. Each SPORT can generate an internal pro-  
grammable serial clock or accept an external serial clock.  
One bus grant execution mode (GO Mode) allows the ADSP-  
216x to continue running from internal memory. A second  
execution mode requires the processor to halt while buses are  
granted.  
Each serial port has a 5-pin interface consisting of the following  
signals:  
Signal Name  
Function  
Each ADSP-216x processor can respond to several different  
interrupts. There can be up to three external interrupts,  
configured as edge- or level-sensitive. Internal interrupts can be  
generated by the timer and serial ports. There is also a master  
RESET signal.  
SCLK  
RFS  
TFS  
DR  
Serial Clock (I/O)  
Receive Frame Synchronization (I/O)  
Transmit Frame Synchronization (I/O)  
Serial Data Receive  
DT  
Serial Data Transmit  
Booting circuitry provides for loading on-chip program memory  
automatically from byte-wide external memory. After reset,  
three wait states are automatically generated. This allows, for  
example, a 60 ns ADSP-2161 to use a 200 ns EPROM as  
–4–  
REV. 0  
ADSP-216x  
The ADSP-216x uses a vectored interrupt scheme: when an  
interrupt is acknowledged, the processor shifts program control  
to the interrupt vector address corresponding to the interrupt  
received. Interrupts can be optionally nested so that a higher  
priority interrupt can preempt the currently executing interrupt  
service routine. Each interrupt vector location is four instruc-  
tions in length so that simple service routines can be coded  
entirely in this space. Longer service routines require an addi-  
tional JUMP or CALL instruction.  
The ADSP-216x serial ports offer the following capabilities:  
Bidirectional—Each SPORT has a separate, double-buffered  
transmit and receive function.  
Flexible Clocking—Each SPORT can use an external serial  
clock or generate its own clock internally.  
Flexible Framing—The SPORTs have independent framing  
for the transmit and receive functions; each function can run in  
a frameless mode or with frame synchronization signals inter-  
nally generated or externally generated; frame sync signals may  
be active high or inverted, with either of two pulsewidths and  
timings.  
Individual interrupt requests are logically ANDed with the bits  
in the IMASK register; the highest-priority unmasked interrupt  
is then selected.  
Different Word Lengths—Each SPORT supports serial data  
word lengths from 3 to 16 bits.  
The interrupt control register, ICNTL, allows the external  
interrupts to be set as either edge- or level-sensitive. Depending  
on Bit 4 in ICNTL, interrupt service routines can either be  
nested (with higher priority interrupts taking precedence) or be  
processed sequentially (with only one interrupt service active at  
a time).  
Companding in Hardware—Each SPORT provides optional  
A-law and µ-law companding according to CCITT recommen-  
dation G.711.  
Flexible Interrupt Scheme—Receive and transmit functions  
can generate a unique interrupt upon completion of a data word  
transfer.  
The interrupt force and clear register, IFC, is a write-only regis-  
ter that contains a force bit and a clear bit for each interrupt.  
When responding to an interrupt, the ASTAT, MSTAT and  
IMASK status registers are pushed onto the status stack and  
the PC counter is loaded with the appropriate vector address.  
The status stack is seven levels deep to allow interrupt nesting.  
The stack is automatically popped when a return from the inter-  
rupt instruction is executed.  
Autobuffering with Single-Cycle Overhead—Each SPORT  
can automatically receive or transmit the contents of an entire  
circular data buffer with only one overhead cycle per data word;  
an interrupt is generated after the transfer of the entire buffer is  
completed.  
Multichannel Capability (SPORT0 Only)—SPORT0 pro-  
vides a multichannel interface to selectively receive or transmit a  
24-word or 32-word, time-division multiplexed serial bit stream;  
this feature is especially useful for T1 or CEPT interfaces, or as  
a network communication scheme for multiple processors.  
Pin Definitions  
Pin Function Descriptions show pin definitions for the ADSP-  
216x processors. Any inputs not used must be tied to VDD  
.
SYSTEM INTERFACE  
Alternate Configuration—SPORT1 can be alternatively  
configured as two external interrupt inputs (IRQ0, IRQ1) and  
the Flag In and Flag Out signals (FI, FO).  
Figure 3 shows a typical system for the ADSP-216x with two  
serial I/O devices, an optional external program and data  
memory. A total of 12K words of data memory and 15K words  
of program memory is addressable.  
Interrupts  
The ADSP-216x’s interrupt controller lets the processor re-  
spond to interrupts with a minimum of overhead. Up to three  
external interrupt input pins, IRQ0, IRQ1 and IRQ2, are pro-  
vided. IRQ2 is always available as a dedicated pin; IRQ1 and  
IRQ0 may be alternately configured as part of Serial Port 1. The  
ADSP-216x also supports internal interrupts from the timer and  
the serial ports. The interrupts are internally prioritized and  
individually maskable (except for RESET which is nonmaskable).  
The IRQx input pins can be programmed for either level- or  
edge-sensitivity. The interrupt priorities for each ADSP-216x  
processor are shown in Table II.  
Programmable wait-state generation allows the processors to  
easily interface to slow external memories.  
The ADSP-216x processors also provide either: one external  
interrupt (IRQ2) and two serial ports (SPORT0, SPORT1), or  
three external interrupts (IRQ2, IRQ1, IRQ0) and one serial  
port (SPORT0).  
Clock Signals  
The ADSP-216x processors’ CLKIN input may be driven by a  
crystal or by a TTL-compatible external clock signal. The  
CLKIN input may not be halted or changed in frequency during  
operation, nor operated below the specified low frequency limit.  
Table II. Interrupt Vector Addresses and Priority  
Interrupt  
If an external clock is used, it should be a TTL-compatible  
signal running at the instruction rate. The signal should be  
connected to the processor’s CLKIN input; in this case, the  
XTAL input must be left unconnected.  
ADSP-216x Interrupt Source  
Vector Address  
RESET Startup  
0x0000  
Because the ADSP-216x processors include an on-chip oscilla-  
tor circuit, an external crystal may also be used. The crystal  
should be connected across the CLKIN and XTAL pins, with  
two capacitors connected as shown in Figure 2. A parallel-  
resonant, fundamental frequency, microprocessor-grade crystal  
should be used.  
IRQ2 or Power-Down  
SPORT0 Transmit  
SPORT0 Receive  
SPORT1 Transmit or IRQ1  
SPORT1 Receive or IRQ0  
Timer  
0x0004 (High Priority)  
0x0008  
0x000C  
0x0010  
0x0014  
0x0018 (Low Priority)  
REV. 0  
–5–  
ADSP-216x  
The power-up sequence is defined as the total time required for  
the crystal oscillator circuit to stabilize after a valid VDD is  
applied to the processor and for the internal phase-locked loop  
(PLL) to lock onto the specific crystal frequency. A minimum of  
2000 tCK cycles will ensure that the PLL has locked (this does  
not, however, include the crystal oscillator start-up time).  
During this power-up sequence the RESET signal should be  
held low. On any subsequent resets, the RESET signal must  
XTAL  
CLKIN  
CLKOUT  
ADSP-216x  
Figure 2. External Crystal Connections  
meet the minimum pulsewidth specification, tRSP  
.
A clock output signal (CLKOUT) is generated by the processor,  
synchronized to the processor’s internal cycles.  
To generate the RESET signal, use either an RC circuit with an  
external Schmidt trigger or a commercially available reset IC.  
(Do not use only an RC circuit.)  
Reset  
The RESET signal initiates a complete reset of the ADSP-216x.  
The RESET signal must be asserted when the chip is powered  
up to assure proper initialization. If the RESET signal is applied  
during initial power-up, it must be held long enough to allow  
the processor’s internal clock to stabilize. If RESET is activated  
at any time after power-up and the input clock frequency does  
not change, the processor’s internal clock continues and does  
not require this stabilization time.  
The RESET input resets all internal stack pointers to the empty  
stack condition, masks all interrupts, and clears the MSTAT  
register. When RESET is released, the boot loading sequence is  
performed (provided there is no pending bus request and the chip  
is configured for booting, with MMAP = 0). The first instruction is  
then fetched from internal program memory location 0x0000.  
PIN FUNCTION DESCRIPTIONS  
Pin  
Name(s)  
# of  
Pins  
Input/  
Output  
Function  
Address  
Data1  
14  
24  
O
I/O  
Address outputs for program, data and boot memory.  
Data I/O pins for program and data memories. Input only for  
boot memory, with two MSBs used for boot memory addresses.  
Unused data lines may be left floating.  
Processor Reset Input  
External Interrupt Request #2  
External Bus Request Input  
External Bus Grant Output  
External Program Memory Select  
External Data Memory Select  
Boot Memory Select  
External Memory Read Enable  
External Memory Write Enable  
Memory Map Select Input  
External Clock or Quartz Crystal Input  
Processor Clock Output  
Power Supply Pins  
RESET  
1
1
1
1
1
1
1
1
1
1
2
1
I
I
I
O
O
O
O
O
O
I
IRQ2  
BR2  
BG  
PMS  
DMS  
BMS  
RD  
WR  
MMAP  
CLKIN, XTAL  
CLKOUT  
VDD  
I
O
GND  
Ground Pins  
SPORT0  
SPORT1  
or Interrupts and Flags:  
IRQ0 (RFS1)  
IRQ1 (TFS1)  
FI (DR1)  
FO (DT1)  
PWDACK3  
PWDFLAG3  
5
5
I/O  
I/O  
Serial Port 0 Pins (TFS0, RFS0, DT0, DR0, SCLK0)  
Serial Port 1 Pins (TFS1, RFS1, DT1, DR1, SCLK1)  
1
1
1
1
1
1
I
I
I
O
O
I
External Interrupt Request #0  
External Interrupt Request #1  
Flag Input Pin  
Flag Output Pin  
Indicates when the processor has entered power-down.  
Low-to-High Transition of the Power-Down Flag. Input pin can  
be used to terminate power-down.  
NOTES  
1Unused data bus lines may be left floating.  
2BR must be tied high (to VDD) if not used.  
3Only on ADSP-2165/ADSP-2166.  
–6–  
REV. 0  
ADSP-216x  
ADSP-2165/ADSP-2166  
CLOCK OR  
CRYSTAL  
When MMAP = 0, on-chip program memory ROM occupies  
12K words beginning at address 0x0000. Internal program  
memory RAM occupies 1K words beginning at address 0x3000.  
Off-chip program memory uses the 2K words beginning at  
address 0x3800. The ADSP-2165/ADSP-2166 does not support  
boot memory.  
3
4
SCLK  
RFS  
TFS  
DT  
CLKIN  
XTAL CLKOUT  
V
GND  
DD  
SERIAL  
DEVICE  
(OPTIONAL)  
SERIAL  
PORT 0  
RESET  
IRQ2  
BR  
DR  
When MMAP = 1, 2K words of off-chip program memory begin  
at address 0x0000. 10K words of on-chip program memory  
ROM at 0x800 to 0x2FFF, and the remainder 2K words of  
program memory ROM is at 0x3800 to 0x3FFF. Internal pro-  
gram memory RAM occupies 1K words at address 0x300 to  
0x33FF.  
ADSP-216x  
SCLK  
RFS OR IRQ0  
TFS OR IRQ1  
DT OR FO  
BG  
SERIAL  
DEVICE  
(OPTIONAL)  
SERIAL  
PORT 1  
MMAP  
DR OR FI  
PMS  
RD RW ADDRESS DATA DMS BMS  
14  
24  
0x0000  
0x0000  
2K  
D23-8  
EXTERNAL  
0x07FF  
0x0800  
16  
12K 
؋
 24  
INTERNAL  
ROM  
A
D
A
D
CS  
CS  
10K 
؋
 24  
INTERNAL  
ROM  
OE  
OE  
WE  
PROGRAM  
MEMORY  
WE  
DATA  
MEMORY  
&
0x2FFF  
0x3000  
0x2FFF  
0x3000  
(OPTIONAL)  
PERIPHERALS  
1K 
؋
 24 RAM  
1K 
؋
 24 RAM  
0x33FF  
0x3400  
0x33FF  
0x3400  
Figure 3. Basic System Configuration  
Program Memory Interface  
The on-chip program memory address bus (PMA) and on-chip  
program memory data bus (PMD) are multiplexed with the on-  
chip data memory buses (DMA, DMD), creating a single exter-  
nal data bus and a single external address bus. The external  
data bus is bidirectional and is 24 bits wide to allow instruction  
fetches from external program memory. Program memory may  
contain code and data.  
RESERVED  
RESERVED  
0x37FF  
0x3800  
0x37FF  
0x3800  
2K 
؋
 24  
INTERNAL  
ROM  
2K 
؋
 24  
EXTERNAL  
0x3FFF  
0x3FFF  
MMAP = 0  
MMAP = 1  
Figure 4. ADSP-2165/ADSP-2166 Program Memory Maps  
ADSP-2161/ADSP-2162  
When MMAP = 0, on-chip program memory ROM occupies  
8K words beginning at address 0x0000. Off-chip program  
memory uses the remaining 8K words beginning at address  
0x2000.  
The external address bus is 14 bits wide. For the ADSP-216x,  
these lines can directly address up to 16K words, of which 2K  
are on-chip.  
When MMAP = 1, 2K words of off-chip program memory begin  
at address 0x0000. 6K words of on-chip program memory ROM  
are at 0x0800 to 0x1FF0, and the remainder 2K words of pro-  
gram memory ROM is at 0x3800 to 0x3FFF. An additional 6K  
of off-chip program memory is at 0x2000 to 0x37FF.  
The data lines are bidirectional. The program memory select  
(PMS) signal indicates accesses to program memory and can be  
used as a chip select signal. The write (WR) signal indicates a  
write operation and is used as a write strobe. The read (RD)  
signal indicates a read operation and is used as a read strobe or  
output enable signal.  
0x0000  
0x0000  
2K  
The ADSP-216x processors write data from their 16-bit regis-  
ters to 24-bit program memory using the PX register to provide  
the lower eight bits. When the processor reads 16-bit data from  
24-bit program memory to a 16-bit data register, the lower eight  
bits are placed in the PX register.  
EXTERNAL  
0x7FFF  
0x0800  
8K  
INTERNAL  
ROM  
6K  
INTERNAL  
ROM  
0x1FF0  
0x1FF0  
RESERVED  
RESERVED  
The program memory interface can generate 0 to 7 wait states for  
external memory devices; default is to 7 wait states after RESET.  
0x1FFF  
0x2000  
0x1FFF  
0x2000  
6K  
Program Memory Maps  
EXTERNAL  
8K  
EXTERNAL  
Program memory can be mapped in two ways, depending on the  
state of the MMAP pin. Figure 4 shows the program memory  
map for the ADSP-2165/ADSP-2166. Figures 5 and 6 show the  
program memory maps for the ADSP-2161/ADSP-2162 and  
ADSP-2163/ADSP-2164, respectively.  
0x37FF  
0x3800  
2K  
INTERNAL  
ROM  
0x3FFF  
0x3FFF  
MMAP = 0  
MMAP = 1  
Figure 5. ADSP-2161/ADSP-2162 Program Memory Maps  
REV. 0  
–7–  
ADSP-216x  
ADSP-2163/ADSP-2164  
When MMAP = 0, on-chip program memory ROM occupies  
4K words beginning at address 0x0000. Off-chip program  
memory uses the remaining 12K words beginning at address  
0x1000.  
ADDRESS (HEX)  
0x0000  
1K EXTERNAL  
DWAIT0  
0x0400  
0x0800  
1K EXTERNAL  
DWAIT1  
EXTERNAL  
RAM  
When MMAP = 1, 2K words of off-chip program memory begin  
at address 0x0000. 2K words of on-chip program memory ROM  
is at 0x0800 to 0x0FF0, and the remainder 2K words of pro-  
gram memory ROM is at 0x3800 to 0x3FFF. An additional  
10K of off-chip program memory is at 0x1000 to 0x37FF.  
6K EXTERNAL  
DWAIT2  
0x2000  
4K 
؋
 16 INTERNAL  
0x0000  
0x0000  
2K  
EXTERNAL  
4K  
INTERNAL  
ROM  
INTERNAL  
RAM  
0x07FF  
0x0800  
0x3000  
0x3FFF  
2K  
INTERNAL  
ROM  
4K 
؋
 16  
MEMORY-MAPPED  
REGISTERS  
0x0FF0  
0x0FF0  
RESERVED  
RESERVED  
& RESERVED  
0x0FFF  
0x1000  
0x0FFF  
0x1000  
Figure 7. ADSP-2165/ADSP-2166 Data Memory Map  
10K  
EXTERNAL  
ADSP-2161/ADSP-2162/ADSP-2163/ADSP-2164  
12K  
EXTERNAL  
For the ADSP-2161/ADSP-2162/ADSP-2163/ADSP-2164, on-  
chip data memory RAM resides in the 512 words beginning at  
address 0x3800, also shown in Figure 8. Data memory locations  
from 0x3A00 to the end of data memory at 0x3FFF are reserved.  
Control and status registers for the system, timer, wait-state  
configuration, and serial port operations are located in this  
region of memory.  
0x37FF  
0x3800  
2K  
INTERNAL  
ROM  
0x3FFF  
0x3FFF  
MMAP = 0  
MMAP = 1  
Figure 6. ADSP-2163/ADSP-2164 Program Memory Maps  
Data Memory Interface  
The data memory address bus (DMA) is 14 bits wide. The  
bidirectional external data bus is 24 bits wide, with the upper 16  
bits used for data memory data (DMD) transfers.  
ADDRESS (HEX)  
0x0000  
1K EXTERNAL  
DWAIT0  
0x0400  
The data memory select (DMS) signal indicates access to data  
memory and can be used as a chip select signal. The write (WR)  
signal indicates a write operation and can be used as a write  
strobe. The read (RD) signal indicates a read operation and can  
be used as a read strobe or output enable signal.  
1K EXTERNAL  
DWAIT1  
0x0800  
EXTERNAL  
10K EXTERNAL  
RAM  
DWAIT2  
The ADSP-216x processors support memory-mapped I/O, with  
the peripherals memory-mapped into the data memory address  
space and accessed by the processor in the same manner as data  
memory.  
0x3000  
1K EXTERNAL  
DWAIT3  
0x3400  
1K EXTERNAL  
DWAIT4  
Data Memory Map  
0x3800  
512  
For the ADSP-2165/ADSP-2166, on-chip data memory RAM  
resides in the 4K words beginning at address 0x2000, as shown  
in Figure 7. Data memory locations from 0x3000 to the end of  
data memory at 0x3FFF are reserved. Control and status regis-  
ters for the system, timer, wait-state configuration, and serial port  
operations are located in this region of memory.  
ADSP-2161/62/63/64  
0x3A00  
INTERNAL  
RAM  
0x3C00  
0x3FFF  
MEMORY-MAPPED  
CONTROL REGISTERS  
& RESERVED  
The remaining 8K of data memory is located off-chip. This  
external data memory is divided into three zones, each associ-  
ated with its own wait-state generator. This allows slower pe-  
ripherals to be memory-mapped into data memory for which  
wait states are specified. By mapping peripherals into different  
zones, you can accommodate peripherals with different wait-  
state requirements. All zones default to 7 wait states after  
RESET.  
Figure 8. ADSP-2161/ADSP-2162/ADSP-2163/ADSP-2164  
Data Memory Map  
The remaining 14K of data memory is located off-chip. This  
external data memory is divided into five zones, each associated  
with its own wait-state generator. This allows slower peripherals  
to be memory-mapped into data memory for which wait states  
are specified. By mapping peripherals into different zones, you  
can accommodate peripherals with different wait-state require-  
ments. All zones default to seven wait states after RESET.  
–8–  
REV. 0  
ADSP-216x  
Bus Interface  
Low-to-high transition of the power-down flag input pin  
(PWDFLAG) can be used to terminate power-down.  
The ADSP-216x processors can relinquish control of their data  
and address buses to an external device. When the external  
device requires control of the buses, it asserts the bus request  
signal (BR). If the ADSP-216x is not performing an external  
memory access, it responds to the active BR input in the next  
cycle by:  
The RESET pin also can also be used to terminate  
power-down.  
Power-Down Control  
Several parameters of power-down operation can be controlled  
through control bits of the “power-down/sportl autobuffer con-  
trol register.” This control register is memory-mapped at loca-  
tion 0x3FEF and the power-down control bits are as follows:  
Three-stating the data and address buses and the PMS,  
DMS, BMS, RD, WR output drivers,  
Asserting the bus grant (BG) signal, and halting program  
execution.  
bit[15] xtal: xtal pin disable during power-down  
1 = disabled, 0 = enable (default)  
If the Go mode is set, however, the ADSP-216x will not halt  
program execution until it encounters an instruction that  
requires an external memory access.  
bit[14] pwdflag: (read only )  
when pwdena = 1, the value of bit [14] pwdflag is equal to the  
status of the pwdflag input pin.  
If the ADSP-216x is performing an external memory access  
when the external device asserts the BR signal, it will not three-  
state the memory interfaces or assert the BG signal until the  
cycle after the access completes (up to eight cycles later depend-  
ing on the number of wait states). The instruction does not need  
to be completed when the bus is granted; the ADSP-21xx will  
grant the bus between two memory accesses if an instruction  
requires more than one external memory access.  
when pwdena = 0, the value of bit [14] pwdflag is equal to 0.  
bit[13] pwdena: power-down enable  
1 = enable, 0 = disable (default)  
if pwdena is set to 0, then the output pin PWDACK is driven  
low and the input pin PWDFLAG is disabled  
Note: It is not recommended that power-down enable be set or  
cleared during an IRQ2 interrupt.  
When the BR signal is released, the processor releases the BG  
signal, re-enables the output drivers and continues program  
execution from the point at which it stopped.  
bit[12] pucr: power-up context reset  
1 = soft reset, 0 = resume execution (default)  
Entering Power-Down  
The bus request feature operates at all times, including when the  
processor is booting and when RESET is active. If this feature is  
not used, the BR input should be tied high (to VDD).  
The power-down sequence is defined as follows:  
Enable power-down logic by setting the pwdena bit in the  
power-down/sportl autobuffer control register.  
Note: In order to power-down, the PWDENA bit must be set  
before the IRQ2 interrupt is initiated.  
POWER-DOWN  
The ADSP-2165/ADSP-2166 processors have a low power  
feature that lets the processor enter a very low power dormant  
state through hardware or software control. A list of power-  
down features follows:  
Initiate the power-down sequence by generating an IRQ2  
interrupt either externally or by software use of the IFC  
register.  
Processor registers and on-chip memory contents are main-  
tained during power-down.  
The processor vectors to the IRQ2 interrupt vector located at  
0x0004.  
Power-down mode holds the processor in CMOS standby  
with a maximum current of less than 100 µA in some modes.  
Any number of housekeeping instructions, starting at loca-  
tion 0x0004 can be executed prior to the processor entering  
the power-down mode.  
Support for an externally generated TTL or CMOS proces-  
sor clock. The external clock can continue running during  
power-down without affecting the lowest power rating.  
The processor enters the power-down mode when the pro-  
cessor executes an IDLE instruction while executing the  
IRQ2 interrupt routine.  
Support for crystal operation includes disabling the oscillator  
to save power. (The processor automatically waits 4096  
CLKIN cycles for the crystal oscillator to start and stabilize).  
Notes:  
If an RTI instruction is executed before the processor en-  
When power-down mode is enabled, powering down of the  
processor can be initiated either by externally generated  
IRQ2 interrupt or by using the IRQ2 force bit in the IFC  
register.  
counter an IDLE instruction, then the processor returns  
from the IRQ2 interrupt and the power-down sequence is  
aborted.  
The user can differentiate between a “normal” IRQ2 inter-  
rupt and a “power-down” IRQ2 interrupt by resetting the  
PWDFLAG pin and checking the status of this pin by testing  
the PWDFLAG bit in the power-down/SPORT1 autobuffer  
control register located at DM[0x3FEF].  
Power-Down Acknowledge Pin (PWDACK) indicates when  
the processor has entered power-down.  
Interrupt support allows an unlimited number of instructions  
to be executed before optionally powering down.  
Context clear/save control allows the processor to continue  
where it left off or start with a clean context when leaving the  
power-down state.  
REV. 0  
–9–  
ADSP-216x  
Exiting Power-Down  
ADSP-216x Prototyping  
The power-down mode can be exited with the use of the  
PWDFLAG or RESET pin. Applying a low-to-high transition to  
the PWDFLAG pin takes the processor out of power-down  
mode. In this case, a delay of 4096 cycles is automatically in-  
duced by the processor. Also, depending on the status of the  
power-up context reset bit (pucr), the processor either  
You can prototype your ADSP-216x system with either ADSP-  
2101 or ADSP-2103 RAM-based processors. When code is fully  
developed and debugged, it can be submitted to Analog Devices  
for conversion into an ADSP-216x ROM product.  
The ADSP-2101 EZ-ICE emulator can be used for development  
of ADSP-216x systems. For the 3.3 V ADSP-2162/ADSP-2164  
and ADSP-2166, a voltage converter interface board provides  
3.3 V emulation.  
1) continues to execute instructions following the IDLE instruc-  
tion that caused the power-down. A RTI instruction is re-  
quired to pass control back to the main routine (pucr = 0)  
Additional overlay memory is used for emulation of ADSP-  
2161/ADSP-2162 systems. It should be noted that due to the  
use of off-chip overlay memory to emulate the ADSP-2161/  
ADSP-2162, a performance loss may be experienced when both  
executing instructions and fetching program memory data from  
the off-chip overlay memory in the same cycle. This can be  
overcome by locating program memory data in on-chip memory.  
or  
2) resumes operation from power-down by clearing the PC,  
STATUS, LOOP and CNTR stack. The IMASK and  
ASTAT registers are set to 0 and the SSTAT goes to 0x55.  
The processor then starts executing instructions from the  
address zero (pucr = 1).  
Ordering Procedure for ADSP-216x ROM Processors  
To place an order for a custom ROM-coded ADSP-2161,  
ADSP-2162, ADSP-2163, ADSP-2164 , ADSP-2165 or ADSP-  
2166 processor, you must:  
In the case where the power-down mode is exited by asserting  
the RESET pin, the processor state is reset and instruction are  
executed from address 0x0000. The RESET pin in this case  
must be held low long enough for the external crystal (if any)  
and the on-chip PLL to stabilize and lock.  
1. Complete the following forms contained in the ADSP ROM  
Ordering Package, available from your Analog Devices sales  
representative:  
ADSP-216x ROM Specification Form  
ROM Release Agreement  
Low Power IDLE Instruction  
The IDLE instruction places the ADSP-216x processor in low  
power state in which it waits for an interrupt. When an interrupt  
occurs, it is serviced and execution continues with instruction  
following IDLE. Typically this next instruction will be a JUMP  
back to the IDLE instruction. This implements a low power  
standby loop.  
ROM NRE Agreement & Minimum Quantity Order (MQO)  
Acceptance Agreement for Preproduction ROM Products  
2. Return the forms to Analog Devices along with two copies of the  
Memory Image File (.EXE file) of your ROM code. The files must  
be supplied on two 3.5" or 5.25" floppy disks for the IBM PC  
(DOS 2.01 or higher).  
The IDLE n instruction is a special version of IDLE that slows  
the processor’s internal clock signal to further reduce power  
consumption. The reduced clock frequency, a programmable  
fraction of the normal clock rate, is specified by a selectable  
divisor, n, given in the IDLE instruction. The syntax of the  
instruction is:  
3. Place a purchase order with Analog Devices for nonrecurring  
engineering changes (NRE) associated with ROM product  
development.  
IDLE n;  
After this information is received, it is entered into Analog  
Devices’ ROM Manager System which assigns a custom ROM  
model number to the product. This model number will be  
branded on all prototype and production units manufactured to  
these specifications.  
where n = 16, 32, 64 or 128.  
The instruction leaves the chip in an idle state, operating at the  
slower rate. While it is in this state, the processor’s other inter-  
nal clock signals, such as SCLK, CLKOUT, and the timer  
clock, are reduced by the same ratio. Upon receipt of an en-  
abled interrupt, the processor will stay in the IDLE state for up  
to a maximum of n CLKIN cycles, where n is the divisor speci-  
fied in the instruction, before resuming normal operation.  
To minimize the risk of code being altered during this process,  
Analog Devices verifies that the .EXE files on both floppy disks  
are identical, and recalculates the checksums for the .EXE file  
entered into the ROM Manager System. The checksum data, in  
the form of a ROM Memory Map, a hard copy of the .EXE file,  
and a ROM Data Verification form are returned to you for  
inspection.  
When the IDLE n instruction is used, it slows the processor’s  
internal clock and thus its response time to incoming interrupts–  
the 1-cycle response time of the standard IDLE state is increased  
by n, the clock divisor. When an enabled interrupt is received,  
the ADSP-216x will remain in the IDLE state for up to a maxi-  
mum of n CLKIN cycles (where n = 16, 32, 64 or 128) before  
resuming normal operation.  
A signed ROM Verification Form and a purchase order for  
production units are required prior to any product being manu-  
factured. Prototype units may be applied toward the minimum  
order quantity.  
Upon completion of prototype manufacture, Analog Devices  
will ship prototype units and a delivery schedule update for  
production units. An invoice against your purchase order for the  
NRE charges is issued at this time.  
When the IDLE n instruction is used in systems that have an  
externally generated serial clock (SCLK), the serial clock rate  
may be faster than the processor’s reduced internal clock rate.  
Under these conditions, interrupts must not be generated at a  
faster rate than can be serviced, due to the additional time the  
processor takes to come out of the IDLE state (a maximum of n  
CLKIN cycles).  
There is a charge for each ROM mask generated and a mini-  
mum order quantity. Consult your sales representative for de-  
tails. A separate order must be placed for parts of a specific  
package type, temperature range, and speed grade.  
–10–  
REV. 0  
ADSP-216x  
Instruction Set  
parallelism. There are five basic categories of instructions: data  
move instructions, computational instructions, multifunction  
instructions, program flow control instructions and miscella-  
neous instructions. Multifunction instructions perform one or  
two data moves and a computation.  
The ADSP-216x assembly language uses an algebraic syntax for  
ease of coding and readability. The sources and destinations of  
computations and data movements are written explicitly in each  
assembly statement, eliminating cryptic assembler mnemonics.  
Every instruction assembles into a single 24-bit word and executes  
in a single cycle. The instructions encompass a wide variety of  
instruction types along with a high degree of operational  
The instruction set is summarized below. The ADSP-2100  
Family Users Manual contains a complete reference to the  
instruction set.  
ALU Instructions  
[IF cond]  
AR|AF  
=
=
=
=
=
=
=
=
=
=
=
=
=
=
xop + yop [+ C] ;  
xop – yop [+ C– 1] ;  
yop – xop [+ C– 1] ;  
xop AND yop ;  
xop OR yop ;  
xop XOR yop ;  
PASS xop ;  
– xop ;  
NOT xop ;  
ABS xop ;  
yop + 1 ;  
Add/Add with Carry  
Subtract X – Y/Subtract X – Y with Borrow  
Subtract Y – X/Subtract Y – X with Borrow  
AND  
OR  
XOR  
Pass, Clear  
Negate  
NOT  
Absolute Value  
Increment  
Decrement  
Divide  
yop – 1 ;  
DIVS yop, xop ;  
DIVQ xop ;  
MAC Instructions  
[IF cond]  
MR|MF =  
xop * yop ;  
MR + xop * yop ;  
MR – xop * yop ;  
MR ;  
Multiply  
=
=
=
=
Multiply/Accumulate  
Multiply/Subtract  
Transfer MR  
0 ;  
Clear  
IF MV SAT MR ;  
Conditional MR Saturation  
Shifter Instructions  
[IF cond]  
[IF cond]  
SR = [SR OR] ASHIFT xop ;  
SR = [SR OR] LSHIFT xop ;  
SR = [SR OR] ASHIFT xop BY <exp>;  
SR = [SR OR] LSHIFT xop BY <exp>;  
SE = EXP xop ;  
Arithmetic Shift  
Logical Shift  
Arithmetic Shift Immediate  
Logical Shift Immediate  
Derive Exponent  
Block Exponent Adjust  
Normalize  
[IF cond]  
[IF cond]  
[IF cond]  
SB = EXPADJ xop  
;
SR = [SR OR] NORM xop ;  
Data Move Instructions  
reg = reg ;  
reg = <data> ;  
Register-to-Register Move  
Load Register Immediate  
reg = DM (<addr>) ;  
dreg = DM (Ix , My) ;  
dreg = PM (Ix , My) ;  
DM (<addr>) = reg ;  
DM (Ix , My) = dreg ;  
PM (Ix , My) = dreg ;  
Data Memory Read (Direct Address)  
Data Memory Read (Indirect Address)  
Program Memory Read (Indirect Address)  
Data Memory Write (Direct Address)  
Data Memory Write (Indirect Address)  
Program Memory Write (Indirect Address)  
Multifunction Instructions  
<ALU>|<MAC>|<SHIFT> , dreg = dreg ;  
Computation with Register-to-Register Move  
Computation with Memory Read  
Computation with Memory Read  
Computation with Memory Write  
Computation with Memory Write  
Data & Program Memory Read  
ALU/MAC with Data & Program Memory Read  
<ALU>|<MAC>|<SHIFT> , dreg = DM (Ix , My) ;  
<ALU>|<MAC>|<SHIFT> , dreg = PM (Ix , My) ;  
DM (Ix , My) = dreg , <ALU>|<MAC>|<SHIFT> ;  
PM (Ix , My) = dreg , <ALU>|<MAC>|<SHIFT> ;  
dreg = DM (Ix , My) , dreg = PM (Ix , My) ;  
<ALU>|<MAC> , dreg = DM (Ix , My) , dreg = PM (Ix , My) ;  
REV. 0  
–11–  
ADSP-216x  
Program Flow Instructions  
DO <addr> [UNTIL term] ;  
[IF cond] JUMP (Ix) ;  
Do Until Loop  
Jump  
[IF cond] JUMP <addr>;  
[IF cond] CALL (Ix) ;  
Call Subroutine  
[IF cond] CALL <addr>;  
IF [NOT ] FLAG_IN  
IF [NOT ] FLAG_IN  
JUMP <addr>;  
CALL <addr>;  
Jump/Call on Flag In Pin  
[IF cond] SET|RESET|TOGGLE  
[IF cond] RTS ;  
[IF cond] RTI ;  
FLAG_OUT [, ...] ;  
Modify Flag Out Pin  
Return from Subroutine  
Return from Interrupt Service Routine  
Idle  
IDLE [(n)] ;  
Miscellaneous Instructions  
NOP ;  
MODIFY (Ix , My);  
No Operation  
Modify Address Register  
Stack Control  
[PUSH STS] [, POP CNTR] [, POP PC] [, POP LOOP] ;  
ENA|DIS  
SEC_REG [, ...] ;  
BIT_REV  
Mode Control  
AV_LATCH  
AR_SAT  
M_MODE  
TIMER  
G_MODE  
Notation Conventions  
Ix  
My  
Index registers for indirect addressing  
Modify registers for indirect addressing  
Immediate data value  
Immediate address value  
Exponent (shift value) in shift immediate instructions (8-bit signed number)  
Any ALU instruction (except divide)  
<data>  
<addr>  
<exp>  
<ALU>  
<MAC>  
<SHIFT>  
cond  
term  
Any multiply-accumulate instruction  
Any shift instruction (except shift immediate)  
Condition code for conditional instruction  
Termination code for DO UNTIL loop  
Data register (of ALU, MAC, or Shifter)  
Any register (including dregs)  
dreg  
reg  
;
,
[
A semicolon terminates the instruction  
Commas separate multiple operations of a single instruction  
Optional part of instruction  
]
[, ...]  
option1 | option2  
Optional, multiple operations of an instruction  
List of options; choose one.  
Assembly Code Example  
The following example is a code fragment that performs the filter tap update for an adaptive filter based on a least-mean-squared  
algorithm. Notice that the computations in the instructions are written like algebraic equations.  
MF=MX0 MY1(RND), MX0=DM(I2,M1);  
{MF=error beta}  
*
*
MR=MX0 MF(RND), AY0=PM(I6,M5);  
*
DO adapt UNTIL CE;  
AR=MR1+AY0, MX0=DM(I2,M1), AY0=PM(I6,M7);  
adapt:  
PM(I6,M6)=AR, MR=MX0 MF(RND);  
*
MODIFY(I2,M3);  
MODIFY(I6,M7);  
{Point to oldest data}  
{Point to start of data}  
–12–  
REV. 0  
ADSP-216x  
SPECIFICATIONS  
ADSP-2161/ADSP-2163/ADSP-2165–RECOMMENDED OPERATING CONDITIONS  
K Grade  
B Grade  
Max  
Parameter  
Min  
Max  
Min  
Unit  
VDD  
TAMB  
Supply Voltage  
Ambient Operating Temperature  
4.50  
0
5.50  
+70  
4.50  
–40  
5.50  
+85  
V
°C  
See “Environmental Conditions” for information on thermal specifications.  
ELECTRICAL CHARACTERISTICS  
Parameter  
Test Conditions  
Min  
Max  
Unit  
VIH  
VIH  
VIL  
Hi-Level Input Voltage1, 2  
@ VDD = max  
2.0  
2.2  
V
V
V
V
V
V
µA  
µA  
µA  
µA  
pF  
pF  
Hi-Level CLKIN and Reset Voltage @ VDD = max  
Lo-Level Input Voltage1, 3  
@ VDD = min  
0.8  
VOH  
Hi-Level Output Voltage1, 4, 5  
@ VDD = min, IOH = –0.5 mA  
@ VDD = min, IOH = –100 µA6  
@ VDD = min, IOL = 2 mA  
2.4  
VDD – 0.3  
VOL  
IIH  
IIL  
IOZH  
IOZL  
CI  
Lo-Level Output Voltage1, 4, 5  
Hi-Level Input Current3  
0.4  
10  
10  
10  
10  
8
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
Lo-Level Input Current3  
Three-State Leakage Current7  
Three-State Leakage Current7  
Input Pin Capacitance3, 6, 9  
Output Pin Capacitance6, 7, 9, 10  
@ VDD = max, VIN = VDD max8  
@ VDD = max, VIN = 0 V8  
@ VIN = 2.5 V, fIN = 1.0 MHz, TAMB = 25°C  
@ VIN = 2.5 V, fIN = 1.0 MHz, TAMB = 25°C  
CO  
8
NOTES  
1Bidirectional pins: D0–D23, SCLK1, RFS1, TFS1, SCLK0, RFS0, TFS0.  
2Input-only pins: RESET, IRQ2, BR, MMAP, DR1, DR0.  
3Input-only pins: CLKIN, RESET, IRQ2, BR, MMAP, DR1, DR0.  
4Output pins: BG, PMS, DMS, BMS, RD, WR, A0–A13, CLKOUT, DT1, DT0.  
5Although specified for TTL outputs, all ADSP-21xx outputs are CMOS-compatible and will drive to VDD and GND, assuming no dc loads.  
6Guaranteed but not tested.  
7Three-stateable pins: A0–A13, D0–D23, PMS, DMS, BMS, RD, WR, DT1, SCLK1, RFS1, TFS1, DT0, SCLK0, RFS0, TFS0.  
80 V on BR, CLKIN Active (to force three-state condition).  
9Applies to PLCC, MQFP package types.  
10Output pin capacitance is the capacitive load for any three-stated output pin.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS*  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Output Voltage Swing . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Operating Temperature Range (Ambient) . . . –40°C to +85°C  
(No Extended Temperature Range)  
Storage Temperature Range . . . . . . . . . . . . –65ºC to +150ºC  
Lead Temperature (10 sec) PGA . . . . . . . . . . . . . . . . .+300ºC  
Lead Temperature (5 sec) PLCC, MQFP, TQFP . . . .+280ºC  
*Stresses greater than those listed above may cause permanent damage to the  
device. These are stress ratings only; functional operation of the device at these or  
any other conditions greater than those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
WARNING!  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADSP-216x features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
ESD SENSITIVE DEVICE  
REV. 0  
–13–  
ADSP-216x  
SPECIFICATIONS  
ADSP-2161/ADSP-2163/ADSP-2165–SUPPLY CURRENT AND POWER  
Parameter  
IDD  
Test Conditions  
Min  
Max  
Unit  
Supply Current (Dynamic)1  
@ VDD = max, tCK = 40 ns2  
@ VDD = max, tCK = 50 ns2  
@ VDD = max, tCK = 60 ns2  
@ VDD = max, tCK = 40 ns  
@ VDD = max, tCK = 50 ns  
@ VDD = max, tCK = 60 ns  
38  
31  
27  
12  
11  
10  
mA  
mA  
mA  
mA  
mA  
mA  
IDD  
Supply Current (Idle)1, 3  
NOTES  
1Current reflects device operating with no output loads.  
2VIN = 0.4 V and 2.4 V.  
3Idle refers to ADSP-21xx state of operation during execution of IDLE instruction. Deasserted pins are driven to either V DD or GND.  
For typical supply current (internal power dissipation) figures, see Figure 9.  
Specifications subject to change without notice.  
1
IDD DYNAMIC  
220  
205mW  
200  
180  
V
= 5.5V  
DD  
160  
140  
120  
157mW  
129mW  
V
= 5.0V  
118mW  
DD  
100  
80  
100mW  
74mW  
V
= 4.5V  
DD  
60  
10.00  
13.83  
20.00  
25.00  
30.00  
FREQUENCY – MHz  
1,2  
3
IDD IDLE n MODES  
IDD IDLE  
70  
65  
60  
64mW  
64mW  
60  
50  
40  
V
= 5.5V  
DD  
IDD IDLE  
51mW  
55  
50  
45  
40  
49mW  
35mW  
51mW  
V
= 5.0  
DD  
38mW  
28mW  
30  
20  
V
= 4.5V  
DD  
IDLE 16  
43mW  
42mW  
41mW  
40mW  
IDLE 128  
10  
0
35  
30  
10.00  
13.83  
20.00  
25.00  
30.00  
10.00  
13.83  
20.00  
25.00  
30.00  
FREQUENCY – MHz  
FREQUENCY – MHz  
VALID FOR ALL TEMPERATURE GRADES.  
1
POWER REFLECTS DEVICE OPERATING WITH NO OUTPUT LOADS.  
IDLE REFERS TO ADSP-216x OPERATION DURING EXECUTION OF IDLE INSTRUCTION.  
2
DEASSERTED PINS ARE DRIVEN TO EITHER V OR GND.  
DD  
3
MAXIMUM POWER DISSIPATION AT V = 5.5V DURING EXECUTION OF IDLE n INSTRUCTION.  
DD  
Figure 9. ADSP-2161/ADSP-2163/ADSP-2165 (Typical) vs. Frequency  
–14–  
REV. 0  
ADSP-216x  
ADSP-2161/ADSP-2163/ADSP-2165  
POWER DISSIPATION EXAMPLE  
CAPACITIVE LOADING  
To determine total power dissipation in a specific application,  
the following equation should be applied for each output:  
Figures 10 and 11 show capacitive loading characteristics for the  
ADSP-2161/ADSP-2163/ADSP-2165.  
C × VDD2 × f  
8
7
6
C = load capacitance, f = output switching frequency.  
Example:  
In an ADSP-2161 application where external data memory is  
used and no other outputs are active, power dissipation is calcu-  
lated as follows:  
V
= 4.5V  
DD  
5
Assumptions:  
4
3
External data memory is accessed every cycle with 50% of  
the address pins switching.  
2
External data memory writes occur every other cycle with  
50% of the data pins switching.  
1
0
Each address and data pin has a 10 pF total load at the pin.  
The application operates at VDD = 5.0 V and tCK = 50 ns.  
0
25  
50  
75  
100  
125  
150  
175  
C
– pF  
L
Figure 10. Typical Output Rise Time vs. Load Capacitance, CL  
(at Maximum Ambient Operating Temperature)  
Total Power Dissipation = PINT + (C × VDD2 × f)  
P
INT = internal power dissipation (from Figure 9).  
2
5
4
3
(C × VDD × f) is calculated for each output:  
# of  
2
Output  
Pins 
؋
 C  
؋
 VDD 
؋
 f  
V
= 4.5V  
DD  
Address, DMS 8  
× 10 pF × 52 V × 20 MHz =40.0 mW  
× 10 pF × 52 V × 10 MHz =22.5 mW  
× 10 pF × 52 V × 10 MHz = 2.5 mW  
× 10 pF × 52 V × 20 MHz = 5.0 mW  
2
1
Data, WR  
RD  
CLKOUT  
9
1
1
0
70.0 mW  
–1  
–2  
–3  
Total power dissipation for this example = PINT + 70.0 mW.  
ENVIRONMENTAL CONDITIONS  
0
25  
50  
75  
100  
– pF  
125  
150  
175  
Ambient Temperature Rating:  
C
L
T
AMB = TCASE – (PD × θCA)  
Figure 11. Typical Output Valid Delay or Hold vs. Load  
Capacitance, CL (at Maximum Ambient Operating  
Temperature)  
TCASE = Case Temperature in °C  
PD = Power Dissipation in W  
θCA = Thermal Resistance (Case-to-Ambient)  
θJA = Thermal Resistance (Junction-to-Ambient)  
θJC = Thermal Resistance (Junction-to-Case)  
Package  
CA  
JA  
JC  
PLCC  
MQFP  
27°C/W  
60°C/W  
16°C/W  
18°C/W  
11°C/W  
42°C/W  
REV. 0  
–15–  
ADSP-216x  
SPECIFICATIONS  
ADSP-2161/ADSP-2163/ADSP-2165  
Figure 12 shows voltage reference levels for ac measurements.  
TEST CONDITIONS  
Output Enable Time  
Output pins are considered to be enabled when they have made  
a transition from a high-impedance state to when they start  
driving. The output enable time (tENA) is the interval from when  
a reference signal reaches a high or low voltage level to when the  
output has reached a specified high or low trip point, as shown  
in Figure 13. If multiple pins (such as the data bus) are enabled,  
the measurement value is that of the first pin to start driving.  
3.0V  
1.5V  
0.0V  
INPUT  
2.0V  
1.5V  
0.8V  
OUTPUT  
REFERENCE  
SIGNAL  
Figure 12. Voltage Reference Levels for AC Measurements  
(Except Output Enable/Disable)  
tMEASURED  
tDIS  
tENA  
V
V
OH  
(MEASURED)  
OH  
Output Disable Time  
(MEASURED)  
Output pins are considered to be disabled when they have  
stopped driving and started a transition from the measured out-  
put high or low voltage to a high impedance state. The output  
disable time (tDIS) is the difference of tMEASURED and tDECAY, as  
shown in Figure 13. The time tMEASURED is the interval from  
when a reference signal reaches a high or low voltage level to  
when the output voltages have changed by 0.5 V from the mea-  
sured output high or low voltage.  
V
V
(MEASURED) – 0.5V  
(MEASURED) +0.5V  
2.0V  
1.0V  
OH  
OUTPUT  
OL  
V
V
OL  
OL  
tDECAY  
(MEASURED)  
(MEASURED)  
OUTPUT STARTS  
DRIVING  
OUTPUT STOPS  
DRIVING  
HIGH-IMPEDANCE STATE. TEST CONDITIONS CAUSE  
THIS VOLTAGE LEVEL TO BE APPROXIMATELY 1.5V.  
Figure 13. Output Enable/Disable  
The decay time, tDECAY, is dependent on the capacitative load,  
CL, and the current load, iL, on the output pin. It can be ap-  
proximated by the following equation:  
I
OL  
CL ×0.5V  
tDECAY  
=
iL  
TO  
OUTPUT  
PIN  
from which  
+1.5V  
tDIS = tMEASURED tDECAY  
50pF  
is calculated. If multiple pins (such as the data bus) are disabled,  
the measurement value is that of the last pin to stop driving.  
I
OH  
Figure 14. Equivalent Device Loading for AC  
Measurements (Except Output Enable/Disable)  
–16–  
REV. 0  
ADSP-216x  
ADSP-2162/ADSP-2164/ADSP-2166–RECOMMENDED OPERATING CONDITIONS  
K Grade  
Min  
B Grade  
Parameter  
Max  
Min  
Max  
Unit  
VDD  
TAMB  
Supply Voltage  
Ambient Operating Temperature  
3.00  
0
3.60  
+70  
3.00  
–40  
3.60  
+85  
V
°C  
See “Environmental Conditions” for information on thermal specifications.  
ELECTRICAL CHARACTERISTICS  
Parameter  
Test Conditions  
Min  
Max  
Unit  
VIH  
VIH  
VIL  
VOH  
VOL  
IIH  
Hi-Level Input Voltage1, 2  
@ VDD = max  
@ VDD = max  
@ VDD = min  
2.0  
2.2  
V
V
V
V
Hi-Level CLKIN and Reset Voltage  
Lo-Level Input Voltage1, 3  
0.4  
Hi-Level Output Voltage2, 3, 4  
Lo-Level Output Voltage2, 3, 4  
Hi-Level Input Current3  
@ VDD = min, IOH = –0.5 mA4  
2.4  
@ VDD = min, IOL = 2 mA4  
0.4  
10  
10  
10  
10  
8
V
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
µA  
µA  
µA  
µA  
pF  
pF  
IIL  
Lo-Level Input Current3  
IOZH  
IOZL  
CI  
Three-State Leakage Current5  
Three-State Leakage Current5  
Input Pin Capacitance1, 7, 8  
Output Pin Capacitance2, 7, 8, 9  
@ VDD = max, VIN = VDD max6  
@ VDD = max, VIN = 0 V6  
@ VIN = 2.5 V, fIN = 1.0 MHz, TAMB = 25°C  
@ VIN = 2.5 V, fIN = 1.0 MHz, TAMB = 25°C  
CO  
8
NOTES  
1Input-only pins: CLKIN, RESET, IRQ2, BR, MMAP, DR1, DR0.  
2Bidirectional pins: D0–D23, SCLK1, RFS1, TFS1, SCLK0, RFS0, TFS0.  
3Output pins: BG, PMS, DMS, BMS, RD, WR, A0–A13, CLKOUT, DT1, DT0.  
4All ADSP-2162, ADSP-2164 and ADSP-2166 outputs are CMOS and will drive to V DD and GND with no dc loads.  
5Three-stateable pins: A0–A13, D0–D23, PMS, DMS, BMS, RD, WR, DT1, SCLK1, RFS1, TFS1, DT0, SCLK0, RFS0, TFS0.  
60 V on BR, CLKIN Active (to force three-state condition).  
7Guaranteed but not tested.  
8Applies to PLCC and MQFP package types.  
9Output pin capacitance is the capacitive load for any three-stated output pin.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS*  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +4.5 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Output Voltage Swing . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Operating Temperature Range (Ambient) . . . –40ºC to +85ºC  
Storage Temperature Range . . . . . . . . . . . . –65ºC to +150ºC  
Lead Temperature (5 sec) PLCC, MQFP . . . . . . . . . . +280ºC  
*Stresses greater than those listed above may cause permanent damage to the  
device. These are stress ratings only, and functional operation of the device at  
these or any other conditions greater than those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
REV. 0  
–17–  
ADSP-216x  
SPECIFICATIONS  
ADSP-2162/ADSP-2164/ADSP-2166–SUPPLY CURRENT AND POWER  
Parameter  
Test Conditions  
Min  
Max  
Unit  
IDD  
Supply Current (Dynamic)1  
@ VDD = max, tCK = 60 ns2  
@ VDD = max, tCK = 76.9 ns  
@ VDD = max, tCK = 97.6 ns  
@ VDD = max, tCK = 60 ns  
@ VDD = max, tCK = 76.9 ns  
@ VDD = max, tCK = 97.6 ns  
16  
15  
14  
5
4
4
mA  
mA  
mA  
mA  
mA  
mA  
IDD  
Supply Current (Idle)1, 3  
NOTES  
1Current reflects device operating with no output loads.  
2VIN = 0.4 V and 2.4 V.  
3Idle refers to ADSP-216x state of operation during execution of IDLE instruction. Deasserted pins are driven to either VDD or GND.  
For typical supply current (internal power dissipation) figures, see Figure 15.  
Specifications subject to change without notice.  
1,2  
IDD DYNAMIC  
50  
48mW  
45  
V
= 3.6V  
DD  
V
= 3.30V  
37mW  
DD  
40  
35  
30  
29mW  
25  
20  
24mW  
V
= 3.0V  
DD  
19mW  
15mW  
15  
10  
5
0
5.00  
7.00  
10.00  
13.83  
15.00  
FREQUENCY – MHz  
1
3
IDD IDLE  
= 3.6V  
IDD IDLE n MODES  
14  
14  
13mW  
13mW  
12  
10  
8
12  
10  
8
V
DD  
IDD IDLE  
10mW  
V
= 3.30V  
9mW  
DD  
9mW  
8mW  
IDLE 16  
7mW  
6mW  
6
4
6mW  
5mW  
6
4
V
= 3.0V  
DD  
5mW  
4mW  
IDLE 128  
2
0
2
0
5.00  
7.00  
10.00  
13.83  
15.00  
5.00  
7.00  
10.00  
13.83  
15.00  
FREQUENCY – MHz  
FREQUENCY – MHz  
VALID FOR ALL TEMPERATURE GRADES.  
1
POWER REFLECTS DEVICE OPERATING WITH NO OUTPUT LOADS.  
2
IDLE REFERS TO ADSP-216x OPERATION DURING EXECUTION OF IDLE INSTRUCTION.  
DEASSERTED PINS ARE DRIVEN TO EITHER V OR GND.  
DD  
3
MAXIMUM POWER DISSIPATION AT V = 3.6V DURING EXECUTION OF IDLE n INSTRUCTION.  
DD  
Figure 15. ADSP-2162 Power (Typical) vs. Frequency)  
–18–  
REV. 0  
ADSP-216x  
ADSP-2162/ADSP-2164/ADSP-2166  
CAPACITIVE LOADING  
POWER DISSIPATION EXAMPLE  
Figures 16 and 17 show capacitive loading characteristics for  
the ADSP-2162 and ADSP-2164.  
To determine total power dissipation in a specific application,  
the following equation should be applied for each output:  
2
C × VDD × f  
35  
30  
25  
20  
C = load capacitance, f = output switching frequency.  
Example:  
In an ADSP-2162 application where external data memory is  
used and no other outputs are active, power dissipation is calcu-  
lated as follows:  
V
= 3.0V  
DD  
Assumptions:  
15  
10  
5
• External data memory is accessed every cycle with 50% of the  
address pins switching.  
• External data memory writes occur every other cycle with  
50% of the data pins switching.  
0
• Each address and data pin has a 10 pF total load at the pin.  
• The application operates at VDD = 3.3 V and tCK = 100 ns.  
0
25  
50  
75  
100  
– pF  
125  
150  
175  
C
L
Figure 16. Typical Output Rise Time vs. Load Capaci-  
tance, CL (at Maximum Ambient Operating Temperature)  
Total Power Dissipation = PINT + (C × VDD2 × f)  
P
INT = internal power dissipation (from Figure 15).  
10  
8
2
(C × VDD × f) is calculated for each output:  
# of  
Pins 
؋
 C  
6
4
2
Output  
؋
 VDD 
؋
 f  
Address, DMS 8  
× 10 pF × 3.32 V × 10 MHz = 8.71 mW  
× 10 pF × 3.32 V × 5 MHz = 4.90 mW  
× 10 pF × 3.32 V × 5 MHz = 0.55 mW  
× 10 pF × 3.32 V × 10 MHz = 1.09 mW  
V
= 3.0V  
DD  
Data, WR  
RD  
CLKOUT  
9
1
1
2
NOMINAL  
–2  
15.25 mW  
Total power dissipation for this example = PINT + 15.25 mW.  
–4  
0
25  
50  
75  
C
100  
– pF  
125  
150  
175  
ENVIRONMENTAL CONDITIONS  
L
Ambient Temperature Rating:  
Figure 17. Typical Output Valid Delay or Hold vs. Load  
Capacitance, CL (at Maximum Ambient Operating  
Temperature)  
T
AMB = TCASE – (PD × θCA)  
TCASE = Case Temperature in °C  
PD = Power Dissipation in W  
θCA = Thermal Resistance (Case-to-Ambient)  
θJA = Thermal Resistance (Junction-to-Ambient)  
θJC = Thermal Resistance (Junction-to-Case)  
Package  
CA  
JA  
JC  
MQFP  
60°C/W  
18°C/W  
42°C/W  
REV. 0  
–19–  
ADSP-216x  
SPECIFICATIONS  
ADSP-2162/ADSP-2164/ADSP-2166  
TEST CONDITIONS  
Output Enable Time  
Figure 18 shows voltage reference levels for ac measurements.  
Output pins are considered to be enabled when they have made  
a transition from a high-impedance state to when they start  
driving. The output enable time (tENA) is the interval from when  
a reference signal reaches a high or low voltage level to when the  
output has reached a specified high or low trip point, as shown  
in Figure 19. If multiple pins (such as the data bus) are enabled,  
the measurement value is that of the first pin to start driving.  
V
DD  
INPUT  
2
V
DD  
OUTPUT  
2
REFERENCE  
SIGNAL  
Figure 18. Voltage Reference Levels for AC Measurements  
(Except Output Enable/Disable)  
tMEASURED  
tDIS  
tENA  
V
V
OH  
(MEASURED)  
Output Disable Time  
OH  
(MEASURED)  
Output pins are considered to be disabled when they have  
stopped driving and started a transition from the measured  
output high or low voltage to a high impedance state. The out-  
put disable time (tDIS) is the difference of tMEASURED and tDECAY  
as shown in Figure 19. The time tMEASURED is the interval from  
when a reference signal reaches a high or low voltage level to  
when the output voltages have changed by 0.5 V from the mea-  
sured output high or low voltage.  
V
V
(MEASURED) – 0.5V  
(MEASURED) +0.5V  
2.0V  
1.0V  
OH  
OUTPUT  
OL  
V
V
OL  
OL  
tDECAY  
,
(MEASURED)  
(MEASURED)  
OUTPUT STARTS  
DRIVING  
OUTPUT STOPS  
DRIVING  
HIGH-IMPEDANCE STATE. TEST CONDITIONS CAUSE  
THIS VOLTAGE LEVEL TO BE APPROXIMATELY 1.5V.  
The decay time, tDECAY, is dependent on the capacitative load,  
CL, and the current load, iL, on the output pin. It can be ap-  
proximated by the following equation:  
Figure 19. Output Enable/Disable  
I
OL  
CL ×0.5V  
tDECAY  
=
iL  
from which  
TO  
OUTPUT  
PIN  
V
DD  
2
t
DIS = tMEASURED tDECAY  
50pF  
is calculated. If multiple pins (such as the data bus) are disabled,  
the measurement value is that of the last pin to stop driving.  
I
OH  
Figure 20. Equivalent Device Loading for AC  
Measurements (Except Output Enable/Disable)  
–20–  
REV. 0  
ADSP-216x  
TIMING PARAMETERS (ADSP-2161/ADSP-2163/ADSP-2165)  
switching characteristics to ensure that any timing requirement  
of a device connected to the processor (such as memory) is  
satisfied.  
GENERAL NOTES  
Use the exact timing information given. Do not attempt to de-  
rive parameters from the addition or subtraction of others. While  
addition or subtraction would yield meaningful results for an  
individual device, the values given in this data sheet reflect sta-  
tistical variations and worst cases. Consequently, you cannot  
Timing Requirements apply to signals that are controlled by cir-  
cuitry external to the processor, such as the data input for a read  
operation. Timing requirements guarantee that the processor  
operates correctly with other devices.  
meaningfully add parameters to derive longer times.  
TIMING NOTES  
MEMORY REQUIREMENTS  
Switching Characteristics specify how the processor changes its  
signals. You have no control over this timing—circuitry external  
to the processor must be designed for compatibility with these  
signal characteristics. Switching characteristics tell you what the  
processor will do in a given circumstance. You can also use  
The table below shows common memory device specifications  
and the corresponding ADSP-216x timing parameters, for your  
convenience.  
ADSP-216x  
Timing Parameter  
Memory Device Specification  
Timing Parameter Definition  
Address Setup to Write Start  
Address Setup to Write End  
Address Hold Time  
Data Setup Time  
tASW  
tAW  
tWRA  
tDW  
tDH  
A0–A13, DMS, PMS Setup Before WR Low  
A0–A13, DMS, PMS Setup Before WR Deasserted  
A0–A13, DMS, PMS Hold After WR Deasserted  
Data Setup Before WR High  
Data Hold Time  
Data Hold After WR High  
OE to Data Valid  
Address Access Time  
tRDD  
tAA  
RD Low to Data Valid  
A0–A13, DMS, PMS, BMS to Data Valid  
REV. 0  
–21–  
ADSP-216x  
TIMING PARAMETERS (ADSP-2161/ADSP-2163/ADSP-2165)  
CLOCK SIGNALS AND RESET  
16.67 MHz  
Min Max  
20 MHz  
Min Max  
25 MHz  
Min Max  
Frequency Dependency  
Parameter  
Min  
Max  
Unit  
Timing Requirements:  
tCK  
tCKL  
CLKIN Period  
CLKIN Width Low  
60  
20  
20  
300  
150  
50  
20  
20  
250  
150  
40  
15  
15  
200  
150  
tCK  
20  
20  
150  
ns  
ns  
ns  
ns  
tCKH CLKIN Width High  
tRSP RESET Width Low  
Switching Characteristics:  
tCPL CLKOUT Width Low  
tCPH CLKOUT Width High  
1
5tCK  
20  
20  
0
15  
15  
0
10  
10  
0
0.5tCK – 10  
0.5tCK – 10  
0
ns  
ns  
ns  
tCKOH CLKIN High to CLKOUT High  
20  
20  
152  
202  
NOTES  
1Applies after power-up sequence is complete. Internal phase lock loop requires no more than 2000 CLKIN cycles, assuming stable CLKIN (not including crystal  
oscillator startup time).  
2For 25 MHz only, the maximum frequency dependency for tCKOH = 15 ns.  
tCK  
tCKH  
CLKIN  
tCKL  
tCHOK  
tCPH  
CLKOUT  
tCPL  
Figure 21. Clock Signals  
–22–  
REV. 0  
ADSP-216x  
TIMING PARAMETERS (ADSP-2161/ADSP-2163/ADSP-2165)  
INTERRUPTS AND FLAGS  
16.67 MHz  
Min Max  
20 MHz  
25 MHz  
Min Max  
Frequency Dependency  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements:  
tIFS  
tIFS  
tIFH  
IRQx1 or FI Setup Before  
30  
33  
15  
27.5  
30.5  
12.5  
25  
28  
10  
0.25tCK + 15  
0.25tCK + 18  
0.25tCK  
ns  
ns  
ns  
CLKOUT Low2, 3  
IRQx1 or FI Setup Before  
CLKOUT Low2, 3  
IRQx1 or FI Hold After CLKOUT  
High2, 3  
Switching Characteristics:  
tFOH FO Hold After CLKOUT High  
tFOD FO Delay from CLKOUT High  
0
0
0
0
ns  
ns  
15  
15  
124  
154  
NOTES  
1IRQx = IRQ0, IRQ1, and IRQ2.  
2If IRQx and FI inputs meet tIFS and tIFH setup/hold requirements, they will be recognized during the current clock cycle; otherwise they will be recognized during the  
following cycle. (Refer to the “Interrupt Controller” section in Chapter 3, Program Control, of the ADSP-2100 Family User’s Manual, Third Edition for further  
information on interrupt servicing.)  
3Edge-sensitive interrupts require pulsewidths greater than 10 ns. Level-sensitive interrupts must be held low until serviced.  
4For 25 MHz only, the maximum frequency dependency for tFOD = 12 ns.  
CLKOUT  
tFOD  
tFOH  
FLAG  
OUTPUT(S)  
tIFH  
IRQx  
FI  
tIFS  
Figure 22. Interrupts and Flags  
REV. 0  
–23–  
ADSP-216x  
TIMING PARAMETERS (ADSP-2161/ADSP-2163/ADSP-2165)  
BUS REQUEST/BUS GRANT  
16.67 MHz  
Min Max  
20 MHz  
Min Max  
25 MHz  
Min Max  
Frequency Dependency  
Parameter  
Min  
Max  
Unit  
BR Hold After CLKOUT High1  
20  
17.5  
32.5  
15  
30  
0.25tCK + 5  
0.25tCK + 20  
ns  
ns  
Switching Characteristics:  
tSD  
CLKOUT High to DMS,  
35  
32.5  
30  
0.25tCK + 20 ns  
PMS, BMS, RD, WR Disable  
DMS, PMS, BMS, RD, WR  
Disable to BG Low  
BG High to DMS, PMS,  
BMS, RD, WR Enable  
DMS, PMS, BMS, RD, WR  
Enable to CLKOUT High  
tSDB  
tSE  
0
0
5
0
0
0
ns  
ns  
ns  
0
0
0
tSEC  
2.5  
1.52  
0.25tCK – 102  
NOTES  
1If BR meets the tBS and tBH setup/hold requirements, it will be recognized in the current processor cycle; otherwise it is recognized in the following cycle. BR requires  
a pulsewidth greater than 10 ns.  
2For 25 MHz only, the minimum frequency dependency formula for tSEC = (0.25tCK – 8.5).  
Section 10.2.4, “Bus Request/Grant,” on page 212 of the ADSP-2100 Family User’s Manual, Third Edition, states that “When BR is recognized, the processor responds  
immediately by asserting BG during the same cycle.” This is incorrect for the current versions of all ADSP-21xx processors: BG is asserted in the cycle after BR is  
recognized. No external synchronization circuit is needed when BR is generated as an asynchronous signal.  
tBH  
CLKOUT  
BR  
tBS  
CLKOUT  
PMS, DMS  
BMS, RD  
tSD  
tSEC  
WR  
BG  
tSDB  
tSE  
Figure 23. Bus Request/Bus Grant  
–24–  
REV. 0  
ADSP-216x  
TIMING PARAMETERS (ADSP-2161/ADSP-2163/ADSP-2165)  
MEMORY READ  
16.67 MHz  
20 MHz  
Min Max  
25 MHz  
Parameter  
Min  
Max  
Min  
Max  
Unit  
17  
27  
12  
19.5  
7
12  
ns  
ns  
ns  
0
0
0
Switching Characteristics:  
tRP  
RD Pulsewidth  
CLKOUT High to RD Low  
22  
10  
5
6
25  
17  
12  
5
ns  
ns  
ns  
ns  
ns  
tCRD  
tASR  
tRDA  
tRWR  
25  
7.5  
2.5  
3.5  
20  
22.5  
20  
A0–A13, PMS, DMS, BMS Setup Before RD Low  
A0–A13, PMS, DMS, BMS Hold After RD Deasserted  
RD High to RD or WR Low  
1.51  
1
15  
Frequency Dependency  
(CLKIN  
25 MHz)  
Max  
Parameter  
Min  
Unit  
Timing Requirements:  
tRDD  
tAA  
RD Low to Data Valid  
A0–A13, PMS, DMS, BMS to Data Valid  
Data Hold from RD High  
0.5tCK – 13 + w  
0.75tCK – 18 + w  
ns  
ns  
tRDH  
0
0.5tCK – 8 + w  
0.25tCK – 5  
0.25tCK – 101  
0.25tCK – 9  
0.5tCK – 5  
ns  
ns  
ns  
ns  
ns  
0.25tCK + 10  
NOTES  
1For 25 MHz only, minimum frequency dependency formula for tASR = (0.25tCK – 8.5).  
w = wait states × tCK.  
CLKOUT  
A0–A13  
DMS, PMS,  
BMS  
tRDA  
RD  
tASR  
tRP  
tRWR  
tCRD  
D
tRDD  
tRDH  
tAA  
WR  
Figure 24. Memory Read  
REV. 0  
–25–  
ADSP-216x  
TIMING PARAMETERS (ADSP-2161/ADSP-2163/ADSP-2165)  
MEMORY WRITE  
16.67 MHz  
Max  
20 MHz  
25 MHz  
Parameter  
Min  
Min  
Max  
Min  
Max  
Unit  
Switching Characteristics:  
tDW  
tDH  
Data Setup Before WR High  
Data Hold After WR High  
17  
5
22  
0
5
12  
2.5  
17  
7
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWP  
WR Pulsewidth  
WR Low to Data Enabled  
12  
0
tWDE  
tASW  
tDDR  
tCWR  
tAW  
tWRA  
tWWR  
0
A0–A13, DMS, PMS Setup Before WR Low  
Data Disable Before WR or RD Low  
CLKOUT High to WR Low  
A0–A13, DMS, PMS, Setup Before WR Deasserted  
A0–A13, DMS, PMS Hold After WR Deasserted  
WR High to RD or WR Low  
2.5  
2.5  
7.5  
15.5  
3.5  
20  
1.51  
1.51  
5
5
10  
23  
6
25  
22.5  
20  
8
1
15  
25  
Frequency Dependency  
(CLKIN 25 MHz)  
Max  
Parameter  
Min  
Unit  
Switching Characteristics:  
tDW  
tDH  
Data Setup Before WR High  
Data Hold After WR High  
0.5tCK – 13 + w  
0.25tCK – 10  
0.5tCK – 8 + w  
0
ns  
ns  
ns  
tWP  
WR Pulsewidth  
WR Low to Data Enabled  
tWDE  
tASW  
tDDR  
tCWR  
tAW  
tWRA  
tWWR  
A0–A13, DMS, PMS Setup Before WR Low  
Data Disable Before WR or RD Low  
CLKOUT High to WR Low  
A0–A13, DMS, PMS, Setup Before WR Deasserted  
A0–A13, DMS, PMS Hold After WR Deasserted  
WR High to RD or WR Low  
0.25tCK – 101  
0.25tCK – 101  
0.25tCK – 5  
ns  
ns  
ns  
ns  
ns  
ns  
0.25tCK + 10  
0.75tCK – 22 + w  
0.25tCK – 9  
0.5tCK – 5  
NOTES  
1For 25 MHz only, the minimum frequency dependency formula for tASW and tDDR = (0.25tCK – 8.5).  
w = wait states × tCK  
.
CLKOUT  
A0–A13  
DMS, PMS,  
BMS  
tWRA  
WR  
tWWR  
tASW  
tWP  
tAW  
tDH  
tDDR  
tCWR  
D
tDW  
tWDE  
RD  
Figure 25. Memory Write  
–26–  
REV. 0  
ADSP-216x  
TIMING PARAMETERS (ADSP-2161/ADSP-2163/ADSP-2165)  
SERIAL PORTS  
13.824 MHz*  
Frequency Dependency  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements:  
tSCK  
tSCS  
tSCH  
tSCP  
SCLK Period  
72.3  
8
10  
28  
72.3  
8
10  
28  
ns  
ns  
ns  
ns  
DR/TFS/RFS Setup Before SCLK Low  
DR/TFS/RFS Hold After SCLK Low  
SCLKIN Width  
18.1  
0
33.1  
20  
0.25tCK  
0
0.25tCK + 15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
20  
0
0
20  
0
0
0
0
18  
25  
20  
18  
25  
20  
*Maximum serial port operating frequency is 13.824 MHz for all processor speed grades.  
CLKOUT  
tCC  
tCC  
tSCK  
SCLK  
tSCP  
tSCP  
tSCS  
tSCH  
DR  
TFS  
IN  
RFS  
IN  
tRD  
tRH  
RFS  
TFS  
OUT  
OUT  
tSCDD  
tSCDV  
tSCDH  
tSCDE  
DT  
tTDE  
tTDV  
TFS  
(ALTERNATE  
FRAME MODE)  
tRDV  
RFS  
(MULTICHANNEL MODE,  
FRAME DELAY 0 {MFD = 0})  
Figure 26. Serial Ports  
REV. 0  
–27–  
ADSP-216x  
TIMING PARAMETERS (ADSP-2162/ADSP-2164/ADSP-2166)  
switching characteristics to ensure that any timing requirement  
of a device connected to the processor (such as memory) is  
satisfied.  
GENERAL NOTES  
Use the exact timing information given. Do not attempt to de-  
rive parameters from the addition or subtraction of others. While  
addition or subtraction would yield meaningful results for an  
individual device, the values given in this data sheet reflect sta-  
tistical variations and worst cases. Consequently, you cannot  
Timing Requirements apply to signals that are controlled by cir-  
cuitry external to the processor, such as the data input for a read  
operation. Timing requirements guarantee that the processor  
operates correctly with other devices.  
meaningfully add parameters to derive longer times.  
TIMING NOTES  
MEMORY REQUIREMENTS  
Switching Characteristics specify how the processor changes its  
signals. You have no control over this timing—circuitry external  
to the processor must be designed for compatibility with these  
signal characteristics. Switching characteristics tell you what the  
processor will do in a given circumstance. You can also use  
The table below shows common memory device specifications  
and the corresponding ADSP-216x timing parameters, for your  
convenience.  
ADSP-216x  
Timing Parameter  
Memory Device Specification  
Timing Parameter Definition  
Address Setup to Write Start  
Address Setup to Write End  
Address Hold Time  
Data Setup Time  
tASW  
tAW  
tWRA  
tDW  
tDH  
A0–A13, DMS, PMS Setup Before WR Low  
A0–A13, DMS, PMS Setup Before WR Deasserted  
A0–A13, DMS, PMS Hold After WR Deasserted  
Data Setup Before WR High  
Data Hold Time  
Data Hold After WR High  
OE to Data Valid  
Address Access Time  
tRDD  
tAA  
RD Low to Data Valid  
A0–A13, DMS, PMS, BMS to Data Valid  
–28–  
REV. 0  
ADSP-216x  
TIMING PARAMETERS (ADSP-2162/ADSP-2164/ADSP-2166)  
CLOCK SIGNALS AND RESET  
Frequency  
Dependency  
10.24 MHz  
Min Max  
Parameter  
Min  
Max  
Unit  
Timing Requirements:  
tCK  
tCKL  
CLKIN Period  
CLKIN Width Low  
97.6  
20  
20  
150  
76.9  
20  
20  
150  
60.0  
20  
20  
150  
tCK  
20  
20  
150  
ns  
ns  
ns  
ns  
tCKH CLKIN Width High  
tRSP RESET Width Low  
Switching Characteristics:  
tCPL CLKOUT Width Low  
tCPH CLKOUT Width High  
1
488  
384.5  
300  
5tCK  
38.8  
38.8  
0
28.5  
28.5  
0
20  
20  
0
0.5tCK – 10  
0.5tCK – 10  
0
ns  
ns  
ns  
tCKOH CLKIN High to CLKOUT High  
20  
20  
20  
20  
NOTE  
1Applies after power-up sequence is complete. Internal phase lock loop requires no more than 2000 CLKIN cycles assuming stable CLKIN (not including crystal  
oscillator startup time).  
tCK  
tCKH  
CLKIN  
tCKL  
tCHOK  
tCPH  
CLKOUT  
tCPL  
Figure 27. Clock Signals  
REV. 0  
–29–  
ADSP-216x  
TIMING PARAMETERS (ADSP-2162/ADSP-2164/ADSP-2166)  
INTERRUPTS AND FLAGS  
Frequency  
Dependency  
10.24 MHz  
13.0 MHz  
16.67 MHz  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements:  
tIFS  
IRQx1 or FI Setup Before  
CLKOUT Low2, 3  
44.4  
24.4  
0
39.2  
19.2  
0
35.0  
15.0  
0
0.25tCK + 20  
0.25tCK  
0
ns  
ns  
tIFH  
IRQx1 or FI Hold After  
CLKOUT High2, 3  
Switching Characteristics:  
tFOH FO Hold After CLKOUT High  
tFOD FO Delay from CLKOUT High  
ns  
ns  
15  
15  
15  
15  
NOTES  
1IRQx = IRQ0, IRQ1, and IRQ2.  
2If IRQx and FI inputs meet tIFS and tIFH setup/hold requirements, they will be recognized during the current clock cycle; otherwise they will be recognized during the  
following cycle. (Refer to the “Interrupt Controller” section in Chapter 3, Program Control, of the ADSP-2100 Family User’s Manual, Third Edition, for further  
information on interrupt servicing.)  
3Edge-sensitive interrupts require pulse widths greater than 10 ns. Level-sensitive interrupts must be held low until serviced.  
CLKOUT  
tFOD  
tFOH  
FLAG  
OUTPUT(S)  
tIFH  
IRQx  
FI  
tIFS  
Figure 28. Interrupts and Flags  
–30–  
REV. 0  
ADSP-216x  
TIMING PARAMETERS (ADSP-2162/ADSP-2164/ADSP-2166)  
BUS REQUEST/BUS GRANT  
10.24 MHz  
13.0 MHz  
Min Max  
16.67 MHz  
Frequency Dependency  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements:  
tBH  
tBS  
BR Hold After CLKOUT High1  
29.4  
24.2  
39.2  
20.0  
35.0  
0.25tCK + 5  
0.25tCK + 20  
ns  
ns  
BR Setup Before CLKOUT Low1 44.4  
Switching Characteristics:  
tSD  
CLKOUT High to DMS, PMS,  
BMS, RD, WR Disable  
DMS, PMS, BMS, RD, WR  
Disable to BG Low  
BG High to DMS, PMS, BMS,  
RD, WR Enable  
DMS, PMS, BMS, RD, WR  
Enable to CLKOUT High  
44.4  
39.2  
35.0  
0.25tCK + 20 ns  
tSDB  
tSE  
0
0
0
0
ns  
ns  
ns  
0
0
0
0
tSEC  
14.4  
9.2  
5.0  
0.25tCK – 10  
NOTES  
1If BR meets the tBS and tBH setup/hold requirements, it will be recognized in the current processor cycle; otherwise it is recognized in the following cycle. BR  
requires a pulsewidth greater than 10 ns.  
Section 10.2.4, “Bus Request/Grant,” of the ADSP-2100 Family User’s Manual, Third Edition, states that, “When BR is recognized, the processor responds immedi-  
ately by asserting BG during the same cycle.” This is incorrect for the current versions of all ADSP-21xx processors: BG is asserted in the cycle after BR is recognized.  
No external synchronization circuit is needed when BR is generated as an asynchronous signal.  
tBH  
CLKOUT  
BR  
tBS  
CLKOUT  
PMS, DMS  
BMS, RD  
tSD  
tSEC  
WR  
BG  
tSDB  
tSE  
Figure 29. Bus Request/Grant  
REV. 0  
–31–  
ADSP-216x  
TIMING PARAMETERS (ADSP-2162/ADSP-2164/ADSP-2166)  
MEMORY READ  
10.24 MHz  
13.0 MHz  
16.67 MHz  
Frequency Dependency  
Parameter  
Min  
Max Min Max  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements:  
tRDD RD Low to Data Valid  
33.8  
49.2  
23.5  
33.7  
15  
21  
0.5tCK – 15 + w  
ns  
tAA  
A0–A13, PMS, DMS, BMS to  
Data Valid  
0.75tCK – 24 + w ns  
ns  
tRDH Data Hold from RD High  
0
0
0
0
Switching Characteristics:  
tRP  
RD Pulsewidth  
43.8  
19.4  
33.25  
34.4 14.2  
25  
10.0  
0.5tCK – 5 + w  
0.25tCK – 5  
ns  
ns  
tCRD CLKOUT High to RD Low  
29.2  
25.0  
0.25tCK + 10  
tASR  
tRDA  
A0–A13, PMS, DMS, BMS  
Setup Before RD Low  
A0–A13, PMS, DMS, BMS  
Hold After RD Deasserted  
12.4  
7.2  
3.0  
0.25tCK – 12  
ns  
14.4  
38.8  
9.2  
28.5  
5.0  
20.0  
0.25tCK – 10  
0.5tCK – 10  
ns  
ns  
tRWR RD High to RD or WR Low  
w = wait states × tCK.  
CLKOUT  
A0–A13  
DMS, PMS,  
BMS  
tRDA  
RD  
tASR  
tCRD  
tRP  
tRWR  
D
tRDD  
tRDH  
tAA  
WR  
Figure 30. Memory Read  
–32–  
REV. 0  
ADSP-216x  
TIMING PARAMETERS (ADSP-2162/ADSP-2164/ADSP-2166)  
MEMORY WRITE  
Frequency  
Dependency  
10.24 MHz  
13.0 MHz  
16.67 MHz  
Parameter  
Min  
Max Min Max  
Min  
Max  
Min  
Max  
Unit  
Switching Characteristics:  
tDW  
tDH  
tWP  
Data Setup Before WR High  
Data Hold After WR High  
WR Pulsewidth  
38.8  
14.4  
43.8  
0
28.25  
9.2  
33.25  
0
20  
5.0  
25  
0
0.5tCK – 10 + w  
0.25tCK – 10  
0.5tCK – 5 + w  
0
ns  
ns  
ns  
tWDE WR Low to Data Enabled  
tASW A0–A13, DMS, DMS Setup  
Before WR Low  
tDDR Data Disable Before WR  
or RD Low  
12.4  
7.2  
3.0  
0.25tCK – 12  
ns  
ns  
14.4  
19.4  
9.2  
34.4 14.2  
5.0  
10.0  
0.25tCK – 10  
0.25tCK – 5  
tCWR CLKOUT High to WR Low  
29.2  
25.0  
0.25tCK + 10 ns  
tAW  
A0–A13, DMS, PMS, Setup  
Before WR Deasserted  
58.2  
42.7  
30  
0.75tCK – 15 + w  
ns  
tWRA A0–A13, DMS, PMS Hold  
After WR Deasserted  
tWWR WR High to RD or WR Low  
14.4  
38.8  
9.2  
28.25  
5.0  
20  
0.25tCK – 10  
0.5tCK – 10  
ns  
ns  
w = wait states × tCK.  
CLKOUT  
A0–A13  
DMS, PMS,  
BMS  
tWRA  
WR  
tWWR  
tASW  
tWP  
tAW  
tDH  
tDDR  
tCWR  
D
tDW  
tWDE  
RD  
Figure 31. Memory Write  
REV. 0  
–33–  
ADSP-216x  
TIMING PARAMETERS (ADSP-2162/ADSP-2164/ADSP-2166)  
SERIAL PORTS  
10.24 MHz  
Min Max  
13.0 MHz  
Min Max  
13.824 MHz1  
Frequency Dependency  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements:  
72.31  
8
tCK  
ns  
ns  
1
tSCK  
tSCS  
SCLK Period  
97.6  
8
76.9  
8
DR/TFS/RFS Setup  
Before SCLK Low  
DR/TFS/RFS Hold After  
SCLK Low  
8
tSCH  
tSCP  
10  
28  
10  
28  
10  
28  
10  
28  
ns  
ns  
SCLKIN Width  
Switching Characteristics:  
tCC CLKOUT High to SCLKOUT 24.4 39.4  
tSCDE SCLK High to DT Enable  
tSCDV SCLK High to DT Valid  
19.2 34.2  
18.1  
0
33.1  
20  
0.25tCK 0.25tCK + 15  
ns  
ns  
ns  
0
0
0
0
282  
282  
20  
202  
tRH  
TFS/RFSOUT Hold After  
SCLK High  
0
0
0
ns  
tRD  
TFS/RFSOUT Delay from  
SCLK High  
20  
20  
202  
ns  
ns  
ns  
ns  
ns  
tSCDH DT Hold After SCLK High  
tTDE TFS (Alt) to DT Enable  
tTDV TFS (Alt) to DT Valid  
0
0
0
0
0
0
0
0
18  
18  
25  
18  
25  
18  
252  
tSCDD SCLK High to DT Disable  
302  
tRDV  
RFS (Multichannel, Frame 20  
Delay Zero) to DT Valid  
20  
20  
20  
20  
ns  
NOTES  
1Maximum serial port operating frequency is 13.824 MHz for all processor speed grades faster then 13.824 MHz.  
2For 10.24 MHz only, the maximum frequency dependency for tSCDV = 28 ns, tRD = 28 ns, tSCDD = 30 ns.  
CLKOUT  
tCC  
tCC  
tSCK  
SCLK  
tSCP  
tSCP  
tSCS  
tSCH  
DR  
TFS  
IN  
RFS  
IN  
tRD  
tRH  
RFS  
TFS  
OUT  
OUT  
tSCDD  
tSCDV  
tSCDH  
tSCDE  
DT  
tTDE  
tTDV  
TFS  
(ALTERNATE  
FRAME MODE)  
tRDV  
RFS  
(MULTICHANNEL MODE,  
FRAME DELAY 0 {MFD = 0})  
Figure 32. Serial Ports  
–34–  
REV. 0  
ADSP-216x  
PIN CONFIGURATIONS  
68-Lead PLCC  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
PIN 1  
GND  
D19  
D20  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
D2  
IDENTIFIER  
D1  
D0  
D21  
V
DD  
D22  
D23  
SCLK1  
FI  
V
DD  
IRQ0  
IRQ1  
FO  
MMAP  
ADSP-216x  
TOP VIEW  
(Not to Scale)  
BR  
IRQ2  
RESET  
A0  
SCLK0  
DR0  
GND  
A1 22  
RFS0  
23  
24  
A2  
A3  
47 TFS0  
46  
45  
44  
DT0  
RD  
A4 25  
26  
V
DD  
WR  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
PLCC  
Pin  
Number  
Name  
Pin  
Name  
PLCC  
Number  
Pin  
Name  
PLCC  
Number Name  
Pin  
PLCC  
Number  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
A12  
A13  
1
2
3
4
5
6
7
8
D11  
GND  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
GND  
D19  
D20  
D21  
D22  
D23  
VDD  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
FO  
(DT1)  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
BR  
IRQ2  
RESET  
A0  
A1  
A2  
A3  
A4  
VDD  
A5  
A6  
GND  
A7  
A8  
A9  
A10  
IRQ1 (TFS1)  
IRQ0 (RFS1)  
FI  
SCLK1  
VDD  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
PMS  
DMS  
BMS  
BG  
XTAL  
CLKIN  
CLKOUT  
WR  
RD  
DT0  
TFS0  
RFS0  
GND  
DR0  
(DR1)  
9
10  
11  
12  
13  
14  
15  
16  
17  
51  
SCLK0  
MMAP  
A11  
REV. 0  
–35–  
ADSP-216x  
PIN CONFIGURATIONS  
80-Lead MQFP  
60 D18  
59 D17  
1
2
A5  
A6  
PIN 1  
IDENTIFIER  
GND  
GND  
3
58  
D16  
57 D15  
56 D14  
4
A7  
5
55  
6
A8  
A9  
D13  
54 D12  
7
53  
52  
51  
50  
A10  
A11  
8
GND  
GND  
D11  
9
ADSP-216x  
TOP VIEW  
(Not to Scale)  
A12  
A13  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
D10  
49 D9  
48  
PMS  
D8  
47 D7  
DMS  
BMS  
46  
45  
44  
43  
42  
D6  
BG  
XTAL  
D5  
D4  
CLKIN  
*PWDACK  
NC  
NC  
*PWDFLAG  
NC  
41 NC  
NC = NO CONNECT  
MQFP  
Number  
Pin  
Name  
MQFP  
Number Name  
Pin  
MQFP  
Number Name  
Pin  
MQFP  
Number  
Pin  
Name  
1
2
3
4
5
6
7
8
A5  
A6  
GND  
GND  
A7  
A8  
A9  
A10  
A11  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
CLKOUT  
WR  
RD  
DT0  
TFS0  
RFS0  
GND  
GND  
DR0  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
GND  
GND  
D19  
D20  
D21  
D22  
D23  
VDD  
VDD  
MMAP  
BR  
IRQ2  
RESET  
A0  
A1  
A2  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
NC  
NC  
NC  
D4  
D5  
D6  
D7  
D8  
9
D9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
A12  
A13  
SCLK0  
FO  
D10  
D11  
GND  
GND  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
(DT1)  
PMS  
DMS  
BMS  
BG  
XTAL  
CLKIN  
PWDACK*  
PWDFLAG*  
NC  
IRQ1 (TFS1)  
IRQ0 (RFS1)  
FI  
(DR1)  
SCLK1  
VDD  
D0  
D1  
D2  
A3  
A4  
VDD  
VDD  
D3  
*ADSP-2165/ADSP-2166 only.  
Others “NC”.  
–36–  
REV. 0  
ADSP-216x  
OUTLINE DIMENSIONS  
ADSP-216x  
68-Lead Plastic Leaded Chip Carrier (PLCC)  
0.175 (4.45)  
0.169 (4.29)  
0.995 (25.27)  
0.985 (25.02)  
SQ  
9
61  
10  
60  
PIN 1  
IDENTIFIER  
0.050  
(1.27)  
TYP  
PIN 1  
IDENTIFIER  
0.925 (23.50)  
0.895 (22.73)  
TOP VIEW  
(PINS DOWN)  
BOTTOM VIEW  
(PINS UP)  
0.019 (0.48)  
0.017 (0.43)  
0.029 (0.74)  
0.027 (0.69)  
26  
44  
43  
27  
0.954 (24.23)  
0.950 (24.13)  
SQ  
0.104 (2.64) TYP  
REV. 0  
–37–  
ADSP-216x  
OUTLINE DIMENSIONS  
ADSP-216x  
80-Lead Plastic Quad Flatpack (MQFP)  
0.690 (17.45)  
0.667 (16.95)  
0.134 (3.40)  
MAX  
0.555 (14.10)  
0.547 (13.90)  
0.486 (12.35) BSC  
0.041 (1.03)  
0.031 (0.78)  
80  
61  
60  
1
SEATING  
PLANE  
TOP VIEW  
(PINS DOWN)  
0.004 (0.10)  
MAX  
20  
21  
41  
40  
0.010 (0.25)  
MIN  
0.026 (0.65) 0.014 (0.35)  
BSC  
0.010 (0.25)  
0.120 (3.05)  
0.100 (2.55)  
THE ACTUAL POSITION OF EACH LEAD  
IS WITHIN 0.0047 (0.12) FROM ITS IDEAL  
POSITION WHEN MEASURED IN THE  
LATERAL DIRECTION.  
–38–  
REV. 0  
ADSP-216x  
ORDERING GUIDE  
Ambient  
Temperature  
Range  
Instruction  
Rate (MHz)  
Package  
Description  
Package  
Option  
Part Number1  
ADSP-2161KP-662  
ADSP-2161BP-662  
ADSP-2161KS-662  
ADSP-2161BS-662  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
16.67  
16.67  
16.67  
16.67  
68-Lead PLCC  
68-Lead PLCC  
80-Lead MQFP  
80-Lead MQFP  
P-68A  
P-68A  
S-80  
S-80  
ADSP-2162KP-40 (3.3 V)2  
ADSP-2162BP-40 (3.3 V)2  
ADSP-2162KS-40 (3.3 V)2  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
10.24  
10.24  
10.24  
68-Lead PLCC  
68-Lead PLCC  
80-Lead MQFP  
P-68A  
P-68A  
S-80  
ADSP-2163KP-662  
ADSP-2163BP-662  
ADSP-2163KS-662  
ADSP-2163BS-662  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
16.67  
16.67  
16.67  
16.67  
68-Lead PLCC  
68-Lead PLCC  
80-Lead MQFP  
80-Lead MQFP  
P-68A  
P-68A  
S-80  
S-80  
ADSP-2163KP-1002  
ADSP-2163BP-1002  
ADSP-2163KS-1002  
ADSP-2163BS-1002  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
25  
25  
25  
25  
68-Lead PLCC  
68-Lead PLCC  
80-Lead MQFP  
80-Lead MQFP  
P-68A  
P-68A  
S-80  
S-80  
ADSP-2164KP-40 (3.3 V)2  
ADSP-2164BP-40 (3.3 V)2  
ADSP-2164KS-40 (3.3 V)2  
ADSP-2164BS-40 (3.3 V)2  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
10.24  
10.24  
10.24  
10.24  
68-Lead PLCC  
68-Lead PLCC  
80-Lead MQFP  
80-Lead MQFP  
P-68A  
P-68A  
S-80  
S-80  
ADSP-2165KS-80  
ADSP-2165KS-100  
ADSP-2165BS-80  
ADSP-2165BS-100  
0°C to +70°C  
0°C to +70°C  
–40°C to +85°C  
–40°C to +85°C  
20.00  
25.00  
20.00  
25.00  
80-Lead MQFP  
80-Lead MQFP  
80-Lead MQFP  
80-Lead MQFP  
S-80  
S-80  
S-80  
S-80  
ADSP-2166KS-52 (3.3 V)  
ADSP-2166KS-66 (3.3 V)  
ADSP-2166BS-52 (3.3 V)  
ADSP-2166BS-66 (3.3 V)  
0°C to +70°C  
0°C to +70°C  
–40°C to +85°C  
–40°C to +85°C  
13.00  
16.67  
13.00  
16.67  
80-Lead MQFP  
80-Lead MQFP  
80-Lead MQFP  
80-Lead MQFP  
S-80  
S-80  
S-80  
S-80  
NOTES  
1K = Commercial Temperature Range (0°C to +70°C).  
B = Industrial Temperature Range (–40°C to +85°C).  
P = PLCC (Plastic Leaded Chip Carrier).  
S
= MQFP (Plastic Quad Flatpack).  
2Minimum order quantities required. Contact factory for further information.  
3Refer to the section titled “Ordering Procedure for ROM-Coded ADSP-216x Processors” for information about ROM coded parts.  
REV. 0  
–39–  

相关型号:

ADSP-2163KS-1002

ADSP-2100 Family DSP Microcomputers
ADI

ADSP-2163KS-66

DSP Microcomputers with ROM
ADI

ADSP-2163KS-662

ADSP-2100 Family DSP Microcomputers
ADI

ADSP-2163_15

DSP Microcomputers with ROM
ADI

ADSP-2164

DSP Microcomputers with ROM
ADI

ADSP-2164BP-40

DSP Microcomputers with ROM
ADI

ADSP-2164BP-40(3.3V)

ADSP-2100 Family DSP Microcomputers
ADI

ADSP-2164BS-40

DSP Microcomputers with ROM
ADI

ADSP-2164BS-40(3.3V)

ADSP-2100 Family DSP Microcomputers
ADI

ADSP-2164KP-40

DSP Microcomputers with ROM
ADI

ADSP-2164KP-40(3.3V)

ADSP-2100 Family DSP Microcomputers
ADI

ADSP-2164KS-40

DSP Microcomputers with ROM
ADI