ADSP-21MSP58BST-104 [ADI]

DSP Microcomputers; DSP微型计算机
ADSP-21MSP58BST-104
型号: ADSP-21MSP58BST-104
厂家: ADI    ADI
描述:

DSP Microcomputers
DSP微型计算机

计算机
文件: 总40页 (文件大小:373K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
DSP Microcomputers  
ADSP-21msp58/59  
FUNCTIO NAL BLO CK D IAGRAM  
FEATURES  
38 ns Instruction Cycle Tim e (26 MIPS) from 13.00 MHz  
Crystal  
POWERDOWN  
CONTROL  
LOGIC  
MEMORY  
ADSP-21msp58/59  
ADSP-21msp59  
ADSP-2100 Fam ily Code and Function Com patible w ith  
New Instruction Set Enhanced for Bit Manipulation  
Instructions, Multiplication Instructions, Biased  
Rounding, and Global Interrupt Masking  
2K 
؋
 24 Words of On-Chip Program Mem ory RAM  
2K 
؋
 16 Words of On-Chip Data Mem ory RAM  
4K 
؋
 24 Words of On-Chip Program Mem ory ROM  
(ADSP-21m sp59 Only)  
FLAG  
DATA  
PROGRAM  
MEMORY  
4K x 24  
PROGRAM  
MEMORY  
2K x 24  
DATA  
MEMORY  
2K x 16  
ADDRESS  
PROGRAM  
SEQUENCER  
GENERATORS  
ANALOG  
INTERFACE  
(ROM)  
DAG 1 DAG 2  
PROGRAM MEMORY ADDRESS  
DATA MEMORY ADDRESS  
PROGRAM MEMORY DATA  
DATA MEMORY DATA  
EXTERNAL  
ADDRESS  
BUS  
EXTERNAL  
DATA  
BUS  
8-Bit Parallel Host Interface Port  
Analog Interface Provides:  
16-Bit Sigm a-Delta ADC and DAC  
ARITHMETIC UNITS  
ALU SHIFTER  
TIMER  
MAC  
HOST  
INTERFACE  
PORT  
SERIAL PORTS  
SPORT 1  
Program m able Gain Stages  
On-Chip Anti-Aliasing & Anti-Im aging Filters  
8 kHz Sam pling Frequency  
SPORT 0  
ADSP-2100 BASE  
ARCHITECTURE  
65 dB ADC, SNR and THD  
GENERAL D ESCRIP TIO N  
72 dB DAC, SNR and THD  
T he ADSP-21msp58 and ADSP-21msp59 Mixed-Signal Pro-  
cessors (MSProcessor® DSPs) are fully integrated, single-chip  
DSPs complete with a high performance analog front end. T he  
ADSP-21msp58/59 Family is optimized for voice band applica-  
tions such as Speech Compression, Speech Processing, Speech  
Recognition, T ext-to Speech, and Speech-to-T ext conversion.  
425 m W Typical Pow er Dissipation @ 5.0 V @ 38 ns  
<1 m W Pow erdow n Mode w ith 100 Cycle Recovery  
Dual Purpose Program Mem ory for Both Instruction  
and Data Storage  
Independent ALU, Multiplier/ Accum ulator, and Barrel  
Shifter Com putational Units  
Tw o Independent Data Address Generators  
Pow erful Program Sequencer Provides:  
Zero Overhead Looping  
T he ADSP-21msp58/59 combines the ADSP-2100 base archi-  
tecture (three computation units, data address generators, and  
program sequencer) with two serial ports, a host interface port,  
an analog front end, a programmable timer, extensive interrupt  
capability, and on-chip program and data memory.  
Conditional Instruction Execution  
Tw o Double-Buffered Serial Ports w ith Com panding  
Hardw are, One Serial Port (SPORT0) has Autom atic  
Data Buffering  
Program m able 16-Bit Interval Tim er w ith Prescaler  
Program m able Wait State Generation  
Autom atic Booting of Internal Program Mem ory from  
Byte-Wide External Mem ory, e.g., EPROM, or  
Through Host Interface Port  
T he ADSP-21msp58 provides 2K words (24-bit) of program  
RAM and 2K words (16-bit) of data memory. T he ADSP-  
21msp59 provides an additional 4K words (24-bit) of program  
ROM. T he ADSP-21msp58/59 integrates a high performance  
analog codec based on a single chip, voice band codec, the  
AD28msp02. Powerdown circuitry is also provided to meet the  
low power needs of battery operated portable equipment. T he  
ADSP-21msp58/59 is available in a 100-pin T QFP package  
(thin quad flat package).  
Stand-Alone ROM Execution (ADSP-21m sp59 Only)  
Single-Cycle Instruction Execution  
Single-Cycle Context Sw itch  
Multifunction Instructions  
In addition, the ADSP-21msp58/59 supports new instructions,  
which include bit manipulations–bit set, bit clear, bit toggle,  
bit test–new ALU constants, new multiplication instruction  
(x squared), biased rounding, and global interrupt masking.  
Three Edge- or Level-Sensitive External Interrupts  
Low Pow er Dissipation in Standby Mode  
100-Lead TQFP  
MSProcessor is a registered trademark of Analog Devices, Inc.  
REV. 0  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
© Analog Devices, Inc., 1995  
One Technology Way, P.O. Box 9106, Norw ood. MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
ADSP-21msp58/59  
D IGITAL ARCH ITECTURE O VERVIEW  
T he two address buses (PMA, DMA) share a single external ad-  
dress bus, allowing memory to be expanded off chip, and the  
two data buses (PMD, DMD) share a single external data bus.  
T he BMS, DMS, and PMS signals indicate which memory  
space the external buses are being used for.  
Figure 1 is an overall block diagram of the ADSP-21msp58/59.  
T he processors contain three independent computational units:  
the ALU, the multiplier/accumulator (MAC), and the shifter.  
T he computational units process 16-bit data directly and have  
provisions to support multiprecision computations. T he ALU  
performs a standard set of arithmetic and logic operations; divi-  
sion primitives are also supported. T he MAC performs single-  
cycle multiply, multiply/add, and multiply/subtract operations.  
T he shifter performs logical and arithmetic shifts, normalization,  
denormalization, and derive exponent operations. T he shifter  
can be used to efficiently implement numeric format control in-  
cluding multiword floating-point representations.  
Program memory can store both instructions and data, permit-  
ting the ADSP-21msp58/59 to fetch two operands in a single  
cycle, one from program memory and one from data memory.  
T he ADSP-21msp58/59 can fetch an operand from on-chip  
program memory and the next instruction in the same cycle.  
T he memory interface supports slow memories and memory-  
mapped peripherals with programmable wait state generation.  
External devices can gain control of the processors’ buses with  
the use of the bus request/grant signals (BR and BG). Bus grant  
has two modes of operation. If GoMode is enabled in the MSTAT  
register, instruction execution continues from internal memory.  
If GoMode is disabled, the processor stops instruction execution  
and waits for deassertion of BR.  
T he internal result (R) bus directly connects the computational  
units so that the output of any unit may be the input of any unit  
on the next cycle.  
A powerful program sequencer and two dedicated data address  
generators ensure efficient use of these computational units.  
T he sequencer supports conditional jumps, subroutine calls,  
and returns in a single cycle. With internal loop counters and  
loop stacks, the ADSP-21msp58/59 executes looped code with  
zero overhead—no explicit jump instructions are required to  
maintain the loop.  
In addition to the address and data bus for external memory  
connection, the ADSP-21msp58/59 has a host interface port  
(HIP) for easy connection to a host processor. T he HIP is made  
up of 8 data/address pins and 10 control pins. T he HIP is ex-  
tremely flexible and provides a simple interface to a variety of  
host processors. For example, the Motorola 68000 series, the  
Intel 80C51 series, and the Analog Devices ADSP-2101 can be  
easily connected to the HIP. T he host processor can boot the  
ADSP-21msp58/59 on-chip memory through the HIP.  
T wo data address generators (DAGs) provide addresses for si-  
multaneous dual operand fetches (from data memory and pro-  
gram memory). Each DAG maintains and updates four address  
pointers. Whenever the pointer is used to access data (indirect  
addressing), it is post-modified by the value of one of four  
modify registers. A length value may be associated with each  
pointer to implement automatic modulo addressing for circular  
buffers. T he circular buffering feature is also used by the serial  
ports for automatic data transfers to (and from) on-chip  
memory.  
T he ADSP-21msp58/59 can respond to eleven interrupts. T here  
can be up to three external interrupts, configured as edge- or  
level-sensitive, and seven internal interrupts generated by the  
T imer, the Serial Ports (SPORT s), the HIP, the powerdown cir-  
cuitry, and the analog interface. T here is also a master RESET  
signal.  
Efficient data transfer is achieved with the use of five internal  
buses:  
T he two serial ports provide a complete synchronous serial in-  
terface with optional companding in hardware and a wide vari-  
ety of framed or frameless data transmit and receive modes of  
operation. Each port can generate an internal programmable se-  
rial clock or accept an external serial clock.  
• Program Memory Address (PMA) Bus  
• Program Memory Data (PMD) Bus  
Data Memory Address (DMA) Bus  
Data Memory Data (DMD) Bus  
• Result (R) Bus  
Booting circuitry provides for loading on-chip program memory  
automatically from byte-wide external memory. After reset,  
1
PROGRAM  
INSTRUCTION  
SRAM  
FLAG  
REGISTER  
2K x 24  
DATA  
SRAM  
2K x 16  
BOOT  
ADDRESS  
GENERATOR  
PROGRAM  
ROM  
DATA  
ADDRESS  
GENERATOR  
#1  
DATA  
ADDRESS  
GENERATOR  
#2  
7
ADC, DAC  
AND  
FILTERS  
4K x 24  
PROGRAM  
SEQUENCER  
(ADSP-21msp59)  
PMA BUS  
DMA BUS  
PMD BUS  
DMD BUS  
14  
14  
24  
16  
14  
24  
EXTERNAL  
ADDRESS  
BUS  
MUX  
MUX  
HIP  
EXTERNAL  
DATA  
BUS  
COMPANDING  
CIRCUITRY  
10  
8
INPUT REGS  
ALU  
INPUT REGS  
MAC  
INPUT REGS  
SHIFTER  
CONTROL  
TRANSMIT REG  
TRANSMIT REG  
CONTROL  
LOGIC  
TIMER  
RECEIVE REG  
RECEIVE REG  
SERIAL  
PORT 0  
SERIAL  
PORT 1  
OUTPUT REGS  
OUTPUT REGS  
16  
OUTPUT REGS  
HIP  
DATA  
BUS  
HIP  
REGISTER  
5
5
R BUS  
POWER  
DOWN  
CONTROL  
LOGIC  
1
Figure 1. ADSP-21m sp58/59 Block Diagram  
–2–  
REV. 0  
ADSP-21msp58/59  
seven wait states are automatically generated. T his allows, for  
example, a 38 ns ADSP-21msp58/59 to use a 250 ns EPROM  
as external boot memory. Multiple programs can be selected  
and loaded from the EPROM with no additional hardware. T he  
on-chip program memory can also be initialized through the  
HIP.  
P in D escr iptions  
T he ADSP-21msp58 and ADSP-21msp59 are available in a  
100-lead T QFP package. T able I contains the pin descriptions.  
Table I. AD SP -21m sp58/59 P in List  
P in  
#
T he ADSP-21msp58/59 features a general purpose flag output  
whose state is controlled through software. You can use this  
output to signal an event to an external device. In addition, the  
data input and output pins on SPORT 1 can be alternatively  
configured as an input and an output flag.  
Group  
Nam e  
of  
Input/  
P ins O utput Function  
Digital Pins  
Address  
14  
24  
O
Address output for program,  
data and boot memory spaces  
A programmable interval timer can generate periodic interrupts.  
A 16-bit count register (T COUNT ) is decremented every n  
cycles, where n–1 is a scaling value stored in an 8-bit register  
(T SCALE). When the value of the count register reaches zero,  
an interrupt is generated and the count register is reloaded from  
a 16-bit period register (T PERIOD).  
Data  
I/O  
Data I/O pins for program  
and data memories. Input  
only for boot memory space,  
with two MSBs used as boot  
space addresses.  
T he ADSP-21msp58/59 instruction set provides flexible data  
moves and multifunction (one or two data moves with a compu-  
tation) instructions. Every instruction can be executed in a  
single processor cycle. T he ADSP-21msp58/59 uses an alge-  
braic syntax for ease of coding and readability. A comprehensive  
set of development tools supports program development.  
RESET  
IRQ2  
BR  
1
1
1
1
1
1
1
1
1
1
I
Processor reset input  
I
External interrupt request # 2  
External bus request input  
External bus grant output  
External program memory select  
External data memory select  
Boot memory select  
I
BG  
O
O
O
O
O
O
I
PMS  
DMS  
BMS  
RD  
Ser ial P or ts  
T he ADSP-21msp58/59 processors include two synchronous se-  
rial ports (SPORT 0 and SPORT 1) for serial communications  
and multiprocessor communication.  
External memory read enable  
External memory write enable  
Memory map select  
WR  
MMAP  
Here is a brief list of the capabilities of the ADSP-21msp58/59  
SPORT s. Refer to the ADSP-2100 Family User’s Manual for fur-  
ther details.  
CLKIN,  
XT AL  
2
I
External clock or quartz crystal  
input  
• SPORT s are bidirectional with a separate, double-buffered  
transmit and receive section.  
CLKOUT  
HACK  
1
1
1
1
O
O
I
Processor clock output  
HIP acknowledge output  
HIP select input  
• SPORT s can use an external serial clock or generate their own  
clock internally.  
HSEL  
BMODE  
I
Boot mode select (0 = Standard  
EPROM Booting, 1 = HIP  
Booting)  
• SPORT s have independent framing for the transmit and  
receive sections. Sections run in a frameless mode or with  
frame synchronization signals internally or externally gener-  
ated. Frame sync signals are programmed to be active high or  
low, with either of two pulse widths and timings.  
HMD0  
1
1
1
1
I
I
I
I
Bus strobe select (0 = RD/WR,  
1 = RW/DS)  
HIP address/data mode select  
HMD1  
• SPORT s support serial data word lengths from 3 to 16 bits  
and provide optional A-law and µ-law companding according  
to CCIT T recommendation G.711.  
(0 = Separate, 1 = Multiplexed)  
HRD/HRW  
HWR/HDS  
HIP read strobe or read/write  
select  
• SPORT s receive and transmit sections generate separate  
interrupts when the SPORT s are ready to read or write new  
data.  
HIP write strobe or host data  
strobe select  
HD70/  
HAD7–0  
• SPORT s can receive and transmit an entire circular buffer of  
data with only one overhead cycle per data word (Autobuffering  
Mode). An interrupt is generated after a complete data buffer  
transfer.  
8
1
I/O  
I
HIP data or HIP data and  
address  
HA2/ALE  
Host address 2 or address latch  
enable  
• SPORT 0 has a multichannel interface to selectively receive  
and transmit a 24- or 32-word, time-division multiplexed  
serial bit stream.  
HA1–0/  
(unused)  
2
5
I
Host address 1 and 0 inputs  
SPORT 0  
SPORT 1  
or  
I/O  
Serial port 0 pins (TFS0, RFS0,  
DT0, DR0, SCLK0)  
• SPORT 1 can be reconfigured as two external interrupt inputs  
(IRQ0 and IRQ1) and the Flag In and Flag Out signals (FI,  
FO). T he internally generated serial clock may still be used in  
this configuration.  
5
I/O  
Serial port 1 pins (TFS1, RFS1,  
DT1, DR1, SCLK1)  
REV. 0  
–3–  
ADSP-21msp58/59  
T ying these pins to appropriate values configures the ADSP-  
21msp58/59 for straight-wire interface to a variety of industry-  
standard microprocessors and microcomputers.  
P in  
Group  
Nam e  
#
of  
Input/  
P ins O utput Function  
When the host processor writes an 8-bit value to the HIP, the  
upper eight bits of the HIP registers are all zeros. For additional  
information, refer to the ADSP-2100 Family User’s Manual,  
Chapter 7, for information about 8-bit configuration.  
IRQ0 (RFS1) 1  
IRQ1 (TFS1) 1  
I
External interrupt request # 0  
External interrupt request # 1  
Programmable clock output  
Flag input pin  
I
SCLK1  
FI (DR1)  
FO (DT1)  
FL0  
1
1
1
1
4
5
1
O
I
H IP O per ation  
T he HIP contains six data registers (HDR5-0) and two status  
registers (HSR7-6) with an associated HMASK register for  
masking interrupts from individual HIP data registers. T he HIP  
data registers are memory-mapped in the internal data memory  
of the ADSP-21msp58/59. HIP transfers can be managed using  
either interrupts or polling. T hese registers are shown in the sec-  
tion “ADSP-21msp58/59 Registers.” T he two status registers  
provide status information to both the ADSP-21msp58/59 and  
the host processor. HSR7 contains a software reset bit that can  
be set by the ADSP-21msp58/59 and the host.  
O
O
Flag output pin  
General purpose flag output pin  
Digital power supply pins  
Ground pins  
VDD  
GND  
PWD  
I
I
Powerdown pin  
Analog Pins  
VINNORM  
1
1
1
1
1
Input terminal of the NORM  
amplifier for the encoder section  
(ADC)  
T he HIP allows a software reset to be performed by the host  
processor. T he internal software reset signal is asserted for five  
ADSP-21msp58/59 cycles.  
VINAUX  
Decouple  
VOUTP  
VOUT N  
VREF  
I
Input terminal of the AUX  
amplifier for the encoder section  
(ADC)  
I
Ground reference of the NORM  
and AUX amplifiers for the  
encoder section (ADC)  
T he HIP generates an interrupt whenever an HDR register re-  
ceives data from a host processor write. It also generates an in-  
terrupt when the host processor has performed a successful read  
of any HDR. T he read/write status of the HDRs is also stored in  
the HSR registers.  
O
O
Noninverting output terminal of  
the differential amplifier from  
the decoder section (DAC)  
T he HMASK register bits can be used to mask the generation of  
read or write interrupts from individual HDR registers. Bits in  
the IMASK register enable and disable all HIP read interrupts  
or all HIP write interrupts. So, for example, a write to HDR4  
will cause an interrupt only if both the HDR4 Write bit in  
HMASK and the HIP Write interrupt enable bit in IMASK are  
set.  
Inverting output terminal of the  
differential amplifier from the  
decoder section (DAC)  
1
1
O
O
Output voltage reference  
REF_  
FILT ER  
Voltage reference external by-  
pass filter node  
T he HIP provides a second method of booting the ADSP-  
21msp58/59 in which the host processor loads instructions into  
the HIP. T he ADSP-21msp58/59 automatically transfers the  
data, in this case opcodes, to internal program memory. T he  
BMODE pin determines whether the ADSP-21msp58/59 boots  
from the host processor through the HIP or from external  
EPROM over the data bus.  
VCC  
GNDA  
1
2
Analog power supply  
Analog ground  
H ost Inter face P or t  
T he ADSP-21msp58/59 host interface port (HIP) is a parallel  
I/O port that allows for an easy connection to a host processor.  
T hrough the HIP, the ADSP-21msp58/59 can be used as a  
memory-mapped peripheral to a host computer. T he HIP can  
be thought of as an area of dual-ported memory, or mailbox reg-  
isters, that allows communication between the computational  
core of the ADSP-21msp58/59 and the host computer.  
Inter r upts  
T he interrupt controller lets the processor respond to interrupts  
and reset with a minimum of overhead. T he ADSP-21msp58/59  
provides up to three external interrupt input pins, IRQ0, IRQ1,  
and IRQ2. IRQ2 is always available as a dedicated pin;  
SPORT 1 may be reconfigured for IRQ1 and IRQ0 and the flag.  
T he ADSP-21msp58/59 also supports internal interrupts from  
the timer, the host interface port, the serial ports, the analog in-  
terface, and the powerdown control circuit. T he interrupts are  
internally prioritized and individually maskable (except for  
powerdown and RESET). T he input pins can be programmed  
for either level- or edge-sensitivity. T he priorities and vector ad-  
dresses for the interrupts are shown in T able II; the interrupt  
registers are shown in Figure 2.  
T he host interface port is completely asynchronous. T he host  
processor can write data into the HIP while the ADSP-  
21msp58/59 is operating at full speed.  
T he HIP can be configured with the following pins:  
• BMODE (when MMAP = 0) determines whether the ADSP-  
21msp58/59 boots from the host processor (through the HIP)  
or external EPROM (through the data bus).  
HMD0 configures the bus strobes as separate read and write  
strobes, or a single read/write select and a host data strobe.  
HMD1 selects separate address (3-bit) and data (8-bit) buses,  
or a multiplexed 8-bit address/data bus with address latch  
enable.  
–4–  
REV. 0  
ADSP-21msp58/59  
IMASK  
ICNTL  
9
0
8
0
7
0
6
0
5
4
3
0
2
0
1
0
0
0
4
3
0
2
1
0
0
0
Timer  
IRQ2  
HIP Write  
IRQ0 Sensitivity  
IRQ1 Sensitivity  
IRQ2 Sensitivity  
1 = edge  
0 = level  
IRQ0 or SPORT1 Receive  
IRQ1 or SPORT1 Transmit  
Analog Receive  
HIP Read  
SPORT0 Transmit  
SPORT0 Receive  
Analog Transmit  
1 = enable, 0 = disable  
Interrupt Nesting  
1 = enable, 0 = disable  
IFC  
15 14 13 12 11 10  
9
0
8
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
0
0
0
0
0
0
0
0
INTERRUPT FORCE  
INTERRUPT CLEAR  
IRQ2  
SPORT0 Transmit  
SPORT0 Receive  
Analog Transmit  
Analog Receive  
Timer  
SPORT1 Receive or IRQ0  
SPORT1 Transmit or IRQ1  
Analog Receive  
Analog Transmit  
SPORT0 Receive  
SPORT0 Transmit  
SPORT1 Transmit or IRQ1  
SPORT1 Receive or IRQ0  
Timer  
IRQ2  
1 = enable, 0 = disable  
Figure 2. Interrupt Registers  
T he following instructions allow global enable or disable servic-  
ing of the interrupts (including powerdown), regardless of the  
state of IMASK. Disabling the interrupts does not affect  
autobuffering.  
Table II. Interrupt P riority & Interrupt Vector Addresses  
Interrupt Vector  
Source of Interrupt  
Address (Hex)  
ENA INTS;  
DIS INTS;  
Interrupt servicing is enabled on processor reset.  
Reset (or Power-Up with PUCR = 1)  
Powerdown (Nonmaskable)  
IRQ2  
0000 (Highest Priority)  
002C  
0004  
HIP Write  
HIP Read  
0008  
000C  
System Inter face  
Figure 3 shows a basic system configuration with the ADSP-  
21msp58/59, two serial devices, a host processor, a boot  
EPROM, optional external program and data memories, and an  
analog interface. Up to 15K words of data memory and 16K  
words of program memory can be supported. Programmable  
wait state generation allows the processor to interface easily to  
slow memories. T he ADSP-21msp58/59 also provides one ex-  
ternal interrupt and two serial ports or three external interrupts  
and one serial port.  
SPORT 0 T ransmit  
SPORT 0 Receive  
0010  
0014  
0018  
001C  
0020  
0024  
Analog Interface T ransmit  
Analog Interface Receive  
SPORT 1 T ransmit or (IRQ1)  
SPORT 1 Receive or (IRQ0)  
T imer  
0028 (Lowest Priority)  
Interrupts can be masked or unmasked with the IMASK regis-  
ter. Individual interrupt requests are logically ANDed with the  
bits in IMASK; the highest priority unmasked interrupt is then  
selected. T he powerdown interrupt is non-maskable.  
Clock Signals  
T he ADSP-21msp58/59 CLKIN input may be driven by a crys-  
tal or by a T T L-compatible external clock signal.  
T he CLKIN input may not be halted, changed in frequency  
during operation, or operated at any frequency other the one  
specified. Operating the ADSP-21msp58/59 at any other fre-  
quency changes the analog performance, which is not tested or  
supported.  
T he interrupt control register, ICNT L, allows the external in-  
terrupts to be set as either edge- or level-sensitive. Interrupt ser-  
vice routines can either be nested (with higher priority interrupts  
taking precedence) or be processed sequentially (with only one  
interrupt service active at a time).  
If an external clock is used, it should be a T T L-compatible sig-  
nal running at half the instruction rate. T he signal should be  
connected to the processor’s CLKIN input; in this case, the  
XT AL input must be left unconnected.  
T he interrupt force and clear register, IFC, is a write-only regis-  
ter used to force an interrupt or clear a pending edge-sensitive  
interrupt.  
On-chip stacks preserve the processor status and are automati-  
cally maintained during interrupt handling. T he stack is twelve  
levels deep to allow interrupt nesting.  
T he ADSP-21msp58/59 uses an input clock with a frequency  
equal to half the instruction rate; a 13 MHz input clock yields a  
38.46 ns processor cycle (which is equivalent to 26 MHz). Nor-  
mally, instructions are executed in a single processor cycle.  
Register bit values shown in Figure 2 are the default bit values  
after reset. If no values are shown, the bits are indeterminate at  
reset. Reserved bits are shown in gray; these bits should always  
be written with zeros.  
All device timing is relative to the internal instruction clock rate,  
which is indicated by the CLKOUT signal when enabled. T he  
REV. 0  
–5–  
ADSP-21msp58/59  
ANALOG  
INPUT  
ANALOG  
OUTPUT  
HIP CONTROL  
HOST  
PROCESSOR  
CLOCK OR  
CRYSTAL  
HIP DATA/ADDR  
(OPTIONAL)  
3
4
5
1
2
3
4
7
8
CLKIN  
HOST  
MODE  
XTAL  
V
GND  
V
GND  
HIP  
SCLK  
RFS  
TFS  
DT  
CC  
A
DD  
CLKOUT  
RESET  
IRQ2  
BR  
SERIAL DEVICE  
(OPTIONAL)  
SERIAL  
PORT 0  
DR  
ADSP-21msp58/59  
SCLK  
RFS OR IRQ0  
BG  
SERIAL DEVICE  
(OPTIONAL)  
TFS OR IRQ1  
DT OR FO  
DR OR FI  
MMAP  
FL0  
SERIAL  
PORT 1  
PMS  
RD  
WR  
ADDRESS DATA DMS  
14  
BMS  
24  
D
23-22  
2
D
23-8  
16  
14  
D
15-8  
24  
8
CS  
A
D
A
D
CS  
A
D
CS  
OE  
OE  
OE  
BOOT  
MEMORY  
e.g., EPROM  
27C64  
27C128  
27C256  
27C512  
DATA  
MEMORY &  
PERIPHERALS  
WE  
WE  
PROGRAM  
MEMORY  
(OPTIONAL)  
(OPTIONAL)  
NOTE: The two MSBs of the Boot EPROM Address are also the two MSBs of the Data Bus.  
This is only for the 27C256 and 27C512.  
Figure 3. ADSP-21m sp58/59 Basic System Configuration  
2000 CLKIN cycles will ensure that the PLL has locked (this  
does not, however, include the crystal oscillator start-up time).  
During this power-up sequence, the RESET signal should be  
held low. On any subsequent resets, the RESET signal must  
CLKOUT signal is enabled and disabled by the CLKODIS bit  
in the SPORT 0 Autobuffer Control Register, DM[0x3FF3].  
Because the ADSP-21msp58/59 includes an on-chip oscillator  
circuit, an external crystal may also be used. T he crystal should  
be connected across the CLKIN and XT AL pins, with two ca-  
pacitors connected as shown in Figure 4. A parallel-resonant,  
fundamental frequency, microprocessor-grade crystal should be  
used.  
meet the minimum pulse width specification, tRSP  
.
T he RESET input contains some hysteresis; however, if you use  
an RC circuit to generate your RESET signal, the use of an ex-  
ternal Schmidt trigger is recommended.  
T he master RESET sets all internal stack pointers to the empty  
stack condition, masks all interrupts, and clears the MST AT  
register. When RESET is released, if there is no pending bus re-  
quest and the chip is configured for booting (MMAP = 0), the  
boot loading sequence is performed. T hen the first instruction is  
fetched from internal program memory location 0x0000 and ex-  
ecution begins.  
CLKIN  
XTAL  
CLKOUT  
ADSP-21msp58/59  
P r ogr am Mem or y Inter face  
Figure 4. External Crystal Connections  
T he on-chip program memory address bus (PMA) and on-chip  
program memory data bus (PMD) are multiplexed with the on-  
chip data memory buses (DMA, DMD), creating a single exter-  
nal data bus and a single external address bus. T he data and  
address busses are three-stated when the DSP runs from inter-  
nal memory. Refer to the ADSP-2100 Family User’s Manual,  
Chapter 10, “Memory Interface” for a detailed explanation. T he  
14-bit address bus directly addresses up to 16K words. See  
“Program Memory Maps” for details on program memory  
addressing.  
Reset  
T he RESET signal initiates a master reset of the ADSP-  
21msp58/59. T he RESET signal must be asserted during the  
power-up sequence to assure proper initialization. RESET dur-  
ing initial power-up must be held long enough to allow the  
processor’s internal clock to stabilize. If RESET is asserted at  
any time after power-up, the clock continues to run and does  
not require stabilization time.  
T he power-up sequence is defined as the total time required for  
the crystal oscillator circuit to stabilize after a valid VDD is ap-  
plied to the processor and for the internal phase-locked loop  
(PLL) to lock onto the specific crystal frequency. A minimum of  
T he program memory data lines are bidirectional. T he program  
memory select (PMS) signal indicates access to program  
memory and can be used as a chip select signal. T he write (WR)  
signal indicates a write operation and is used as a write strobe.  
–6–  
REV. 0  
ADSP-21msp58/59  
T he read (RD) signal indicates a read operation and is used as a  
read strobe or output enable signal. An external program  
memory access should always be qualified with the PMS signal.  
When MMAP = 1, 14K words of external program memory be-  
gin at address 0x0000 and internal RAM is located in the upper  
2K words, beginning at address 0x3800. In this configuration,  
the boot loading sequence does not take place; execution begins  
immediately after RESET.  
T he ADSP-21msp58/59 writes data from its 16-bit registers to  
24-bit program memory using the PX register to provide the  
lower eight bits. When the processor reads data (not instruc-  
tions) from 24-bit program memory to a 16-bit data register, the  
lower eight bits are placed in the PX register. T he program  
memory interface can generate zero to seven wait states for ex-  
ternal memory devices; the default is seven wait states after  
RESET.  
AD SP -21m sp59  
T he ADSP-21msp59 is functionally identical to the ADSP-  
21msp58. T he ADSP-21msp59 includes an additional 4K by  
24-bit mask programmable ROM (see Figure 6). T he ROM  
can be used to hold program instructions or data and can be  
accessed twice in one instruction cycle if necessary. T he ROM  
always resides at locations PM[0x0800] through PM[0x17FF]  
regardless of the state of the MMAP pin. Sixteen addresses at  
the end of ROM (0x17F0–0x17FF) are reserved for Analog  
Devices’ use. The ROM is enabled by setting the ROMENABLE  
bit in the Data Memory Wait State control register, DM[0x3FFE].  
When the ROMENABLE bit is set to 1, addressing program  
memory in this range will access the on-chip ROM. When set  
to 0, addressing program memory in this range will access exter-  
nal program memory. T he ROMENABLE bit is set to 0 on  
chip reset.  
P r ogr am Mem or y Maps  
AD SP -21m sp58  
ADSP-21msp58 Program memory can be mapped in two ways,  
depending on the state of the MMAP pin. Figure 5 shows the  
two configurations. When MMAP = 0, internal RAM occupies  
2K words beginning at address 0x0000; external program  
memory uses the remaining 14K words beginning at address  
0x0800. In this configuration, the boot loading sequence (de-  
scribed in “Boot Memory Interface”) is automatically initiated  
when RESET is released.  
D ata Mem or y Inter face  
0000  
0000  
T he data memory address bus (DMA) is 14 bits wide. T he bi-  
directional external data bus is 24 bits wide, with the upper 16  
bits used for data memory data (DMD) transfers.  
INTERNAL  
RAM  
LOADED FROM  
EXTERNAL  
BOOT  
EXTERNAL  
MEMORY  
T he data memory select (DMS) signal indicates access to data  
memory and can be used as a chip select signal. T he write (WR)  
signal indicates a write operation and can be used as a write  
strobe. T he read (RD) signal indicates a read operation and can  
be used as a read strobe or output enable signal.  
07FF  
0800  
EXTERNAL  
T he ADSP-21msp58/59 supports memory-mapped I/O, with  
the peripherals memory mapped into the data or program  
memory address spaces and accessed by the processor in the  
same manner.  
37FF  
3800  
INTERNAL  
RAM  
NOT LOADED  
D ata Mem or y Map  
T he on-chip data memory RAM resides in the 2K words begin-  
ning at address 0x3000, as shown in Figure 7. In addition, data  
memory locations from 0x3800 to the end of data memory at  
0x3FFF are reserved. Control registers for the system, timer,  
3FFF  
3FFF  
MMAP=0  
MMAP=1  
Figure 5. ADSP-21m sp58 Program Mem ory Maps  
0000  
0000  
0000  
0000  
INTERNAL  
RAM  
INTERNAL  
RAM  
LOADED FROM  
EXTERNAL  
BOOT  
LOADED FROM  
EXTERNAL  
BOOT  
EXTERNAL  
EXTERNAL  
MEMORY  
MEMORY  
07FF  
0800  
07FF  
0800  
07FF  
0800  
INTERNAL  
MASK  
INTERNAL  
MASK  
PROGRAMMED  
ROM  
PROGRAMMED  
ROM  
17F0 – 17FF  
RESERVED  
17F0 – 17FF  
RESERVED  
17FF  
1800  
17FF  
1800  
EXTERNAL  
37FF  
3800  
EXTERNAL  
37FF  
3800  
INTERNAL  
RAM  
NOT LOADED  
EXTERNAL  
INTERNAL  
RAM  
NOT LOADED  
3FFF  
3FFF  
3FFF  
3FFF  
ROM ENABLE = 1  
MMAP = 0  
ROM ENABLE = 0  
MMAP = 0  
ROM ENABLE = 1  
MMAP = 1  
ROM ENABLE = 0  
MMAP = 1  
Figure 6. ADSP-21m sp59 Program Mem ory Maps  
–7–  
REV. 0  
ADSP-21msp58/59  
H IP Booting  
wait-state configuration, host interface port, codec, and serial  
port operations are located in this region of memory.  
T he ADSP-21msp58/59 can also boot programs through the  
Host Interface Port. If BMODE = 1 and MMAP = 0, the  
ADSP-21msp58/59 boots from the HIP. If BMODE = 0, the  
ADSP-21msp58/59 boots through the data bus (in the same  
way as the ADSP-2101), as described above in “Boot Memory  
Interface.” For additional information about HIP booting, refer  
to the ADSP-2100 Family User’s Manual, Chapter 7, “Host In-  
terface Port.”  
T he remaining 12K of data memory is external. External data  
memory is divided into three zones, each associated with its own  
wait-state generator. By mapping peripherals into different  
zones, you can accommodate peripherals with different wait-  
state requirements. All zones default to seven wait states after  
RESET.  
For compatibility with other ADSP-2100 Family processors, bit  
definitions for DWAIT 3 and DWAIT 4 are shown in the Data  
Memory Wait State Control register, but they are not used by  
the ADSP-21msp58/59.  
T he ADSP-2100 Family Development Software includes a  
utility program called the HIP Splitter. T his utility allows the  
creation of programs that can be booted through the ADSP-  
21msp58/59 HIP, in a similar fashion as EPROM-bootable  
programs generated by the PROM Splitter utility.  
0000  
0000  
DWAIT0  
(1K EXTERNAL)  
Bus Request and Bus Gr ant  
03FF  
0400  
T he ADSP-21msp58/59 can relinquish control of the data and  
address buses to an external device. When the external device  
requires access to memory, it asserts the bus request signal  
(BR). If the ADSP-21msp58/59 is not performing an external  
memory access, it responds to the active BR input in the follow-  
ing processor cycle by  
DWAIT1  
(1K EXTERNAL)  
07FF  
0800  
12K  
EXTERNAL  
DWAIT2  
(10K EXTERNAL)  
2FFF  
3000  
2FFF  
3000  
• three-stating the data and address buses and the PMS, DMS,  
BMS, RD, and WR output drivers,  
2K  
INTERNAL  
• asserting the bus grant (BG) signal, and  
37FF  
3800  
NO WAIT STATES  
1K  
• halting program execution.  
RESERVED  
3BFF  
3C00  
If GoMode is enabled, the ADSP-21msp58/59 will not halt pro-  
gram execution until it encounters an instruction that requires  
an external memory access.  
MEMORY MAPPED  
REGISTERS  
AND RESERVED  
3FFF  
3FFF  
DATA MEMORY  
WAIT STATES  
If the ADSP-21msp58/59 is performing an external memory ac-  
cess when the external device asserts the BR signal, then it will  
not three-state the memory interfaces or assert the BG signal  
until the cycle after the access is completed, which can be up to  
eight cycles later depending on the number of wait states. T he  
instruction does not need to be completed when the bus is  
granted. If a single instruction requires two external memory  
accesses, the bus will be granted between the two accesses.  
Figure 7. ADSP-21m sp58/59 Data Mem ory Maps  
Boot Mem or y Inter face  
T he ADSP-21msp58/59 can load on-chip memory from exter-  
nal boot memory space. T he boot memory space consists of  
64K by 8-bit space, divided into eight separate 8K by 8-bit  
pages. T hree bits in the System Control Register select which  
page is loaded by the boot memory interface. Another bit in the  
System Control Register allows the user to force a boot loading  
sequence under software control. Boot loading from Page 0 after  
RESET is initiated automatically if MMAP = 0.  
When the BR signal is released, the processor releases the BG  
signal, which reenables the output drivers, and continues pro-  
gram execution from the point where it stopped.  
T he bus request feature operates at all times, including when  
the processor is booting and when RESET is active.  
T he boot memory interface can generate zero to seven wait  
states; it defaults to seven wait states after RESET. T his allows  
the ADSP-21msp58/59 to boot from a single low cost EPROM  
such as a 27C256. Program memory is booted one byte at a  
time and converted to 24-bit program memory words.  
LO W P O WER O P ERATIO N  
T he ADSP-21msp58/59 has three low power modes that signifi-  
cantly reduce the power dissipation when the device operates  
under standby conditions. T hese modes are:  
T he BMS and RD signals are used to select and to strobe the  
boot memory interface. Only 8-bit data is read over the data  
bus, on pins D8–D15. T o accommodate addressing up to eight  
pages of boot memory, the two MSBs of the data bus are used  
in the boot memory interface as the two MSBs of the boot  
memory address.  
• Powerdown  
• Idle  
• Slow Idle  
T he CLKOUT pin may also be disabled to reduce external  
power dissipation. T he CLKOUT pin is controlled by Bit 14 of  
SPORT 0 Autobuffer Control Register, DM[0x3FF3].  
T he ADSP-2100 Family Assembler and Linker support the cre-  
ation of programs and data structures requiring multiple boot  
pages during execution.  
P ower down  
RD and WR must always be qualified by PMS, DMS, or BMS  
T he ADSP-21msp58/59 has a low power feature that lets the  
processors enter a very low power dormant state through hard-  
ware or software control. Here is a brief list of powerdown fea-  
tures. Refer to the ADSP-2100 Family User’s Manual, Chapter 9,  
to ensure the correct program, data, or boot memory accessing.  
–8–  
REV. 0  
ADSP-21msp58/59  
“System Interface” for detailed information about the power-  
down feature.  
When the IDLE (n) instruction is used in systems that have an  
externally generated serial clock (SCLK), the serial clock rate  
may be faster than the processor’s reduced internal clock rate.  
Under these conditions, interrupts must not be generated at a  
faster rate than can be serviced, due to the additional time the  
processor takes to come out of the idle state (a maximum of n  
processor cycles).  
• Powerdown mode holds the processor in CMOS standby with  
a maximum current of less than 100 µA in some modes.  
Quick recovery from powerdown. In some modes, the proces-  
sor can begin executing instructions in less than 100 CLKIN  
cycles.  
Standalone RO M Execution (AD SP -21m sp59 O nly)  
When the MMAP and BMODE pins both are set to 1, the  
ROM is automatically enabled and execution commences from  
program memory location 0x0800 at the start of ROM. T his  
feature lets an embedded design operate without external  
memory components. T o operate in this mode, the ROM coded  
program must copy an interrupt vector table to the appropriate  
locations in program memory RAM. In this mode, the ROM  
enable bit defaults to 1 during reset.  
• Support for an externally generated T T L or CMOS processor  
clock. T he external clock can continue running during  
powerdown without affecting the lowest power rating and 100  
CLKIN cycle recovery.  
• Support for crystal operation includes disabling the oscillator  
to save power (the processor automatically waits 4096 CLKIN  
cycles for the crystal oscillator to start and stabilize), and  
letting the oscillator run to allow 100 CLKIN cycle start-up.  
• Powerdown is initiated by either the powerdown pin (PWD)  
or the software powerdown force bit.  
Table III. Boot Sum m ary Table  
BMODE = 0  
BMODE = 1  
• Interrupt support allows an unlimited number of instructions  
to be executed before optionally powering down. T he power-  
down interrupt also can be used as a non-maskable, edge-  
sensitive interrupt.  
MMAP = 0 Boot from EPROM,  
then execution starts  
at internal RAM  
Boot from HIP, then  
execution starts at  
internal RAM location  
0x0000  
Context clear/save control lets the processor continue where it  
left off or start with a clean context when leaving the power-  
down state.  
location 0x0000  
MMAP = 1 No booting, execution  
Stand Alone Mode,  
starts at external memory execution starts at  
location 0x0000  
• T he RESET pin also can be used to terminate powerdown,  
and the host software reset feature can be used to terminate  
powerdown under certain conditions.  
internal ROM location  
0x0800  
• Setting the CLKODIS bit (Bit 14 of the SPORT 0 Autobuffer  
Control Register [0x3FF3]) disables the CLKOUT pin during  
powerdown.  
O r der ing P r ocedur e For AD SP -21m sp59 RO M P r ocessor s  
T o place an order for a custom ROM-coded ADSP-21msp59  
processor, you must:  
Idle  
1. Complete the following forms contained in the ADSP ROM  
Ordering Package, available from your Analog Devices sales  
representative:  
When the ADSP-21msp58/59 is in the Idle Mode, the processor  
waits indefinitely in a low power state until an interrupt occurs.  
When an unmasked interrupt occurs, it is serviced; execution  
then continues with the instruction following the IDLE instruction.  
ADSP-21msp59 ROM Specification Form  
ROM Release Agreement  
ROM NRE Agreement & Minimum Quantity Order (MQO)  
Acceptance Agreement for Preproduction ROM Products  
Slow Idle  
T he IDLE instruction is enhanced on the ADSP-21msp58/59 to  
let the processor’s internal clock signal be slowed, further reduc-  
ing power consumption. T he reduced clock frequency, a pro-  
grammable fraction of the normal clock rate, is specified by a  
selectable divisor given in the IDLE instruction. T he format of  
the instruction is  
2. Return the forms to Analog Devices along with two copies of  
the Memory Image File (.EXE file) of your ROM code. T he  
files must be supplied on two 3.5" or 5.25" floppy disks for  
the IBM PC (DOS 2.01 or higher).  
3. Place a purchase order with Analog Devices for nonrecurring  
engineering changes (NRE) associated with ROM product  
development.  
IDLE (n);  
where n = 16, 32, 64, or 128. T his instruction keeps the proces-  
sor fully functional, but operating at the slower clock rate. While  
it is in this state, the processor’s other internal clock signals,  
such as SCLK, and timer clock, are reduced by the same ratio.  
CLKOUT remains at the normal rate; it is not reduced. T he de-  
fault form of the instruction, when no clock divisor is given, is  
the standard IDLE instruction.  
After this information is received, it is entered into Analog  
Devices’ ROM Manager System that assigns a custom ROM  
model number to the product. T his model number will be  
branded on all prototype and production units manufactured to  
these specifications.  
T o minimize the risk of code being altered during this process,  
Analog Devices verifies that the .EXE files on both floppy disks  
are identical, and recalculates the checksums for the .EXE file  
entered into the ROM Manager System. T he checksum data, in  
the form of a ROM Memory Map, a hard copy of the .EXE file,  
and a ROM Data Verification form are returned to you for  
inspection.  
When the IDLE (n) instruction is used, it effectively slows down  
the processor’s internal clock and thus its response time to in-  
coming interrupts––the 1-cycle response time of the standard  
idle state is increased by n, the clock divisor. When an enabled  
interrupt is received, the ADSP-21msp58/59 remains in the idle  
state for up to a maximum of n processor cycles (n = 16, 32, 64,  
or 128) before resuming normal operation.  
REV. 0  
–9–  
ADSP-21msp58/59  
A signed ROM Verification Form and a purchase order for pro-  
duction units are required prior to any product being manufac-  
tured. Prototype units may be applied toward the minimum  
order quantity.  
Bit 10 of the Analog Control Register (0x3FEE) may be set to  
add an offset to the input of the ADC sigma-delta converter.  
T his offset moves ADC sigma-delta idle tones out of the 4.0  
kHz speech band range. T his added offset must be removed by  
the ADC high-pass filter. T herefore, the high-pass filter must be  
inserted when you use the offset feature.  
Upon completion of prototype manufacture, Analog Devices  
will ship prototype units and a delivery schedule update for pro-  
duction units. An invoice against your purchase order for the  
NRE charges is issued at this time.  
D /A Conver sion  
T he D/A conversion circuitry of the analog interface consists of  
a sigma-delta digital-to-analog converter (DAC), an analog  
smoothing filter, a programmable gain amplifier (DAC PGA),  
and a differential output amplifier.  
T here is a charge for each ROM mask generated and a mini-  
mum order quantity. Consult your sales representative for de-  
tails. A separate order must be placed for parts of a specific  
package type, temperature range, and speed grade.  
D igital-to-Analog Conver ter  
T he digital-to-analog converter consists of an optional digital  
high-pass filter, an anti-imaging interpolation filter, and a  
sigma-delta modulator. T he digital filters and the sigma-delta  
modulator have the same characteristics as the filters and  
modulator of the ADC. For detailed description of the DAC  
components, refer to the ADSP-2100 Family User’s Manual,  
Chapter 8, “Analog Interface.”  
ANALO G INTERFACE  
T he analog interface contains encoding circuitry (ADC), decod-  
ing circuitry (DAC), and processor interface logic. A block dia-  
gram of the ADSP-21msp58/59 analog section is shown in  
Figure 8.  
T he analog interface is configured through the Analog Control  
Register and the Analog Autobuffer/Powerdown Register (refer  
to “ADSP-21msp58/59 Registers”). T he Analog Control Regis-  
ter DM[0x3FEE] configures the programmable gain stages, the  
analog input multiplexer, and the analog interface powerdown  
state. Note that the unused bits must be cleared to zero.  
Analog Sm oothing Filter and P r ogr am m able Gain Am plifier  
T he analog smoothing filter consists of a 3rd-order switched ca-  
pacitor filter with a 3 dB point at approximately 25 kHz.  
T he DACs programmable gain amplifier (DAC PGA) can be  
used to adjust the output signal level by –15 dB to +6 dB in  
3 dB increments. T his gain is selected by bits 2–4 (OG0, OG1,  
OG2) of the analog control register.  
VIN  
16-BIT  
SIGMA-  
DELTA  
ADC  
NORM  
MUX  
ADC  
PGA  
VIN  
AUX  
D iffer ential O utput Am plifier  
DECOUPLE  
REF_FILTER  
T he analog output signal (VOUTP, VOUTN) is produced by a  
differential amplifier. T he differential amplifier meets specifica-  
tions for loads greater than 2 kand has a maximum differen-  
tial output swing of ±3.156 V peak-to-peak (3.17 dBm0). T he  
DAC will drive loads smaller than 2 k, but with degraded  
performance.  
VOLTAGE  
REFERENCE  
16  
PROCESSOR  
INTERFACE  
V
REF  
BUF  
16-BIT  
SIGMA-  
DELTA  
DAC  
VOUT  
P
ANALOG  
SMOOTHING  
FILTER  
DAC  
PGA  
VOUT  
N
OUTPUT  
DIFFERENTIAL AMP  
T he output signal is dc-biased to the on-chip voltage reference  
(VREF) and can be ac-coupled directly to a load or dc-coupled to  
an external amplifier.  
Figure 8. Analog Interface Block Diagram  
A/D Conver sion  
T he A/D conversion circuitry of the analog interface consists of  
an analog multiplexer, a programmable gain amplifier (ADC  
PGA), and a 16-bit sigma-delta analog-to-digital converter  
(ADC).  
T he VOUTP, VOUT N output must be used as a differential sig-  
nal otherwise performance will be severely compromised. Do  
not use either pin as a single-ended output.  
O P ERATING TH E ANALO G INTERFACE  
T he analog interface is operated with several memory-mapped  
control and data registers. T he ADC and DAC I/O data is re-  
ceived and transmitted through two memory-mapped data regis-  
ters. T he data can also be autobuffered directly into (or from)  
on-chip memory. In both cases, the I/O processing is interrupt  
driven; two interrupts are dedicated to the analog interface, one  
for the ADC receive data and one for the DAC transmit data.  
Analog Input Multiplexer and Am plifier s  
T he analog multiplexer selects either the NORM or AUX input  
to the ADCs sigma-delta modulator. T he inputs should be ac  
coupled.  
T he ADC PGA may be used to additionally increase the signal  
level by +6 dB, +20 dB, or +26 dB. T his gain is selected by bit  
9 and bit 0 (IG0, IG1) of the analog control register. Input sig-  
nal level to the sigma-delta ADC should not exceed the VINMAX  
specification.  
T he ADSP-21msp58/59 must have an input clock frequency of  
13 MHz. At this frequency, analog-to-digital and digital-to-ana-  
log converted data is transmitted at an 8 kHz rate with a single  
16-bit word transmitted every 125 µs.  
Analog-To-D igital Conver ter  
T he analog interface’s analog-to-digital converter consists of a  
4th-order analog sigma-delta modulator, an anti-aliasing deci-  
mation filter, and an optional digital high-pass filter. For a detailed  
description of the ADC components, refer to the ADSP-2100  
Family User’s Manual, Chapter 8, “Analog Interface.”  
For detailed information about the analog interface, refer to the  
ADSP-2100 Family User’s Manual, Chapter 8, “Analog Interface.”  
–10–  
REV. 0  
ADSP-21msp58/59  
Autobuffer ing  
APWD bits (Bits 5 and 6) to one in the analog control register.  
Because both interrupts occur simultaneously, only one should  
be enabled (in IMASK) to vector to a single service routine that  
handles transmit and receive data. However, when using  
autobuffer transfers, both interrupts should be enabled.  
In some applications, it is advantageous to perform block data  
transfers between the analog converters and processor memory.  
Analog interface autobuffering enables the automatic transfer of  
data blocks directly from the ADC to on-chip processor data  
memory or from on-chip processor data memory directly to the  
DAC.  
AD SP -21m sp58/59 REGISTERS  
Figure 9 summarizes the ADSP-21msp58/59 registers. Some  
registers store values. For example, AX0 stores an ALU oper-  
and; I4 stores a DAG2 pointer. Other registers consist of control  
bits and fields, or status flags. For example AST AT contains  
status flags from arithmetic operations, and fields in DWAIT  
control the number of wait states for different zones of data  
memory.  
AD C and D AC Inter r upts  
T he analog interface generates two interrupts that signal either:  
(1) a 16-bit, 8 kHz analog-to-digital or digital-to-analog conver-  
sion has been completed, or (2) an autobuffer block transfer  
has been completed (i.e., the data buffer contents have been  
received or transferred).  
When an analog interrupt occurs, the processor vectors to the  
addresses listed in T able II, Interrupt Priority & Interrupt Vector  
Addresses.  
A secondary set of registers in all computational units allows a  
single-cycle context switch.  
T he bit and field definitions for control and status registers are  
given in the rest of this section, except IMASK, ICNT L, and  
IFC, which are defined earlier in this data sheet. T he system  
control register, DWAIT register, timer registers, HIP control  
registers, HIP data registers, and SPORT control registers are  
all mapped into data memory locations; that is, you access these  
registers by reading and writing data memory locations rather  
than register names. T he particular data memory address is  
shown with each memory-mapped register.  
T he ADC receive and DAC transmit interrupts occur at an  
8 kHz rate, indicating when the data registers should be ac-  
cessed. On the receive side, the ADC interrupt is generated each  
time an A/D conversion cycle is completed and the 16-bit data  
word is available in the ADC receive register. On the transmit  
side, the DAC interrupt is generated each time an D/A conver-  
sion cycle is completed and the DAC transmit register is ready  
for the next 16-bit data word.  
Both interrupts are generated simultaneously at an 8 kHz rate,  
occurring every 3250 instruction cycles with a 13 MHz internal  
processor clock. T he interrupts are generated continuously,  
starting when the analog interface is powered up by setting the  
Register bit values shown on the following pages are the default  
bit values after reset. If no values are shown, the bits are indeter-  
minate at reset. Reserved bits are shown in gray; these bits  
should always be written with zeros.  
PROGRAM SEQUENCER  
ICNTL  
IFC  
HOST  
INTERFACE  
PORT  
SSTAT  
LOOP  
PROGRAM  
ROM  
4K x 24  
IMASK  
STACK  
DAG 2  
DAG 1  
PROGRAM  
SRAM  
2K x 24  
DATA  
SRAM  
2K x 16  
MSTAT  
ASTAT  
CNTR  
4 x 18  
I0 M0 L0  
I1 M1 L1  
I2 M2 L2  
I3 M3 L3  
I4 M4 L4  
I5 M5 L5  
I6 M6 L6  
I7 M7 L7  
OWRCNTR  
0x3FE0-0x3FE5 DATA  
ADSP-21msp59  
ONLY  
PC  
STACK  
16 x 14  
STATUS  
STACK  
12 x 25  
COUNT  
STACK  
4 x 14  
0x3FE6-0x3FE7 STATUS  
0x3FFF  
0x3FFE  
SYSTEM CONTROL  
DM WAIT CONTROL  
0x3FE8  
HMASK  
PMA BUS  
14  
DMA BUS  
PMD BUS  
DMD BUS  
14  
24  
PX  
16  
0x3FEC  
DAC  
0x3FEE-0x3FEF  
0x3FED  
ADC  
AX0 AX1 AY0 AY1  
FLAG  
MX0 MX1 MY0 MY1  
SI SE SB  
RX0 TX0  
RX1 TX1  
TIMER  
0x3FFD TPERIOD  
0x3FFC TCOUNT  
0x3FFB TSCALE  
0x3FFA-0x3FF3  
0x3FF2-0x3FEF  
ALU  
MAC  
SHIFTER  
SR0 SR1  
CONTROL REGISTERS  
CONTROL REGISTERS  
SPORT 1  
POWERDOWN  
CONTROL  
LOGIC  
CONTROL REGISTERS  
ANALOG INTERFACE  
MR0 MR1 MR2 MF  
AR AF  
SPORT 0  
Figure 9. ADSP-21m sp58/59 Registers  
REV. 0  
–11–  
ADSP-21msp58/59  
SSTAT (Read -Only)  
ASTAT  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
7
0
6
5
4
3
2
1
0
1
0
0
1
0
1
0
1
0
AZ ALU Result Zero  
AN ALU Result Negative  
AV ALU Overflow  
AC ALU Carry  
PC Stack Empty  
PC Stack Overflow  
Count Stack Empty  
Count Stack Overflow  
Status Stack Empty  
Status Stack Overflow  
Loop Stack Empty  
Loop Stack Overflow  
AS ALU X Input Sign  
AQ ALU Quotient  
MV MAC Overflow  
SS Shifter Input Sign  
MSTAT  
6
0
5
0
4
3
2
1
0
0
0
0
0
0
Data Register Bank Select  
0 = primary, 1 = secondary  
Bit Reverse Mode Enable (DAG1)  
ALU Overflow Latch Mode Enable  
AR Saturation Mode Enable  
MAC Result Placement  
0 = fractional, 1 = integer  
Timer Enable  
Go Mode Enable  
System Control Register  
0x3FFF  
15 14 13 12 11 10  
9
8
7
6
5
4
1
3
1
2
1
1
1
0
0
0
0
0
0
1
0
0
0
0
1
1
SPORT0 Enable  
1 = enabled, 0 = disabled  
PWAIT  
Program Memory  
Wait States  
SPORT1 Enable  
1 = enabled, 0 = disabled  
BWAIT  
Boot Wait States  
BPAGE  
Boot Page Select  
SPORT1 Configure  
1 = serial port  
0 = FI, FO, IRQ0, IRQ1, SCLK  
BFORCE  
Boot Force Bit  
Timer Registers  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0x3FFD  
0x3FFC  
0x3FFB  
TPERIOD Period Register  
TCOUNT Counter Register  
TCOUNT Scaling Register  
0
0
0
0
0
0
0
0
Control Registers  
–12–  
REV. 0  
ADSP-21msp58/59  
ROM Enable/Data Memory Wait State  
Control Register  
0x3FFE  
15 14 13 12 11 10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
0
0
0
0
0
0
0
1
1
1
DWAIT3  
DWAIT4  
DWAIT2  
DWAIT1  
DWAIT0  
ROM enable (ADSP-21msp59)  
1 = enable  
0 = disable  
SPORT0 Multichannel Receive Word Enable Registers  
SPORT0 Multichannel Transmit Word Enable Registers  
1 = Channel Enabled  
0 = Channel Ignored  
1 = Channel Enabled  
0 = Channel Ignored  
0x3FF8  
0x3FFA  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16  
0x3FF7  
0x3FF9  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
SPORT0 Control Register  
0x3FF6  
15 14 13 12 11 10  
9
8
7
6
5
4
0
3
0
2
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Multichannel Enable MCE  
Internal Serial Clock Generation ISCLK  
Receive Frame Sync Required RFSR  
Receive Frame Sync Width RFSW  
SLEN Serial Word Length  
DTYPE Data Format  
00 = right justify, zero-fill unused MSBs  
01 = right justify, sign extend into unused MSBs  
10 = compand using µ-law  
11 = compand using A-law  
INVRFS Invert Receive Frame Sync  
Multichannel Frame Delay MFD  
Only If Multichannel Mode Enabled  
INVTFS Invert Transmit Frame Sync  
(or INVTDV Invert Transmit Data Valid  
Only If Multichannel Mode Enabled )  
Transmit Frame Sync Required TFSR  
Transmit Frame Sync Width TFSW  
IRFS Internal Receive Frame Sync Enable  
ITFS Internal Transmit Frame Sync Enable  
(or MCL Multichannel Length; 1 = 32 words, 0 = 24 words  
Only If Multichannel Mode Enabled )  
Control Registers  
REV. 0  
–13–  
ADSP-21msp58/59  
SPORT0 SCLKDIV  
Serial Clock Divide Modulus  
0x3FF5  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
SPORT0 RFSDIV  
Receive Frame Sync Divide Modulus  
0x3FF4  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
SPORT0 Autobuffer Control Register  
0x3FF3  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
RBUF  
Receive Autobuffering Enable  
CLKODIS  
CLKOUT Disable Control Bit  
TBUF  
Transmit Autobuffering Enable  
BIASRND  
MAC Biased Rounding Control Bit  
RMREG  
Receive Autobuffer M Register  
TIREG  
Transmit Autobuffer I Register  
RIREG  
Receive Autobuffer I Register  
TMREG  
Transmit Autobuffer M Register  
SPORT1 Control Register  
0x3FF2  
15 14 13 12 11 10  
9
8
7
6
5
4
0
3
0
2
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Flag Out (Read Only)  
Internal Serial Clock Generation ISCLK  
Receive Frame Sync Required RFSR  
Receive Frame Sync Width RFSW  
SLEN Serial Word Length  
DTYPE Data Format  
00 = right justify, zero-fill unused MSBs  
01 = right justify, sign extend into unused MSBs  
10 = compand using µ-law  
11 = compand using A-law  
INVRFS Invert Receive Frame Sync  
INVTFS Invert Transmit Frame Sync  
IRFS Internal Receive Frame Sync Enable  
Transmit Frame Sync Required TFSR  
Transmit Frame Sync Width TFSW  
ITFS Internal Transmit Frame Sync Enable  
Control Registers  
–14–  
REV. 0  
ADSP-21msp58/59  
SPORT1 SCLKDIV  
Serial Clock Divide Modulus  
0x3FF1  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
SPORT1 RFSDIV  
Receive Frame Sync Divide Modulus  
0x3FF0  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Analog Autobuffer/Powerdown Control Register  
0x3FEF  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
XTALDIS  
XTAL Pin Disable During Powerdown  
1 = disabled, 0 = enabled  
ARBUF  
ADC Receive Autobuffer Enable  
(XTAL pin should be disabled when  
no external crystal is connected)  
ATBUF  
DAC Transmit Autobuffer Enable  
XTALDELAY  
Delay Startup From Powerdown 4096 Cycles  
1 = delay, 0 = no delay  
ARMREG  
Receive M Register  
(use delay to let internal phase locked  
loop or external oscillator stabilize)  
ARIREG  
Receive I Register  
PDFORCE  
Powerdown Force  
ATMREG  
Transmit M Register  
1 = force processor to vector to  
powerdown interrupt  
ATIREG  
Transmit I Register  
PUCR  
Powerup Context Reset  
1 = soft reset, 0 = resume execution  
HMASK Register  
0x3FE8  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Host HDR0 Write  
Host HDR1 Write  
Host HDR2 Write  
Host HDR3 Write  
Host HDR4 Write  
Host HDR5 Write  
Host HDR5 Read  
Host HDR4 Read  
Host HDR3 Read  
Host HDR2 Read  
Host HDR1 Read  
Host HDR0 Read  
Interrupt Enables  
1 = Enable  
0 = Disable  
Control Registers  
REV. 0  
–15–  
ADSP-21msp58/59  
Analog Control Register  
0x3FEE  
IG0, IG1  
ADC Input Gain (for PGA)  
15 14 13 12 11 10  
9
8
7
6
5
4
0
3
0
2
0
1
0
0
0
Gain  
0dB  
+6dB  
+20dB  
+26dB  
IG1 IG0  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
OG2 OG1 OG0  
ADC Offset  
IG0  
ADC Input Gain  
IG1  
ADC Input Gain  
DABY  
DAC High Pass Filter Bypass  
1 = bypass, 0 = insert  
IMS  
ADC Input Multiplexer Select  
1 = AUX input, 0 = NORM input  
ADBY  
ADC High Pass Filter Bypass  
1 = bypass, 0 = insert  
OG2, OG1, OG0  
DAC Output Gain (for PGA)  
APWD  
Analog Interface Powerdown  
0 = powerdown, 1 = enable  
(set both bits to 1  
Gain  
+6dB  
+3dB  
0dB  
–3dB  
–6dB  
–9dB  
–12dB  
–15dB  
IG2 IG1 IG1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
to enable analog interface)  
All bits are set to 0 at processor reset.  
(Reserved bits 11–15 must always be set to 0)  
ADC Receive  
15 14 13 12 11 10  
9
8
7
6
5
5
4
4
3
3
2
2
1
0
DM(0x3FED)  
DM(0x3FEC)  
DAC Transmit  
9
15 14 13 12 11 10  
8
7
6
1
0
HIP Data Registers  
HDR5  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0x3FE5  
HDR4  
0x3FE4  
0x3FE3  
0x3FE2  
0x3FE1  
0x3FE0  
HDR3  
HDR2  
HDR1  
HDR0  
Control Registers  
–16–  
REV. 0  
ADSP-21msp58/59  
HSR6  
0x3FE6  
15 14 13 12 11 10  
9
0
8
7
6
0
5
0
4
0
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Host HDR0 Write  
Host HDR1 Write  
Host HDR2 Write  
Host HDR3 Write  
Host HDR4 Write  
Host HDR5 Write  
ADSP-21msp58/59 HDR5 Write  
ADSP-21msp58/59 HDR4 Write  
ADSP-21msp58/59 HDR3 Write  
ADSP-21msp58/59 HDR2 Write  
ADSP-21msp58/59 HDR1 Write  
ADSP-21msp58/59 HDR0 Write  
HSR7  
0x3FE7  
15 14 13 12 11 10  
9
0
8
7
6
0
5
0
4
0
3
2
1
0
0
0
0
0
0
0
0
1
0
0
0
0
ADSP-21msp58/59 HDR0 Write  
ADSP-21msp58/59 HDR1 Write  
ADSP-21msp58/59 HDR2 Write  
ADSP-21msp58/59 HDR3 Write  
ADSP-21msp58/59 HDR4 Write  
ADSP-21msp58/59 HDR5 Write  
Overwrite Mode  
Software Reset  
Control Registers  
INSTRUCTIO N SET D ESCRIP TIO N  
AD SP -21m sp58/59 EXTEND ED INSTRUCTIO N SET  
T he ADSP-21msp58/59 has a number of additional instruc-  
tions beyond the standard ADSP-2100 Family instruction set.  
T hese additional instructions and mathematical operations are  
described below.  
T he ADSP-21msp58/59 assembly language instruction set has  
an algebraic syntax that was designed for ease of coding and  
readability. T he assembly language, which takes full advantage  
of the processor’s unique architecture, offers the following  
benefits:  
Slow ID LE  
Slow IDLE allows slowing the processor’s internal clock by a  
factor of 16, 32, 64, or 128 during IDLE. T he instruction  
source code is specified as follows:  
• T he algebraic syntax eliminates the need to remember cryptic  
assembler mnemonics. For example, a typical arithmetic add  
instruction, such as AR = AX0 + AY0, resembles a simple  
equation.  
Syntax:  
IDLE (n);  
• Every instruction assembles into a single 24-bit word and  
executes in a single cycle.  
Permissible Values for n  
16, 32, 64, 128  
•T he syntax is a superset of the ADSP-2100 Family assembly  
language and is completely source and object code compatible  
with other family members. Programs may, however, need to  
be relocated to utilize internal memory and conform to the  
ADSP-21msp58/59 interrupt vector and reset vector map.  
Exam ples:  
IDLE;  
IDLE (16);  
D escr iption: T he IDLE instruction causes the processor to  
wait indefinitely in a low power state until an in-  
terrupt occurs. When an unmasked interrupt oc-  
curs, it is serviced; execution then continues with  
the instruction following the IDLE instruction.  
T he optional value provides a “slow idle” fea-  
ture; slowing the clock down by the factor set  
with the value.  
• Sixteen condition codes are available. For conditional jump,  
call, return, or arithmetic instructions, the condition can be  
checked and the operation executed in the same instruction  
cycle.  
Multifunction instructions allow parallel execution of an  
arithmetic instruction with up to two fetches and one write to  
processor memory space during a single instruction cycle.  
Inter r upt Enable and D isable Instr uctions  
T he ADSP-21msp58/59 supports an interrupt enable instruc-  
tion and interrupt disable instruction. Interrupts are enabled by  
default at reset. T he interrupt enable instruction source code is  
specified as follows:  
Consult the ADSP-2100 Family User’s Manual for a complete  
description of the syntax and an instruction set reference.  
REV. 0  
–17–  
ADSP-21msp58/59  
Syntax:  
ENA INT S;  
1024, 1025, 2047, 2048, 2049, 4095, 4096, 4097, 8191, 8192,  
8193, 16383, 16384, 16385, 32766, 32767, –1, –2, –3, –4, –5,  
–6, –8, –9, –10, –16, –17, –18, –32, –33, –34, –64, –65, –66, –128,  
–129, –130, –256, –257, –258, –512, –513, –514, –1024, –1025,  
–1026, –2048, –2049, –2050, –4096, –4097, –4098, –8192, –8193,  
–8194, –16384, –16385, –16386, –32767, –32768  
D escr iption: Executing the ENA INT S instruction allows all  
unmasked interrupts to be serviced again.  
T he interrupt disable instruction source code is specified as  
follows:  
Syntax:  
DIS INT S;  
Exam ples:  
IF GE AR = PASS AY0;  
IF EQ AF = PASS –1025;  
D escr iption: Reset enables interrupt servicing. Executing the  
DIS INT S instruction causes all interrupts to be  
masked without changing the contents of the  
IMASK register. Disabling interrupts does not  
affect the autobuffer circuitry, which will operate  
normally whether or not interrupts are enabled.  
T he disable interrupt instruction masks all user  
interrupts including the powerdown interrupt.  
D escr iption: T est the optional condition and, if true, pass the  
source operand unmodified through the ALU  
block and store in the destination location. If the  
condition is not true, perform a no-operation.  
Omitting the condition performs the pass uncon-  
ditionally. T he source operand is contained in  
the data registers specified in the instruction or  
optional constant.  
Extended ALU and Multiplier O per ations  
T he following extended computation operations are available  
only on the ADSP-21msp58/59 processor. T he term “base in-  
struction set” refers to the computations and instructions avail-  
able on all ADSP-21xx processors.  
The PASS instruction performs the transfer to the  
AR register and affect the status flag; this instruc-  
tion is different from a register move operation  
which does not affect any status flags. PASS 0 is  
one method of clearing AR. PASS 0 can also be  
combined in a multifunction instruction in con-  
junction with memory reads and writes to clear AR.  
Additiona l Consta nts for ALU Oper a tions  
A new set of numerical constants may be used in all nonmulti-  
function ALU operations (except DIVS and DIVQ) using both  
X and Y operands. T he instruction source code is specified as  
follows:  
Note:  
T he ALU status flags (in the AST AT register)  
are not defined for the execution of this instruc-  
tion when using the constant values other than 0,  
1, and –1.  
Syntax: [IF condition]  
AR  
AF  
= xop function  
yop  
constant  
Permissible xops  
AX0, AX1, AR, MR0, MR1, MR2, SR0, SR1  
ALU Bit Oper a tions  
T he additional constants for ALU operations allow you to code  
bit test, set, clear, and toggle operations through careful choice  
of the constant and ALU function. For streamlined programming,  
the source code for these operations can also be specified as:  
Permissible functions  
ADD/ADD with CARRY, SUBT RACT X–Y/SUBT RACT X–  
Y with BORROW, SUBT RACT Y–X/SUBT RACT Y–X with  
BORROW, AND, OR, XOR  
Syntax: [IF condition]  
AR  
AF  
=
T ST BIT n of xop;  
SET BIT n of xop;  
CLBIT n of xop;  
T GBIT n of xop;  
Permissible yops (base instruction set)  
AY0, AY1, AF  
Permissible yops and constants (extended instruction set)  
AY0, AY1, AF, 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,  
2048, 4096, 8192, 16384, 32767, –2, –3, –5, –9, –17, –33, –65,  
–129, –257, –513, –1025, –2049, –4097, –8193, –16385, –32768  
Permissible xops  
AX0, AX1, AR, MR0, MR1, MR2, SR0, SR1  
Permissible n Values (0 = LSB)  
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15  
Exam ples:  
AR = AR+1;  
AR = MR1 - 33;  
IF GT AF = AX1 OR 16;  
Exam ples:  
AF=T ST BIT 5 of AR;  
IF NE JUMP SET ;  
/* JUMP T O SET IF BIT IS SET */  
D escr iption: T est the optional condition and, if true, perform  
the specified function. If false then perform a no-  
operation. Omitting the condition performs the  
function unconditionally. T he operands are con-  
tained in the data registers specified in the in-  
Definitions of Operations  
T ST BIT is an AND operation with a 1 in the selected bit  
SET BIT is an OR operation with a 1 in the selected bit  
CLBIT is an AND operation with a 0 in the selected bit  
T GBIT is an XOR operation with a 1 in the selected bit  
struction or optionally a constant may be used.  
Additiona l Consta nts for ALU PASS Oper a tion  
A new set of numerical constants may be used in the PASS in-  
struction. T he instruction source code is specified as follows:  
Result-Fr ee ALU Oper a tions  
T he result-free ALU operations allow the generation of condi-  
tion flags based on an ALU operation but discard the result.  
T he source code for the instruction is specified as follows:  
Syntax: [IF condition]  
AR  
AF  
= pass  
yop  
constant  
Syntax:  
NONE = <ALU>;  
Permissible yops (base instruction set)  
AY0, AY1, AF  
where <ALU> is any unconditional ALU operation of the 21xx  
base instruction set (except DIVS or DIVQ). (Note that the addi-  
tional constant ALU operations of the ADSP-2171/2181 ex-  
tended instruction set are not allowed.)  
Permissible yops and constants (extended instruction set)  
AY0, AY1, AF, 0, 1, 2, 3, 4, 5, 7, 8, 9, 15, 16, 17, 31, 32, 33,  
63, 64, 65, 127, 128, 129, 255, 256, 257, 511, 512, 513, 1023,  
–18–  
REV. 0  
ADSP-21msp58/59  
Exam ples:  
NONE = AX0 – AY0;  
NONE = PASS SR0;  
be masked without changing the contents of the  
IMASK register. Disabling interrupts does not af-  
fect the autobuffer circuitry, which will operate  
normally whether or not interrupts are enabled.  
The disable interrupt instruction masks all user  
interrupts including the powerdown interrupt.  
D escr iption: Perform the designated ALU operation, set the  
condition flags, then discard the result value.  
T his allows the testing of register values without  
disturbing the AR or AF register values.  
MAC Oper a tions  
CIRCUIT D ESIGN CO NSID ERATIO NS  
A modified MAC operation allows additional type 9 instruc-  
tions. T he conditional ALU/MAC instruction has been modi-  
fied to allow the X operand to be used as the Y operand as well.  
T his allows a single cycle X2, and also X2 operations.  
T he following sections discuss interfacing analog signals to the  
ADSP-21msp58/59.  
Analog Signal Input  
Figure 10 shows the recommended input circuit for the analog in-  
put pin (either VINNORM or VINAUX). The circuit of Figure 10  
implements a first-order low-pass filter (R1C1) with a 3 dB point  
less than 40 kHz. This is the only filter required external to the  
processor to prevent aliasing of the sampled signal. Since the  
ADSP-21msp58/59s sigma-delta ADC uses a highly oversampled  
approach that transfers the bulk of the anti-aliasing filtering into the  
digital domain, the off-chip anti-aliasing need only be of low order.  
T he new MAC instructions allow the use of any xop as both the  
X and Y operands. T he instructions source code is specified as  
follows:  
Syntax: [IF condition] MR  
=
[MR +]  
[MR –]  
xop * yop (UU);  
xop (SS) ;  
MF  
(RND);  
Permissible xops  
AR, MR0, MR1, MR2, MX0, MX1, SR0, SR1  
C2  
R1  
VIN  
VIN  
NORM  
Exam ple:  
Note:  
IF LT MR=MR+ SR0 * SR0 (SS);  
MUX  
AUX  
C1  
INPUT  
SOURCE  
PGA  
Both X operators must be the same register.  
C3  
DECOUPLE  
Bia sed Rounding  
A new mode has been added to allow biased rounding in addi-  
tion to the normal unbiased rounding. When the BIASRND bit  
is set to 0 the normal unbiased rounding operations occur.  
When the BIASRND bit is set to 1, biased rounding occurs in-  
stead of the normal unbiased rounding. When operating in bi-  
ased rounding mode all rounding operations with MR0 set to  
0x8000 will round up, rather than only rounding odd MR1  
values up. For example:  
ADSP-21msp58/59  
STAR  
GROUND  
Figure 10. Recom m end Analog Input Circuit  
T he on-chip ADC PGA can be used when there is not enough  
gain in the input circuit. T he PGA gain is set by bits 9 and 0  
(IG1, IG0) of the processor’s analog control register. T he gain  
must be chosen to ensure that a full-scale input signal (at R1 in  
Figure 10) produces a signal level at the input to the sigma-delta  
modulator of the ADC that does not exceed VINMAX (refer to  
the “Analog Interface Electrical Characteristics” specifications).  
MR value before RND  
00-0000-8000  
00-0001-8000  
00-0000-8001  
00-0001-8001  
00-0000-7FFF  
biased RND result  
00-0001-8000  
00-0002-8000  
00-0001-8001  
00-0002-8001  
00-0000-7FFF  
unbiased RND result  
00-0000-8000  
00-0002-8000  
00-0001-8001  
00-0002-8001  
00-0000-7FFF  
VINNORM and VINAUX are biased at the Internal Reference Volt-  
age (nominal of 2.5 V) of the ADSP-21msp58/59, which lets the  
analog section of the processor operate from a single supply.  
T he input signal should be ac-coupled with an external capaci-  
tor (C2). T he value of C2 is determined by the input resistance  
of the analog input (VINNORM, VINAUX) (200 k) and the de-  
sired cutoff frequency. T he cutoff frequency should be 30 Hz.  
T he following equation should be used to determine the values  
of R1, C1, and C2; R1 should be 2.2 k. C2 should be 0.027  
µF; C3 should be equal to C2.  
00-0001-7FFF  
00-0001-7FFF  
00-0001-7FFF  
T his mode only has an effect when the MR0 register contains  
0x8000, all other rounding operation work normally. T his mode  
was added to allow more efficient implementation of bit speci-  
fied algorithms which specify biased rounding such as the GSM  
speech compression routines. Unbiased rounding is preferred  
for most algorithms.  
Note:  
BIASRND bit is bit twelve of the SPORT 0  
Autobuffer Control register.  
1
1
C2 =  
2 π f RIN  
Inter r upt Ena ble  
T he ADSP-21msp58/59 supports an interrupt enable instruc-  
tion. Interrupts are enabled by default at reset. T he instruction  
source code is specified as follows:  
RIN = ADSP-21msp58/59 input resistance (200 k)  
f1 = cutoff frequency <30 Hz  
1
R1 =  
2 π f2 C1  
Syntax:  
ENA INT S;  
D escr iption:  
Executing the ENA INT S instruction allows  
all unmasked interrupts to be serviced again.  
R1 2.2 kΩ  
f2 > 20 kHz < 40 kHz*  
Inter r upt D isable  
T he ADSP-21msp58/59 supports an interrupt disable instruc-  
tion. T he instruction source code is specified as follows:  
1
C1 =  
2 π f2 R1  
For optimum ADC performance, C1 should be an NPO type  
capacitor.  
Syntax:  
DIS INT S;  
D escr iption: Reset enables interrupt servicing. Executing the  
DIS INT S instruction causes all interrupts to  
*If minimum (<0.1 dB) rolloff at 4 kHz is desired, f2 should be set to 40 kHz.  
REV. 0  
–19–  
ADSP-21msp58/59  
Analog Signal O utput  
AP P LICATIO N EXAMP LES  
T he differential analog output (VOUTP, VOUTN) is produced  
by an on-chip differential amplifier which is part of the processor’s  
analog interface. T he differential amplifier will meet dynamic  
specifications for loads greater than 2 k(RL 2 k) and has a  
maximum differential output voltage swing of ±3.156 V peak-to-  
peak (3.17 dBm0). T he DAC will drive loads smaller than 2 k,  
but with degraded dynamic performance. T he differential out-  
put can be ac-coupled directly to a load or dc-coupled to an ex-  
ternal amplifier.  
T he ADSP-21msp58/59 is ideal for speech processing applica-  
tions where high performance for analog and digital circuitry is  
required, but board space is severely limited. T he cellular radio  
handset is one application. Here the ADSP-21msp58/59 can  
digitize the speech, then perform compression algorithms that  
sufficiently reduce the bit rate for transmission in a limited radio  
bandwidth.  
D EFINITIO N O F SP ECIFICATIO NS  
Absolute Gain  
Figure 11 shows a simple circuit providing a differential output  
with ac coupling. T he capacitor of this circuit (COUT ) is op-  
tional; if used, its value can be chosen as follows:  
Absolute gain is a measure of converter gain for a known signal.  
Absolute gain is measured with a 1.0 kHz sine wave at 0 dBm0.  
T he absolute gain specification is used as a reference for the  
gain tracking error specification.  
1
COUT  
=
(60 π) RL  
Gain Tr acking Er r or  
Gain tracking error measures changes in converter output for  
different signal levels relative to an absolute signal level. T he  
absolute signal level is 1.0 kHz at 0 dBm0. Gain tracking error  
at 0 dBm0 is 0 dB by definition.  
C
C
OUT  
VOUT  
P
R
ADSP-21msp58/59  
L
OUT  
VOUT  
N
SNR + TH D  
Signal-to-noise ratio plus total harmonic distortion is defined to  
be the ratio of the rms value of the measured input signal to the  
rms sum of all other spectral components in the frequency range  
300 Hz–3400 Hz, including harmonics but excluding dc.  
Figure 11. Exam ple Circuit for Differential Output with  
AC Coupling  
T he VOUTP and VOUTN outputs must be used as differential  
outputs (do not use either as a single-ended output). Figure 12  
shows an example circuit which can be used to convert the dif-  
ferential output to a single-ended output. T he circuit uses a dif-  
ferential-to-single-ended amplifier, the Analog Devices SSM2141.  
Inter m odulation D istor tion  
With inputs consisting of sine waves at two frequencies, fa and  
fb, any active device with nonlinearities will create distortion  
products at sum and difference frequencies of mfa ± nfb where  
m, n = 0, 1, 2, 3, etc. Intermodulation terms are those which  
neither m nor n are equal to zero. T he second order terms in-  
clude (fa + fb) and (fa – fb), while the third order terms include  
(2fa + fb), (2fa – fb), (fa + 2fb), and (fa – 2fb).  
+12V  
0.1µF  
ADSP-21msp58/59  
7
GND  
A
5
1
VOUT  
P
Idle Channel Noise  
V
SSM2141  
0.1µF  
OUT  
VOUT  
N
Idle channel noise is defined as the total signal energy measured  
at the output of the device when the input is grounded (mea-  
sured in the frequency range 300 Hz–3400 Hz).  
4
GND  
A
GND  
A
–12V  
Cr osstalk  
Crosstalk is defined as the ratio of the rms value of a full-scale  
signal appearing on one channel to the rms value of the same  
signal that couples onto the adjacent channel. Crosstalk is ex-  
pressed in dB.  
Figure 12. Exam ple Circuit for Single-Ended Output  
Voltage Refer ence Filter Capacitance  
Figure 13 shows the recommended reference filter capacitor  
connections. T he capacitor grounds should be connected to the  
same star ground point shown in Figure 10.  
P ower Supply Rejection  
Power supply rejection measures the susceptibility of a device to  
a signal on the power supply. Power supply rejection is mea-  
sured by modulating a signal on the power supply and measur-  
ing the signal at the output (relative to 0 dB). Power supply  
rejection is defined as the ratio of the rms value of the modula-  
tion signal to the rms value of the same signal in the ADC/DAC  
channel.  
BUF  
V
REF  
REF_FILTER  
VOLTAGE  
REFERENCE  
10µF  
0.1µF  
ADSP-21msp58/59  
Gr oup D elay  
Group delay is defined as the derivative of radian phase with re-  
spect to radian frequency, ∂φ(ω)/∂ω. Group delay is a measure  
of the average delay of a system as a function of frequency. A  
linear system with a constant group delay has a linear phase re-  
sponse. T he deviation of group delay away from a constant indi-  
cates the degree of nonlinear phase response of the system.  
STAR  
GROUND  
Figure 13. Voltage Reference Filter Capacitor  
–20–  
REV. 0  
ADSP-21msp58/59  
ADSP-21msp58/59–SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS  
B Grade  
P aram eter  
Min  
Max  
Unit  
VDD  
T AMB  
Supply Voltage  
Ambient Operating T emperature  
4.50  
–40  
5.50  
+85  
V
°C  
See “Environmental Conditions” for information on thermal specifications.  
ELECTRICAL CHARACTERISTICS  
P aram eter  
Test Conditions  
Min  
Max  
Unit  
VIH  
VIH  
VIL  
VOH  
Hi-Level Input Voltage1, 2  
Hi-Level CLKIN Voltage  
Lo-Level Input Voltage1, 3  
Hi-Level Output Voltage1, 4, 5  
@ VDD = max  
@ VDD = max  
@ VDD = min  
@ VDD = min,  
IOH = –0.5 mA  
@ VDD = min,  
IOH = –100 µA6  
@ VDD = min,  
IOL = 2 mA  
@ VDD = max,  
VIN = VDD max  
@ VDD = max,  
VIN = 0 V  
@ VDD = max,  
VIN = VDD max8  
@ VDD = max,  
VIN = 0 V8  
@ VDD = max,  
Codec Inactive  
@ VDD = max,  
VCC = max  
2.0  
2.2  
V
V
V
0.8  
2.4  
V
VDD – 0.3  
V
VOL  
IIH  
Lo-Level Output Voltage1, 4, 5  
Hi-Level Input Current3  
0.4  
10  
10  
10  
10  
18  
92  
V
µA  
µA  
µA  
µA  
mA  
mA  
IIL  
Lo-Level Input Current3  
IOZH  
IOZL  
IDD  
IDD  
IDD  
T ristate Leakage Current7  
T ristate Leakage Current7  
Digital Supply Current (Idle)6, 9  
Digital Supply Current (Dynamic)9, 10  
Digital Supply Current (Powerdown)9  
@ VDD = max, See  
ADSP-2100 Family Users  
Manual, Chapter 9  
Codec Active  
@ VIN = 2.5 V,  
fIN = 1.0 MHz,  
TAMB = 25°C  
@ VIN = 2.5 V,  
fIN = 1.0 MHz,  
TAMB = 25°C  
100  
18  
µA  
mA  
ICC  
CI  
Analog Supply Current (Dynamic)9  
Input Pin Capacitance3, 11, 12  
8
8
pF  
pF  
CO  
Output Pin Capacitance7, 11, 12  
NOT ES  
1Bidirectional pins: D0-D23, RFS0, RFS1, SCLK0, SCLK1, T FS0, T FS1, HD0-HD7/HAD0-HAD7.  
2Input only pins: RESET, IRQ2, BR, MMAP, DR0, DR1, HSEL, HSIZE, BMODE, HMD0, HMD1, HRD/HWR, HWR/HDS, PWD, HA2/ALE, HA1-0.  
3Input only pins: CLKIN, RESET, IRQ2, BR, MMAP, DR0, DR1, HSEL, HSIZE, BMODE, HMD0, HMD1, HRD/HWR, HWR/HDS, PWD, HA2/ALE, HA1-0.  
4Output pins: BG, PMS, DMS, BMS, RD, WR, A0-A13, DT 0, DT 1, CLKOUT , HACK, FL0.  
5Although specified for T T L outputs, all ADSP-21msp58/59 outputs are CMOS-compatible and will drive to V DD and GND, assuming no dc loads.  
6Idle refers to ADSP-21msp58/59 state of operation during IDLE instruction. Deasserted pins are driven to either V DD or GND. Refer to chart in back for lower  
IDLE currents.  
7T hree-statable pins: A0-A13, D0-D23, PMS, DMS, BMS, RD, WR, DT 0, DT 1, SCLK0, SCLK1, T FS0, T FS1, RFS0, RSF1, HD0-HD7/HAD0-HAD7.  
80 V on BR, CLKIN Active (to force three-state condition).  
9Current reflects the digital portion of device operating with no output loads and a 2 k load on the analog output (VOUT P, VOUT N).  
10  
t
= 76.92 ns, CODEC active, 80% execution type 1 instructions, with random data. For typical figures for digital and analog supply currents, refer to “Power  
CK  
Dissipation” section.  
11Guaranteed but not tested.  
12Output pin capacitance is the capacitive load for any three-stated output pin.  
Specifications subject to change without notice.  
REV. 0  
–21–  
ADSP-21msp58/59  
ABSO LUTE MAXIMUM RATINGS*  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Output Voltage Swing . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Operating T emperature Range (Ambient) . . . . –40°C to +85°C  
Storage T emperature Range . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature (5 sec) . . . . . . . . . . . . . . . . . . . . . . +280°C  
*Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T hese are stress ratings only, and functional  
operation of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ESD SENSITIVITY  
T he ADSP-21msp58/59 is an ESD (electrostatic discharge) sensitive device. Electrostatic charges  
readily accumulate on the human body and equipment and can discharge without detection.  
Permanent damage may occur to devices subjected to high energy electrostatic discharges.  
WARNING!  
T he ADSP-21msp58/59 features proprietary ESD protection circuitry to dissipate high energy  
discharges (Human Body Model).  
ESD SENSITIVE DEVICE  
Proper ESD precautions are recommended to avoid performance degradation or loss of function-  
ality. Unused devices must be stored in conductive foam or shunts, and the foam should be  
discharged to the destination before devices are removed.  
TIMING PARAMETERS  
MEMO RY REQ UIREMENTS  
GENERAL NO TES  
T his chart links common memory device specification  
names and ADSP-21msp58/59 timing parameters for your  
convenience.  
Use the exact timing information given. Do not attempt to de-  
rive parameters from the addition or subtraction of others. While  
addition or subtraction would yield meaningful results for an in-  
dividual device, the values given in this data sheet reflect statisti-  
cal variations and worst cases. Consequently, you cannot  
meaningfully add up parameters to derive longer times.  
Com m on  
P aram eter  
Nam e  
Mem ory D evice  
Specification Nam e  
Function  
TIMING NO TES  
tASW  
tAW  
A0-A13, DMS, PMS  
Setup before WR Low  
A0-A13, DMS, PMS Setup Address Setup  
before WR Deasserted  
A0-A13, DMS, PMS  
Hold after WR Deasserted  
Address Setup to  
Write Start  
Switching characteristics specify how the processor changes its  
signals. You have no control over this timing; it is dependent on  
the internal design. T iming requirements apply to signals that  
are controlled outside the processor, such as the data input for a  
read operation.  
to Write End  
Address Hold T ime  
tWRA  
tDW  
tDH  
tRDD  
tAA  
Data Setup before WR High Data Setup T ime  
T iming requirements guarantee that the processor operates cor-  
rectly with another device. Switching characteristics tell you  
what the device will do under a given circumstance. Also, use the  
switching characteristics to ensure any timing requirement of a  
device connected to the processor (such as memory) is satisfied.  
Data Hold after WR High  
RD Low to Data Valid  
A0-A13, DMS, PMS,  
BMS to Data Valid  
Data Hold T ime  
OE to Data Valid  
Address Access T ime  
–22–  
REV. 0  
ADSP-21msp58/59  
FREQ UENCY RESP O NSE  
AD C  
Max  
(dB)  
AD C  
Min  
(dB)  
D AC  
Max  
(dB)  
D AC  
Min  
(dB)  
Frequency  
(H z)  
0+  
75  
150  
300  
1000  
2000  
3000  
3400  
3700  
3850  
4000  
–60.00  
–25.00  
+0.266  
+0.272  
+0.000  
+0.050  
–0.200  
–0.300  
–0.375  
–25.00  
–60.00  
N/A  
N/A  
–60.00  
–25.00  
+0.015  
+0.030  
+0.000  
+0.050  
–0.050  
–0.090  
–0.120  
–25.00  
–60.00  
N/A  
N/A  
–0.134  
–0.128  
+0.000  
–0.350  
–0.600  
–0.700  
–0.775  
N/A  
–0.185  
–0.170  
+0.000  
–0.200  
–0.300  
–0.340  
–0.370  
N/A  
N/A  
N/A  
NOT ES  
All specifications relative to absolute gain @ 1.0 kHz.  
ADC and DAC high-pass filters inserted.  
ADC specifications do not include RC filter attenuation and assumes an ac coupled input (see “Analog T est Conditions”  
for RC filter details).  
NO ISE & D ISTO RTIO N  
P aram eter  
Min  
Max  
Unit  
Test Condition  
ADC Intermodulation Distortion  
DAC Intermodulation Distortion  
ADC Idle Channel Noise  
DAC Idle Channel Noise  
ADC Crosstalk1  
–60  
–70  
dB  
dB  
dBm0  
dBm0  
dB  
m, n = 1 and 2; fa = 984; fb = 1047  
m, n = 1 and 2; fa = 984; fb = 1047  
65  
72  
–65  
–65  
–55  
–55  
ADC input signal level: 1.0 kHz, 0 dBm0  
DAC input at idle.  
DAC Crosstalk1  
dB  
dB  
dB  
ADC input signal level: analog ground  
DAC output signal level: 1.0 kHz, 0 dBm0  
Input signal level at VCC and VDD pins:  
1.0 kHz, 100 mV p-p sine wave  
Input signal level at VCC and VDD pins:  
1.0 kHz, 100 mV p-p sine wave  
300 Hz–3000 Hz  
300 Hz–3000 Hz  
1.0 kHz, 0 dBm0  
1.0 kHz, 0 dBm0  
ADC Power Supply Rejection1  
DAC Power Supply Rejection1  
ADC Group Delay1  
DAC Group Delay1  
ADC SNR and T HD  
DAC SNR and T HD  
1
1
ms  
ms  
dB  
dB  
65  
72  
NOT E  
1Guaranteed but not tested.  
100  
100  
80  
60  
40  
20  
ADC SNR + THD  
80  
DAC SNR + THD  
PEAK @  
72dB  
PEAK @  
65dB  
60  
40  
20  
0
20dB  
20dB  
SLOPE =  
SLOPE =  
20dBm0  
20dBm0  
0
–60  
–50  
–40  
–30  
–20  
–10  
0
10  
–60  
–50  
–40  
–30  
–20  
–10  
0
10  
3.17  
3.17  
V
– dBm0  
V
– dBm0  
IN  
IN  
Figure 14. SNR + THD vs. VIN  
–23–  
REV. 0  
ADSP-21msp58/59  
ANALO G INTERFACE ELECTRICAL CH ARACTERISTICS  
Sym bol  
P aram eter  
Min  
Typ  
Max  
Unit  
ADC  
RI  
VINMAX  
DAC:  
RO  
VOOFF  
Input Resistance1, 2 at VINNORM, VINAUX  
Maximum Input Range1, 3  
200  
kΩ  
V p-p  
3.156  
400  
Output Resistance1, 4  
Output DC Offset5  
2.5  
mV  
–400  
VO  
Maximum Voltage Output Swing (p-p) Across RL  
Single-Ended1  
3.156  
6.312  
V
V
Differential1  
RL  
Load Resistance1, 4  
2
kΩ  
Reference Buffer:  
Voltage Reference (VREF  
Output Impedence1  
Capacitive Load1  
PSRR1  
)
2.25  
2.75  
10  
V
nf  
dB  
250  
55  
NOT ES  
T est conditions for all analog interface tests: ADC PGA bypassed, DAC PGA set to 0 dB gain, with 2 k load on analog output (VOUT P, VOUT N), VCC = 5.0 V.  
1Guaranteed but not tested.  
2Varies with PGA setting.  
3At input to sigma-delta modulator of ADC.  
4At VOUT P, VOUT N  
.
5Between VOUT P and VOUT N  
.
GAIN  
P aram eter  
Min  
Typ  
Max  
Unit  
Test Conditions  
ADC Absolute Gain  
–0.7  
–0.1  
–0.6  
–0.75  
–0.1  
–0.6  
0
0
0
0
0
0
0.7  
0.1  
0.6  
0.75  
0.1  
0.6  
dBm0  
dBm0  
dBm0  
dBm0  
dBm0  
dBm0  
1.0 kHz, 0 dBm0  
1.0 kHz, +3 to –50 dBm0  
1.0 kHz  
1.0 kHz, 0 dBm0  
1.0 kHz, +3 to –50 dBm0  
1.0 kHz  
ADC Gain T racking Error  
ADC PGA Relative Gain  
DAC Absolute Gain  
DAC Gain T racking Error  
DAC PGA Relative Gain  
–24–  
REV. 0  
ADSP-21msp58/59  
P aram eter  
Min  
Max  
Unit  
Clock Signals  
tCK is defined as 0.5 tCKI. T he ADSP-21msp58/59 uses  
an input clock with a quency equal to half the instruction  
rate; a 13 MHz input clock (which is equivalent to 76.92 ns)  
yields a 38.46 ns processor cycle (equivalent to 26 MHz).  
tCK values within the range of 0.5 tCKI period should be  
substituted for all relevant timing parameters to obtain  
specification value. Example: tCKH = 0.5tCK – 7 ns  
= 0.5 (38.46 ns) – 7 ns = 12.23 ns.  
T iming Requirement:  
tCKI  
tCKIL  
tCKIH  
CLKIN Period  
CLKIN Width Low  
CLKIN Width High  
76.92  
20  
20  
125  
ns  
ns  
ns  
Switching Characteristic:  
tCKL  
tCKH  
tCKOH  
CLKOUT Width Low  
CLKOUT Width High  
CLKIN High to CLKOUT High  
0.5tCK – 7  
0.5tCK – 7  
0
ns  
ns  
ns  
20  
Contr ol Signals  
T iming Requirement:  
tRSP  
1
RESET Width Low  
5tCK  
ns  
NOT ES  
1Applies after power-up sequence is complete. Internal phase lock loop requires no more than 2000 CLKIN cycles assuming stable CLKIN (not including  
crystal oscillator start-up time).  
tCKI  
tCKIH  
CLKIN  
tCKIL  
tCKOH  
tCKH  
CLKOUT  
tCKL  
Figure 15. Clock Signals  
REV. 0  
–25–  
ADSP-21msp58/59  
P aram eter  
Min  
Max  
Unit  
Inter r upts and Flags  
T iming Requirement:  
tIFS  
tIFH  
IRQx or FI Setup before CLKOUT Low1, 2, 3  
0.25tCK + 15  
0.25tCK  
ns  
ns  
IRQx or FI Hold after CLKOUT High1, 2, 3  
Switching Characteristics:  
tFOH  
Flag Output Hold after CLKOUT Low4  
tFOD  
Flag Output Delay from CLKOUT Low4  
0.5tCK – 7  
ns  
ns  
0.5tCK + 5  
NOT ES  
1If IRQx and FI inputs meet tIFS and tIFH setup/hold requirements, they will be recognized during the current clock cycle; otherwise the signals will be recognized on  
the following cycle. (Refer to “Interrupt Controller Operation” in the Program Control chapter of the User’s Manual for further information on interrupt servicing.)  
2Edge-sensitive interrupts require pulse widths greater than 10 ns; level-sensitive interrupts must be held low until serviced.  
3IRQx = IRQ0, IRQ1, and IRQ2.  
4Flag Output = FL0 and FO.  
CLKOUT  
tFOD  
tFOH  
FLAG  
OUTPUTS  
tIFH  
IRQ  
FI  
x
tIFS  
Figure 16. Interrupts and Flags  
–26–  
REV. 0  
ADSP-21msp58/59  
P aram eter  
Min  
Max  
Unit  
Bus Request/Gr ant  
T iming Requirement:  
tBH  
tBS  
BR Hold after CLKOUT High1  
0.25tCK + 2  
0.25tCK + 17  
ns  
ns  
BR Setup before CLKOUT Low1  
Switching Characteristic:  
tSD  
CLKOUT High to DMS, PMS, BMS,  
0.25tCK + 10  
ns  
RD, WR Disable  
tSDB  
tSE  
DMS, PMS, BMS, RD, WR  
Disable to BG Low  
BG High to DMS, PMS, BMS,  
RD, WR Enable  
DMS, PMS, BMS, RD, WR  
Enable to CLKOUT High  
0
ns  
ns  
ns  
0
tSEC  
0.25tCK – 7  
NOT ES  
1BR is an asynchronous signal. If BR meets the setup/hold requirements, it will be recognized during the current clock cycle; otherwise the signal will be recognized  
on the following cycle. Refer to the ADSP-2100 Family User’s Manual for BR/BG cycle relationships.  
tBH  
CLKOUT  
BR  
tBS  
CLKOUT  
PMS, DMS,  
BMS,RD,  
tSEC  
WR  
tSD  
BG  
tSDB  
tSE  
Figure 17. Bus Request–Bus Grant  
REV. 0  
–27–  
ADSP-21msp58/59  
P aram eter  
Min  
Max  
Unit  
Mem or y Read  
T iming Requirement:  
tRDD  
tAA  
tRDH  
RD Low to Data Valid  
A0-A13, PMS, DMS, BMS to Data Valid  
Data Hold from RD High  
0.5tCK – 11 + w  
0.75tCK – 12 + w  
ns  
ns  
ns  
0
Switching Characteristic:  
tRP  
RD Pulse Width  
CLKOUT High to RD Low  
A0-A13, PMS, DMS, BMS Setup before RD Low  
A0-A13, PMS, DMS, BMS Hold after RD Deasserted  
RD High to RD or WR Low  
0.5tCK – 5 + w  
0.25tCK – 5  
0.25tCK – 6  
0.25tCK – 3  
0.5tCK – 5  
ns  
ns  
ns  
ns  
tCRD  
tASR  
tRDA  
tRWR  
0.25tCK + 7  
NOT E  
w = wait states × tCK  
.
CLKOUT  
A0 – A13  
DMS, PMS,  
BMS  
tRDA  
RD  
tRP  
tASR  
tCRD  
tRWR  
D
tROD  
tRDH  
tAA  
WR  
Figure 18. Mem ory Read  
–28–  
REV. 0  
ADSP-21msp58/59  
P aram eter  
Min  
Max  
Unit  
Mem or y Wr ite  
Switching Characteristic:  
tDW  
tDH  
tWP  
tWDE  
tASW  
tDDR  
tCWR  
tAW  
Data Setup before WR High  
Data Hold after WR High  
WR Pulse Width  
WR Low to Data Enabled  
A0-A13, DMS, PMS Setup before WR Low  
Data Disable before WR or RD Low  
CLKOUT High to WR Low  
A0-A13, DMS, PMS, Setup before WR Deasserted  
A0-A13, DMS, PMS Hold after WR Deasserted  
WR High to RD or WR Low  
0.5tCK – 7 + w  
0.25tCK – 2  
0.5tCK – 5 + w  
0
0.25tCK – 6  
0.25tCK – 6  
0.25tCK – 5  
0.75tCK – 9 + w  
0.25tCK – 3  
0.5tCK – 5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.25tCK + 7  
tWRA  
tWWR  
NOT E  
w = wait states × tCK.  
CLKOUT  
A0 – A13  
DMS, PMS  
tWRA  
WR  
tWWR  
tWP  
tASW  
tAW  
tDH  
tDDR  
tCWR  
D
tWDE  
tDW  
RD  
Figure 19. Mem ory Write  
REV. 0  
–29–  
ADSP-21msp58/59  
P aram eter  
Min  
Max  
Unit  
Ser ial P or ts  
T iming Requirement:  
tSCK  
tSCS  
tSCH  
tSCP  
SCLK Period  
50  
4
7
ns  
ns  
ns  
ns  
DR/T FS/RFS Setup before SCLK Low  
DR/T FS/RFS Hold after SCLK Low  
SCLKin Width  
20  
Switching Characteristic:  
tCC  
CLKOUT High to SCLKout  
SCLK High to DT Enable  
SCLK High to DT Valid  
T FS/RFSout Hold after SCLK High  
T FS/RFSout Delay from SCLK High  
DT Hold after SCLK High  
T FS(Alt) to DT Enable  
T FS(Alt) to DT Valid  
0.25tCK  
0
0.25tCK + 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCDE  
tSCDV  
tRH  
15  
15  
0
tRD  
tSCDH  
tT DE  
tT DV  
tSCDD  
tRDV  
0
0
14  
15  
15  
SCLK High to DT Disable  
RFS (Multichannel, Frame Delay Zero) to DT Valid  
CLKOUT  
tCC  
tCC  
tSCK  
SCLK  
DR  
tSCP  
tSCS  
tSCH  
tSCP  
RFS  
IN  
TFS  
IN  
tRD  
tRH  
RFS  
OUT  
OUT  
TFS  
tSCDV  
tSCDE  
tSCDD  
tSCDH  
DT  
tTDE  
tTDV  
TFS  
alternate  
frame mode  
tRDV  
RFS  
multichannel  
mode, frame  
delay 0 (MFD = 0)  
Figure 20. Serial Ports  
–30–  
REV. 0  
ADSP-21msp58/59  
P aram eter  
Min  
Max  
Unit  
H ost Inter face P or t  
Separate Data and Address (HMD1 = 0)  
Read Strobe and Write Strobe (HMD0 = 0)  
T iming Requirement:  
tHSU  
HA2-0 Setup before Start of Write or Read1, 2  
5
5
3
3
ns  
ns  
ns  
ns  
ns  
tHDSU  
tHWDH  
tHH  
Data Setup before End of Write3  
Data Hold after End of Write3  
HA2-0 Hold after End of Write or Read3, 4  
Read or Write Pulse Width5  
tHRWP  
20  
Switching Characteristic:  
tHSHK  
tHKH  
HACK Low after Start of Write or Read1, 2  
0
0
0
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
HACK Hold after End of Write or Read3, 4  
Data Enabled after Start of Read2  
Data Valid after Start of Read2  
tHDE  
tHDD  
tHRDH  
tHRDD  
18  
7
Data Hold after End of Read4  
0
Data Disabled after End of Read4  
NOT ES  
1Start of Write = HWR Low and HSEL Low.  
2Start of Read = HRD Low and HSEL Low.  
3End of Write = HWR High or HSEL High.  
4End of Read = HRD High or HSEL High.  
5Read Pulse Width = HRD Low and HSEL Low, Write Pulse Width = HWR Low and HSEL Low.  
HA2–0  
ADDRESS  
tHRWP  
HSEL  
tHSU  
HOST WRITE CYCLE  
tHH  
HWR  
HACK  
tHKH  
tHSHK  
DATA  
tHDSU  
HD7–0  
tHWDH  
HA2–0  
ADDRESS  
tHRWP  
HSEL  
tHSU  
HOST READ CYCLE  
tHH  
HRD  
HACK  
tHSHK  
tHKH  
DATA  
HD7–0  
tHDE  
tHDD  
tHRDH  
tHRDD  
Figure 21. Host Interface Port (HMD1 = 0, HMD0 = 0)  
REV. 0  
–31–  
ADSP-21msp58/59  
P aram eter  
Min  
Max  
Unit  
H ost Inter face P or t  
Separate Data and Address (HMD1 = 0)  
Read Strobe and Write Strobe (HMD0 = 1)  
T iming Requirement:  
tHSU  
HA2-0, HRW Setup before Start of Write or Read1  
5
5
3
3
ns  
ns  
ns  
ns  
ns  
tHDSU  
tHWDH  
tHH  
Data Setup before End of Write2  
Data Hold after End of Write2  
HA2-0, HRW Hold after End of Write or Read2  
Read or Write Pulse Width3  
tHRWP  
20  
Switching Characteristic:  
tHSHK  
tHKH  
HACK Low after Start of Write or Read1  
0
0
0
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
HACK Hold after End of Write or Read2  
Data Enabled after Start of Read1  
Data Valid after Start of Read1  
tHDE  
tHDD  
tHRDH  
tHRDD  
18  
7
Data Hold after End of Read2  
0
Data Disabled after End of Read2  
NOT ES  
1Start of Write or Read = HDS Low and HSEL Low.  
2End of Write or Read = HDS High and HSEL High.  
3Read or Write Pulse Width = HDS Low and HSEL Low.  
HA2–0  
ADDRESS  
tHRWP  
HSEL  
tHSU  
HOST WRITE CYCLE  
HRW  
tHH  
HDS  
HACK  
tHSHK  
tHKH  
DATA  
tHDSU  
HD7–0  
tHWDH  
HA2–0  
HSEL  
HRW  
ADDRESS  
tHRWP  
tHSU  
HOST READ CYCLE  
tHH  
HDS  
HACK  
tHSHK  
tHKH  
HD7–0  
DATA  
tHDE  
tHDD  
tHRDH  
tHRDD  
Figure 22. Host Interface Port (HMD1 = 0, HMD0 =1)  
–32–  
REV. 0  
ADSP-21msp58/59  
P aram eter  
Min  
Max  
Unit  
H ost Inter face P or t  
Multiplexed Data and Address (HMD1 = 1)  
Read Strobe and Write Strobe (HMD0 = 0)  
T iming Requirement:  
tHALP  
tHASU  
tHAH  
tHALS  
tHDSU  
tHWDH  
tHRWP  
ALE Pulse Width  
10  
5
2
10  
5
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HAD15-0 Address Setup, before ALE Low  
HAD15-0 Address Hold after ALE Low  
Start of Write or Read after ALE Low1, 2  
HAD15-0 Data Setup before End of Write3  
HAD15-0 Data Hold after End of Write3  
Read or Write Pulse Width5  
20  
Switching Characteristic:  
tHSHK  
tHKH  
tHDE  
tHDD  
tHRDH  
tHRDD  
HACK Low after Start of Write or Read1, 2  
0
0
0
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
HACK Hold after End of Write or Read3, 4  
HAD15-0 Data Enabled after Start of Read2  
HAD15-0 Data Valid after Start of Read2  
HAD15-0 Data Hold after End of Read  
HAD15-0 Data Disabled after End of Read4  
18  
7
0
NOT ES  
1Start of Write = HWR Low and HSEL Low.  
2Start of Read = HRD Low and HSEL Low.  
3End of Write = HWR High or HSEL High.  
4End of Read = HRD High or HSEL High.  
5Read Pulse Width = HRD Low and HSEL Low, Write Pulse Width = HWR Low and HSEL Low.  
ALE  
tHALP  
tHRWP  
HSEL  
HWR  
tHALS  
HOST WRITE CYCLE  
tHKH  
tHSHK  
tHASU tHAH  
HACK  
HAD7–0  
ADDRESS  
DATA  
tHDSU  
tHWDH  
ALE  
tHALP  
tHRWP  
HSEL  
HRD  
tHALS  
HOST READ CYCLE  
tHSHK  
tHKH  
HACK  
tHASU tHAH  
ADDRESS  
tHDE  
tHRDH  
HAD7–0  
DATA  
tHDD  
tHRDD  
Figure 23. Host Interface Port (HMD1 = 1, HMD0 = 0)  
REV. 0  
–33–  
ADSP-21msp58/59  
P aram eter  
Min  
Max  
Unit  
H ost Inter face P or t  
Multiplexed Data and Address (HMD1 = 1)  
Read Strobe and Write Strobe (HMD0 = 1)  
T iming Requirement:  
tHALP  
tHASU  
tHAH  
tHALS  
tHSU  
tHDSU  
tHWDH  
tHH  
ALE Pulse Width  
10  
5
2
10  
5
5
3
3
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HAD15-0 Address Setup before ALE Low  
HAD15-0 Address Hold after ALE Low  
Start of Write or Read after ALE Low1  
HRW Setup before Start of Write or Read1  
HAD15-0 Data Setup before End of Write2  
HAD15-0 Data Hold after End of Write2  
HRW Hold after End of Write or Read2  
Read or Write Pulse Width3  
tHRWP  
Switching Characteristic:  
tHSHK  
tHKH  
tHDE  
tHDD  
HACK Low after Start of Write or Read1  
0
0
0
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
HACK Hold after End of Write or Read2  
HAD15-0 Data Enabled after Start of Read1  
HAD15-0 Data Valid after Start of Read1  
HAD15-0 Data Hold after End of Read2  
HAD15-0 Data Disabled after End of Read2  
18  
7
tHRDH  
tHRDD  
0
NOT ES  
1Start of Write or Read = HDS Low and HSEL Low.  
2End of Write or Read = HDS High and HSEL High.  
3Read or Write Pulse Width = HDS Low and HSEL Low.  
ALE  
tHALP  
tHRWP  
HSEL  
tHALS  
tHH  
HOST WRITE CYCLE  
HRW  
tHSU  
HDS  
tHKH  
tHSHK  
tHASU  
tHAH  
HACK  
HAD7–0  
ADDRESS  
DATA  
tHDSU  
tHWDH  
ALE  
tHALP  
tHALS  
tHRWP  
HSEL  
HRW  
tHH  
tHSU  
HOST READ CYCLE  
HDS  
tHKH  
tHSHK  
HACK  
tHASU tHAH  
ADDRESS  
tHDE  
tHRDH  
HAD7–0  
DATA  
tHDD  
tHRDD  
Figure 24. Host Interface Port (HMD1 = 1, HMD0 = 1)  
–34–  
REV. 0  
ADSP-21msp58/59  
ENVIRO NMENTAL CO ND ITIO NS  
Ambient T emperature Rating:  
frequency, the codec performance changes and the performance  
specifications cannot be guaranteed. T he codec filter character-  
istics, however, scale approximately linearly with frequency.  
TAMB = T CASE – (PD × θC A  
)
TCASE = Case T emperature in °C  
PD = Power Dissipation in W  
θC A = T hermal Resistance (Case-to-Ambient)  
θJA = T hermal Resistance (Junction-to-Ambient)  
θJC = T hermal Resistance (Junction-to-Case)  
If the codec is disabled, then the processor can be used at any  
allowed input frequency. T he power consumption of the ADSP-  
21msp58/59 at these frequencies is shown in Figure 25.  
1
POWER, INTERNAL  
550  
500  
450  
400  
350  
300  
250  
200  
150  
550  
480mW 500  
450  
INTERNAL  
P ackage  
θJA  
θJC  
θCA  
(80% NOMINAL LOADING)  
CODEC INACTIVE  
MAX VALUES  
T QFP  
50°C/W  
2°C/W  
48°C/W  
391mW  
400  
V
= 5.5V  
DD  
350  
P O WER D ISSIP ATIO N  
310mW  
T o determine total power dissipation in a specific application,  
the following equation should be applied for each output:  
300  
250  
200  
150  
= 5.0V  
DD  
V
2
C × VDD × f  
191mW  
154mW  
V
= 4.5V  
C = load capacitance, f = output switching frequency.  
DD  
Exam ple:  
118mW  
100  
50  
100  
50  
In an application where external data memory is used and no  
other outputs are active, power dissipation is calculated as  
follows:  
2
2
2
6
10  
14  
18  
22  
26  
30  
1/t – MHz  
CK  
2
POWER, IDLE  
Assumptions:  
110  
100  
90  
100mW  
External data memory is accessed every cycle with 50% of the  
address pins switching.  
IDLE 0  
CODEC INACTIVE  
MAX VALUES  
External data memory writes occur every other cycle with  
50% of the data pins switching.  
83mW  
V
= 5.5V  
DD  
80  
Each address and data pin has a 10 pF total load at the pin.  
70  
T he application operates at VDD = 5.0 V and tCK = 76.92 ns.  
= 5.0V  
DD  
V
2
Total Power Dissipation = PINT + (C × VDD × f )  
60  
69mW  
57mW  
49mW  
42mW  
PINT = internal power dissipation from Power vs. Frequency  
50  
graph (Figure 25).  
V
= 4.5V  
18  
DD  
2
40  
(C × VDD × f ) is calculated for each output:  
30  
6
10  
14  
22  
26  
30  
# of  
P ins × C  
1/t – MHz  
2
CK  
× VD D  
× f  
3
POWER, IDLE n MODES  
Address, DMS  
Data Output, WR  
RD  
8
9
1
1
× 10 pF × 52  
V
× 26 MHz  
× 13 MHz  
× 13 MHz  
× 26 MHz  
=
=
=
=
52 mW  
30 mW  
4 mW  
6 mW  
92 mW  
70  
60  
50  
40  
30  
20  
× 10 pF × 52  
× 10 pF × 52  
× 10 pF × 52  
V
V
V
IDLEs @ 5.0V  
CODEC INACTIVE  
TYPICAL VALUES  
65mW  
CLKOUT  
T otal power dissipation for this example is PINT + 92 mW.  
IDLE (16)  
Typical P ower Consum ption  
IDLE (32)  
IDLE (64)  
IDLE (128)  
37mW  
35mW  
T he typical power consumption can be calculated from the fol-  
lowing data, taken at 5.0 V and +25°C. Dynamic VDD data was  
taken while executing 80% type 1 multifunction instructions, on  
random data.  
29mW  
21mW  
20mW  
Parameter  
T yp  
19 mA  
13 mA  
10  
IDD Digital Supply Current (Idle, Codec Powered Up)  
IDD Digital Supply Current (Idle)  
6
10  
14  
18  
22  
26  
30  
1/t – MHz  
CK  
VALID FOR ALL TEMPERATURE GRADES.  
1
IDD Digital Supply Current (Dynamic, Codec Powered Up) 83 mA  
POWER REFLECTS DEVICE OPERATING WITH NO OUTPUT LOADS.  
IDD Digital Supply Current (Dynamic)  
IDD Digital Supply Current (Powerdown)  
ICC Analog Supply Current (Dynamic)  
78 mA  
10 µA  
15 mA  
2
IDLE REFERS TO ADSP-21msp58/59 STATE OF OPERATION DURING EXECUTION OF  
IDLE INSTRUCTION. DEASSERTED PINS ARE DRIVEN TO EITHER V OR GND.  
DD  
POWER REFLECTS DEVICE OPERATING WITH CLKOUT DISABLED.  
TYPICAL POWER DISSIPATION AT 5.0V V DURING EXECUTION OF IDLE n  
3
DD  
INSTRUCTION (CLOCK FREQUENCY REDUCTION). POWER REFLECTS DEVICE  
OPERATING WITH CLKOUT DISABLED.  
Analog Devices recommends that the ADSP-21msp58/59  
is used with a 13 MH z input clock. Below this input clock  
Figure 25. Power vs. Internal Processor Frequency  
REV. 0  
–35–  
ADSP-21msp58/59  
CAP ACITIVE LO AD ING  
TEST CO ND ITIO NS  
Figures 26 and 27 show the capacitive loading characteristics of  
the ADSP-21msp58/59.  
D igital  
Figure 28 shows the voltage reference levels and Figure 29  
shows the equivalent device loading for the ac measurements.  
28  
24  
3.0V  
1.5V  
0.0V  
INPUT  
V
= 4.5V  
DD  
20  
16  
12  
8
2.0V  
1.5V  
0.8V  
OUTPUT  
Figure 28. Voltage Reference Levels for AC Measure-  
m ents (Except Output Enable/Disable)  
4
I
OL  
0
25  
50  
75  
C
100  
– pF  
125  
150  
175  
L
TO  
OUTPUT  
PIN  
+1.5V  
Figure 26. Typical Output Rise Tim e vs. Load Capacitance,  
CL (at Maxim um Am bient Operating Tem perature)  
50pF  
+14  
I
OH  
+12  
+10  
Figure 29. Equivalent Device Loading for AC Measure-  
m ents (Including All Fixtures)  
+8  
+6  
Analog  
+4  
Figure 30 shows the analog test conditions.  
+2  
NOMINAL  
–2  
1.0µF  
2.2k  
DECOUPLE  
REF_CAP  
VIN  
NORM  
1.0µF  
2200pF  
NPO  
–4  
25  
50  
75  
C
100  
– pF  
125  
150  
175  
1.0µF  
2.2kΩ  
L
VIN  
AUX  
10µF  
0.1µF  
2200pF  
NPO  
Figure 27. Typical Output Valid Delay or Hold vs. Load  
Capacitance, CL (at Maxim um Am bient Operating  
Tem perature)  
Figure 30. Analog Test Conditions  
–36–  
REV. 0  
ADSP-21msp58/59  
O utput D isable Tim e  
O utput Enable Tim e  
Output pins are considered to be disabled when they have  
stopped driving and started a transition from the measured out-  
put high or low voltage to a high impedance state. T he output  
disable time (tDIS) is the difference of tMEASURED and tDECAY, as  
shown in the Output Enable/Disable diagram. T he time is the  
interval from when a reference signal reaches a high or low volt-  
age level to when the output voltages have changed by 0.5 V  
from the measured output high or low voltage. T he decay time,  
Output pins are considered to be enabled when that have made  
a transition from a high-impedance state to when they start driv-  
ing. T he output enable time (tENA) is the interval from when a  
reference signal reaches a high or low voltage level to when the  
output has reached a specified high or low trip point, as shown  
in the Output Enable/Disable diagram. If multiple pins (such as  
the data bus) are enabled, the measurement value is that of the  
first pin to start driving.  
t
DECAY, is dependent on the capacitative load, CL, and the cur-  
rent load, iL, on the output pin. It can be approximated by the  
following equation:  
REFERENCE  
SIGNAL  
tMEASURED  
tENA  
CL • 0.5V  
tDECAY  
=
tDIS  
V
OH  
iL  
(MEASURED)  
V
V
(MEASURED)  
OUTPUT  
OH  
V
(MEASURED) –0.5V  
(MEASURED) +0.5V  
OH  
2.0V  
1.0V  
from which  
V
OL  
(MEASURED)  
tDIS = tMEASURED tDECAY  
OL  
V
OL  
(MEASURED)  
tDECAY  
is calculated. If multiple pins (such as the data bus) are dis-  
abled, the measurement value is that of the last pin to stop  
driving.  
OUTPUT STOPS  
DRIVING  
OUTPUT STARTS  
HERE  
HIGH-IMPEDANCE STATE. TEST CONDITIONS CAUSE  
THIS VOLTAGE LEVEL TO BE APPROXIMATELY 1.5V.  
Figure 31. Output Enable/Disable  
REV. 0  
–37–  
ADSP-21msp58/59  
P IN CO NFIGURATIO N  
100-Lead Thin P lastic Quad Flatpack (TQFP )  
100  
76  
1
75  
D15  
D16  
VINNORM  
DECOUPLE  
VINAUX  
REF_FILTER  
GNDA  
D17  
D18  
D19  
D20  
MMAP  
RESET  
IRQ2  
D21  
D22  
D23  
HMD0  
VDD  
GND  
PMS  
DMS  
BMS  
RD  
HMD1  
HACK  
FL0  
TOP VIEW  
(PINS DOWN)  
SCLK1  
DR1/FI  
RFS1/IRW0  
TFS1/IRQ1  
DT1/FO  
GND  
WR  
HD7  
HD6  
HD5  
HD4  
HD3  
HD2  
HD1  
HD0  
HA2/ALE  
SCLK0  
DR0  
FRS0  
TFS0  
DT0  
VDD  
A13  
25  
51  
26  
50  
–38–  
REV. 0  
ADSP-21msp58/59  
100-Lead Thin P lastic Quad Flatpack (TQFP ) P inout  
TQFP  
P in  
TQFP  
P in  
TQFP  
P in  
TQFP  
P in  
Num ber  
Nam e  
Num ber  
Nam e  
Num ber  
Nam e  
Num ber  
Nam e  
1
2
3
4
5
6
7
8
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
HA1  
HA0  
HSEL  
HWR/HDS  
HRD/HRW  
CLKOUT  
VDD  
GND  
XT AL  
CLKIN  
GND  
VDD  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
A13  
VDD  
DT 0  
T FS0  
RFS0  
DR0  
SCLK0  
GND  
DT 1/FO  
T FS1/IRQ1  
RFS1/IRQ0  
DR1/FI  
SCLK1  
FL0  
HACK  
HMD1  
HMD0  
IRQ2  
RESET  
MMAP  
GNDA  
REF_FILT ER  
VINAUX  
DECOUPLE  
VINNORM  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
VCC  
VREF  
VOUT P  
VOUT N  
GND  
BMODE  
PWD  
BR  
BG  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
GND  
D8  
9
D23  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VDD  
GND  
PMS  
DMS  
BMS  
RD  
WR  
HD7  
HD6  
HD5  
HD4  
HD3  
HD2  
HD1  
HD0  
HA2/ALE  
D9  
D10  
D11  
D12  
D13  
D14  
A9  
A10  
A11  
A12  
REV. 0  
–39–  
ADSP-21msp58/59  
O UTLINE D IMENSIO NS  
D imensions shown in millimeters and (inches)  
100-Lead Metr ic Thin P lastic Q uad Flat P ack (TQ FP )  
16.25 (0.640)  
SQ  
15.75 (0.620)  
14.05 (0.553)  
13.95 (0.549)  
1.60 (0.063)  
MAX  
SQ  
0.75 (0.030)  
0.50 (0.019)  
100  
1
76  
75  
SEATING  
PLANE  
TOP VIEW  
(PINS DOWN)  
25  
51  
50  
0.1 (0.004)  
26  
0.15 (0.006)  
0.05 (0.002)  
0.27 (0.011)  
0.17 (0.007)  
0.56 (0.022)  
0.44 (0.018)  
0.057 (1.45)  
0.053 (1.35)  
12.06 (0.475) SQ  
O RD ERING GUID E*  
Am bient  
Tem perate  
Range  
Instruction  
Rate  
(MIP S)  
P ackage  
D escription  
P ackage  
O ption  
P art Num ber  
ADSP-21msp58BST -104  
–40°C to +85°C  
26  
100-Lead T QFP  
ST -100  
*Refer to the section titled “Ordering Procedure for ADSP-21msp59 ROM Processors” for information about ordering ROM coded parts.  
–40–  
REV. 0  

相关型号:

ADSP-21MSP59

DSP Microcomputers
ADI

ADSP-21MSP59XX-104-ROM

IC,DSP,16-BIT,CMOS,QFP,100PIN,PLASTIC
ADI

ADSP-21MSP5X

ADSP-2100 Family DSP Microcomputers
ADI

ADSP-21XX

ADSP-2100 Family DSP Microcomputers
ADI

ADSP-21XX1111

ADSP-2100 Family DSP Microcomputers
ADI

ADSP-21XX4444

ADSP-2100 Family DSP Microcomputers
ADI

ADSP-3128AJG

Register File
ETC

ADSP-3128AKG

Register File
ETC

ADSP-3128ASG

Register File
ETC

ADSP-3128ASG/883B

Register File
ETC

ADSP-3128ATG

Register File
ETC

ADSP-3128ATG/883B

Register File
ETC