ADSP-2171KST-104 [ADI]

DSP Microcomputer; 微电脑DSP
ADSP-2171KST-104
型号: ADSP-2171KST-104
厂家: ADI    ADI
描述:

DSP Microcomputer
微电脑DSP

外围集成电路 电脑
文件: 总52页 (文件大小:665K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
DSP Microcomputer  
ADSP-2171/ADSP-2172/ADSP-2173  
FUNCTIO NAL BLO CK D IAGRAM  
FEATURES  
30 ns Instruction Cycle Tim e (33 MIPS) from  
16.67 MHz Crystal at 5.0 V  
50 ns Instruction Cycle Tim e (20 MIPS) from 10 MHz  
Crystal at 3.3 V  
POWERDOWN  
PROGRAM  
MEMORY  
CONTROL  
ROM  
LOGIC  
8K x 24  
DATA  
ADDRESS  
PROGRAM  
SEQUENCER  
PROGRAM  
RAM  
2K x 24  
DATA  
MEMORY  
2K x 16  
GENERATORS  
FLAGS  
DAG 1  
DAG 2  
ADSP-2100 Fam ily Code & Function Com patible w ith  
New Instruction Set Enhancem ents for Bit Manipula-  
tion Instructions, Multiplication Instructions, Biased  
Rounding, and Global Interrupt Masking  
Bus Grant Hang Logic  
EXTERNAL  
ADDRESS  
BUS  
PROGRAM MEMORY ADDRESS  
DATA MEMORY ADDRESS  
PROGRAM MEMORY DATA  
2K Words of On-Chip Program Mem ory RAM  
2K Words of On-Chip Data Mem ory RAM  
8K Words of On-Chip Program Mem ory ROM  
(ADSP-2172)  
8- or 16-Bit Parallel Host Interface Port  
300 m W Typical Pow er Dissipation at 5.0 V at 30 ns  
70 m W Typical Pow er Dissipation at 3.3 V at 50 ns  
Pow erdow n Mode Featuring Less than 0.55 m W (ADSP-  
2171/ ADSP-2172) or 0.36 m W (ADSP-2173) CMOS  
Standby Pow er Dissipation w ith 100 Cycle Recovery  
from Pow erdow n  
DATA MEMORY DATA  
EXTERNAL  
DATA  
BUS  
ARITHMETIC UNITS  
MAC  
TIMER  
SERIAL PORTS  
SPORT 0  
HOST  
INTERFACE  
PORT  
SHIFTER  
ALU  
SPORT 1  
ADSP-2100 BASE  
ARCHITECTURE  
T he ADSP-217x combines the ADSP-2100 base architecture  
(three computational units, data address generators, and a pro-  
gram sequencer) with two serial ports, a host interface port, a  
programmable timer, extensive interrupt capabilities, and on-  
chip program and data memory.  
Dual Purpose Program Mem ory for Both Instruction  
and Data Storage  
In addition, the ADSP-217x supports new instructions, which  
include bit manipulations–bit set, bit clear, bit toggle, bit test–  
new ALU constants, new multiplication instruction (x squared),  
biased rounding, and global interrupt masking, for increased  
flexibility. T he ADSP-217x also has a Bus Grant Hang Logic  
(BGH) feature.  
Independent ALU, Multiplier/ Accum ulator, and Barrel  
Shifter Com putational Units  
Tw o Independent Data Address Generators  
Pow erful Program Sequencer Provides  
Zero Overhead Looping  
Conditional Instruction Execution  
Tw o Double-Buffered Serial Ports w ith Com panding  
Hardw are and Autom atic Data Buffering  
Program m able 16-Bit Interval Tim er w ith Prescaler  
Program m able Wait State Generation  
Autom atic Booting of Internal Program Mem ory from  
Byte-Wide External Mem ory, e.g., EPROM, or  
Through Host Interface Port  
Stand-Alone ROM Execution (Optional)  
Single-Cycle Instruction Execution  
Single-Cycle Context Sw itch  
T he ADSP-217x provides 2K words (24-bit) of program RAM  
and 2K words (16-bit) of data memory. T he ADSP-2172 pro-  
vides an additional 8K words (24-bit) of program ROM. Power-  
down circuitry is also provided to meet the low power needs of  
battery operated portable equipment. T he ADSP-217x is avail-  
able in 128-pin T QFP and 128-pin PQFP packages.  
Fabricated in a high-speed, double metal, low power, CMOS  
process, the ADSP-217X operates with a 30 ns instruction cycle  
time. Every instruction can execute in a single processor cycle.  
T he ADSP-217xs flexible architecture and comprehensive in-  
struction set allow the processor to perform multiple operations  
in parallel. In one processor cycle the ADSP-217x can:  
Multifunction Instructions  
Three Edge- or Level-Sensitive External Interrupts  
Low Pow er Dissipation in Standby Mode  
128-Lead TQFP and 128-Lead PQFP  
generate the next program address  
fetch the next instruction  
GENERAL D ESCRIP TIO N  
perform one or two data moves  
update one or two data address pointers  
perform a computational operation  
T he ADSP-2171, ADSP-2172, and ADSP-2173 are single-chip  
microcomputers optimized for digital signal processing (DSP)  
and other high-speed numeric processing applications. T he  
ADSP-2171 and ADSP-2172 are designed for 5.0 V applica-  
tions. T he ADSP-2173 is designed for 3.3 V applications. T he  
ADSP-2172 also has 8K words (24-bit) of program ROM.  
T his takes place while the processor continues to:  
receive and transmit data through the two serial ports  
receive and/or transmit data through the host interface port  
REV. A  
decrement timer  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
© Analog Devices, Inc., 1995  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
ADSP-2171/ADSP-2172/ADSP-2173  
D evelopm ent System  
Additional Infor m ation  
T he ADSP-2100 Family Development Software, a complete set  
of tools for software and hardware system development, supports  
the ADSP-217x. T he System Builder provides a high-level  
method for defining the architecture of systems under develop-  
ment. T he Assembler has an algebraic syntax that is easy to  
program and debug. T he Linker combines object files into  
an executable file. T he Simulator provides an interactive  
instruction-level simulation with a reconfigurable user interface  
to display different portions of the hardware environment. A  
PROM Splitter generates PROM programmer compatible files.  
T he C Compiler, based on the Free Software Foundation’s  
GNU C Compiler, generates ADSP-217x assembly source  
code. T he Runtime Library includes over 100 ANSI-standard  
mathematical and DSP-specific functions.  
T his data sheet provides a general overview of ADSP-217x  
functionality. For additional information on the architecture and  
instruction set of the processor, refer to the ADSP-2100 Family  
User’s Manual. For more information about the Development  
System and ADSP-217x programmers reference information,  
refer to the ADSP-2100 Family Assembler Tools & Simulator  
Manual.  
ARCH ITECTURE O VERVIEW  
Figure 1 is an overall block diagram of the ADSP-217x. T he  
processor contains three independent computational units: the  
ALU, the multiplier/accumulator (MAC) and the shifter. T he  
computational units process 16-bit data directly and have provi-  
sions to support multiprecision computations. T he ALU per-  
forms a standard set of arithmetic and logic operations; division  
primitives are also supported. T he MAC performs single-cycle  
multiply, multiply/add and multiply/subtract operations with  
40 bits of accumulation. T he shifter performs logical and  
arithmetic shifts, normalization, denormalization, and derive  
exponent operations. T he shifter can be used to efficiently  
implement numeric format control including multiword and  
block floating-point representations.  
EZ-T ools, low cost, easy-to-use hardware tools, also support the  
ADSP-217x.  
T he ADSP-217x EZ-ICE® Emulator aids in the hardware de-  
bugging of ADSP-217x systems. T he emulator consists of hard-  
ware, host computer resident software, the emulator probe, and  
the pin adaptor. T he emulator performs a full range of emula-  
tion functions including stand-alone operation or operation in  
the target, setting up to 20 breakpoints, single-step or full-speed  
operation in the target, examining and altering registers and  
memory values, and PC upload/download functions. If you plan  
to use the emulator, you should consider the emulator’s restric-  
tions (differences between emulator and processor operation).  
T he EZ-LAB® Evaluation Board is a PC plug-in card, but it can  
operate in stand-alone mode. T he evaluation board/system de-  
velopment board executes EPROM-based or downloaded pro-  
grams. Modular Analog Front End daughter cards with different  
codecs will be made available.  
T he internal result (R) bus directly connects the computational  
units so that the output of any unit may be the input of any unit  
on the next cycle.  
A powerful program sequencer and two dedicated data address  
generators ensure efficient delivery of operands to these compu-  
tational units. T he sequencer supports conditional jumps, sub-  
routine calls and returns in a single cycle. With internal loop  
counters and loop stacks, the ADSP-217x executes looped code  
with zero overhead; no explicit jump instructions are required to  
maintain the loop.  
EZ-ICE and EZ-LAB are registered trademarks of Analog Devices, Inc.  
2
POWER DOWN  
CONTROL  
INSTRUCTION  
REGISTER  
PROGRAM ROM  
BOOT  
ADDRESS  
GENERATOR  
DATA  
SRAM  
2K X 16  
8K X 24  
LOGIC  
DATA  
ADDRESS  
GENERATOR  
#2  
DATA  
ADDRESS  
GENERATOR  
#1  
3
PROGRAM SRAM  
2K X 24  
FLAGS  
PROGRAM  
SEQUENCER  
EXTERNAL  
ADDRESS  
BUS  
14  
PMA BUS  
14  
MUX  
DMA BUS  
PMD BUS  
14  
EXTERNAL  
DATA  
BUS  
24  
24  
BUS  
EXCHANGE  
MUX  
DMD BUS  
16  
11  
COMPANDING  
CIRCUITRY  
HIP  
CONTROL  
CONTROL  
LOGIC  
TIMER  
INPUT REGS  
SHIFTER  
INPUT REGS  
ALU  
INPUT REGS  
MAC  
TRANSMIT REG  
TRANSMIT REG  
HIP  
DATA  
BUS  
16  
RECEIVE REG  
RECEIVE REG  
OUTPUT REGS  
16  
OUTPUT REGS  
OUTPUT REGS  
SERIAL  
PORT 1  
SERIAL  
PORT 0  
HIP  
REGISTERS  
R BUS  
5
5
Figure 1. ADSP-217x Block Diagram  
–2–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
T wo data address generators (DAGs) provide addresses for  
simultaneous dual operand fetches (from data memory and pro-  
gram memory). Each DAG maintains and updates four address  
pointers. Whenever the pointer is used to access data (indirect  
addressing), it is post-modified by the value of one of four pos-  
sible modify registers. A length value may be associated with  
each pointer to implement automatic modulo addressing for  
circular buffers.  
and loaded from the EPROM with no additional hardware. T he  
on-chip program memory can also be initialized through the  
HIP.  
T he ADSP-217x features three general-purpose flag outputs  
whose states can be simultaneously changed through software.  
You can use these outputs to signal an event to an external  
device. In addition, the data input and output pins on SPORT 1  
can be alternatively configured as an input flag and an output  
flag.  
Efficient data transfer is achieved with the use of five internal  
buses.  
A programmable interval timer generates periodic interrupts. A  
16-bit count register (T COUNT ) is decremented every n pro-  
cessor cycles, where n-l is a scaling value stored in an 8-bit regis-  
ter (T SCALE). When the value of the count register reaches  
zero, an interrupt is generated and the count register is reloaded  
from a 16-bit period register (T PERIOD).  
Program Memory Address (PMA) Bus  
Program Memory Data (PMD) Bus  
Data Memory Address (DMA) Bus  
Data Memory Data (DMD) Bus  
Result (R) Bus  
T he ADSP-217x instruction set provides flexible data moves  
and multifunction (one or two data moves with a computation)  
instructions. Every instruction can be executed in a single pro-  
cessor cycle. T he ADSP-217x assembly language uses an alge-  
braic syntax for ease of coding and readability. A comprehensive  
set of development tools supports program development.  
T he two address buses (PMA and DMA) share a single external  
address bus, allowing memory to be expanded off-chip, and the  
two data buses (PMD and DMD) share a single external data  
bus.  
Program memory can store both instructions and data, permit-  
ting the ADSP-217x to fetch two operands in a single cycle, one  
from program memory and one from data memory. T he ADSP-  
217x can fetch an operand from on-chip program memory and  
the next instruction in the same cycle.  
Ser ial P or ts  
T he ADSP-217x incorporates two complete synchronous serial  
ports (SPORT 0 and SPORT 1) for serial communications and  
multiprocessor communication.  
T he memory interface supports slow memories and memory-  
mapped peripherals with programmable wait state generation.  
External devices can gain control of external buses with bus  
request/grant signals (BR and BG). One execution mode (Go  
Mode) allows the ADSP-217x to continue running from inter-  
nal memory. Normal execution mode requires the processor to  
halt while buses are granted.  
Here is a brief list of the capabilities of the ADSP-217x  
SPORT s. Refer to the ADSP-2100 Family User’s Manual for  
further details.  
SPORT s are bidirectional and have a separate, double-  
buffered transmit and receive section.  
SPORT s can use an external serial clock or generate their own  
serial clock internally.  
In addition to the address and data bus for external memory  
connection, the ADSP-217x has a configurable 8- or 16-bit  
Host Interface Port (HIP) for easy connection to a host proces-  
sor. T he HIP is made up of 16 data/address pins and 11 control  
pins. T he HIP is extremely flexible and provides a simple inter-  
face to a variety of host processors. For example, the Motorola  
68000 series, the Intel 80C51 series and the Analog Devices’  
ADSP-2101 can be easily connected to the HIP. T he host pro-  
cessor can initialize the ASDP-217xs on-chip memory through  
the HIP.  
SPORT s have independent framing for the receive and trans-  
mit sections. Sections run in a frameless mode or with frame  
synchronization signals internally or externally generated.  
Frame sync signals are active high or inverted, with either of  
two pulse widths and timings.  
SPORT s support serial data word lengths from 3 to 16 bits  
and provide optional A-law and µ-law companding according  
to CCIT T recommendation G.711.  
SPORT receive and transmit sections can generate unique  
interrupts on completing a data word transfer.  
T he ADSP-217x can respond to eleven interrupts. T here can be  
up to three external interrupts, configured as edge or level sensi-  
tive, and eight internal interrupts generated by the T imer, the  
Serial Ports (“SPORT s”), the HIP, the powerdown circuitry,  
and software. T here is also a master RESET signal.  
SPORT s can receive and transmit an entire circular buffer of  
data with only one overhead cycle per data word. An interrupt  
is generated after a data buffer transfer.  
SPORT 0 has a multichannel interface to selectively receive  
and transmit a 24 or 32 word, time-division multiplexed,  
serial bitstream.  
T he two serial ports provide a complete synchronous serial in-  
terface with optional companding in hardware and a wide vari-  
ety of framed or frameless data transmit and receive modes of  
operation. Each port can generate an internal programmable  
serial clock or accept an external serial clock.  
SPORT 1 can be configured to have two external interrupts  
(IRQ0 and IRQ1) and the Flag In and Flag Out signals. T he  
internally generated serial clock may still be used in this  
configuration.  
Boot circuitry provides for loading on-chip program memory  
automatically from byte-wide external memory. After reset,  
seven wait states are automatically generated. T his allows, for  
example, a 30 ns ADSP-217x to use an external 200 ns  
EPROM as boot memory. Multiple programs can be selected  
REV. A  
–3–  
ADSP-2171/ADSP-2172/ADSP-2173  
P in D escr iption  
T he ADSP-217x is available in 128-lead T QFP and 128-lead  
PQFP packages. T able I contains the pin descriptions.  
SPORT 1  
or  
IRQ1 (T FS1) 1  
5
I/O  
Serial port 1 I/O pins  
I
External interrupt request # 1  
External interrupt request # 0  
Programmable clock output  
Flag Output pin  
IRQ0 (RFS1) 1  
I
Table I. AD SP -217x P in List  
SCLK1  
1
1
1
3
O
O
I
FO (DT 1)  
FI (DR1)  
FL2–0  
P in  
#
Flag Input pin  
Group  
Nam e  
of  
Input/  
O
General purpose flag output  
pins  
P ins O utput Function  
Address  
Data  
14  
24  
O
Address output for program,  
data and boot memory spaces  
VDD  
6
Power supply pins  
Ground pins  
GND  
11  
1
I/O  
Data I/O pins for program  
and data memories. Input  
only for boot memory space,  
with two MSBs used as boot  
space addresses.  
PWD  
I
Powerdown pin  
PWDACK  
1
O
Powerdown acknowledge pin  
H ost Inter face P or t  
T he ADSP-217x host interface port is a parallel I/O port that al-  
lows for an easy connection to a host processor. T hrough the  
HIP, the ADSP-217x can be used as a memory-mapped periph-  
eral to a host computer. T he HIP can be thought of as an area  
of dual-ported memory, or mailbox registers, that allow commu-  
nication between the computational core of the ADSP-217x and  
the host computer.  
RESET  
IRQ2  
BR  
1
1
1
1
1
1
1
1
1
1
1
I
Processor reset input  
I
External interrupt request # 2  
External bus request input  
External bus grant output  
External bus grant hang output  
External program memory select  
External data memory select  
Boot memory select  
I
BG  
O
O
O
O
O
O
O
I
BGH  
PMS  
DMS  
BMS  
RD  
T he HIP is completely asynchronous. T he host processor can  
write data into the HIP while the ADSP-217x is operating at full  
speed.  
External memory read enable  
External memory write enable  
Memory map select  
T he HIP can be configured with the following pins:  
WR  
HSIZE configures HIP for 8-bit or 16-bit communication with  
the host processor.  
MMAP  
CLKIN,  
XT AL  
BMODE (when MMAP = 0) determines whether the ADSP-  
217x boots from the host processor (through the HIP) or ex-  
ternal EPROM (through the data bus).  
2
I
External clock or quartz crystal  
input  
CLKOUT  
HSEL  
1
1
1
1
O
I
Processor clock output  
HIP select input  
HMD0 configures the bus strobes as separate read and write  
strobes, or a single read/write select and a host data strobe.  
HACK  
HSIZE  
O
HIP acknowledge output  
HMD1 selects separate address (3-bit) and data (16-bit)  
buses, or a multiplexed, 16-bit address/data bus with address  
latch enable.  
8/16 bit host select input  
0 = 16-bit; 1 = 8-bit  
BMODE  
HMD0  
HMD1  
1
1
1
I
I
I
Boot mode select input  
0 = EPROM/data bus; 1 = HIP  
T ying these pins to appropriate values configures the ADSP-  
217x for straight-wire interface to a variety of industry-standard  
microprocessors and microcomputers.  
Bus strobe select input  
0 = RD, WR; 1 = RW, DS  
In 8-bit reads, the ADSP-217x three-states the upper eight bits  
of the bus. When the host processor writes an 8-bit value to the  
HIP, the upper eight bits are all zeros. For additional informa-  
tion refer to the ADSP-2100 Family User’s Manual.  
HIP address/data mode select  
input 0 = separate; 1 =  
multiplexed  
HRD/HRW  
HWR/HDS  
1
1
I
I
HIP read strobe/read/write  
select input  
H IP O per ation  
T he HIP contains six data registers (HDR5–0) and two status  
registers (HSR7–6) with an associated HMASK register for  
masking interrupts from individual HIP data registers. All HIP  
data registers are memory-mapped into the internal data  
memory of the ADSP-217x. HIP transfers can be managed us-  
ing either interrupts or a polling scheme. T hese registers are  
shown in the section “ADSP-217x Registers.”  
HIP write strobe/host data  
strobe select input  
HD15–0/  
HAD15-0  
16  
1
I/O  
I
HIP data/data and address  
HA2/ALE  
Host address 2/Address latch  
enable input  
HA1–0/  
Unused  
T he HIP allows a software reset to be performed by the host  
processor. T he internal software reset signal is asserted for five  
ADSP-217x processor cycles.  
2
5
I
Host addresses 1 and 0 inputs  
SPORT 0  
I/O  
Serial port 0 I/O pins (T FS0,  
RFS0, DT 0, DR0, SCLK0)  
–4–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
Inter r upts  
Table II. Interrupt P riority & Interrupt Vector Addresses  
T he interrupt controller allows the processor to respond to the  
eleven possible interrupts and reset with minimum overhead.  
T he ADSP-217x provides up to three external interrupt input  
pins, IRQ0, IRQ1 and IRQ2. IRQ2 is always available as a dedi-  
cated pin; SPORT 1 may be reconfigured for IRQ0, IRQ1, and  
the flags. T he ADSP-217x also supports internal interrupts from  
the timer, the host interface port, the two serial ports, software,  
and the powerdown control circuit. T he interrupt levels are in-  
ternally prioritized and individually maskable (except power-  
down and reset). T he input pins can be programmed to be  
either level- or edge-sensitive. T he priorities and vector ad-  
dresses of all interrupts are shown in T able II, and the interrupt  
registers are shown in Figure 2.  
Interrupt Vector  
Address (H ex)  
Source of Interrupt  
Reset (or Power-Up with PUCR = 1) 0000 (Highest Priority)  
Powerdown (Nonmaskable)  
IRQ2  
HIP Write  
002C  
0004  
0008  
000C  
0010  
0014  
0018  
001C  
HIP Read  
SPORT 0 T ransmit  
SPORT 0 Receive  
Software Interrupt 1  
Software Interrupt 0  
SPORT 1 T ransmit or IRQ1  
SPORT 1 Receive or IRQ0  
T imer  
0020  
0024  
Interrupts can be masked or unmasked with the IMASK regis-  
ter. Individual interrupt requests are logically ANDed with the  
bits in IMASK; the highest priority unmasked interrupt is then  
selected.T he powerdown interrupt is nonmaskable.  
0028 (Lowest Priority)  
On-chip stacks preserve the processor status and are automati-  
cally maintained during interrupt handling.  
T he ADSP-217x masks all interrupts for one instruction cycle  
following the execution of an instruction that modifies the  
IMASK register. T his does not affect autobuffering.  
T he stacks are twelve levels deep to allow interrupt nesting.  
T he following instructions allow global enable or disable servic-  
ing of the interrupts (including powerdown), regardless of the  
state of IMASK. Disabling the interrupts does not affect  
autobuffering.  
T he interrupt control register, ICNT L, allows the external in-  
terrupts to be either edge- or level-sensitive. Interrupt routines  
can either be nested with higher priority interrupts taking prece-  
dence or processed sequentially.  
ENA INT S;  
DIS INT S;  
T he IFC register is a write-only register used to force and clear  
interrupts generated from software.  
When you reset the processor, the interrupt servicing is enabled.  
IMASK  
ICNTL  
15 14 13 12 11 10  
9
0
8
7
6
5
0
4
0
3
0
2
0
1
0
0
0
4
3
0
2
1
0
0
0
0
0
0
0
0
0
0
1 = enable, 0 = disable  
IRQ2  
HIP Write  
HIP Read  
Timer  
IRQ0 Sensitivity  
IRQ1 Sensitivity  
IRQ2 Sensitivity  
1 = edge  
0 = level  
IRQ0 or SPORT1 Receive  
IRQ1 or SPORT1 Transmit  
Software 0  
SPORT0 Transmit  
SPORT0 Receive  
Software 1  
Interrupt Nesting  
1 = enable, 0 = disable  
IFC  
15 14 13 12 11 10  
9
0
8
0
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
0
0
0
0
0
0
0
INTERRUPT FORCE  
INTERRUPT CLEAR  
IRQ2  
SPORT0 Transmit  
SPORT0 Receive  
Software 1  
Timer  
SPORT1 Receive or IRQ0  
SPORT1 Transmit or IRQ1  
Software 0  
Software 0  
Software 1  
SPORT1 Transmit or IRQ1  
SPORT1 Receive or IRQ0  
Timer  
SPORT0 Receive  
SPORT0 Transmit  
IRQ2  
Figure 2. Interrupt Registers  
REV. A  
–5–  
ADSP-2171/ADSP-2172/ADSP-2173  
LO W P O WER O P ERATIO N  
programmable fraction of the normal clock rate, is specified by a  
selectable divisor given in the IDLE instruction. T he format of  
the instruction is  
T he ADSP-217x has three low power modes that significantly  
reduce the power dissipation when the device operates under  
standby conditions. T hese modes are:  
IDLE (n);  
Powerdown  
Idle  
where n = 16, 32, 64, or 128. T his instruction keeps the proces-  
sor fully functional, but operating at the slower clock rate. While  
it is in this state, the processor’s other internal clock signals,  
such as SCLK, CLKOUT , and timer clock, are reduced by the  
same ratio. T he default form of the instruction, when no clock  
divisor is given, is the standard IDLE instruction.  
Slow Idle  
T he CLKOUT pin may also be disabled to reduce external  
power dissipation. T he CLKOUT pin is controlled by Bit 14 of  
SPORT 0 Autobuffer Control Register, DM[0x3FF3].  
When the IDLE (n) instruction is used, it effectively slows down  
the processor’s internal clock and thus its response time to in-  
coming interrupts––the 1-cycle response time of the standard  
idle state is increased by n, the clock divisor. When an enabled  
interrupt is received, the ADSP-217x will remain in the idle  
state for up to a maximum of n processor cycles (n = 16, 32, 64,  
or 128) before resuming normal operation.  
P ower down  
T he ADSP-217x processor has a low power feature that lets the  
processor enter a very low power dormant state through hard-  
ware or software control. Here is a brief list of powerdown fea-  
tures. Refer to the ADSP-2100 Family User’s Manual, Chapter 9  
“System Interface” for detailed information about the  
powerdown feature.  
Powerdown mode holds the processor in CMOS standby with  
a maximum current of less than 100 µA in some modes.  
When the IDLE (n) instruction is used in systems that have an  
externally generated serial clock (SCLK), the serial clock rate  
may be faster than the processor’s reduced internal clock rate.  
Under these conditions, interrupts must not be generated at a  
faster rate than can be serviced, due to the additional time the  
processor takes to come out of the idle state (a maximum of n  
processor cycles).  
Quick recovery from powerdown. T he processor begins ex-  
ecuting instructions in as few as 100 CLKIN cycles.  
Support for an externally generated T T L or CMOS processor  
clock. T he external clock can continue running during  
powerdown without affecting the lowest power rating and 100  
CLKIN cycle recovery.  
SYSTEM INTERFACE  
Support for crystal operation includes disabling the oscillator  
to save power (the processor automatically waits 4096 CLKIN  
cycles for the crystal oscillator to start and stabilize), and let-  
ting the oscillator run to allow 100 CLKIN cycle startup.  
Figure 3 shows a basic system configuration with the ADSP-  
217x, two serial devices, a host processor, a boot EPROM, and  
optional external program and data memories. Up to 14K words  
of data memory and 16K words of program memory can be sup-  
ported. Programmable wait state generation allows the processor  
to interface easily to slow memories. T he ADSP-217x also pro-  
vides one external interrupt and two serial ports or three exter-  
nal interrupts and one serial port.  
Powerdown is initiated by either the powerdown pin (PWD)  
or the software powerdown force bit.  
Interrupt support allows an unlimited number of instructions  
to be executed before optionally powering down. T he  
powerdown interrupt also can be used as a non-maskable,  
edge sensitive interrupt.  
Clock Signals  
T he ADSP-217x can be clocked by either a crystal or by a T T L-  
compatible clock signal.  
Context clear/save control allows the processor to continue  
where it left off or start with a clean context when leaving the  
powerdown state.  
T he CLKIN input cannot be halted, changed during operation,  
or operated below the specified frequency during normal opera-  
tion. T he only exception is while the processor is in the Power-  
down State. For additional information, refer to Chapter 9,  
ADSP-2100 Family User’s Manual for detailed information on  
this powerdown feature.  
T he RESET pin also can be used to terminate powerdown,  
and the host software reset feature can be used to terminate  
powerdown under certain conditions.  
Powerdown acknowledge pin indicates when the processor has  
entered powerdown.  
If an external clock is used, it should be a T T L-compatible sig-  
nal running at half the instruction rate. T he signal is connected  
to the processor’s CLKIN input. When an external clock is  
used, the XT AL input must be left unconnected.  
Idle  
When the ADSP-217x is in the Idle Mode, the processor waits  
indefinitely in a low power state until an interrupt occurs. When  
an unmasked interrupt occurs, it is serviced; execution then  
continues with the instruction following the IDLE instruction.  
T he ADSP-217x uses an input clock with a frequency equal to  
half the instruction rate; a 16.67 MHz input clock yields a 30 ns  
processor cycle (which is equivalent to 33 MHz). Normally, in-  
structions are executed in a single processor cycle. All device  
timing is relative to the internal instruction clock rate, which is  
indicated by the CLKOUT signal when enabled.  
Slow Idle  
T he IDLE instruction is enhanced on the ADSP-217x to let the  
processor’s internal clock signal be slowed during IDLE, further  
reducing power consumption. T he reduced clock frequency, a  
–6–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
HIP CONTROL  
HOST  
PROCESSOR  
(OPTIONAL)  
CLOCK OR  
CRYSTAL  
HIP DATA/ADDR  
16  
6
9
4
7
SCLK  
RFS  
TFS  
DT  
CLKIN  
XTAL  
PWD  
PWDACK  
V
GND  
HOST  
MODE  
HIP  
DD  
CLKOUT  
RESET  
IRQ2  
SERIAL DEVICE  
(OPTIONAL)  
SERIAL  
PORT 0  
DR  
ADSP-217x  
BR  
SCLK  
BG  
RFS or IRQ0  
TFS or IRQ1  
DT or FO  
DR or FI  
SERIAL DEVICE  
(OPTIONAL)  
SERIAL  
PORT 1  
MMAP  
3
FL2-0  
DATA  
PMS  
RD  
WR  
ADDRESS  
14  
DMS  
BMS  
24  
D
23-22  
D
D
8
23-8  
24  
15-8  
14  
2
16  
CS  
A
D
D
A
CS  
CS  
A
D
BOOT MEMORY  
e.g., EPROM  
DATA MEMORY  
&
PERIPHERALS  
OE  
PROGRAM  
MEMORY  
OE  
OE  
27C64  
27C128  
27C256  
27C512  
WE  
WE  
(OPTIONAL)  
(OPTIONAL)  
NOTE:  
THE TWO MSBs OF THE DATA BUS ARE USED AS THE MSBs OF THE BOOT EPROM ADDRESS.  
THIS IS ONLY REQUIRED FOR THE 27C256 AND 27C512.  
Figure 3. ADSP-217x Basic System Configuration  
to stabilize. If RESET is activated any time after power-up, the  
clock continues to run and does not require stabilization time.  
Because the ADSP-217x includes an on-chip oscillator circuit,  
an external crystal may be used. T he crystal should be con-  
nected across the CLKIN and XT AL pins, with two capacitors  
connected as shown in Figure 4. A parallel-resonant, fundamen-  
tal frequency, microprocessor-grade crystal should be used.  
T he power-up sequence is defined as the total time required for  
the crystal oscillator circuit to stabilize after a valid VDD is ap-  
plied to the processor, and for the internal phase-locked loop  
(PLL) to lock onto the specific crystal frequency. A minimum of  
2000 CLKIN cycles ensures that the PLL has locked but does  
not include the crystal oscillator start-up time. During this  
power-up sequence the RESET signal should be held low. On  
any subsequent resets, the RESET signal must meet the mini-  
XTAL  
ADSP-217x  
CLKIN  
CLKOUT  
mum pulse width specification, tRSP  
.
T he RESET input contains some hysteresis; however, if you use  
an RC circuit to generate your RESET signal, the use of an ex-  
ternal Schmidt trigger is recommended.  
Figure 4. External Crystal Connections  
A clock output (CLKOUT ) signal is generated by the processor  
at the processor’s cycle rate. T his can be enabled and disabled  
by the CLKODIS bit in the SPORT 0 Autobuffer Control Reg-  
ister, DM[0x3FF3].  
T he master reset sets all internal stack pointers to the empty  
stack condition, masks all interrupts and clears the MST AT reg-  
ister. When RESET is released, if there is no pending bus re-  
quest and the chip is configured for booting (MMAP = 0), the  
boot-loading sequence is performed. T hen the first instruction is  
fetched from internal program memory location 0x0000.  
Reset  
T he RESET signal initiates a master reset of the ADSP-217x.  
T he RESET signal must be asserted during the power-up se-  
quence to assure proper initialization. RESET during initial  
power-up must be held long enough to allow the internal clock  
REV. A  
–7–  
ADSP-2171/ADSP-2172/ADSP-2173  
P r ogr am Mem or y Inter face  
T he optional ROM always resides at locations PM[0x0800]  
through PM[0x27FF] regardless of the state of the MMAP pin.  
T he ROM is enabled by setting the ROMENABLE bit in the  
Data Memory Wait State control register, DM[0x3FFE]. When  
the ROMENABLE bit is set to 1, addressing program memory  
in this range will access the on-chip ROM. When set to zero,  
addressing program memory in this range will access external  
program memory. T he ROMENABLE bit is set to 0 on chip re-  
set unless MMAP and BMODE = 1.  
T he on-chip program memory address bus (PMA) and the on-  
chip program memory data bus (PMD) are multiplexed with  
on-chip DMA and DMD buses, creating a single external data  
bus and a single external address bus. T he 14-bit address bus  
directly addresses up to 16K words. 10K words of memory for  
ADSP-217x with optional 8K ROM and 2K words of memory  
for the non-ROM version are on-chip. T he data bus is bidirec-  
tional and 24 bits wide to external program memory. Program  
memory may contain code and data.  
T he program memory interface can generate 0 to 7 wait states  
for external memory devices; default is to 7 wait states after  
RESET.  
T he program memory data lines are bidirectional. T he program  
memory select (PMS) signal indicates access to the program  
memory and can be used as a chip select signal. T he write (WR)  
signal indicates a write operation and is used as a write strobe.  
Boot Mem or y Inter face  
T he ADSP-217x can load on-chip memory from external boot  
memory space. T he boot memory space consists of 64K by 8-bit  
space, divided into eight separate 8K by 8-bit pages. T hree bits  
in the system control register select which page is loaded by the  
boot memory interface. Another bit in the system control regis-  
ter allows the user to force a boot loading sequence under soft-  
ware control. Boot loading from page 0 after RESET is initiated  
automatically if MMAP = 0.  
T he read (RD) signal indicates a read operation and is used as a  
read strobe or output enable signal.  
T he ADSP-217x writes data from its 16-bit registers to the 24-  
bit program memory using the PX register to provide the lower  
eight bits. When it reads data (not instructions) from 24-bit pro-  
gram memory to a 16-bit data register, the lower eight bits are  
placed in the PX register.  
T he boot memory interface can generate 0 to 7 wait states; it  
defaults to 7 wait states after RESET. T his allows the ADSP-  
217x to boot from a single low cost EPROM such as a 27C256.  
Program memory is booted one byte at a time and converted to  
24-bit program memory words.  
P r ogr am Mem or y Maps  
AD SP -217x  
Program memory can be mapped in two ways, depending on the  
state of the MMAP pin. Figure 5 shows the different configura-  
tions. When MMAP = 0, internal RAM occupies 2K words be-  
ginning at address 0x0000. In this configuration, the boot  
loading sequence (described in “Boot Memory Interface”) is au-  
tomatically initiated when RESET is released.  
T he BMS and RD signals are used to select and to strobe the  
boot memory interface. Only 8-bit data is read over the data  
bus, on pins D8–D15. T o accommodate addressing up to eight  
pages of boot memory, the two MSBs of the data bus are used  
in the boot memory interface as the two MSBs of the boot space  
address.  
0000  
0000  
0000  
2K  
2K  
2K  
INTERNAL RAM  
NOT BOOTED  
INTERNAL RAM  
BOOTED  
EXTERNAL  
07FF  
0800  
07FF  
0800  
07FF  
0800  
T he ADSP-2100 Family Assembler and Linker support the cre-  
ation of programs and data structures requiring multiple boot  
pages during execution.  
8K  
8K  
INTERNAL ROM  
(ROMENABLE = 1)  
INTERNAL ROM  
(ROMENABLE = 1)  
8K  
RD and WR must always be qualified by PMS, DMS, or BMS  
to ensure the correct program, data, or boot memory accessing.  
INTERNAL ROM  
(ROMENABLE  
DEFAULTS  
OR  
OR  
TO 1  
DURING RESET)  
H IP Booting  
8K  
8K  
T he ADSP-217x can also boot programs through its Host Inter-  
face Port. If BMODE = 1 and MMAP = 0, the ADSP-217x  
boots from the HIP. If BMODE = 0, the ADSP-217x boots  
through the data bus (in the same way as the ADSP-2101), as  
described above in “Boot Memory Interface.” For additional in-  
formation about HIP booting, refer to the ADSP-2100 Family  
User’s Manual, Chapter 7, “Host Interface Port.”  
EXTERNAL  
(ROMENABLE = 0)  
EXTERNAL  
(ROMENABLE = 0)  
27FF  
2800  
27FF  
2800  
27FF  
2800  
4K  
EXTERNAL  
6K  
6K  
37FF  
3800  
EXTERNAL  
EXTERNAL  
2K  
INTERNAL RAM  
3FFF  
3FFF  
3FFF  
T he ADSP-2100 Family Development Software includes a util-  
ity program called the HIP Splitter. T his utility allows the cre-  
ation of programs that can be booted via the ADSP-217x’s HIP,  
in a similar fashion as EPROM-bootable programs generated by  
the PROM Splitter utility.  
MMAP = 1  
BMODE = 1  
MMAP = 0  
BMODE = 0 or 1  
MMAP = 1  
BMODE = 0  
Figure 5. ADSP-217x Mem ory Maps  
When MMAP = 1, words of external program memory begin at  
address 0x0000 and internal RAM is located in the upper 2K  
words, beginning at address 0x3800. In this configuration, pro-  
gram memory is not loaded although it can be written to and  
read from under program control.  
–8–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
Stand-Alone RO M Execution  
Upon completion of the prototype manufacture, Analog Devices  
will ship prototype units and a delivery schedule update for pro-  
duction units. An invoice against your purchase order for the  
NRE charges is issued at this time.  
When the MMAP and BMODE pins both are set to 1, the  
ROM is automatically enabled and execution commences from  
program memory location 0x0800 at the start of ROM. T his  
feature lets an embedded design operate without external  
memory components. T o operate in this mode, the ROM coded  
program must copy an interrupt vector table to the appropriate  
locations in program memory RAM. In this mode, the ROM  
enable bit defaults to 1 during reset.  
T here is a charge for each ROM mask generated and a mini-  
mum order quantity. Consult your sales representative for  
details. A separate order must be placed for parts of a specific  
package type, temperature range, and speed grade.  
D ata Mem or y Inter face  
T he data memory address (DMA) bus is 14 bits wide. T he bidi-  
rectional external data bus is 24 bits wide, with the upper 16  
bits (D8–D23) used for data memory data (DMD) transfers.  
Table III. Boot Sum m ary Table  
BMO D E = 0  
BMO D E = 1  
T he data memory select (DMS) signal indicates access to the  
data memory and can be used as a chip select signal. T he write  
(WR) signal indicates a write operation and can be used as a  
write strobe. T he read (RD) signal indicates a read operation  
and can be used as a read strobe or output enable signal.  
MMAP = 0 Boot from EPROM,  
then execution starts  
at internal RAM  
Boot from HIP, then  
execution starts at  
internal RAM location  
0x0000  
location 0x0000  
MMAP = 1 No booting, execution  
Stand-Alone Mode,  
T he ADSP-217x supports memory-mapped I/O, with the pe-  
ripherals memory mapped into the data or program memory ad-  
dress spaces and accessed by the processor in the same manner.  
starts at external memory execution starts at  
location 0x0000  
internal ROM location  
0x0800  
D ata Mem or y Map  
T he on-chip data memory RAM resides in the 2K words of data  
memory beginning at address 0x3000, as shown in Figure 6. In  
addition, data memory locations from 0x3800 to the end of data  
memory at 0x3FFF are reserved. Control registers for the sys-  
tem, timer, wait state configuration, host interface port, and se-  
rial port operations are located in this region of memory.  
O r der ing P r ocedur e for AD SP -2172 P r ocessor s  
T o place an order for a custom ROM-coded ADSP-2172 pro-  
cessor, you must:  
1. Complete the following forms contained in the ADSP ROM  
Ordering Package, available from your Analog Devices sales  
representative:  
0000  
0000  
ADSP-2172 ROM Specification Form  
DWAIT 0  
(1K EXTERNAL)  
ROM Release Agreement  
ROM NRE Agreement & Minimum Quantity Order (MQO)  
Acceptance Agreement for Pre-production ROM Products.  
03FF  
0400  
DWAIT 1  
(1K EXTERNAL)  
12K  
EXTERNAL  
07FF  
0800  
2. Return the forms to Analog Devices along with two copies of  
the Memory Image File (.EXE file) of your ROM code. T he  
files must be supplied on two 3.5" or 5.25" floppy disks for  
IBM PC (DOS 2.01 or higher).  
DWAIT 2  
(10K EXTERNAL)  
2FFF  
3000  
2FFF  
3000  
3. Place a purchase order with Analog Devices for nonrecurring  
engineering charges (NRE) associated with ROM product  
development.  
2K  
INTERNAL  
DATA RAM  
37FF  
3800  
After this information is received, it is entered into Analog  
Devices’ ROM Manager System which assigns a custom ROM  
model number to the product. T his model number will be  
branded on all prototype and production units manufactured to  
these specifications.  
NO WAIT  
STATES  
1K  
RESERVED  
3BFF  
3C00  
MEMORY MAPPED  
REGISTERS/  
RESERVED  
T o minimize the risk of code being altered during this process,  
Analog Devices verifies that the .EXE files on both floppy disks are  
identical, and recalculates the checksums for the .EXE file en-  
tered into the ROM Manager System. The checksum data, in the  
form of a ROM memory map, a hard copy of the .EXE file, and a  
ROM Data Verification Form are returned to you for inspection.  
3FFF  
3FFF  
DATA MEMORY  
WAIT STATES  
Figure 6. ADSP-217x Data Mem ory Map  
T he remaining 12K of data memory is external. External data  
memory is divided into three zones, each associated with its own  
wait state generator. By mapping peripherals into different  
zones, you can accommodate peripherals with different wait  
state requirements. All zones default to 7 wait states after  
RESET. For compatibility with other ADSP-2100 Family pro-  
cessors, bit definitions for DWAIT 3 and DWAIT 4 are shown  
in the Data Memory Wait State Control Register, but they are  
not used by the ADSP-217x.  
A signed ROM Verification Form and a purchase order for pro-  
duction units are required prior to any product being manufac-  
tured. Prototype units may be applied toward the minimum  
order quantity.  
REV. A  
–9–  
ADSP-2171/ADSP-2172/ADSP-2173  
Bus Request & Bus Gr ant  
but cannot execute it because the bus is granted to some other  
processor. With the BGH signal, the other processor(s) in the  
system can be alerted that the ADSP-217x is hung and release  
the bus by deasserting bus request. Once the bus is released the  
ADSP-217x executes the external access and deasserts BGH.  
T his is a signal to the other processors that external memory is  
now available.  
T he ADSP-217x can relinquish control of the data and address  
buses to an external device. When the external device requires  
access to memory, it asserts the bus request (BR) signal. If the  
ADSP-217x is not performing an external memory access, then  
it responds to the active BR input in the following processor  
cycle by:  
three-stating the data and address buses and the PMS, DMS,  
BMS, RD, WR output drivers,  
AD SP -217X REGISTERS  
Figure 7 summarizes all the registers in the ADSP-217x. Some  
registers store values. For example, AX0 stores an ALU oper-  
and; I4 stores a DAG2 pointer. Other registers consist of control  
bits and fields, or status flags. For example, AST AT contains  
status flags from arithmetic operations, and fields in DWAIT  
control the numbers of wait states for different zones of data  
memory.  
asserting the bus grant (BG) signal, and  
halting program execution.  
If the Go Mode is enabled, the ADSP-217x will not halt pro-  
gram execution until it encounters an instruction that requires  
an external memory access.  
If the ADSP-217x is performing an external memory access  
when the external device asserts the BR signal, then it will not  
three-state the memory interfaces or assert the BG signal until  
the processor cycle after the access completes, which can be up  
to eight cycles later depending on the number of wait states.  
T he instruction does not need to be completed when the bus is  
granted. If a single instruction requires two external memory ac-  
cesses, the bus will be granted between the two accesses.  
A secondary set of registers in all computational units allows a  
single-cycle context switch.  
T he bit and field definitions for control and status registers are  
given in the rest of this section, except for IMASK, ICNT L and  
IFC, which are defined earlier in this data sheet. T he system  
control register, DWAIT register, timer registers, HIP control  
registers, HIP data registers, and SPORT control registers are  
all mapped into data memory; that is, registers are accessed by  
reading and writing data memory locations rather than register  
names. T he particular data memory address is shown with each  
memory-mapped register.  
When the BR signal is released, the processor releases the BG  
signal, reenables the output drivers and continues program ex-  
ecution from the point where it stopped.  
T he bus request feature operates at all times, including when  
the processor is booting and when RESET is active.  
Register bit values shown on the following pages are the default  
bit values after reset. If no values are shown, the bits are indeter-  
minate at reset. Reserved bits are shown in gray; these bits  
should always be written with zeros.  
T he new Bus Grant Hang logic and associated BGH pin allow  
the ADSP-217x to operate in a multiprocessor environment  
with a minimal number of “wasted” processor cycles. T he bus  
grant hang pin is asserted when the ADSP-217x desires a cycle,  
PROGRAM SEQUENCER  
ICNTL  
IFC  
PROGRAM  
ROM  
8K X 24  
HOST  
INTERFACE  
PORT  
SSTAT  
LOOP  
IMASK  
STACK  
MSTAT  
ASTAT  
DATA  
SRAM  
2K X 16  
DAG 1  
DAG 2  
CNTR  
OWRCNTR  
4 X 18  
I0 M0 L0  
I1 M1 L1  
I2 M2 L2  
I3 M3 L3  
I4 M4 L4  
I5 M5 L5  
I6 M6 L6  
I7 M7 L7  
0x3FE0-0x3FE5  
DATA  
PROGRAM  
SRAM  
2K X 24  
COUNT  
STACK  
4 X 14  
PC  
STACK  
16 X 14  
STATUS  
STACK  
12 X 25  
0x3FE6-0x3FE7  
0x3FE8  
STATUS  
HMASK  
0x3FFF  
0x3FFE  
SYSTEM CONTROL  
DM WAIT CONTROL  
PMA BUS  
14  
14  
DMA BUS  
PMD BUS  
24  
16  
PX  
DMD BUS  
FLAGS  
TIMER  
TX0  
RX1 TX1  
RX0  
AX1 AY0 AY1  
AX0  
MX0 MX1 MY0 MY1  
SI SE SB  
0x3FFD  
0x3FFC  
0x3FFB  
TPERIOD  
TCOUNT  
TSCALE  
0x3FFA-0x3FF3  
0x3FF2-0x3FEF  
CONTROL REGISTERS  
SPORT 1  
POWERDOWN  
CONTROL  
LOGIC  
ALU  
MAC  
SHIFTER  
SR0 SR1  
CONTROL REGISTERS  
SPORT 0  
AR AF  
MR0 MR1 MR2 MF  
Figure 7. ADSP-217x Registers Control Register  
–10–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
SSTAT (Read-Only)  
ASTAT  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
7
0
6
1
5
0
4
1
3
0
2
1
1
0
0
1
PC Stack Empty  
AZ ALU Result Zero  
AN ALU Result Negative  
AV ALU Overflow  
AC ALU Carry  
PC Stack Overflow  
Count Stack Empty  
Count Stack Overflow  
Status Stack Empty  
Status Stack Overflow  
Loop Stack Empty  
Loop Stack Overflow  
AS ALU X Input Sign  
AQ ALU Quotient  
MV MAC Overflow  
SS Shifter Input Sign  
MSTAT  
6
0
5
0
4
3
2
1
0
0
0
0
0
0
Data Register Bank Select  
0 = primary, 1 = secondary  
Bit Reverse Mode Enable (DAG1)  
ALU Overflow Latch Mode Enable  
AR Saturation Mode Enable  
MAC Result Placement  
0 = fractional, 1 = integer  
Timer Enable  
Go Mode Enable  
System Control Register  
0x3FFF  
15 14 13 12 11 10  
9
0
8
0
7
0
6
0
5
1
4
1
3
1
2
1
1
1
0
1
0
0
0
0
0
1
SPORT0 Enable  
1 = enabled, 0 = disabled  
PWAIT  
Program Memory  
Wait States  
SPORT1 Enable  
1 = enabled, 0 = disabled  
BWAIT  
Boot Wait States  
BPAGE  
Boot Page Select  
SPORT1 Configure  
1 = serial port  
0 = FI, FO, IRQ0, IRQ1, SCLK  
BFORCE  
Boot Force Bit  
Timer Registers  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0x3FFD  
0x3FFC  
0x3FFB  
TPERIOD Period Register  
TCOUNT Counter Register  
TSCALE Scaling Register  
0
0
0
0
0
0
0
0
Control Registers  
–11–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
ROM Enable/Data Memory Wait State  
Control Register  
0x3FFE  
15 14 13 12 11 10  
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
0
1
1
1
1
1
DWAIT4  
DWAIT3  
DWAIT2  
DWAIT1  
DWAIT0  
ROM enable  
1 = enable  
0 = disable  
SPORT0 Multichannel Receive Word Enable Registers  
SPORT0 Multichannel Transmit Word Enable Registers  
1 = Channel Enabled  
0 = Channel Ignored  
1 = Channel Enabled  
0 = Channel Ignored  
0x3FFA  
0x3FF8  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16  
0x3FF9  
0x3FF7  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
SPORT0 Control Register  
0x3FF6  
15 14 13 12 11 10  
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
0
0
0
0
0
0
Multichannel Enable MCE  
Internal Serial Clock Generation ISCLK  
Receive Frame Sync Required RFSR  
Receive Frame Sync Width RFSW  
SLEN Serial Word Length  
DTYPE Data Format  
00 = right justify, zero-fill unused MSBs  
01 = right justify, sign extend into unused MSBs  
10 = compand using µ-law  
11 = compand using A-law  
Multichannel Frame Delay MFD  
Only If Multichannel Mode Enabled  
INVRFS Invert Receive Frame Sync  
INVTFS Invert Transmit Frame Sync  
(or INVTDV Invert Transmit Data Valid  
Only If Multichannel Mode Enabled)  
Transmit Frame Sync Required TFSR  
Transmit Frame Sync Width TFSW  
IRFS Internal Receive Frame Sync Enable  
ITFS Internal Transmit Frame Sync Enable  
(or MCL Multichannel Length; 1 = 32 words, 0 = 24 words  
Only If Multichannel Mode Enabled)  
Control Registers  
–12–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
SPORT0 SCLKDIV  
Serial Clock Divide Modulus  
0x3FF5  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
SPORT0 RFSDIV  
Receive Frame Sync Divide Modulus  
0x3FF4  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
SPORT0 Autobuffer Control Register  
0x3FF3  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
RBUF  
CLKODIS  
Receive Autobuffering Enable  
CLKOUT Disable Control Bit  
TBUF  
BIASRND  
Transmit Autobuffering Enable  
MAC Biased Rounding Control Bit  
RMREG  
TIREG  
Receive Autobuffer M Register  
Transmit Autobuffer I Register  
RIREG  
TMREG  
Receive Autobuffer I Register  
Transmit Autobuffer M Register  
SPORT1 Control Register  
0x3FF2  
15 14 13 12 11 10  
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
0
0
0
0
0
Flag Out (Read Only)  
Internal Serial Clock Generation ISCLK  
Receive Frame Sync Required RFSR  
Receive Frame Sync Width RFSW  
Transmit Frame Sync Required TFSR  
Transmit Frame Sync Width TFSW  
SLEN Serial Word Length  
DTYPE Data Format  
00 = right justify, zero-fill unused MSBs  
01 = right justify, sign extend into unused MSBs  
10 = compand using µ-law  
11 = compand using A-law  
INVRFS Invert Receive Frame Sync  
INVTFS Invert Transmit Frame Sync  
IRFS Internal Receive Frame Sync Enable  
ITFS Internal Transmit Frame Sync Enable  
Control Registers  
REV. A  
–13–  
ADSP-2171/ADSP-2172/ADSP-2173  
SPORT1 SCLKDIV  
SPORT1 RFSDIV  
Serial Clock Divide Modulus  
Receive Frame Sync Divide Modulus  
0x3FF1  
0x3FF0  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
SPORT1 Autobuffer Control Register  
0x3FEF  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
RBUF  
XTALDIS  
XTAL Pin Drive Disable  
Receive Autobuffer Enable  
during Powerdown  
1 = disabled, 0 = enabled  
(disable XTAL pin when no external  
crystal connected)  
TBUF  
Transmit Autobuffer Enable  
RMREG  
XTALDELAY  
4096 Cycle Delay Enable  
1 = delay, 0 = no delay  
Receive M Register  
RIREG  
Receive I Register  
PDFORCE  
TMREG  
Powerdown Force  
Transmit M Register  
PUCR  
Powerup Context Reset Enable  
1 = soft reset (context clear),  
0 = resume execution  
TIREG  
Transmit I Register  
HMASK Register  
0x3FE8  
HIP Data Registers  
0x3FE5  
HDR5  
15 14 13 12 11 10  
9
8
7
6
5
4
3
0
2
0
1
0
0
0
15 14 13 12 11 10 9  
8 7 6 5 4 3 2 1 0  
0
0
0
0
0
0
0
0
0
0
0
0
0x3FE4  
HDR4  
HDR3  
HDR2  
HDR1  
HDR0  
Host HDR5  
Read  
Host HDR0  
Write  
Host HDR4  
Read  
Host HDR1  
Write  
0x3FE3  
0x3FE2  
0x3FE1  
Host HDR3  
Read  
Host HDR2  
Write  
Host HDR2  
Read  
Host HDR3  
Write  
Host HDR1  
Read  
Host HDR4  
Write  
Host HDR0  
Read  
Host HDR5  
Write  
0x3FE0  
Interrupt Enables  
1 = Enable  
0 = Disable  
Control Registers  
–14–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
HSR6  
0x3FE6  
15 14 13 12 11 10  
9
0
8
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
0
0
0
0
0
0
0
0
2171 HDR5 Write  
2171 HDR4 Write  
2171 HDR3 Write  
2171 HDR2 Write  
2171 HDR1 Write  
2171 HDR0 Write  
Host HDR0 Write  
Host HDR1 Write  
Host HDR2 Write  
Host HDR3 Write  
Host HDR4 Write  
Host HDR5 Write  
HSR7  
0x3FE7  
15 14 13 12 11 10  
9
0
8
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
0
0
0
0
0
0
1
0
2171 HDR0 Write  
2171 HDR1 Write  
2171 HDR2 Write  
2171 HDR3 Write  
2171 HDR4 Write  
2171 HDR5 Write  
Overwrite Mode  
Software Reset  
Control Registers  
Biased Rounding  
INSTRUCTIO N SET D ESCRIP TIO N  
A new mode allows biased rounding in addition to the normal  
unbiased rounding. When the BIASRND bit is set to 0, the nor-  
mal unbiased rounding operations occur. When the BIASRND  
bit is set to 1, biased rounding occurs instead of the normal un-  
biased rounding. When operating in biased rounding mode all  
rounding operations with MR0 set to 0x8000 will round up,  
rather than only rounding odd MR1 values up. For example:  
T he ADSP-217x assembly language instruction set has an alge-  
braic syntax that was designed for ease of coding and read-  
ability. T he assembly language, which takes full advantage of  
the processor’s unique architecture, offers the following benefits:  
T he algebraic syntax eliminates the need to remember cryptic  
assembler mnemonics. For example, a typical arithmetic add  
instruction, such as AR = AX0 + AY0, resembles a simple  
equation.  
MR value before RND biased RND result unbiased RND result  
00-0000-8000  
00-0001-8000  
00-0000-8001  
00-0001-8001  
00-0000-7FFF  
00-0001-7FFF  
00-0001-8000  
00-0002-8000  
00-0001-8001  
00-0002-8001  
00-0000-7FFF  
00-0001-7FFF  
00-0000-8000  
00-0002-8000  
00-0001-8001  
00-0002-8001  
00-0000-7FFF  
00-0001-7FFF  
Every instruction assembles into a single, 24-bit word that can  
execute in a single instruction cycle.  
T he syntax is a superset ADSP-2100 Family assembly lan-  
guage and is completely source and object code compatible  
with other family members. Programs may need to be relo-  
cated to utilize internal memory and conform to the ADSP-  
217x’s interrupt vector and reset vector map.  
T his mode only has an effect when the MR0 register contains  
0x8000, all other rounding operation work normally. T his mode  
was added to allow more efficient implementation of bit speci-  
fied algorithms which specify biased rounding such as the GSM  
speech compression routines. Unbiased rounding is preferred  
for most algorithms.  
Sixteen condition codes are available. For conditional jump,  
call, return, or arithmetic instructions, the condition can be  
checked and the operation executed in the same instruction  
cycle.  
Multifunction instructions allow parallel execution of an arith-  
metic instruction with up to two fetches or one write to pro-  
cessor memory space during a single instruction cycle.  
Note: BIASRND bit is Bit 12 of the SPORT 0 Autobuffer  
Control register.  
Consult the ADSP-2100 Family User’s Manual for a complete  
description of the syntax and an instruction set reference.  
REV. A  
–15–  
ADSP-2171/ADSP-2172/ADSP-2173  
Exam ple Code  
T he following example is a code fragment that performs the  
filter tap update for an adaptive (least-mean-squared algorithm)  
filter. Notice that the computations in the instructions are  
written like algebraic equations.  
MF=MX0*MY1 (RND), MX0=DM (I2,M1); /* MF=error*beta */  
MR=MX0*MF (RND), AY0=PM (I6,MS);  
DO adapt UNT IL CE;  
AR=MR1 + AY0, MX0=DM (I2,M1), AY0=PM (I6,M7);  
adapt: PM(I6,M6) =AR, MR=MX0*MF (RND);  
MODIFY (I2, M3);  
MODIFY (I6, M7);  
/* Point to oldest data */  
/* Point to start of data */  
Inter r upt Enable  
T he ADSP-217x supports an interrupt enable instruction. Inter-  
rupts are enabled by default at reset. T he instruction source  
code is specified as follows:  
Syntax:  
ENA INT S;  
D escr iption: Executing the ENA INT S instruction allows all  
unmasked interrupts to be serviced again.  
Inter r upt D isable  
T he ADSP-217x supports an interrupt disable instruction. T he  
instruction source code is specified as follows:  
Syntax:  
DIS INT S;  
D escr iption: Reset enables interrupt servicing. Executing the  
DIS INT S instruction causes all interrupts to be  
masked without changing the contents of the  
IMASK register. Disabling interrupts does not  
affect the autobuffer circuitry, which will operate  
normally whether or not interrupts are enabled.  
T he disable interrupt instruction masks all user  
interrupts including the powerdown interrupt.  
–16–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2171/ADSP-2172–SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS  
K Grade  
B Grade  
P aram eter  
Min  
Max  
Min  
Max  
Unit  
VDD  
T AMB  
Supply Voltage  
Ambient Operating T emperature  
4.5  
0
5.5  
+70  
4.5  
–40  
5.5  
+85  
V
°C  
ELECTRICAL CHARACTERISTICS  
K/B Grades  
Min  
P aram eter  
Test Conditions  
Max  
Unit  
VIH  
VIH  
VIH  
VIL  
VOH  
Hi-Level Input Voltage1, 2  
Hi-Level CLKIN Voltage  
Hi-Level RESET Voltage  
Lo-Level Input Voltage1, 3  
Hi-Level Output Voltage1, 4, 5  
@ VDD = max  
@ VDD = max  
@ VDD = max  
@ VDD = min  
@ VDD = min  
IOH = –0.5 mA  
@ VDD = min  
IOH = –100 µA6  
@ VDD = min  
IOL = 2 mA  
@ VDD = max  
VIN = VDD max  
@ VDD = max  
VIN = 0 V  
@ VDD = max,  
VIN = VDD max8  
@ VDD = max,  
VIN = 0 V8  
@ VDD = max  
@ VDD = max  
tCK = 30 ns11  
Lowest Power Mode12  
@ VIN = 2.5 V,  
fIN = 1.0 MHz,  
T AMB = 25°C  
@ VIN = 2.5 V,  
fIN = 1.0 MHz,  
T AMB = 25°C  
2.0  
2.2  
2.2  
V
V
V
V
0.8  
2.4  
V
VDD – 0.3  
V
VOL  
IIH  
Lo-Level Output Voltage1, 4, 5  
Hi-Level Input Current3  
Lo-Level Input Current3  
T ristate Leakage Current7  
T ristate Leakage Current7  
0.4  
10  
10  
10  
V
µA  
µA  
µA  
IIL  
IOZH  
IOZL  
10  
18  
µA  
mA  
IDD  
IDD  
Supply Current (Idle)9, 10  
Supply Current (Dynamic)10  
75  
100  
mA  
µA  
IDD  
CI  
Supply Current (Powerdown)10  
Input Pin Capacitance3, 6, 13  
8
8
pF  
pF  
CO  
Output Pin Capacitance6, 7, 13, 14  
NOT ES  
1Bidirectional pins: D0-D23, RFS0, RFS1, SCLK0, SCLK1, T FS0, T FS1, HD0-HD15/HAD0-HAD15.  
2Input only pins: RESET, IRQ2, BR, MMAP, DR0, DR1, HSEL, HSIZE, BMODE, HMD0, HMD1, HRD/HWR, HWR/HDS, PWD, HA2/ALE, HA1-0.  
3Input only pins: CLKIN, RESET, IRQ2, BR, MMAP, DR0, DR1, HSEL, HSIZE, BMODE, HMD0, HMD1, HRD/HWR, HWR/HDS, PWD, HA2/ALE, HA1-0.  
4Output pins: BG, PMS, DMS, BMS, RD, WR, PWDACK, A0-A13, DT 0, DT 1, CLKOUT , HACK, FL2-0, BGH.  
5Although specified for T T L outputs, all ADSP-2171/ADSP-2172 outputs are CMOS-compatible and will drive to V DD and GND, assuming no dc loads.  
6Guaranteed but not tested.  
7T hree-statable pins: A0-A13, D0-D23, PMS, DMS, BMS, RD, WR, DT 0, DT 1, SCLK0, SCLK1, T FS0, T FS1, RFS0, RSF1, HD0-HD15/HAD0-HAD15.  
80 V on BR, CLKIN Active (to force three-state condition).  
9Idle refers to ADSP-2171/ADSP-2172 state of operation during execution of IDLE instruction. Deasserted pins are driven to either V DD or GND. Current reflects  
device operation with CLKOUT disabled.  
10Current reflects device operating with no output loads.  
11  
V
IN  
= 0.4 V and 2.4 V. For typical figures for supply currents, refer to “Power Dissipation” section.  
12See Chapter 9, of the ADSP-2100 Family User’s Manual for details.  
13Applies to T QFP and PQFP package types.  
14Output pin capacitance is the capacitive load for any three-state output pin.  
Specifications subject to change without notice.  
REV. A  
–17–  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2171/ADSP-2172  
ABSO LUTE MAXIMUM RATINGS*  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Output Voltage Swing . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Operating T emperature Range (Ambient) . . . . –40°C to +85°C  
Storage T emperature Range . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature (5 sec) T QFP . . . . . . . . . . . . . . . . +280°C  
Lead T emperature (5 sec) PQFP . . . . . . . . . . . . . . . . . +280°C  
*Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T hese are stress ratings only, and functional  
operation of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ESD SENSITIVITY  
T he ADSP-217x is an ESD (electrostatic discharge) sensitive device. Electrostatic charges readily  
accumulate on the human body and equipment and can discharge without detection. Permanent  
damage may occur to devices subjected to high energy electrostatic discharges.  
T he ADSP-217x features proprietary ESD protection circuitry to dissipate high energy discharges  
(Human Body Model). Per method 3015 of MIL-ST D-883, the ADSP-217x has been classified as  
a Class 1 device.  
WARNING!  
ESD SENSITIVE DEVICE  
Proper ESD precautions are recommended to avoid performance degradation or loss of function-  
ality. Unused devices must be stored in conductive foam or shunts, and the foam should be  
discharged to the destination before devices are removed.  
ADSP-2171/ADSP-2172 TIMING PARAMETERS  
ADSP-2171/ADSP-2172  
GENERAL NO TES  
Use the exact timing information given. Do not attempt to de-  
rive parameters from the addition or subtraction of others.  
MEMO RY REQ UIREMENTS  
T his chart links common memory device specification names  
and ADSP-2171/ADSP-2172 timing parameters for your  
convenience.  
While addition or subtraction would yield meaningful results for  
an individual device, the values given in this data sheet reflect  
statistical variations and worst cases. Consequently, you cannot  
meaningfully add up parameters to derive longer times.  
Com m on  
P aram eter  
Nam e  
Mem ory D evice  
Specification Nam e  
TIMING NO TES  
Function  
Switching characteristics specify how the processor changes its  
signals. You have no control over this timing; it is dependent on  
the internal design. T iming requirements apply to signals that  
are controlled outside the processor, such as the data input for a  
read operation.  
tASW  
tAW  
A0-A13, DMS, PMS  
Setup before WR Low  
A0-A13, DMS, PMS  
before WR Deasserted  
A0-A13, DMS, PMS  
Hold after WR Deasserted  
Address Setup to  
Write Start  
Setup Address Setup  
to Write End  
tWRA  
Address Hold T ime  
T iming requirements guarantee that the processor operates cor-  
rectly with another device. Switching characteristics tell you  
what the device will do under a given circumstance. Also, use  
the switching characteristics to ensure any timing requirement  
of a device connected to the processor (such as memory) is  
satisfied.  
tDW  
tDH  
tRDD  
tAA  
Data Setup before WR High Data Setup T ime  
Data Hold after WR High  
RD Low to Data Valid  
A0-A13, DMS, PMS,  
BMS to Data Valid  
Data Hold T ime  
OE to Data Valid  
Address Access T ime  
–18–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2171/ADSP-2172  
P aram eter  
Min  
Max  
Unit  
Clock Signals  
tCK is defined as 0.5 tCKI. T he ADSP-2171/ADSP-2172 uses an  
input clock with a frequency equal to half the instruction rate; a  
clock (which is equivalent to 60 ns) yields a 30 ns processor cycle  
16.67 MHz input (equivalent to 33 MHz). tCK values within the  
range of 0.5 tCKI period should be substituted for all relevant  
timing parameters to obtain specification value.  
Example: tCKH = 0.5tCK – 7 ns = 0.5 (30 ns) – 7 ns = 8 ns.  
T iming Requirement:  
tCKI  
tCKIL  
tCKIH  
CLKIN Period  
CLKIN Width Low  
CLKIN Width High  
60  
20  
20  
150  
ns  
ns  
ns  
Switching Characteristic:  
tCKL  
tCKH  
tCKOH  
CLKOUT Width Low  
CLKOUT Width High  
CLKIN High to CLKOUT High  
0.5tCK – 7  
0.5tCK – 7  
0
ns  
ns  
ns  
20  
Contr ol Signals  
T iming Requirement:  
1
tRSP  
RESET Width Low  
5tCK  
ns  
NOT E  
1Applies after power-up sequence is complete. Internal phase lock loop requires no more than 2000 CLKIN cycles assuming stable CLKIN (not including crystal  
oscillator start-up time).  
tCKI  
tCKIH  
CLKIN  
tCKIL  
tCKOH  
tCKH  
CLKOUT  
tCKL  
Figure 8. Clock Signals  
REV. A  
–19–  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2171/ADSP-2172  
P aram eter  
Min  
Max  
Unit  
Inter r upts and Flags  
T iming Requirement:  
tIFS  
tIFH  
IRQx or FI Setup before CLKOUT Low1, 2, 3  
IRQx or FI Hold after CLKOUT High1, 2, 3  
0.25tCK + 15  
0.25tCK  
ns  
ns  
Switching Characteristic:  
tFOH  
Flag Output Hold after CLKOUT Low4  
0.5tCK – 7  
ns  
ns  
tFOD  
Flag Output Delay from CLKOUT Low4  
0.5tCK + 5  
NOT ES  
1If IRQx and FI inputs meet tIFS and tIFH setup/hold requirements, they will be recognized during the current clock cycle; otherwise the signals will be recognized on  
the following cycle. (Refer to “Interrupt Controller Operation” in the Program Control chapter of the User’s Manual for further information on interrupt servicing.)  
2Edge-sensitive interrupts require pulse widths greater than 10 ns; level-sensitive interrupts must be held low until serviced.  
3IRQx = IRQ0, IRQ1, and IRQ2.  
4Flag Output = FL0, FL1, FL2, and FO.  
tFOD  
CLKOUT  
tFOH  
FLAG  
OUTPUTS  
tIFH  
IRQx  
FI  
tIFS  
Figure 9. Interrupts and Flags  
–20–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2171/ADSP-2172  
P aram eter  
Min  
Max  
Unit  
Bus Request/Gr ant  
T iming Requirement:  
tBH  
tBS  
BR Hold after CLKOUT High1  
BR Setup before CLKOUT Low1  
0.25tCK + 2  
0.25tCK + 17  
ns  
ns  
Switching Characteristic:  
tSD  
CLKOUT High to DMS, PMS, BMS,  
0.25tCK + 16  
ns  
RD, WR Disable  
tSDB  
tSE  
DMS, PMS, BMS, RD, WR  
Disable to BG Low  
BG High to DMS, PMS, BMS,  
RD, WR Enable  
DMS, PMS, BMS, RD, WR  
Enable to CLKOUT High  
DMS, PMS, BMS, RD, WR  
Disable to BGH Low2  
0
ns  
ns  
ns  
ns  
ns  
0
tSEC  
tSDBH  
tSEH  
0.25tCK – 7  
0
0
BGH High to DMS, PMS, BMS,  
RD, WR Enable2  
NOT ES  
1BR is an asynchronous signal. If BR meets the setup/hold requirements, it will be recognized during the current clock cycle; otherwise the signal will be recognized  
on the following cycle. Refer to the ADSP-2100 Family User’s Manual for BR/BG cycle relationships.  
2BGH is asserted when the bus is granted and the processor requires control of the bus to continue.  
tBH  
CLKOUT  
BR  
tBS  
CLKOUT  
PMS, DMS  
BMS, RD  
tSD  
tSEC  
WR  
BG  
tSDB  
tSE  
BGH  
tSDBH  
tSEH  
Figure 10. Bus Request–Bus Grant  
REV. A  
–21–  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2171/ADSP-2172  
P aram eter  
Min  
Max  
Unit  
Mem or y Read  
T iming Requirement:  
tRDD  
tAA  
tRDH  
RD Low to Data Valid  
A0–A13, PMS, DMS, BMS to Data Valid  
Data Hold from RD High  
0.5tCK – 9 + w  
0.75tCK – 10.5 + w  
ns  
ns  
ns  
0
Switching Characteristic:  
tRP  
RD Pulse Width  
CLKOUT High to RD Low  
A0–A13, PMS, DMS, BMS Setup before RD Low  
A0–A13, PMS, DMS, BMS Hold after RD Deasserted  
RD High to RD or WR Low  
0.5tCK – 5 + w  
0.25tCK – 5  
0.25tCK – 6  
0.25tCK – 3  
0.5tCK – 5  
ns  
ns  
ns  
ns  
ns  
tCRD  
tASR  
tRDA  
tRWR  
0.25tCK + 7  
w = wait states x tCK  
.
CLKOUT  
A0–A13  
DMS, PMS  
BMS  
tRDA  
RD  
tASR  
tRP  
tRWR  
tCRD  
D
tRDD  
tRDH  
tAA  
WR  
Figure 11. Mem ory Read  
–22–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2171/ADSP-2172  
P aram eter  
Min  
Max  
Unit  
Mem or y Wr ite  
Switching Characteristic:  
tDW  
tDH  
tWP  
tWDE  
tASW  
tDDR  
tCWR  
tAW  
Data Setup before WR High  
Data Hold after WR High  
WR Pulse Width  
WR Low to Data Enabled  
A0–A13, DMS, PMS Setup before WR Low  
Data Disable before WR or RD Low  
CLKOUT High to WR Low  
A0–A13, DMS, PMS, Setup before WR Deasserted  
A0–A13, DMS, PMS Hold after WR Deasserted  
WR High to RD or WR Low  
0.5 tCK – 7 + w  
0.25tCK – 2  
0.5tCK – 5 + w  
0
0.25tCK – 6  
0.25tCK – 7  
0.25tCK – 5  
0.75tCK – 9 + w  
0.25tCK – 3  
0.5tCK – 5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.25 tCK + 7  
tWRA  
tWWR  
w = wait states x tCK  
.
CLKOUT  
A0–A13  
DMS, PMS  
tWRA  
WR  
tASW  
tWP  
tWWR  
tAW  
tDH  
tDDR  
tCWR  
D
tDW  
tWDE  
RD  
Figure 12. Mem ory Write  
REV. A  
–23–  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2171/ADSP-2172  
P aram eter  
Min  
Max  
Unit  
Ser ial P or ts  
T iming Requirement:  
tSCK  
tSCS  
tSCH  
tSCP  
SCLK Period  
50  
4
7
ns  
ns  
ns  
ns  
DR/T FS/RFS Setup before SCLK Low  
DR/T FS/RFS Hold after SCLK Low  
SCLKIN Width  
20  
Switching Characteristic:  
tCC  
CLKOUT High to SCLKOUT  
SCLK High to DT Enable  
SCLK High to DT Valid  
T FS/RFSOUT Hold after SCLK High  
T FS/RFSOUT Delay from SCLK High  
DT Hold after SCLK High  
T FS(Alt) to DT Enable  
T FS(Alt) to DT Valid  
0.25tCK  
0
0.25tCK + 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCDE  
tSCDV  
tRH  
15  
15  
0
tRD  
tSCDH  
tT DE  
tT DV  
tSCDD  
tRDV  
0
0
15  
15  
15  
SCLK High to DT Disable  
RFS (Multichannel, Frame Delay Zero) to DT Valid  
CLKOUT  
tCC  
tCC  
tSCK  
SCLK  
tSCP  
tSCS  
tSCH  
tSCP  
DR  
RFS  
IN  
TFS  
IN  
tRD  
tRH  
RFS  
OUT  
OUT  
TFS  
tSCDD  
tSCDV  
tSCDE  
tSCDH  
DT  
tTDE  
tTDV  
TFS  
ALTERNATE  
FRAME MODE  
tRDV  
RFS  
MULTICHANNEL MODE,  
FRAME DELAY 0  
(MFD = 0)  
Figure 13. Serial Ports  
–24–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2171/ADSP-2172  
P aram eter  
Min  
Max  
Unit  
H ost Inter face P or t  
Separate Data and Address (HMD1 = 0)  
Read Strobe and Write Strobe (HMD0 = 0)  
T iming Requirement:  
tHSU  
HA2–0 Setup before Start of Write or Read1, 2  
5
5
3
3
ns  
ns  
ns  
ns  
ns  
tHDSU  
tHWDH  
tHH  
Data Setup before End of Write3  
Data Hold after End of Write3  
HA2–0 Hold after End of Write or Read3, 4  
Read or Write Pulse Width5  
tHRWP  
20  
Switching Characteristic:  
tHSHK  
tHKH  
tHDE  
tHDD  
tHRDH  
tHRDD  
HACK Low after Start of Write or Read1, 2  
0
0
0
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
HACK Hold after End of Write or Read3, 4  
Data Enabled after Start of Read2  
Data Valid after Start of Read2  
18  
7
Data Hold after End of Read4  
0
Data Disabled after End of Read4  
NOT ES  
1Start of Write = HWR Low and HSEL Low.  
2Start of Read = HRD Low and HSEL Low.  
3End of Write = HWR High or HSEL High.  
4End of Read = HRD High or HSEL High.  
5Read Pulse Width = HRD Low and HSEL Low, Write Pulse Width = HWR Low and HSEL Low.  
HA2–0  
ADDRESS  
tHRWP  
HSEL  
tHSU  
Host Write Cycle  
tHH  
HWR  
HACK  
tHKH  
tHSHK  
DATA  
HD15–0  
tHWDH  
tHDSU  
ADDRESS  
tHRWP  
HA2–0  
HSEL  
tHSU  
Host Read Cycle  
tHH  
HRD  
HACK  
tHKH  
tHSHK  
DATA  
HD15–0  
tHDE  
tHDD  
tHRDH  
tHRDD  
Figure 14. Host Interface Port (HMD1 = 0, HMD0 = 0)  
REV. A  
–25–  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2171/ADSP-2172  
P aram eter  
Min  
Max  
Unit  
H ost Inter face P or t  
Separate Data and Address (HMD1 = 0)  
Read Strobe and Write Strobe (HMD0 = 1)  
T iming Requirement:  
tHSU  
HA2–0, HRW Setup before Start of Write or Read1  
Data Setup before End of Write2  
5
5
3
3
ns  
ns  
ns  
ns  
ns  
tHDSU  
tHWDH  
tHH  
Data Hold after End of Write2  
HA2–0, HRW Hold after End of Write or Read2  
Read or Write Pulse Width3  
tHRWP  
20  
Switching Characteristic:  
tHSHK  
tHKH  
tHDE  
HACK Low after Start of Write or Read1  
0
0
0
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
HACK Hold after End of Write or Read2  
Data Enabled after Start of Read1  
Data Valid after Start of Read1  
tHDD  
tHRDH  
tHRDD  
18  
7
Data Hold after End of Read2  
0
Data Disabled after End of Read2  
NOT ES  
1Start of Write or Read = HDS Low and HSEL Low.  
2End of Write or Read = HDS High and HSEL High.  
3Read or Write Pulse Width = HDS Low and HSEL Low.  
ADDRESS  
tHRWP  
HA2–0  
HSEL  
tHSU  
Host Write Cycle  
HRW  
tHH  
HDS  
HACK  
tHSHK  
tHKH  
DATA  
tHDSU  
HD15–0  
tHWDH  
ADDRESS  
tHRWP  
HA2–0  
HSEL  
tHSU  
HRW  
Host Read Cycle  
tHH  
HDS  
HACK  
tHKH  
tHSHK  
DATA  
tHRDH  
tHRDD  
HD15–0  
tHDE  
tHDD  
Figure 15. Host Interface Port (HMD1 = 0, HMD0 = 1)  
–26–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2171/ADSP-2172  
P aram eter  
Min  
Max  
Unit  
H ost Inter face P or t  
Multiplexed Data and Address (HMD1 = 1)  
Read Strobe and Write Strobe (HMD0 = 0)  
T iming Requirement:  
tHALP  
tHASU  
tHAH  
tHALS  
tHDSU  
tHWDH  
tHRWP  
ALE Pulse Width  
10  
5
2
10  
5
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HAD15–0 Address Setup, before ALE Low  
HAD15–0 Address Hold after ALE Low  
Start of Write or Read after ALE Low1, 2  
HAD15–0 Data Setup before End of Write3  
HAD15–0 Data Hold after End of Write3  
Read or Write Pulse Width4  
20  
Switching Characteristic:  
tHSHK  
tHKH  
tHDE  
tHDD  
tHRDH  
tHRDD  
HACK Low after Start of Write or Read1, 2  
0
0
0
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
HACK Hold after End of Write or Read3, 5  
HAD15–0 Data Enabled after Start of Read2  
HAD15–0 Data Valid after Start of Read2  
HAD15–0 Data Hold after End of Read  
HAD15–0 Data Disabled after End of Read5  
18  
7
0
NOT ES  
1Start of Write = HWR Low and HSEL Low.  
2Start of Read = HRD Low and HSEL Low.  
3End of Write = HWR High or HSEL High.  
4Read Pulse Width = HRD Low and HSEL Low, Write Pulse Width = HWR Low and HSEL Low.  
5End of Read = HRD High or HSEL High.  
ALE  
tHALP  
tHRWP  
HSEL  
tHALS  
Host Write Cycle  
HWR  
tHSHK  
tHKH  
tHASU  
tHAH  
HACK  
ADDRESS  
DATA  
tHDSU  
HD15–0  
tHWDH  
ALE  
tHALP  
tHRWP  
Host Read Cycle  
HSEL  
HRD  
tHALS  
tHKH  
tHSHK  
tHASU tHAH  
ADDRESS  
HACK  
tHDE  
HAD15–0  
DATA  
tHRDH  
tHRDD  
tHDD  
Figure 16. Host Interface Port (HMD1 = 1, HMD0 = 0)  
–27–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2171/ADSP-2172  
P aram eter  
Min  
Max  
Unit  
Host Interface Port  
Multiplexed Data and Address (HMD1 = 1)  
Read Strobe and Write Strobe (HMD0 = 1)  
T iming Requirement:  
tHALP  
tHASU  
tHAH  
tHALS  
tHSU  
tHDSU  
tHWDH  
tHH  
ALE Pulse Width  
10  
5
2
10  
5
5
3
3
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HAD15–0 Address Setup before ALE Low  
HAD15–0 Address Hold after ALE Low  
Start of Write or Read after ALE Low1  
HRW Setup before Start of Write or Read1  
HAD15–0 Data Setup before End of Write2  
HAD15–0 Data Hold after End of Write2  
HRW Hold after End of Write or Read2  
Read or Write Pulse Width3  
tHRWP  
Switching Characteristic:  
tHSHK  
tHKH  
tHDE  
tHDD  
tHRDH  
tHRDD  
HACK Low after Start of Write or Read1  
0
0
0
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
HACK Hold after End of Write or Read2  
HAD15–0 Data Enabled after Start of Read1  
HAD15–0 Data Valid after Start of Read1  
HAD15–0 Data Hold after End of Read2  
HAD15–0 Data Disabled after End of Read2  
18  
7
0
NOT ES  
1Start of Write or Read = HDS Low and HSEL Low.  
2End of Write or Read = HDS High and HSEL High.  
3Read or Write Pulse Width = HDS Low and HSEL Low.  
ALE  
tHALP  
tHRWP  
HSEL  
tHH  
tHALS  
Host Write Cycle  
HRW  
tHSU  
HDS  
tHSHK  
tHKH  
tHASU  
tHAH  
HACK  
HD15–0  
ALE  
ADDRESS  
DATA  
tHDSU  
tHWDH  
tHALP  
tHALS  
tHRWP  
HSEL  
tHH  
HRW  
tHSU  
Host Read Cycle  
HDS  
HACK  
tHKH  
tHSHK  
tHASU  
tHAH  
tHDE  
HD15–0  
ADDRESS  
DATA  
tHRDH  
tHDD  
tHRDD  
Figure 17. Host Interface Port (HMD1 = 1, HMD0 = 1)  
–28–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
1
POWER, INTERNAL  
400  
ADSP-2171/ADSP-2172  
382mW  
375  
350  
ENVIRO NMENTAL CO ND ITIO NS  
Ambient T emperature Rating:  
325  
301mW  
300  
T AMB = T CASE – (PD × θC A  
)
V
= 5.5V  
DD  
275  
250  
225  
200  
175  
150  
125  
T CASE = Case T emperature in °C  
PD = Power Dissipation in W  
θC A = T hermal Resistance (Case-to-Ambient)  
θJA = T hermal Resistance (Junction-to-Ambient)  
θJC = T hermal Resistance (Junction-to-Case)  
V
= 5.0V  
DD  
229mW  
186mW  
V
= 4.5V  
DD  
148mW  
110mW  
P ackage  
θJA  
θJC  
θCA  
T QFP  
PQFP  
50°C/W  
41°C/W  
2°C/W  
10°C/W  
48°C/W  
31°C/W  
13 15 17 19 21 23 25 27 29 31 33  
/ tCK – MHz  
1
1, 2  
POWER, IDLE  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
P O WER D ISSIP ATIO N  
T o determine total power dissipation in a specific application,  
the following equation should be applied for each output:  
82mW  
2
C × VDD × f  
V
= 5.5V  
DD  
64mW  
48mW  
C = load capacitance, f = output switching frequency.  
Exam ple:  
V
= 5.0V  
DD  
48mW  
In an application where external data memory is used and no  
other outputs are active, power dissipation is calculated as  
follows:  
V
= 4.5V  
DD  
37mW  
26mW  
Assumptions:  
External data memory is accessed every cycle with 50% of the  
address pins switching.  
13 15 17 19 21 23 25 27 29 31 33  
/ tCK – MHz  
1
External data memory writes occur every other cycle with  
50% of the data pins switching.  
3
POWER, IDLE n MODES  
72  
68  
64  
60  
56  
52  
48  
44  
40  
36  
32  
28  
24  
20  
16  
Each address and data pin has a 10 pF total load at the pin.  
T he application operates at VDD = 5.0 V and tCK = 30 ns.  
64mW  
IDLE;  
2
Total Power Dissipation = PINT + (C × VDD × f )  
PINT = internal power dissipation from Power vs. Frequency  
graph (Figure 18).  
2
(C × VDD × f ) is calculated for each output:  
# of  
P ins × C  
37mW  
2
× VD D  
× f  
31mW  
28mW  
Address, DMS  
Data Output, WR  
RD  
8
9
1
1
× 10 pF × 52  
V
× 33.3 MHz  
× 16.67 MHz = 37.5 mW  
× 16.67 MHz =  
× 33.3 MHz  
=
66.6 mW  
IDLE (16)  
× 10 pF × 52  
V
V
V
IDLE (128)  
× 10 pF × 52  
× 10 pF × 52  
4.2 mW  
8.3 mW  
23mW  
20mW  
CLKOUT  
=
116.6 mW  
T otal power dissipation for this example is PINT + 116.6 mW.  
13 15 17 19 21 23 25 27 29 31 33  
/ tCK – MHz  
1
VALID FOR ALL TEMPERATURE GRADES.  
1
POWER REFLECTS DEVICE OPERATING WITH NO OUTPUT LOADS.  
IDLE REFERS TO ADSP-2171 STATE OF OPERATION DURING  
EXECUTION OF IDLE INSTRUCTION. DEASSERTED PINS ARE  
2
DRIVEN TO EITHER V  
OR GND. POWER REFLECTS DEVICE  
DD  
OPERATING WITH CLKOUT DISABLED.  
TYPICAL POWER DISSIPATION AT 5.0V V  
3
DURING EXECUTION  
DD  
OF IDLE N INSTRUCTION (CLOCK FREQUENCY REDUCTION).  
POWER REFLECTS DEVICE OPERATING WITH CLKOUT DISABLED.  
Figure 18. Power vs. Frequency  
REV. A  
–29–  
ADSP-2171/ADSP-2172/ADSP-2173  
tDECAY, is dependent on the capacitative load, CL, and the cur-  
rent load, iL, on the output pin. It can be approximated by the  
following equation:  
ADSP-2171/ADSP-2172  
CAP ACITIVE LO AD ING  
Figures 19 and 20 show the capacitive loading characteristics of  
the ADSP-2171/ADSP-2172.  
CL • 0.5V  
tDECAY  
=
iL  
from which  
28  
24  
20  
tDIS = tMEASURED tDECAY  
is calculated. If multiple pins (such as the data bus) are dis-  
abled, the measurement value is that of the last pin to stop  
driving.  
VDD = 4.5V  
16  
3.0V  
INPUT  
1.5V  
0.0V  
12  
8
2.0V  
1.5V  
0.3V  
OUTPUT  
4
Figure 21. Voltage Reference Levels for AC Measure-  
m ents (Except Output Enable/Disable)  
25  
50  
75  
100  
125  
150  
CL – pF  
O utput Enable Tim e  
Output pins are considered to be enabled when that have made  
a transition from a high-impedance state to when they start driv-  
ing. T he output enable time (tENA) is the interval from when a  
reference signal reaches a high or low voltage level to when the  
output has reached a specified high or low trip point, as shown  
in the Output Enable/Disable diagram. If multiple pins (such as  
the data bus) are enabled, the measurement value is that of the  
first pin to start driving.  
Figure 19. Typical Output Rise Tim e vs. Load Capacitance,  
CL (at Maxim um Am bient Operating Tem perature)  
+14  
+12  
+10  
+8  
REFERENCE  
SIGNAL  
+4  
+2  
tMEASURED  
tDIS  
tENA  
V
V
OH  
OH  
NOMINAL  
–2  
(MEASURED)  
(MEASURED)  
V
V
(MEASURED) – 0.5V  
(MEASURED) +0.5V  
OH  
2.0V  
1.0V  
OUTPUT  
OL  
V
V
OL  
OL  
tDECAY  
(MEASURED)  
(MEASURED)  
25  
50  
75  
100  
– pF  
125  
150  
C
L
OUTPUT STOPS  
DRIVING  
OUTPUT STARTS  
DRIVING  
Figure 20. Typical Output Valid Delay or Hold vs. Load  
Capacitance, CL (at Maxim um Am bient Operating  
Tem perature)  
HIGH-IMPEDANCE STATE. TEST CONDITIONS CAUSE  
THIS VOLTAGE LEVEL TO BE APPROXIMATELY 1.5V.  
Figure 22. Output Enable/Disable  
TEST CO ND ITIO NS  
O utput D isable Tim e  
I
OL  
Output pins are considered to be disabled when they have  
stopped driving and started a transition from the measured out-  
put high or low voltage to a high impedance state. T he output  
disable time (tDIS) is the difference of tMEASURED and tDECAY, as  
shown in the Output Enable/Disable diagram. T he time is the  
interval from when a reference signal reaches a high or low volt-  
age level to when the output voltages have changed by 0.5 V  
from the measured output high or low voltage. T he decay time,  
TO  
OUTPUT  
PIN  
+1.5V  
50pF  
I
OH  
Figure 23. Equivalent Device Loading for AC Measure-  
m ents (Including All Fixtures)  
–30–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2173–SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS  
K Grade  
B Grade  
P aram eter  
Min  
Max  
Min  
Max  
Unit  
VDD  
T AMB  
Supply Voltage  
Ambient Operating T emperature  
3.0  
0
3.6  
+70  
3.0  
–40  
3.6  
+85  
V
°C  
ELECTRICAL CHARACTERISTICS  
K/B Grades  
Min  
P aram eter  
Test Conditions  
Max  
Unit  
VIH  
VIH  
VIH  
VIL  
VOH  
Hi-Level Input Voltage1, 2  
Hi-Level CLKIN Voltage  
Hi-Level RESET Voltage  
Lo-Level Input Voltage1, 3  
Hi-Level Output Voltage1, 4, 5  
@ VDD = max  
@ VDD = max  
@ VDD = max  
@ VDD = min  
@ VDD = min  
IOH = –0.5 mA  
@ VDD = min  
IOH = –100 mA6  
@ VDD = min  
IOL = 2 mA  
@ VDD = max  
VIN = VDD max  
@ VDD = max  
VIN = 0 V  
@ VDD = max,  
VIN = VDD max8  
@ VDD = max,  
VIN = 0 V8  
@ VDD = max  
@ VDD = max  
tCK = 50 ns11  
Lowest Power Mode12  
@ VIN = 2.5 V,  
fIN = 1.0 MHz,  
T AMB = 25°C  
@ VIN = 2.5 V,  
fIN = 1.0 MHz,  
T AMB = 25°C  
2.0  
2.0  
2.2  
V
V
V
V
0.4  
2.4  
V
VDD – 0.3  
V
VOL  
IIH  
Lo-Level Output Voltage1, 4, 5  
Hi-Level Input Current3  
Lo-Level Input Current3  
T ristate Leakage Current7  
T ristate Leakage Current7  
0.4  
10  
10  
10  
V
µA  
µA  
µA  
IIL  
IOZH  
IOZL  
10  
7
µA  
mA  
IDD  
IDD  
Supply Current (Idle)9, 10  
Supply Current (Dynamic)10  
27  
100  
mA  
µA  
IDD  
CI  
Supply Current (Powerdown)10  
Input Pin Capacitance3, 6, 13  
8
8
pF  
pF  
CO  
Output Pin Capacitance6, 7, 13, 14  
NOT ES  
1Bidirectional pins: D0-D23, RFS0, RFS1, SCLK0, SCLK1, T FS0, T FS1, HD0-HD15/HAD0-HAD15.  
2Input only pins: RESET, IRQ2, BR, MMAP, DR0, DR1, HSEL, HSIZE, BMODE, HMD0, HMD1, HRD/HWR, HWR/HDS, PWD, HA2/ALE, HA1-0.  
3Input only pins: CLKIN, RESET, IRQ2, BR, MMAP, DR0, DR1, HSEL, HSIZE, BMODE, HMD0, HMD1, HRD/HWR, HWR/HDS, PWD, HA2/ALE, HA1-0.  
4Output pins: BG, PMS, DMS, BMS, RD, WR, PWDACK, A0-A13, DT 0, DT 1, CLKOUT , HACK, FL2-0, BGH.  
5Although specified for T T L outputs, all ADSP-2173 outputs are CMOS-compatible and will drive to V DD and GND, assuming no dc loads.  
6Guaranteed but not tested.  
7T hree-statable pins: A0-A13, D0-D23, PMS, DMS, BMS, RD, WR, DT 0, DT 1, SCLK0, SCLK1, T FS0, T FS1, RFS0, RSF1, HD0-HD15/HAD0-HAD15.  
80 V on BR, CLKIN Active (to force three-state condition).  
9Idle refers to ADSP-2173 state of operation during execution of IDLE instruction. Deasserted pins are driven to either V DD or GND. Current reflects  
device operation with CLKOUT disabled.  
10Current reflects device operating with no output loads.  
11  
V
IN  
= 0.4 V and 2.4 V. For typical figures for supply currents, refer to “Power Dissipation” section.  
12See Chapter 9, of the ADSP-2100 Family User’s Manual for details.  
13Applies to T QFP and PQFP package types.  
14Output pin capacitance is the capacitve load for any three-state output pin.  
Specifications subject to change without notice.  
REV. A  
–31–  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2173 TIMING PARAMETERS  
GENERAL NO TES  
MEMO RY REQ UIREMENTS  
Use the exact timing information given. Do not attempt to de-  
rive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results for  
an individual device, the values given in this data sheet reflect  
statistical variations and worst cases. Consequently, you cannot  
meaningfully add up parameters to derive longer times.  
T his chart links common memory device specification names  
and ADSP-2173 timing parameters for your convenience.  
Com m on  
P aram eter  
Nam e  
Mem ory D evice  
Specification Nam e  
Function  
tASW  
tAW  
A0-A13, DMS, PMS  
Setup before WR Low  
A0-A13, DMS, PMS  
before WR Deasserted  
A0-A13, DMS, PMS  
Hold after WR Deasserted  
Address Setup to  
Write Start  
Setup Address Setup  
to Write End  
TIMING NO TES  
Switching characteristics specify how the processor changes its  
signals. You have no control over this timing; it is dependent on  
the internal design. T iming requirements apply to signals that  
are controlled outside the processor, such as the data input for a  
read operation.  
tWRA  
Address Hold T ime  
tDW  
tDH  
tRDD  
tAA  
Data Setup before WR High Data Setup T ime  
T iming requirements guarantee that the processor operates cor-  
rectly with another device. Switching characteristics tell you  
what the device will do under a given circumstance. Also, use  
the switching characteristics to ensure any timing requirement  
of a device connected to the processor (such as memory) is  
satisfied.  
Data Hold after WR High  
RD Low to Data Valid  
A0-A13, DMS, PMS,  
BMS to Data Valid  
Data Hold T ime  
OE to Data Valid  
Address Access T ime  
–32–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2173  
P aram eter  
Min  
Max  
Unit  
Clock Signals  
tCK is defined as 0.5 tCKI. T he ADSP-2173 uses an input clock with  
a frequency equal to half the instruction rate; a 10.0 MHz input  
clock (which is equivalent to 100 ns) yields a 50 ns processor cycle  
(equivalent to 20 MHz). tCK values within the range of 0.5 tCKI  
period should be substituted for all relevant timing parameters  
to obtain specification value.  
Example: tCKH = 0.5tCK – 10 ns = 0.5 (50 ns) – 10 ns = 15 ns.  
T iming Requirement:  
tCKI  
tCKIL  
tCKIH  
CLKIN Period  
CLKIN Width Low  
CLKIN Width High  
100  
20  
20  
160  
ns  
ns  
ns  
Switching Characteristic:  
tCKL  
tCKH  
tCKOH  
CLKOUT Width Low  
CLKOUT Width High  
CLKIN High to CLKOUT High  
0.5tCK – 10  
0.5tCK – 10  
0
ns  
ns  
ns  
25  
Contr ol Signals  
T iming Requirement:  
1
tRSP  
RESET Width Low  
5tCK  
ns  
NOT E  
1Applies after power-up sequence is complete. Internal phase lock loop requires no more than 2000 CLKIN cycles assuming stable CLKIN (not including crystal  
oscillator start-up time).  
tCKI  
tCKIH  
CLKIN  
tCKIL  
tCKOH  
tCKH  
CLKOUT  
tCKL  
Figure 24. Clock Signals  
REV. A  
–33–  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2173  
P aram eter  
Min  
Max  
Unit  
Inter r upts and Flags  
T iming Requirement:  
tIFS  
tIFH  
IRQx or FI Setup before CLKOUT Low1, 2, 3  
IRQx or FI Hold after CLKOUT High1, 2, 3  
0.25tCK + 23  
0.25tCK  
ns  
ns  
Switching Characteristic:  
tFOH  
Flag Output Hold after CLKOUT Low4  
0.5tCK – 10  
ns  
ns  
tFOD  
Flag Output Delay from CLKOUT Low4  
0.5tCK + 5  
NOT ES  
1If IRQx and FI inputs meet tIFS and tIFH setup/hold requirements, they will be recognized during the current clock cycle; otherwise the signals will be recognized on  
the following cycle. (Refer to “Interrupt Controller Operation” in the Program Control chapter of the User’s Manual for further information on interrupt servicing.)  
2Edge-sensitive interrupts require pulse widths greater than 10 ns; level-sensitive interrupts must be held low until serviced.  
3IRQx = IRQ0, IRQ1, and IRQ2.  
4Flag Output = FL0, FL1, FL2, and FO.  
tFOD  
CLKOUT  
tFOH  
FLAG  
OUTPUTS  
tIFH  
IRQx  
FI  
tIFS  
Figure 25. Interrupts and Flags  
–34–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2173  
P aram eter  
Min  
Max  
Unit  
Bus Request/Gr ant  
T iming Requirement:  
tBH  
tBS  
BR Hold after CLKOUT High1  
BR Setup before CLKOUT Low1  
0.25tCK + 2  
0.25tCK + 22  
ns  
ns  
Switching Characteristic:  
tSD  
CLKOUT High to DMS, PMS, BMS,  
0.25tCK + 16  
ns  
RD, WR Disable  
tSDB  
tSE  
DMS, PMS, BMS, RD, WR  
Disable to BG Low  
BG High to DMS, PMS, BMS,  
RD, WR Enable  
DMS, PMS, BMS, RD, WR  
Enable to CLKOUT High  
DMS, PMS, BMS, RD, WR  
Disable to BGH Low2  
0
ns  
ns  
ns  
ns  
ns  
0
tSEC  
tSDBH  
tSEH  
0.25tCK – 10  
0
0
BGH High to DMS, PMS, BMS,  
RD, WR Enable2  
NOT ES  
1BR is an asynchronous signal. If BR meets the setup/hold requirements, it will be recognized during the current clock cycle; otherwise the signal will be recognized  
on the following cycle. Refer to the ADSP-2100 Family User’s Manual for BR/BG cycle relationships.  
2BGH is asserted when the bus is granted and the processor requires control of the bus to continue.  
tBH  
CLKOUT  
BR  
tBS  
CLKOUT  
PMS, DMS  
BMS, RD  
tSD  
tSEC  
WR  
BG  
tSDB  
tSE  
BGH  
tSDBH  
tSEH  
Figure 26. Bus Request–Bus Grant  
REV. A  
–35–  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2173  
P aram eter  
Min  
Max  
Unit  
Mem or y Read  
T iming Requirement:  
tRDD  
tAA  
tRDH  
RD Low to Data Valid  
A0–A13, PMS, DMS, BMS to Data Valid  
Data Hold from RD High  
0.5tCK – 15 + w  
0.75tCK – 20.5 + w  
ns  
ns  
ns  
0
Switching Characteristic:  
tRP  
RD Pulse Width  
CLKOUT High to RD Low  
A0–A13, PMS, DMS, BMS Setup before RD Low  
A0–A13, PMS, DMS, BMS Hold after RD Deasserted  
RD High to RD or WR Low  
0.5tCK – 5 + w  
0.25tCK – 5  
0.25tCK – 7  
0.25tCK – 3  
0.5tCK – 5  
ns  
ns  
ns  
ns  
ns  
tCRD  
tASR  
tRDA  
tRWR  
0.25tCK + 10  
w = wait states x tCK  
.
CLKOUT  
A0–A13  
DMS, PMS  
BMS  
tRDA  
RD  
tASR  
tRP  
tRWR  
tCRD  
D
tRDD  
tRDH  
tAA  
WR  
Figure 27. Mem ory Read  
–36–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2173  
P aram eter  
Min  
Max  
Unit  
Mem or y Wr ite  
Switching Characteristic:  
tDW  
tDH  
tWP  
tWDE  
tASW  
tDDR  
tCWR  
tAW  
Data Setup before WR High  
Data Hold after WR High  
WR Pulse Width  
WR Low to Data Enabled  
A0–A13, DMS, PMS Setup before WR Low  
Data Disable before WR or RD Low  
CLKOUT High to WR Low  
A0–A13, DMS, PMS, Setup before WR Deasserted  
A0–A13, DMS, PMS Hold after WR Deasserted  
WR High to RD or WR Low  
0.5 tCK – 7 + w  
0.25tCK – 2  
0.5tCK – 5 + w  
0
0.25tCK – 7  
0.25tCK – 7  
0.25tCK – 5  
0.75tCK – 11.5 + w  
0.25tCK – 3  
0.5tCK – 5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.25 tCK + 10  
tWRA  
tWWR  
w = wait states x tCK  
.
CLKOUT  
A0–A13  
DMS, PMS  
tWRA  
WR  
tASW  
tWP  
tWWR  
tAW  
tDH  
tDDR  
tCWR  
D
tDW  
tWDE  
RD  
Figure 28. Mem ory Write  
REV. A  
–37–  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2173  
P aram eter  
Min  
Max  
Unit  
Ser ial P or ts  
T iming Requirement:  
tSCK  
tSCS  
tSCH  
tSCP  
SCLK Period  
76.9  
8
10  
28  
ns  
ns  
ns  
ns  
DR/T FS/RFS Setup before SCLK Low  
DR/T FS/RFS Hold after SCLK Low  
SCLKIN Width  
Switching Characteristic:  
tCC  
CLKOUT High to SCLKOUT  
SCLK High to DT Enable  
SCLK High to DT Valid  
T FS/RFSOUT Hold after SCLK High  
T FS/RFSOUT Delay from SCLK High  
DT Hold after SCLK High  
T FS(Alt) to DT Enable  
T FS(Alt) to DT Valid  
0.25tCK  
0
0.25tCK + 15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCDE  
tSCDV  
tRH  
20  
20  
0
tRD  
tSCDH  
tT DE  
tT DV  
tSCDD  
tRDV  
0
0
19  
25  
20  
SCLK High to DT Disable  
RFS (Multichannel, Frame Delay Zero) to DT Valid  
CLKOUT  
tCC  
tCC  
tSCK  
SCLK  
tSCP  
tSCS  
tSCH  
tSCP  
DR  
RFS  
IN  
TFS  
IN  
tRD  
tRH  
RFS  
OUT  
OUT  
TFS  
tSCDD  
tSCDV  
tSCDE  
tSCDH  
DT  
tTDE  
tTDV  
TFS  
ALTERNATE  
FRAME MODE  
tRDV  
RFS  
MULTICHANNEL MODE,  
FRAME DELAY 0  
(MFD = 0)  
Figure 29. Serial Ports  
–38–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2173  
P aram eter  
Min  
Max  
Unit  
H ost Inter face P or t  
Separate Data and Address (HMD1 = 0)  
Read Strobe and Write Strobe (HMD0 = 0)  
T iming Requirement:  
tHSU  
HA2–0 Setup before Start of Write or Read1, 2  
8
8
3
3
ns  
ns  
ns  
ns  
ns  
tHDSU  
tHWDH  
tHH  
Data Setup before End of Write3  
Data Hold after End of Write3  
HA2–0 Hold after End of Write or Read3, 4  
Read or Write Pulse Width5  
tHRWP  
30  
Switching Characteristic:  
tHSHK  
tHKH  
tHDE  
tHDD  
tHRDH  
tHRDD  
HACK Low after Start of Write or Read1, 2  
0
0
0
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
HACK Hold after End of Write or Read3, 4  
Data Enabled after Start of Read2  
Data Valid after Start of Read2  
23  
15  
Data Hold after End of Read4  
0
Data Disabled after End of Read4  
NOT ES  
1Start of Write = HWR Low and HSEL Low.  
2Start of Read = HRD Low and HSEL Low.  
3End of Write = HWR High or HSEL High.  
4End of Read = HRD High or HSEL High.  
5Read Pulse Width = HRD Low and HSEL Low, Write Pulse Width = HWR Low and HSEL Low.  
HA2–0  
ADDRESS  
tHRWP  
HSEL  
tHSU  
Host Write Cycle  
tHH  
HWR  
HACK  
tHKH  
tHSHK  
DATA  
HD15–0  
tHWDH  
tHDSU  
ADDRESS  
tHRWP  
HA2–0  
HSEL  
tHSU  
Host Read Cycle  
tHH  
HRD  
HACK  
tHKH  
tHSHK  
DATA  
HD15–0  
tHDE  
tHDD  
tHRDH  
tHRDD  
Figure 30. Host Interface Port (HMD1 = 0, HMD0 = 0)  
REV. A  
–39–  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2173  
P aram eter  
Min  
Max  
Unit  
H ost Inter face P or t  
Separate Data and Address (HMD1 = 0)  
Read Strobe and Write Strobe (HMD0 = 1)  
T iming Requirement:  
tHSU  
HA2–0, HRW Setup before Start of Write or Read1  
Data Setup before End of Write2  
8
8
3
3
ns  
ns  
ns  
ns  
ns  
tHDSU  
tHWDH  
tHH  
Data Hold after End of Write2  
HA2–0, HRW Hold after End of Write or Read2  
Read or Write Pulse Width3  
tHRWP  
30  
Switching Characteristic:  
tHSHK  
tHKH  
tHDE  
tHDD  
tHRDH  
tHRDD  
HACK Low after Start of Write or Read1  
0
0
0
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
HACK Hold after End of Write or Read2  
Data Enabled after Start of Read1  
Data Valid after Start of Read1  
23  
15  
Data Hold after End of Read2  
0
Data Disabled after End of Read2  
NOT ES  
1Start of Write or Read = HDS Low and HSEL Low.  
2End of Write or Read = HDS High and HSEL High.  
3Read or Write Pulse Width = HDS Low and HSEL Low.  
ADDRESS  
tHRWP  
HA2–0  
HSEL  
tHSU  
Host Write Cycle  
HRW  
tHH  
HDS  
HACK  
tHSHK  
tHKH  
DATA  
tHDSU  
HD15–0  
tHWDH  
ADDRESS  
tHRWP  
HA2–0  
HSEL  
tHSU  
HRW  
Host Read Cycle  
tHH  
HDS  
HACK  
tHKH  
tHSHK  
DATA  
tHRDH  
tHRDD  
HD15–0  
tHDE  
tHDD  
Figure 31. Host Interface Port (HMD1 = 0, HMD0 = 1)  
–40–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2173  
P aram eter  
Min  
Max  
Unit  
H ost Inter face P or t  
Multiplexed Data and Address (HMD1 = 1)  
Read Strobe and Write Strobe (HMD0 = 0)  
T iming Requirement:  
tHALP  
tHASU  
tHAH  
tHALS  
tHDSU  
tHWDH  
tHRWP  
ALE Pulse Width  
15  
5
2
15  
8
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HAD15–0 Address Setup, before ALE Low  
HAD15–0 Address Hold after ALE Low  
Start of Write or Read after ALE Low1, 2  
HAD15–0 Data Setup before End of Write3  
HAD15–0 Data Hold after End of Write3  
Read or Write Pulse Width5  
30  
Switching Characteristic:  
tHSHK  
tHKH  
tHDE  
tHDD  
tHRDH  
tHRDD  
HACK Low after Start of Write or Read1, 2  
0
0
0
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
HACK Hold after End of Write or Read3, 4  
HAD15–0 Data Enabled after Start of Read2  
HAD15–0 Data Valid after Start of Read2  
HAD15–0 Data Hold after End of Read  
HAD15–0 Data Disabled after End of Read4  
23  
15  
0
NOT ES  
1Start of Write = HWR Low and HSEL Low.  
2Start of Read = HRD Low and HSEL Low.  
3End of Write = HWR High or HSEL High.  
4End of Read = HRD High or HSEL High.  
5Read Pulse Width = HRD Low and HSEL Low, Write Pulse Width = HWR Low and HSEL Low.  
ALE  
tHALP  
tHRWP  
HSEL  
tHALS  
Host Write Cycle  
HWR  
tHSHK  
tHKH  
tHASU  
tHAH  
HACK  
ADDRESS  
DATA  
tHDSU  
HD15–0  
tHWDH  
ALE  
tHALP  
tHRWP  
HSEL  
HRD  
Host Read Cycle  
tHALS  
tHKH  
tHSHK  
tHASU tHAH  
ADDRESS  
HACK  
tHDE  
HAD15–0  
DATA  
tHRDH  
tHRDD  
tHDD  
Figure 32. Host Interface Port (HMD1 = 1, HMD0 = 0)  
–41–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
ADSP-2173  
P aram eter  
Min  
Max  
Unit  
Host Interface Port  
Multiplexed Data and Address (HMD1 = 1)  
Read Strobe and Write Strobe (HMD0 = 1)  
T iming Requirement:  
tHALP  
tHASU  
tHAH  
tHALS  
tHSU  
tHDSU  
tHWDH  
tHH  
ALE Pulse Width  
15  
5
2
15  
8
8
3
3
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HAD15–0 Address Setup before ALE Low  
HAD15–0 Address Hold after ALE Low  
Start of Write or Read after ALE Low1  
HRW Setup before Start of Write or Read1  
HAD15–0 Data Setup before End of Write2  
HAD15–0 Data Hold after End of Write2  
HRW Hold after End of Write or Read2  
Read or Write Pulse Width3  
tHRWP  
Switching Characteristic:  
tHSHK  
tHKH  
tHDE  
tHDD  
tHRDH  
tHRDD  
HACK Low after Start of Write or Read1  
0
0
0
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
HACK Hold after End of Write or Read2  
HAD15–0 Data Enabled after Start of Read1  
HAD15–0 Data Valid after Start of Read1  
HAD15–0 Data Hold after End of Read2  
HAD15–0 Data Disabled after End of Read2  
23  
15  
0
NOT ES  
1Start of Write or Read = HDS Low and HSEL Low.  
2End of Write or Read = HDS High and HSEL High.  
3Read or Write Pulse Width = HDS Low and HSEL Low.  
ALE  
tHALP  
tHRWP  
HSEL  
tHH  
tHALS  
Host Write Cycle  
HRW  
tHSU  
HDS  
tHSHK  
tHKH  
tHASU  
tHAH  
HACK  
HD15–0  
ALE  
ADDRESS  
DATA  
tHDSU  
tHWDH  
tHALP  
tHALS  
tHRWP  
HSEL  
tHH  
HRW  
tHSU  
Host Read Cycle  
HDS  
HACK  
tHKH  
tHSHK  
tHASU  
tHAH  
tHDE  
HD15–0  
ADDRESS  
DATA  
tHRDH  
tHDD  
tHRDD  
Figure 33. Host Interface Port (HMD1 = 1, HMD0 = 1)  
–42–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
1
POWER, INTERNAL  
ADSP-2173  
89 mW  
90  
ENVIRO NMENTAL CO ND ITIO NS  
Ambient T emperature Rating:  
85  
80  
75  
71 mW  
57 mW  
T AMB = T CASE – (PD × θC A  
T CASE = Case T emperature in °C  
PD = Power Dissipation in W  
θC A = T hermal Resistance (Case-to-Ambient)  
θJA = T hermal Resistance (Junction-to-Ambient)  
θJC = T hermal Resistance (Junction-to-Case)  
)
70  
65  
60  
55  
50  
55 mW  
44 mW  
32 mW  
45  
40  
35  
P ackage  
θJA  
θJC  
θCA  
T QFP  
PQFP  
50°C/W  
41°C/W  
2°C/W  
10°C/W  
48°C/W  
31°C/W  
12 13 14  
15 16 17 18 19 20  
1/ tCK – MHz  
1, 2  
POWER, IDLE  
P O WER D ISSIP ATIO N  
T o determine total power dissipation in a specific application,  
the following equation should be applied for each output:  
20  
20.5 mW  
16.2 mW  
19  
18  
17  
16  
15  
14  
13  
12  
11  
2
C × VDD × f  
C = load capacitance, f = output switching frequency.  
Exam ple:  
15.5 mW  
11.8 mW  
In an application where external data memory is used and no  
other outputs are active, power dissipation is calculated as  
follows:  
12.7 mW  
Assumptions:  
10  
9
8.5 mW  
External data memory is accessed every cycle with 50% of the  
address pins switching.  
12 13 14 15 16 17 18 19 20  
1/ tCK – MHz  
External data memory writes occur every other cycle with  
50% of the data pins switching.  
3
POWER, IDLE n MODES  
Each address and data pin has a 10 pF total load at the pin.  
T he application operates at VDD = 3.3 V and tCK = 50 ns.  
16  
15  
16.2 mW  
IDLE;  
2
Total Power Dissipation = PINT + (C × VDD × f )  
14  
13  
12  
11  
10  
9
PINT = internal power dissipation from Power vs. Frequency  
graph (Figure 18).  
2
11.8 mW  
(C × VDD × f ) is calculated for each output:  
# of  
P ins × C  
7.8 mW  
7.2 mW  
IDLE (16)  
2
8
× VD D  
× f  
6.8 mW  
6.2 mW  
7
Address, DMS  
Data Output, WR  
RD  
8
9
1
1
× 10 pF × 3.32  
× 10 pF × 3.32  
× 10 pF × 3.32  
× 10 pF × 3.32  
V
V
V
V
× 20 MHz  
× 10 MHz  
× 10 MHz  
× 20 MHz  
=
=
=
=
17.4 mW  
9.8 mW  
1.1 mW  
2.2 mW  
30.5 mW  
IDLE (128)  
6
5
CLKOUT  
12 13 14 15 16 17 18 19 20  
1/ tCK – MHz  
VALID FOR ALL TEMPERATURE GRADES.  
1
T otal power dissipation for this example is PINT + 30.5 mW.  
POWER REFLECTS DEVICE OPERATING WITH NO OUTPUT LOADS.  
IDLE REFERS TO ADSP-2173 STATE OF OPERATION DURING  
EXECUTION OF IDLE INSTRUCTION. DEASSERTED PINS ARE  
2
DRIVEN TO EITHER V  
OR GND. POWER REFLECTS DEVICE  
DD  
OPERATING WITH CLKOUT DISABLED.  
TYPICAL POWER DISSIPATION AT 3.3V V  
3
DURING EXECUTION  
DD  
OF IDLE n INSTRUCTION (CLOCK FREQUENCY REDUCTION).  
POWER REFLECTS DEVICE OPERATING WITH CLKOUT DISABLED.  
Figure 34. Power vs. Frequency  
REV. A  
–43–  
ADSP-2171/ADSP-2172/ADSP-2173  
tDECAY, is dependent on the capacitative load, CL, and the cur-  
rent load, iL, on the output pin. It can be approximated by the  
following equation:  
ADSP-2173  
CAP ACITIVE LO AD ING  
Figures 35 and 36 show the capacitive loading characteristics of  
the ADSP-2173.  
CL • 0.5V  
tDECAY  
=
iL  
from which  
tDIS = tMEASURED tDECAY  
28  
is calculated. If multiple pins (such as the data bus) are dis-  
abled, the measurement value is that of the last pin to stop  
driving.  
24  
VDD = 3.3 V  
20  
16  
12  
8
V
DD  
INPUT  
2
V
DD  
OUTPUT  
2
Figure 37. Voltage Reference Levels for AC Measure-  
m ents (Except Output Enable/Disable)  
25  
50  
75  
100  
CL – pF  
125  
150  
O utput Enable Tim e  
Output pins are considered to be enabled when that have made  
a transition from a high-impedance state to when they start driv-  
ing. T he output enable time (tENA) is the interval from when a  
reference signal reaches a high or low voltage level to when the  
output has reached a specified high or low trip point, as shown  
in the Output Enable/Disable diagram. If multiple pins (such as  
the data bus) are enabled, the measurement value is that of the  
first pin to start driving.  
Figure 35. Typical Output Rise Tim e vs. Load Capacitance,  
CL (at Maxim um Am bient Operating Tem perature)  
+14  
+12  
+10  
+8  
REFERENCE  
SIGNAL  
+4  
tMEASURED  
tDIS  
tENA  
+2  
NOMINAL  
-2  
V
V
OH  
OH  
(MEASURED)  
(MEASURED)  
V
V
(MEASURED) – 0.5V  
(MEASURED) +0.5V  
OH  
2.0V  
1.0V  
OUTPUT  
OL  
V
V
OL  
OL  
tDECAY  
(MEASURED)  
(MEASURED)  
25  
50  
75  
100  
– pF  
125  
150  
C
L
OUTPUT STOPS  
DRIVING  
OUTPUT STARTS  
DRIVING  
Figure 36. Typical Output Valid Delay or Hold vs. Load  
Capacitance, CL (at Maxim um Am bient Operating  
Tem perature)  
HIGH-IMPEDANCE STATE. TEST CONDITIONS CAUSE  
THIS VOLTAGE LEVEL TO BE APPROXIMATELY 1.5V.  
Figure 38. Output Enable/Disable  
TEST CO ND ITIO NS  
O utput D isable Tim e  
IOL  
Output pins are considered to be disabled when they have  
stopped driving and started a transition from the measured out-  
put high or low voltage to a high impedance state. T he output  
disable time (tDIS) is the difference of tMEASURED and tDECAY, as  
shown in the Output Enable/Disable diagram. T he time is the  
interval from when a reference signal reaches a high or low volt-  
age level to when the output voltages have changed by 0.5 V  
from the measured output high or low voltage. T he decay time,  
TO  
OUTPUT  
PIN  
VDD  
2
50pF  
IOH  
Figure 39. Equivalent Device Loading for AC Measure-  
m ents (Including All Fixtures)  
–44–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
128-Lead TQFP P ackage P inout  
128  
103  
102  
1
GND  
GND  
HA2/ALE  
HA1  
HA0  
HSEL  
HD5  
NC  
NC  
D23  
D22  
D21  
D20  
D19  
GND  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
HD4  
HD3  
HD2  
HD1  
HD0  
V
DD  
GND  
V
DD  
A0  
A1  
V
DD  
TOP VIEW  
(PINS DOWN)  
A3  
A2  
A4  
GND  
D10  
D9  
D8  
A5  
D7  
A6  
D6  
A7  
D5  
D4  
D3  
GND  
D2  
XTAL  
CLKIN  
CLKOUT  
GND  
A8  
D1  
A9  
D0  
A10  
A11  
A12  
A13  
NC  
MMAP  
NC  
NC  
BG  
NC  
BR  
NC  
NC  
NC  
BGH  
PWD  
NC  
38  
65  
39  
64  
NC = NO CONNECT  
REV. A  
–45–  
ADSP-2171/ADSP-2172/ADSP-2173  
TQFP P in Configurations  
TQFP  
P in  
TQFP  
P in  
TQFP  
P in  
TQFP  
P in  
Num ber  
Nam e  
Num ber  
Nam e  
Num ber  
Nam e  
Num ber  
Nam e  
1
2
3
4
5
6
7
8
9
GND  
GND  
HA2/ALE  
HA1  
HA0  
HSEL  
HD5  
HD4  
HD3  
HD2  
HD1  
HD0  
VDD  
GND  
VDD  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
A13  
NC  
MMAP  
NC  
NC  
PWD  
IRQ2  
NC  
BMODE  
NC  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
NC  
BGH  
NC  
NC  
NC  
BR  
NC  
BG  
D0  
D1  
D2  
GND  
D3  
D4  
D5  
D6  
D7  
D8  
97  
98  
99  
D20  
D21  
D22  
D23  
NC  
NC  
NC  
NC  
NC  
RD  
WR  
GND  
GND  
VDD  
PMS  
DMS  
BMS  
PWDACK  
HD15  
HD14  
HD13  
HD12  
HD11  
VDD  
HD10  
HD9  
HD8  
HD7  
HD6  
HSIZE  
HRD/HRW  
HWR/HDS  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
NC  
VDD  
GND  
RESET  
NC  
HACK  
HMD0  
HMD1  
DT 0  
T FS0  
RFS0  
DR0  
SCLK0  
DT 1/FO  
T FS1/IRQ1  
RFS1/IRQ0  
GND  
DR1/F1  
SCLK1  
FL0  
D9  
D10  
GND  
VDD  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
GND  
D19  
A7  
XT AL  
CLKIN  
CLKOUT  
GND  
A8  
A9  
A10  
A11  
A12  
FL1  
FL2  
NC = T hese pins MUST remain unconnected.  
–46–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
O UTLINE D IMENSIO NS  
128-Lead Metr ic Thin P lastic Q uad Flatpack (TQ FP )  
D
SEATING  
PLANE  
D
1
A
D
3
L
103  
128  
1
102  
TOP VIEW  
(PINS DOWN)  
E
E
E
1
3
38  
39  
65  
64  
A
1
A
2
e
B
MILLIMETERS  
TYP  
INCHES  
TYP  
SYMBOL MIN  
A
MAX  
1.60  
0.15  
1.50  
MIN  
MAX  
0.063  
A1  
A2  
D
0.05  
1.30  
0.002  
0.051  
0.620  
0.547  
0.006  
0.059  
0.640  
0.555  
0.495  
0.876  
0.792  
0.731  
0.030  
0.023  
0.011  
0.004  
1.40  
0.055  
0.630  
0.551  
0.492  
0.866  
0.787  
0.728  
0.024  
0.019  
0.009  
15.75  
13.90  
16.00 16.25  
14.00 14.10  
12.50 12.58  
22.00 22.25  
20.00 20.10  
18.50 18.58  
D1  
D3  
E
21.75  
19.90  
0.856  
0.783  
E1  
E3  
L
0.45  
0.42  
0.17  
0.60  
0.50  
0.22  
0.75  
0.58  
0.27  
0.10  
0.018  
0.017  
0.007  
e
B
REV. A  
–47–  
ADSP-2171/ADSP-2172/ADSP-2173  
128-Lead P QFP P ackage P inout  
97  
128  
96  
1
HA2/ALE  
HA1  
HA0  
HSEL  
HD5  
D23  
D22  
D21  
D20  
D19  
GND  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
HD4  
HD3  
HD2  
HD1  
HD0  
V
DD  
GND  
128L PQFP  
(28MM x 28MM)  
V
DD  
A0  
A1  
V
DD  
TOP VIEW  
(PINS DOWN)  
GND  
D10  
D9  
A2  
A3  
A4  
A5  
D8  
A6  
D7  
A7  
D6  
XTAL  
CLKIN  
CLKOUT  
GND  
A8  
D5  
D4  
D3  
GND  
D2  
D1  
A9  
D0  
A10  
A11  
A12  
A13  
NC  
BG  
NC  
BR  
NC  
32  
65  
33  
64  
NC = NO CONNECT  
–48–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
P QFP P in Configurations  
P QFP  
Num ber  
P in  
Nam e  
P QFP  
Num ber  
P in  
Nam e  
P QFP  
Num ber  
P in  
Nam e  
P QFP  
Num ber  
P in  
Nam e  
1
2
3
4
5
6
7
8
9
HA2/ALE  
HA1  
HA0  
HSEL  
HD5  
HD4  
HD3  
HD2  
HD1  
HD0  
VDD  
GND  
VDD  
A0  
A1  
A2  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
MMAP  
NC  
PWD  
IRQ2  
NC  
BMODE  
NC  
NC  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
NC  
BR  
NC  
BG  
D0  
D1  
D2  
GND  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
GND  
VDD  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
GND  
D19  
D20  
D21  
D22  
D23  
97  
98  
99  
NC  
NC  
NC  
NC  
NC  
NC  
RD  
WR  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
VDD  
GND  
GND  
VDD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
GND  
RESET  
NC  
HACK  
HMD0  
HMD1  
DT 0  
T FS0  
RFS0  
DR0  
SCLK0  
DT 1/FO  
T FS1/IRQ1  
RFS1/IRQ0  
GND  
DR1/F1  
SCLK1  
FL0  
PMS  
DMS  
BMS  
PWDACK  
HD15  
HD14  
HD13  
HD12  
HD11  
VDD  
HD10  
HD9  
HD8  
HD7  
HD6  
A3  
A4  
A5  
A6  
A7  
XT AL  
CLKIN  
CLKOUT  
GND  
A8  
A9  
A10  
A11  
A12  
HSIZE  
HRD/HRW  
HWR/HDS  
GND  
GND  
NC  
FL1  
FL2  
NC  
BGH  
A13  
NC  
NC  
NC = T hese pins MUST remain unconnected.  
REV. A  
–49–  
ADSP-2171/ADSP-2172/ADSP-2173  
O UTLINE D IMENSIO NS  
128-Lead Metr ic Thin P lastic Q uad Flatpack (P Q FP )  
D
SEATING  
PLANE  
D
1
A
D
3
L
97  
128  
1
96  
TOP VIEW  
(PINS DOWN)  
E
E
E
3
1
32  
33  
65  
64  
A
1
A
e
B
2
MILLIMETERS  
INCHES  
TYP  
SYMBOL MIN  
A
TYP  
MAX  
4.07  
MIN  
MAX  
0.160  
A1  
0.25  
3.17  
0.010  
0.125  
1.219  
1.098  
0.974  
0.031  
0.029  
0.012  
A2  
3.49  
3.67  
0.137  
1.228  
1.102  
0.976  
0.035  
0.031  
0.014  
0.144  
1.238  
1.106  
0.979  
0.041  
0.034  
0.018  
0.004  
D, E  
D1, E1  
D3, E3  
L
30.95  
27.90  
24.73  
0.65  
31.20 31.45  
28.00 28.10  
24.80 24.87  
0.88  
0.80  
0.35  
1.03  
0.87  
0.45  
0.10  
e
0.73  
B
0.30  
–50–  
REV. A  
ADSP-2171/ADSP-2172/ADSP-2173  
O RD ERING GUID E*  
Am bient  
Tem perature  
Range  
Instruction  
Rate  
(MH z)  
P ackage  
D escription  
P art Num ber**  
ADSP-2171KST -133  
ADSP-2171BST -133  
ADSP-2171KS-133  
ADSP-2171BS-133  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
33.33  
33.33  
33.33  
33.33  
128-Lead T QFP  
128-Lead T QFP  
128-Lead PQFP  
128-Lead PQFP  
ADSP-2171KST -104  
ADSP-2171BST -104  
ADSP-2171KS-104  
ADSP-2171BS-104  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
26  
26  
26  
26  
128-Lead T QFP  
128-Lead T QFP  
128-Lead PQFP  
128-Lead PQFP  
ADSP-2173BST -80  
ADSP-2173BS-80  
–40°C to +85°C  
–40°C to +85°C  
20  
20  
128-Lead T QFP  
128 Lead PQFP  
*Refer to section titled “Ordering Procedure for ADSP-2172 ROM Processors” for information about ordering ROM-coded parts.  
**S = Plastic Quad Flatpack, ST = Plastic T hin Quad Flatpack.  
REV. A  
–51–  
–52–  

相关型号:

ADSP-2171KST-133

DSP Microcomputer
ADI

ADSP-2171_15

DSP Microcomputer
ADI

ADSP-2172

DSP Microcomputer
ADI

ADSP-2172BS-104

IC 24-BIT, 13 MHz, OTHER DSP, PQFP128, METRIC, PLASTIC, QFP-128, Digital Signal Processor
ADI

ADSP-2172BS-133

IC 24-BIT, 16.67 MHz, OTHER DSP, PQFP128, METRIC, PLASTIC, QFP-128, Digital Signal Processor
ADI

ADSP-2172BST-104

IC 24-BIT, 13 MHz, OTHER DSP, PQFP128, METRIC, PLASTIC, TQFP-128, Digital Signal Processor
ADI

ADSP-2172BST-133

IC 24-BIT, 16.67 MHz, OTHER DSP, PQFP128, METRIC, PLASTIC, TQFP-128, Digital Signal Processor
ADI

ADSP-2172KS-104

IC 24-BIT, 13 MHz, OTHER DSP, PQFP128, METRIC, PLASTIC, QFP-128, Digital Signal Processor
ADI

ADSP-2172KS-133

IC 24-BIT, 16.67 MHz, OTHER DSP, PQFP128, METRIC, PLASTIC, QFP-128, Digital Signal Processor
ADI

ADSP-2172KST-104

IC 24-BIT, 13 MHz, OTHER DSP, PQFP128, METRIC, PLASTIC, TQFP-128, Digital Signal Processor
ADI

ADSP-2172KST-133

IC 24-BIT, 16.67 MHz, OTHER DSP, PQFP128, METRIC, PLASTIC, TQFP-128, Digital Signal Processor
ADI

ADSP-2173

DSP Microcomputer
ADI