ADUCM320BBCZ [ADI]

ADUCM320BBCZ;
ADUCM320BBCZ
型号: ADUCM320BBCZ
厂家: ADI    ADI
描述:

ADUCM320BBCZ

时钟 外围集成电路
文件: 总31页 (文件大小:455K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Analog Microcontroller, 14-Bit Analog  
Input/Output with MDIO Interface, ARM Cortex-M3  
Data Sheet  
ADuCM320  
On-chip peripherals  
MDIO slave up to 4 MHz  
2 × I2C, 2 × SPI, UART  
Multiple general-purpose input/output (GPIO) pins: 3.6 V  
compliant  
7 × 1.2 V compatible when used for MDIO  
32-element programmable logic array (PLA)  
3 general-purpose timers  
Wake-up timer  
Watchdog timer  
16-bit pulse width modulator (PWM)  
Power  
Supply range: 2.9 V to 3.6 V, and 1.8 V to 2.5 V for IDACs  
Flexible operating modes for low power applications  
Packages and temperature range  
6 mm × 6mm, 96-ball CSP_BGA package  
Fully specified for −40°C to +105°C ambient operation  
Tools  
FEATURES  
Analog input/output  
Multichannel, 14-bit, 1 MSPS analog-to-digital  
converter (ADC)  
Up to 16 ADC input channels  
0 V to VREF analog input range  
Fully differential and single-ended modes  
AVDD and IOVDD monitors  
12-bit voltage output digital-to-analog converters (VDACs)  
8 VDACs with a range of 0 V to 2.5 V or AVDD outputs  
12-bit current output DACs (IDACs)  
4 IDACS with a range of 0 mA to 150 mA outputs  
Voltage comparator  
Microcontroller  
ARM® Cortex®-M3 processor, 32-bit RISC architecture  
Serial wire port supports code download and debug  
Clocking options  
80 MHz phase-locked loop (PLL) with programmable  
divider  
Trimmed on-chip oscillator ( 3%)  
External 16 MHz crystal option  
External clock source up to 80 MHz  
Memory  
Low cost QuickStart™ development system  
Full third party support  
APPLICATIONS  
Optical networking  
2 × 128 kB independent Flash/EE memories  
10,000 cycle Flash/EE endurance  
20-year Flash/EE retention  
32 kB SRAM  
Software triggered in-circuit reprogrammability via  
management data input/output (MDIO)  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
ADUCM320* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
ADuCM320 Material Declaration  
PCN-PDN Information  
EVALUATION KITS  
Quality And Reliability  
ADuCM320 Evaluation Board  
Symbols and Footprints  
DOCUMENTATION  
Application Notes  
DISCUSSIONS  
View all ADuCM320 EngineerZone Discussions.  
• AN-1310: Flash Programming via MDIO—Protocol Type 8  
AN-1322: ADuCM320 Code Execution Speed  
Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
ADuCM320: Precision Analog Microcontroller, 14-Bit  
Analog I/O with MDIO Interface, ARM Cortex-M3 Data  
Sheet  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
User Guides  
UG-498: ADuCM320 Hardware Reference Manual  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
UG-692: ADuCM320 Development Systems Getting  
Started Tutorial  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADuCM320  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ..................................................... 21  
ESD Caution................................................................................ 21  
Pin Configuration and Function Descriptions........................... 22  
Typical Performance Characteristics ........................................... 27  
Recommended Circuit and Component Values ........................ 28  
Packaging and Ordering Information ......................................... 30  
Outline Dimensions................................................................... 30  
Ordering Guide .......................................................................... 30  
Applications....................................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
General Description......................................................................... 4  
Specifications..................................................................................... 5  
Microcontroller Electrical Specifications.................................. 5  
Timing Specifications ................................................................ 15  
REVISION HISTORY  
10/15—Rev. B to Rev. C  
Change to Features Section ............................................................. 1  
Added Table 2; Renumbered Sequentially .................................. 10  
Changes to Table 7 and Figure 5................................................... 18  
Changes to Table 8 and Figure 6................................................... 19  
Change to Table 10 ......................................................................... 21  
Changes to Figure 14...................................................................... 27  
Changes to Ordering Guide .......................................................... 30  
3/15—Rev. A to Rev. B  
Changes to Table 1............................................................................ 7  
Changes to tSHD and tPSU Parameters, Table 3 .............................. 10  
11/14—Rev. 0 to Rev. A  
Changes to Figure 1.......................................................................... 3  
Changes to General Description .................................................... 4  
Changes to Table 1 ............................................................................ 5  
Added Timing Specifications Section.......................................... 10  
Added Figure 2; Renumbered Sequentially ................................ 10  
Added Figure 3................................................................................ 11  
Added Figure 4................................................................................ 12  
Added Figure 5................................................................................ 13  
Added Figure 6 and Figure 7......................................................... 14  
Changes to Absolute Maximum Ratings Section....................... 15  
Changes to Pin C3 and Pin A11 Descriptions............................ 17  
Changes to Ordering Guide .......................................................... 24  
6/14—Revision 0: Initial Version  
Rev. C | Page 2 of 30  
 
Data Sheet  
ADuCM320  
FUNCTIONAL BLOCK DIAGRAM  
BUF_VREF2V5  
XTALO XTALI ECLKIN  
2.5V BAND GAP  
1.8 V LDO  
DGNDx  
AVDDx  
AGNDx  
CLOCK SYSTEM  
32.768kHz  
16MHz OSC  
80MHz PLL  
AIN0  
AIN5  
14-BIT  
SAR ADC  
MUX  
IOVDDx  
IOGNDx  
AIN6  
AIN15  
ARM  
CORTEX M3  
PROCESSOR  
INTERNAL  
CHANNELS:  
TEMPERATURE,  
GPIO PORTS  
UART  
AV , IOV  
DD  
DD  
GENERAL  
PURPOSE  
I/O PORTS  
2 × SPI  
2
2 × I C  
COMPA-  
RATOR  
EXT IRQS  
MDIO  
PLA  
MEMORY  
2 × 128kB FLASH  
32kB SRAM  
VDAC0  
VDAC  
VDAC  
IDAC  
IDAC  
DMA  
NVIC  
3 × GP TIMER  
WD TIMER  
WAKE-UP TIMER  
PWM  
VDAC7  
IDAC0  
IDAC3  
PWM0 TO  
PWM6  
ADuCM320  
RESET SYSTEM  
RESET  
SWDIO  
SWCLK  
SERIAL WIRE  
PGND  
PVDDx  
Figure 1.  
Rev. C | Page 3 of 30  
 
ADuCM320  
Data Sheet  
GENERAL DESCRIPTION  
The ADuCM320 is a fully integrated single package device that  
incorporates high performance analog peripherals together  
with digital peripherals controlled by an 80 MHz ARM Cortex-  
M3 processor and integral flash for code and data.  
optionally be divided down to reduce current consumption.  
Additional low power modes can be set via software. In normal  
operating mode, the ADuCM320 digital core consumes about  
300 µA per MHz.  
The ADC on the ADuCM320 provides 14-bit, 1 MSPS data  
acquisition on up to 16 input pins that can be programmed for  
single-ended or differential operation. The voltage at the IDAC  
output pins can also be measured by the ADC, which is useful for  
controlling the power consumption of the current DACs.  
Additionally, chip temperature and supply voltages can be  
measured.  
The device includes an MDIO interface capable of operating at  
up to 4 MHz. The capability to simultaneously execute from  
one flash block and write/erase the other flash block makes the  
ADuCM320 ideal for 10G, 40G, and 100G optical applications.  
User programming is eased by incorporating PHYADR and  
DEVADD hardware comparators. In addition, the nonerasable  
kernel code plus flags in user flash provide assistance by  
allowing user code to robustly switch between the two blocks  
of user flash code and data spaces.  
The ADC input voltage is 0 V to VREF. A sequencer is provided,  
which allows a user to select a set of ADC channels to be measured  
in sequence without software involvement during the sequence.  
The sequence can optionally repeat automatically at a user  
selectable rate.  
The ADuCM320 integrates a range of on-chip peripherals that  
can be configured under software control, as required in the appli-  
cation. These peripherals include 1 × UART, 2 × I2C, and 2 × SPI  
serial input/output communication controllers, GPIO, 32-  
element programmable logic array, 3 general-purpose timers,  
plus a wake-up timer and system watchdog timer. A 16-bit  
PWM with seven output channels is also provided.  
Up to eight VDACs are provided with output ranges that are  
programmable to one of two voltage ranges.  
Four IDAC sources are provided. The output currents are  
programmable with ranges of 0 mA to 150 mA. A low drift  
band gap reference and voltage comparator completes the  
analog input peripheral set.  
GPIO pins on the device power up in high impedance input  
mode. In output mode, the software chooses between open-  
drain mode and push-pull mode. The pull-up resistors can be  
disabled and enabled in software. In GPIO output mode, the  
inputs can remain enabled to monitor the pins. The GPIO pins  
can also be programmed to handle digital or analog peripheral  
signals, in which case the pin characteristics are matched to the  
specific requirement.  
The ADuCM320 can be configured so that the digital and analog  
outputs will retain their output voltages and currents through  
a watchdog or software reset sequence. Thus, a product can  
remain functional even while the ADuCM320 is resetting itself.  
The ADuCM320 has a low power ARM Cortex-M3 processor  
and a 32-bit RISC machine that offers up to 100 MIPS peak  
performance. Also integrated on chip are 2 × 128 kB Flash/EE  
memory and 32 kB of SRAM. The flash comprises two separate  
128 kB blocks supporting execution from one flash block and  
simultaneous writing/erasing of the other flash block.  
A large support ecosystem is available for the ARM Cortex-M3  
processor to ease product development of the ADuCM320.  
Access is via the ARM serial wire debug port (SW-DP). On-  
chip factory firmware supports in-circuit serial download via  
MDIO. These features are incorporated into a low cost  
QuickStart development system supporting this precision  
analog microcontroller family.  
The ADuCM320 operates from an on-chip oscillator or a  
16 MHz external crystal and a PLL at 80 MHz. This clock can  
Rev. C | Page 4 of 30  
 
Data Sheet  
ADuCM320  
SPECIFICATIONS  
MICROCONTROLLER ELECTRICAL SPECIFICATIONS  
AVDD = IOVDD = VDD1 = 2.9 V to 3.6 V (see Figure 14) maximum difference between supplies = 0.3 V, V REF = 2.5 V internal reference,  
CORE = 80 MHz, TA = −40°C to +85°C, unless otherwise noted. PVDDx for IDACs = 1.8 V to 2.5 V. Power-up sequence must be VDD1,  
f
IOVDDx, AVDDx, and then PVDDx, but no delays in the sequence are required.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
ADC BASIC SPECIFICATIONS  
Single-ended mode, unless  
otherwise stated  
ADC Power-Up Time  
Data Rate  
DC Accuracy1  
Resolution1  
Integral Nonlinearity  
5
µs  
fSAMPLE  
1
MSPS  
Bits  
Bits  
LSB  
14  
16  
1 LSB = 2.5 V/214  
Number of data bits  
2.5 V internal reference; 1 LSB =  
2.5 V/214  
INL  
1.75  
1.75  
0.75  
0.75  
3
LSB  
LSB  
LSB  
LSB  
2.5 V external reference; 1 LSB =  
2.5 V/214  
2.5 V internal reference; 1 LSB =  
2.5 V/214  
Differential Nonlinearity  
DNL  
−0.99  
+1  
2.5 V external reference; 1 LSB =  
2.5 V/214  
DC Code Distribution  
ADC ENDPOINT ERRORS  
Offset Error  
ADC input 1.25 V; 1 LSB = 2.5 V/214  
Input Buffer Off  
Drift1  
Input Buffer On  
Drift1  
200  
−250  
1
µV  
µV/°C  
µV  
µV/°C  
LSB  
−2.25  
−2.6  
+1.2  
+2  
Using 2.5 V external reference  
Using 2.5 V external reference  
Matching compared to AIN8  
Match  
Full-Scale Error  
Input Buffer Off  
Gain Drift1  
400  
µV  
µV/°C  
−4  
+2  
+3  
Full-scale error drift minus offset  
error drift  
Input Buffer On  
Gain Drift1  
−350  
1
µV  
µV/°C  
−4.5  
Full-scale error drift minus offset  
error drift  
Match  
LSB  
ADC DYNAMIC PERFORMANCE  
fIN = 665.25 Hz sine wave, fSAMPLE =  
100 kSPS; input filter = 15 Ω, 2 nF  
Signal-to-Noise Ratio  
SNR  
THD  
Includes distortion and noise  
components  
Input Buffer  
Disabled  
Enabled  
Total Harmonic Distortion  
Input Buffer  
80  
74  
dB  
dB  
Disabled  
Enabled  
Peak Harmonic or Spurious Noise  
Channel-to-Channel Crosstalk  
ADC INPUT  
−86  
−83  
−88  
−90  
dB  
dB  
dB  
dB  
Measured on adjacent channels  
Input buffer not enabled  
Input Voltage Ranges  
Single-Ended Mode1  
Differential Mode1  
Compliance1  
AGND4  
−VREF  
AGND4  
0.9  
VREF  
+VREF  
AVDD4  
1.6  
V
V
Voltage between differential pins  
Common Mode1  
Rev. C | Page 5 of 30  
 
 
 
ADuCM320  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Leakage Current  
AIN0 to AIN4, AIN6 to AIN15  
±1.5  
±±0  
±ꢀ  
nA  
AIN5  
nA  
Pin shared with comparator  
At 1 MSPS; buffer off  
Input Current  
μA/V  
μA/V  
μA/V  
±6  
≤800 kSPS; buffer off  
±4  
500 kSPS; buffer off;  
ADCCNVC[±5:16] = 0x1E  
Input Capacitance  
ADC INPUT BUFFER±  
Voltage Compliance1  
Input Current  
±0  
pF  
During ADC acquisition  
When enabled by software  
Reduced accuracy below 0.15 V  
VIN = 0.15 V to ±.5 V, ADC converting  
0.15  
±.5  
V
±100  
±.51  
nA  
V
ON-CHIP VOLTAGE REFERENCE  
0.47 μF from VREF_1V± to AGND4;  
reference is measured with all  
ADCs, VDACs, and IDACs enabled  
Accuracy  
±5  
+4  
mV  
TA = ±5°C  
Reference Temperature Coefficient1  
Power Supply Rejection Ratio  
Internal VREF Power-On Time  
EXTERNAL REFERENCE INPUT  
Range1  
−34  
1.8  
−15  
60  
ppm/°C  
dB  
PSRR  
50  
ms  
±.5  
V
ADC  
Input Current  
±00  
μA  
BUFFERED REFFERNCE OUTPUT  
Output Voltage  
±.504  
±8  
V
Accuracy  
Reference Temperature Coefficient1  
mV  
μV/°C  
TA = ±5°C, load = 1.± mA  
−55  
−5  
+40  
1.±  
100 nF from BUF_VREF±V5 to  
AGND4  
Output Impedance  
Load Current1  
10  
Ω
TA = ±5°C  
mA  
VDAC CHANNEL SPECIFICATIONS  
DC Accuracy1  
Resolution1  
Relative Accuracy4  
Differential Nonlinearity4  
RL = 5 kΩ, CL = 100 pF3  
1 LSB = ±.5 V/±1±  
1±  
1±  
Bits  
Bits  
LSB  
LSB  
Number of data bits  
1 LSB = ±.5 V/±1±  
INL  
±4  
±3  
DNL  
−0.ꢀꢀ  
+1  
Guaranteed monotonic, 1 LSB =  
±.5 V/±1±  
Offset Error  
±15  
mV  
±.5 V internal reference, DAC  
Output Code 0  
Drift  
Gain Error5  
±13  
±0.3  
±0.4  
6.5  
μV/°C  
%
±0.85  
±1  
0 V to internal VREF range  
0 V to AVDD range  
%
Drift  
ppm/°C  
%
Excluding reference drift  
% of full scale on DAC0  
Mismatch  
0.1  
Analog Outputs  
Output Voltage Range 11  
0.15  
0.15  
±.5  
V
Output Voltage Range ±1  
Output Impedance  
DAC AC Characteristics  
Output Settling Time  
Glitch Energy  
AVDDx− 0.15  
V
±
Ω
10  
μs  
Settled to ±1 LSB  
±±0  
nV-sec  
1 LSB change when the maximum  
number of bits changes  
simultaneously in the  
DACxDAT register  
IDAC CHANNEL SPECIFICATIONS  
Resolution1  
14  
Bits  
Combination of overlapping  
11 bits and 5 bits  
Full-Scale Output1  
Supply Voltage Each Channel1  
150  
mA  
V
1.8  
±.5  
Separate PVDDx supply for each  
channel  
Output Compliance Range  
IDAC0, IDAC1  
0.4  
0.4  
PVDDx − 400 mV  
PVDDx − ±50 mV  
V
V
See Figure 11  
See Figure 11  
IDAC±, IDAC3  
Rev. C | Page 6 of 30  
Data Sheet  
ADuCM320  
Parameter  
Symbol  
Min  
Typ  
Max  
0.75  
Unit  
Test Conditions/Comments  
Full-Scale Error  
IDAC0, IDAC1  
IDAC set to 85% of full scale  
25°C to 105°C range  
%
%
%
3.5  
0.75  
−40°C to +105°C range  
−40°C to +105°C range  
IDAC2, IDAC3  
Full-Scale Error Drift  
IDAC0, IDAC1  
Internal VREF  
−40°C to +85°C  
25°C to 85°C  
IDAC2, IDAC3  
Integral Nonlinearity  
Differential Nonlinearity  
25  
5
2
µA/°C  
µA/°C  
µA/°C  
LSB  
Internal VREF  
1 LSB = 150 mA/211  
Guaranteed 11-bit monotonic,  
1 LSB = 150 mA/211  
INL  
DNL  
3
6
+1.5  
−0.99  
−220  
LSB  
Zero-Scale Error  
Zero-Scale Error Drift  
IDAC0, IDAC1  
IDAC2, IDAC3  
Noise Current  
Pull-Down Current  
Settling Time  
To 0.1%  
50  
µA  
300  
800  
nA/°C  
nA/°C  
µA  
2
IDACxCON[5:2] = 0  
When enabled  
IDACxCON[5:2] = 0  
4 mA change from midscale  
4 mA change from midscale  
Pull-down enabled  
Junction temperature  
IDACxCON[5:2] = 0  
−165  
−100  
µA  
100  
50  
20  
µs  
µs  
µs  
°C  
To 1%  
Full Scale to 0 mA  
Overheat Shutdown  
PVDD ACPSRR  
100 Hz  
1 kHz  
10 kHz  
135  
51  
45  
25  
10  
dB  
dB  
dB  
dB  
100 kHz  
COMPARATOR  
Input  
Offset Voltage  
Bias Current  
Voltage Range1  
Capacitance  
Hysteresis1  
10  
1
mV  
nA  
V
pF  
mV  
µs  
AGNDx  
8.5  
AVDDx – 1.2  
15  
7
7
When enabled in software  
AFECOMP[2:1] = 0  
Response Time  
TEMPERATURE SENSOR  
Indicates die temperature, see  
Figure 9  
Resolution  
Accuracy1  
0.5  
°C  
V
When precision calibrated by the  
user6  
ADC measured voltage for  
temperature sensor channel without  
calibration, T = 25°C  
1.34  
1.5  
1.43  
2.9  
POWER-ON RESET  
External Reset Minimum Pulse Width1  
POR  
2.85  
V
µs  
Minimum pulse width required on  
external reset pin to trigger a reset  
sequence  
WATCHDOG TIMER  
Timeout Period  
FLASH/EE MEMORY  
Endurance1  
WDT  
32  
sec  
Default at power-up  
TJ = 85°C  
10,000  
20  
Cycles  
Years  
Data Retention1  
Rev. C | Page 7 of 30  
ADuCM320  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DIGITAL INPUTS  
Input Leakage Current  
Logic 1 GPIO  
1
10  
nA  
nA  
VIH = VDD, pull-up resistor disabled  
VIL = 0 V, pull-up resistor disabled  
Logic 0 GPIO  
PRTADDRx  
Input Leakage Current  
16  
10  
µA  
V
VIN = 0 to 1.8 V, due to weak pull-  
up resistors to 1.8 V  
External resistor 91 kΩ 1% to  
ground, range for CFP MSA high1  
Input Voltage  
0.84  
1.5  
Input Capacitance, All Pins Except MCK,  
MDIO, PRTADDRx, and XTALx  
pF  
Input Capacitance  
MCK, PRTADDRx  
MDIO  
6.5  
8.5  
pF  
pF  
Pin Capacitance  
XTALI  
XTALO  
5
5
pF  
pF  
LOGIC INPUTS  
GPIO Input Voltage  
Low  
VINL  
VINH  
0.25 × IOVDDx  
V
V
High  
0.58 × IOVDDx  
MDIO  
PRTADDRx Input Voltage  
Low  
High  
VINL  
VINH  
0.36  
0.36  
V
V
0.84  
0.84  
MCK, MDIO Input Voltage  
Setup time ≥10 ns; hold time  
≥10 ns; MCK/MDIO  
Low  
High  
VINL  
VINH  
V
V
XTALI Input Voltage  
Low  
High  
VINL  
VINH  
1.1  
1.7  
V
V
Pull-Up Current  
Pull-Down Current  
LOGIC OUTPUTS  
30  
30  
120  
100  
µA  
µA  
VIN = 0 V, see Figure 10  
VIN = 3.3 V, see Figure 10  
All digital outputs excluding  
XTALO  
GPIO Output Voltage7  
High  
Low  
VOH  
VOL  
IOVDDx − 0.4  
V
V
ISOURCE = 2 mA  
ISINK = 2 mA  
0.4  
GPIO Short-Circuit Current1  
11  
mA  
See Figure 13  
MDIO  
Output Voltage  
High  
Low  
VOH  
VOL  
1.0  
V
V
ISOURCE = 4 mA  
ISINK = 4 mA  
0.2  
Delay Time  
100  
ns  
MCK to MDIO out  
OSCILLATORS  
Internal System Oscillator  
Accuracy  
16  
0.5  
MHz  
%
3
System PLL  
External Crystal Oscillator  
80  
16  
MHz  
MHz  
Main system clock  
Can be selected in place of  
internal oscillator  
32 kHz Internal Oscillator  
Accuracy  
External Clock  
32.768  
5
kHz  
%
MHz  
Use for watchdog  
20  
80  
0.05  
Can be selected in place of PLL  
Processor clock = 80 MHz  
START-UP TIME  
At Power-On  
After Other Reset  
From All Power-Down Modes  
40  
1.5  
1.25  
ms  
ms  
µs  
POR to first user code execution  
Reset to first user code execution  
Rev. C | Page 8 of 30  
Data Sheet  
ADuCM320  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
PROGRAMMABLE LOGIC ARRAY  
Propagation Delay  
Pin  
PLA  
17  
ns  
ns  
From input pin to output pin  
Per PLA cell  
Element  
1.5  
EXTERNAL INTERRUPTS  
Pulse Width1  
Level Triggered  
7
1
ns  
ns  
Edge Triggered  
POWER REQUIREMENTS8  
Power Supply Voltage Range  
AVDDx to AGNDx and IOVDDx  
to DGNDx1  
2.9  
3.3  
3.6  
V
Analog Power Supply Currents  
AVDDx Current  
6.3  
4
mA  
mA  
mA  
Analog peripherals in idle mode  
All GPIO pull-up resistors enabled  
Digital Power Supply Current  
IOVDDx Current in Normal Mode  
VDDx Current  
Normal Mode9  
29  
CD = 0 (80 MHz clock) executing  
typical code  
20  
10  
16  
8
mA  
mA  
mA  
mA  
mA  
CD = 1 executing typical code  
CD = 7 executing typical code  
CORE_SLEEP Mode9  
SYS_SLEEP Mode9  
Hibernate Mode9  
Additional Power Supply Currents  
ADC  
6.6  
4.1  
mA  
mA  
mA  
μA  
Continuously converting at 100 kSPS  
Both buffers enabled  
ADC Input Buffer  
IDAC  
4.0  
16.5  
340  
Excluding load current  
DAC  
Per powered up DAC, excluding  
load current  
Total Supply Current  
35  
40  
45  
mA  
VDD1, IOVDDx, AVDDx connected  
together; condition when entering  
user code: peripheral clocks on,  
peripherals idle, no load currents  
Thermal Performance  
Impedance Junction to Ambient  
45  
°C/W  
JEDEC 2S2P  
1 These numbers are not production tested but are guaranteed by design and/or characterization data at production release.  
2 Enabling the input buffer changes the ADC input characteristics as described in this subsection.  
3 The data in this section also applies for a load of RL = 1 kΩ and CL = 100 pF to GND but only for 0 V to 2.5 V. However, this is not production tested.  
4 DAC linearity is calculated using a reduced code range of 100 to 3900.  
5 DAC gain error is calculated using a reduced code range of 100 to an internal 2.5 V VREF  
.
6 Due to self heating, internal temperature measurements cannot be used to predict external temperatures. This value is only relevant after user calibration and only for  
internal and external conditions identical to those at calibration.  
7 The average current from all GPIO pins must not exceed 3 mA per pin.  
8 Power figures exclude any load currents to external circuits.  
9 See the ADuCM320 reference manual, How to Set up and Use the ADuCM320.  
Rev. C | Page 9 of 30  
ADuCM320  
Data Sheet  
AVDD = IOVDD = VDD1 = 2.9 V to 3.6 V maximum difference between supplies = 0.3 V, VREF = 2.5 V internal reference, fCORE = 80 MHz,  
TA = −40°C to +105°C, unless otherwise noted. PVDDx for IDACs = 1.8 V to 2.5 V. Power-up sequence must be VDD1, IOVDDx, AVDDx, and  
then PVDDx, but no delays in the sequence are required.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
ADC BASIC SPECIFICATIONS  
Single-ended mode, unless  
otherwise stated  
ADC Power-Up Time  
Data Rate  
DC Accuracy1  
Resolution1  
Integral Nonlinearity  
5
µs  
fSAMPLE  
1
MSPS  
Bits  
Bits  
LSB  
14  
16  
1 LSB = 2.5 V/214  
Number of data bits  
2.5 V internal reference; 1 LSB =  
2.5 V/214  
INL  
1.75  
1.75  
0.75  
0.75  
3
LSB  
LSB  
LSB  
LSB  
2.5 V external reference; 1 LSB =  
2.5 V/214  
2.5 V internal reference; 1 LSB =  
2.5 V/214  
Differential Nonlinearity  
DNL  
−0.99  
+1.5  
2.5 V external reference; 1 LSB =  
2.5 V/214  
DC Code Distribution  
ADC ENDPOINT ERRORS  
Offset Error  
ADC input 1.25 V; 1 LSB = 2.5 V/214  
Input Buffer Off  
Drift1  
200  
−250  
1
µV  
µV/°C  
µV  
µV/°C  
LSB  
−2.25  
−3  
+1.2  
+2  
Using 2.5 V external reference  
Input Buffer On  
Drift1  
Match  
Using 2.5 V external reference  
Matching compared to AIN8  
Full-Scale Error  
Input Buffer Off  
Gain Drift1  
400  
µV  
µV/°C  
−4.3  
−4.5  
+2  
+3  
Full-scale error drift minus offset  
error drift  
Input Buffer On  
Gain Drift1  
−350  
1
µV  
µV/°C  
Full-scale error drift minus offset  
error drift  
Match  
LSB  
ADC DYNAMIC PERFORMANCE  
fIN = 665.25 Hz sine wave, fSAMPLE =  
100 kSPS; input filter = 15 Ω, 2 nF  
Signal-to-Noise Ratio  
SNR  
THD  
Includes distortion and noise  
components  
Input Buffer  
Disabled  
Enabled  
Total Harmonic Distortion  
Input Buffer  
80  
74  
dB  
dB  
Disabled  
Enabled  
−86  
−83  
−88  
−90  
dB  
dB  
dB  
dB  
Peak Harmonic or Spurious Noise  
Channel-to-Channel Crosstalk  
ADC INPUT  
Measured on adjacent channels  
Input buffer not enabled  
Input Voltage Ranges  
Single-Ended Mode1  
Differential Mode1  
Compliance1  
AGND4  
−VREF  
AGND4  
0.9  
VREF  
+VREF  
AVDD4  
1.6  
V
V
Voltage between differential pins  
Common Mode1  
Rev. C | Page 10 of 30  
Data Sheet  
ADuCM320  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Leakage Current  
AIN0 to AIN4, AIN6 to AIN15  
±1.5  
±±0  
±ꢀ  
nA  
AIN5  
nA  
Pin shared with comparator  
At 1 MSPS; buffer off  
Input Current  
μA/V  
μA/V  
μA/V  
±6  
≤800 kSPS; buffer off  
±4  
500 kSPS; buffer off;  
ADCCNVC[±5:16] = 0x1E  
Input Capacitance  
ADC INPUT BUFFER±  
Voltage Compliance1  
Input Current  
±0  
pF  
During ADC acquisition  
When enabled by software  
Reduced accuracy below 0.15 V  
VIN = 0.15 V to ±.5 V, ADC converting  
0.15  
±.5  
V
±100  
±.51  
nA  
V
ON-CHIP VOLTAGE REFERENCE  
0.47 μF from VREF_1V± to AGND4;  
reference is measured with all  
ADCs, VDACs, and IDACs enabled  
Accuracy  
±5  
+4  
mV  
TA = ±5°C  
Reference Temperature Coefficient1  
Power Supply Rejection Ratio  
Internal VREF Power-On Time  
EXTERNAL REFERENCE INPUT  
Range1  
−34  
1.8  
−15  
60  
ppm/°C  
dB  
PSRR  
50  
ms  
±.5  
V
ADC  
Input Current  
±00  
μA  
BUFFERED REFFERNCE OUTPUT  
Output Voltage  
±.504  
±8  
V
Accuracy  
Reference Temperature Coefficient1  
mV  
μV/°C  
TA = ±5°C, load = 1.± mA  
−55  
−5  
+40  
1.±  
100 nF from BUF_VREF±V5 to  
AGND4  
Output Impedance  
Load Current1  
10  
Ω
TA = ±5°C  
mA  
VDAC CHANNEL SPECIFICATIONS  
DC Accuracy1  
Resolution1  
Relative Accuracy4  
Differential Nonlinearity4  
RL = 5 kΩ, CL = 100 pF3  
1 LSB = ±.5 V/±1±  
1±  
1±  
Bits  
Bits  
LSB  
LSB  
Number of data bits  
1 LSB = ±.5 V/±1±  
INL  
±4  
±3  
DNL  
−0.ꢀꢀ  
+1  
Guaranteed monotonic, 1 LSB =  
±.5 V/±1±  
Offset Error  
±15  
mV  
±.5 V internal reference, DAC  
Output Code 0  
Drift  
Gain Error5  
±13  
±0.3  
±0.4  
6.5  
μV/°C  
%
±0.85  
±1  
0 V to internal VREF range  
0 V to AVDD range  
%
Drift  
ppm/°C  
%
Excluding reference drift  
% of full scale on DAC0  
Mismatch  
0.1  
Analog Outputs  
Output Voltage Range 11  
0.15  
0.15  
±.5  
V
Output Voltage Range ±1  
Output Impedance  
DAC AC Characteristics  
Output Settling Time  
Glitch Energy  
AVDDx− 0.15  
V
±
Ω
10  
μs  
Settled to ±1 LSB  
±±0  
nV-sec  
1 LSB change when the maximum  
number of bits changes  
simultaneously in the  
DACxDAT register  
IDAC CHANNEL SPECIFICATIONS  
Resolution1  
14  
Bits  
Combination of overlapping  
11 bits and 5 bits  
Full-Scale Output1  
Supply Voltage Each Channel1  
150  
mA  
V
1.8  
±.5  
Separate PVDDx supply for each  
channel  
Output Compliance Range  
IDAC0, IDAC1  
0.4  
0.4  
PVDDx − 400 mV  
PVDDx − ±50 mV  
V
V
See Figure 11  
See Figure 11  
IDAC±, IDAC3  
Rev. C | Page 11 of 30  
ADuCM320  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
0.75  
Unit  
Test Conditions/Comments  
Full-Scale Error  
IDAC0, IDAC1  
IDAC set to 85% of full scale  
25°C to 105°C range  
%
%
%
3.5  
0.75  
IDAC2, IDAC3  
Full-Scale Error Drift  
IDAC0, IDAC1  
Internal VREF  
−40°C to 105°C  
25°C to 105°C  
IDAC2, IDAC3  
Integral Nonlinearity  
Differential Nonlinearity  
25  
5
2
µA/°C  
µA/°C  
µA/°C  
LSB  
Internal VREF  
1 LSB = 150 mA/211  
Guaranteed 11-bit monotonic,  
1 LSB = 150 mA/211  
INL  
DNL  
3
6
+1.5  
−0.99  
−220  
LSB  
Zero-Scale Error  
Zero-Scale Error Drift  
IDAC0, IDAC1  
IDAC2, IDAC3  
Noise Current  
Pull-Down Current  
Settling Time  
To 0.1%  
50  
µA  
300  
800  
nA/°C  
nA/°C  
µA  
2
IDACxCON[5:2] = 0  
When enabled  
IDACxCON[5:2] = 0  
4 mA change from midscale  
4 mA change from midscale  
Pull-down enabled  
Junction temperature  
IDACxCON[5:2] = 0  
−165  
−100  
µA  
100  
50  
20  
µs  
µs  
µs  
°C  
To 1%  
Full Scale to 0 mA  
Overheat Shutdown  
PVDD ACPSRR  
100 Hz  
1 kHz  
10 kHz  
135  
51  
45  
25  
10  
dB  
dB  
dB  
dB  
100 kHz  
COMPARATOR  
Input  
Offset Voltage  
Bias Current  
Voltage Range1  
Capacitance  
Hysteresis1  
10  
1
mV  
nA  
V
pF  
mV  
µs  
AGNDx  
8.5  
AVDDx – 1.2  
15  
7
7
When enabled in software  
AFECOMP[2:1] = 0  
Response Time  
TEMPERATURE SENSOR  
Indicates die temperature, see  
Figure 9  
Resolution  
Accuracy1  
0.5  
°C  
V
When precision calibrated by the  
user6  
ADC measured voltage for  
temperature sensor channel without  
calibration, T = 25°C  
1.34  
1.5  
1.43  
2.9  
POWER-ON RESET  
External Reset Minimum Pulse Width1  
POR  
2.85  
V
µs  
Minimum pulse width required on  
external reset pin to trigger a reset  
sequence  
WATCHDOG TIMER  
Timeout Period  
FLASH/EE MEMORY  
Endurance1  
WDT  
32  
sec  
Default at power-up  
TJ = 85°C  
10,000  
20  
Cycles  
Years  
Data Retention1  
Rev. C | Page 12 of 30  
Data Sheet  
ADuCM320  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DIGITAL INPUTS  
Input Leakage Current  
Logic 1 GPIO  
1
10  
nA  
nA  
VIH = VDD, pull-up resistor disabled  
VIL = 0 V, pull-up resistor disabled  
Logic 0 GPIO  
PRTADDRx  
Input Leakage Current  
16  
10  
µA  
V
VIN = 0 to 1.8 V, due to weak pull-  
up resistors to 1.8 V  
External resistor 91 kΩ 1% to  
ground, range for CFP MSA high1  
Input Voltage  
0.84  
1.5  
Input Capacitance, All Pins Except MCK,  
MDIO, PRTADDRx, and XTALx  
pF  
Input Capacitance  
MCK, PRTADDRx  
MDIO  
6.5  
8.5  
pF  
pF  
Pin Capacitance  
XTALI  
XTALO  
5
5
pF  
pF  
LOGIC INPUTS  
GPIO Input Voltage  
Low  
VINL  
VINH  
0.25 × IOVDDx  
V
V
High  
0.58 × IOVDDx  
MDIO  
PRTADDRx Input Voltage  
Low  
High  
VINL  
VINH  
0.36  
0.36  
V
V
0.84  
0.84  
MCK, MDIO Input Voltage  
Setup time ≥10 ns; hold time  
≥10 ns; MCK/MDIO  
Low  
High  
VINL  
VINH  
V
V
XTALI Input Voltage  
Low  
High  
VINL  
VINH  
1.1  
1.7  
V
V
Pull-Up Current  
Pull-Down Current  
LOGIC OUTPUTS  
30  
30  
120  
100  
µA  
µA  
VIN = 0 V, see Figure 10  
VIN = 3.3 V, see Figure 10  
All digital outputs excluding  
XTALO  
GPIO Output Voltage7  
High  
Low  
VOH  
VOL  
IOVDDx − 0.4  
V
V
ISOURCE = 2 mA  
ISINK = 2 mA  
0.4  
GPIO Short-Circuit Current1  
11  
mA  
See Figure 13  
MDIO  
Output Voltage  
High  
Low  
VOH  
VOL  
1.0  
V
V
ISOURCE = 4 mA  
ISINK = 4 mA  
0.2  
Delay Time  
100  
ns  
MCK to MDIO out  
OSCILLATORS  
Internal System Oscillator  
Accuracy  
16  
0.5  
MHz  
%
3
System PLL  
External Crystal Oscillator  
80  
16  
MHz  
MHz  
Main system clock  
Can be selected in place of  
internal oscillator  
32 kHz Internal Oscillator  
Accuracy  
32.768  
5
kHz  
%
Use for watchdog  
20  
80  
External Clock  
0.05  
MHz  
Can be selected in place of PLL  
Processor clock = 80 MHz  
START-UP TIME  
At Power-On  
After Other Reset  
From All Power-Down Modes  
40  
1.5  
1.25  
ms  
ms  
µs  
POR to first user code execution  
Reset to first user code execution  
Rev. C | Page 13 of 30  
ADuCM320  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
PROGRAMMABLE LOGIC ARRAY  
Propagation Delay  
Pin  
PLA  
17  
ns  
ns  
From input pin to output pin  
Per PLA cell  
Element  
1.5  
EXTERNAL INTERRUPTS  
Pulse Width1  
Level Triggered  
7
1
ns  
ns  
Edge Triggered  
POWER REQUIREMENTS8  
Power Supply Voltage Range  
AVDDx to AGNDx and IOVDDx  
to DGNDx1  
2.9  
3.3  
3.6  
V
Analog Power Supply Currents  
AVDDx Current  
6.3  
4
mA  
mA  
mA  
Analog peripherals in idle mode  
All GPIO pull-up resistors enabled  
Digital Power Supply Current  
IOVDDx Current in Normal Mode  
VDDx Current  
Normal Mode9  
29  
CD = 0 (80 MHz clock) executing  
typical code  
20  
10  
16  
8
mA  
mA  
mA  
mA  
mA  
CD = 1 executing typical code  
CD = 7 executing typical code  
CORE_SLEEP Mode9  
SYS_SLEEP Mode9  
Hibernate Mode9  
6.6  
Additional Power Supply Currents  
ADC  
4.1  
mA  
Continuously converting at  
100 kSPS  
ADC Input Buffer  
4.0  
mA  
mA  
μA  
Both buffers enabled  
Excluding load current  
IDAC  
DAC  
16.5  
340  
Per powered up DAC, excluding  
load current  
Total Supply Current  
35  
40  
45  
mA  
VDD1, IOVDDx, AVDDx connected  
together; condition when entering  
user code: peripheral clocks on,  
peripherals idle, no load currents  
Thermal Performance  
Impedance Junction to Ambient  
45  
°C/W  
JEDEC 2S2P  
1 These numbers are not production tested but are guaranteed by design and/or characterization data at production release.  
2 Enabling the input buffer changes the ADC input characteristics as described in this subsection.  
3 The data in this section also applies for a load of RL = 1 kΩ and CL = 100 pF to GND but only for 0 V to 2.5 V. However, this is not production tested.  
4 DAC linearity is calculated using a reduced code range of 100 to 3900.  
5 DAC gain error is calculated using a reduced code range of 100 to an internal 2.5 V VREF  
.
6 Due to self heating, internal temperature measurements cannot be used to predict external temperatures. This value is only relevant after user calibration and only for  
internal and external conditions identical to those at calibration.  
7 The average current from all GPIO pins must not exceed 3 mA per pin.  
8 Power figures exclude any load currents to external circuits.  
9 See the ADuCM320 reference manual, How to Set up and Use the ADuCM320  
Rev. C | Page 14 of 30  
Data Sheet  
ADuCM320  
TIMING SPECIFICATIONS  
I2C Timing  
Table 3. I2C Timing in Standard Mode (100 kHz)  
Slave  
Typ  
Parameter  
Description  
Min  
4.7  
4.0  
4.0  
250  
0
4.7  
4.0  
4.7  
Max  
Unit  
µs  
ns  
µs  
ns  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
tL  
tH  
SCL low pulse width  
SCL high pulse width  
Start condition hold time  
Data setup time  
Data hold time (SDA held internally for 300 ns after falling edge of SCL)  
Setup time for repeated start  
Stop condition setup time  
Bus-free time between a stop condition and a start condition  
Rise time for both SLC and SDA  
Fall time for both SLC and SDA  
Data valid time  
tSHD  
tDSU  
tDHD  
tRSU  
tPSU  
tBUF  
tR  
tF  
tVD;DAT  
tVD;ACK  
3.45  
1
15  
300  
3.45  
3.45  
Data valid acknowledge time  
Table 4. I2C Timing in Fast Mode (400 kHz)  
Slave  
Typ  
Parameter  
Description  
Min  
1.3  
0.6  
0.3  
100  
0
0.6  
0.3  
1.3  
20  
Max  
Unit  
µs  
ns  
µs  
ns  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
tL  
tH  
SCL low pulse width  
SCL high pulse width  
Start condition hold time  
Data setup time  
Data hold time (SDA held internally for 300 ns after falling edge of SCL)  
Setup time for repeated start  
Stop condition setup time  
Bus-free time between a stop condition and a start condition  
Rise time for both SCL and SDA  
Fall time for both SCL and SDA  
Data valid time  
tSHD  
tDSU  
tDHD  
tRSU  
tPSU  
tBUF  
tR  
tF  
tVD;DAT  
tVD;ACK  
300  
300  
0.9  
15  
Data valid acknowledge time  
0.9  
tBUF  
tR  
SDA (I/O)  
MSB  
LSB  
ACK  
MSB  
tDSU  
tDSU  
tDHD  
tRSU  
tF  
tDHD  
tPSU  
tR  
tVD; DAT  
tH  
tSHD  
tVD; ACK  
1
2–7  
8
9
1
SCL (I)  
tL  
P
S
S(R)  
tF  
STOP  
START  
REPEATED  
START  
CONDITION CONDITION  
Figure 2. I2C Compatible Interface Timing  
Rev. C | Page 15 of 30  
 
ADuCM320  
Data Sheet  
SPI Timing  
Table 5. SPI Master Mode Timing (Phase Mode = 1)  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
ns  
tSL  
SCLK low pulse width  
(SPIDIV + 1) × tHCLK/2  
tSH  
SCLK high pulse width  
Data output valid after SCLK edge  
Data input setup time before SCLK edge  
Data input hold time after SCLK edge  
Data output fall time  
(SPIDIV + 1) × tHCLK/2  
3
½ SCLK  
SCLK  
SCLK  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDAV  
tDSU  
tDHD  
tDF  
tDR  
tSR  
0
Data output rise time  
SCLK rise time  
25  
tSF  
SCLK fall time  
20  
ns  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
tSR  
tSF  
SCLK  
(POLARITY = 1)  
tDAV  
tDF  
tDR  
MOSI  
MISO  
MSB  
BITS 6 TO 1  
LSB  
MSB IN  
BITS 6 TO 1  
LSB IN  
tDSU  
tDHD  
Figure 3. SPI Master Mode Timing (Phase Mode = 1)  
Rev. C | Page 16 of 30  
Data Sheet  
ADuCM320  
Table 6. SPI Master Mode Timing (Phase Mode = 0)  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSL  
tSH  
SCLK low pulse width  
SCLK high pulse width  
(SPIDIV + 1) × tHCLK/2  
(SPIDIV + 1) × tHCLK/2  
3
½ SCLK  
SCLK  
SCLK  
25  
25  
20  
tDAV  
tDOSU  
tDSU  
tDHD  
tDF  
tDR  
tSR  
tSF  
Data output valid after SCLK edge  
Data output setup before SCLK edge  
Data input setup time before SCLK edge  
Data input hold time after SCLK edge  
Data output fall time  
Data output rise time  
SCLK rise time  
SCLK fall time  
0
20  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
tSR  
tSF  
SCLK  
(POLARITY = 1)  
tDAV  
tDOSU  
tDF  
tDR  
MOSI  
MISO  
MSB  
BITS 6 TO 1  
LSB  
MSB IN  
BITS 6 TO 1  
LSB IN  
tDSU  
tDHD  
Figure 4. SPI Master Mode Timing (Phase Mode = 0)  
Rev. C | Page 17 of 30  
ADuCM320  
Data Sheet  
Table 7. SPI Slave Mode Timing (Phase Mode = 1)  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
tCS  
CS to SCLK edge  
10  
ns  
tCS  
M
CS  
SCLKx  
ns  
high time between active periods  
tSL  
tSH  
SCLK low pulse width  
SCLK high pulse width  
Data output valid after SCLK edge  
Data input setup time before SCLK edge  
Data input hold time after SCLK edge  
Data output fall time  
Data output rise time  
SCLK rise time  
SCLK fall time  
CS high after SCLK edge  
(SPIDIV + 1) × tHCLK  
(SPIDIV + 1) × tHCLK  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDAV  
tDSU  
tDHD  
tDF  
tDR  
tSR  
10  
10  
25  
25  
1
1
20  
tSF  
tSFS  
tCSM  
CS  
tSFS  
tCS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
tSR  
tSF  
SCLK  
(POLARITY = 1)  
tDAV  
tDF  
tDR  
MISO  
MOSI  
MSB  
BITS 6 TO 1  
LSB  
MSB IN  
BITS 6 TO 1  
LSB IN  
tDSU  
tDHD  
Figure 5. SPI Slave Mode Timing (Phase Mode = 1)  
Rev. C | Page 18 of 30  
Data Sheet  
ADuCM320  
Table 8. SPI Slave Mode Timing (Phase Mode = 0)  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
tCS  
CS to SCLK edge  
10  
ns  
tCS  
M
CS  
SCLKx  
ns  
high time between active periods  
tSL  
tSH  
tDAV  
tDSU  
tDHD  
tDF  
tDR  
tSR  
tSF  
tDOCS  
tSFS  
SCLK low pulse width  
SCLK high pulse width  
Data output valid after SCLK edge  
Data input setup time before SCLK edge  
Data input hold time after SCLK edge  
Data output fall time  
Data output rise time  
SCLK rise time  
SCLK fall time  
Data output valid after CS edge  
CS high after SCLK edge  
(SPIDIV + 1) × tHCLK  
(SPIDIV + 1) × tHCLK  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
10  
25  
25  
1
1
20  
10  
tCSM  
CS  
tCS  
tSFS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
tSF  
tSR  
SCLK  
(POLARITY = 1)  
tDAV  
tDOCS  
tDF  
tDR  
MISO  
MOSI  
MSB  
BITS 6 TO 1  
LSB  
MSB IN  
BITS 6 TO 1  
LSB IN  
tDSU  
tDHD  
Figure 6. SPI Slave Mode Timing (Phase Mode = 0)  
Rev. C | Page 19 of 30  
ADuCM320  
Data Sheet  
Table 9. MDIO vs MDC Timing  
Parameter  
Description  
Min  
10  
10  
Typ  
Max  
Unit  
ns  
ns  
tSETUP  
tHOLD  
tDELAY  
MDIO setup before MCK edge  
MDIO valid after MCK edge  
Data output after MCK edge  
100  
ns  
MCK  
VIH  
VIL  
CFP  
INPUT  
MDIO  
VIH  
VIL  
CFP  
INPUT  
MDIO  
VOH  
VOL  
CFP  
OUTPUT  
tSETUP tHOLD  
tDELAY  
Figure 7. MDIO Timing  
Rev. C | Page 20 of 30  
Data Sheet  
ADuCM320  
ABSOLUTE MAXIMUM RATINGS  
All requirements applicable to each pin must be met. Where  
multiple limits apply to a pin each one must be met individually.  
The limits apply according to the functionality of the pins at the  
time. Pins that can be either analog or digital, that is, that have  
two types indicated in the pin descriptions, must meet the limits  
for both types. For pin types, see Table 11.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
When powered up, it is required that all ground pins plus  
ADC_REFN be connected together to a node referred to as  
GND in Table 10. The limits that are listed must be reduced by  
any difference between any GNDs. Also, it is required that  
AVDD3 is connected to AVDD4 and that IOVDD1 to IOVDD3  
are connected together.  
ESD CAUTION  
Table 10. Absolute Maximum Ratings  
Parameter  
Rating  
Any Pin to GND  
Any PVDDx Pin to GND  
MDIO1, MCK, and PRTADDR0-4 in  
MDIO Mode to GND  
−0.3 V to +3.9 V  
−0.3 V to +2.8 V  
−0.3 V to +2.1 V  
Between Any of AVDDx, IOVDDx, and −0.3 V to +0.3 V  
VDD1 Pins  
Any Type I Pin to GND2  
−0.3 V to IOVDDx + 0.3 V  
−0.3 V to AVDDx + 0.3 V  
−0.3 V to PVDDx + 0.3 V  
Any Type AI or AO Pin to GND3  
Any IDACx, CDAMPx, IDACTST, IREF  
to GND  
ADC_REFP to GND  
−0.3 V to AVDDx + 0.3 V  
0 mA to 30 mA  
−30 mA to 0 mA  
1 W  
Total Positive GPIO Pin Currents  
Total Negative GPIO Pin Currents  
Maximum Power Dissipation  
Operating Ambient Temperature  
Range  
−40°C to +105°C  
Storage Temperature Range  
Operating Junction Temperature  
Range  
−65°C to +160°C  
−40°C to +120°C  
ESD HBM  
ESD FICDM  
2 kV  
1 kV  
1 Note this pin is always in MDIO mode.  
2 This limit does not apply if no current can be drawn by external circuits on  
IOVDDx because then IOVDD follows to a suitable level.  
3 This limit does not apply if no current can be drawn by external circuits on  
AVDDx because then AVDD follows to a suitable level.  
Rev. C | Page 21 of 30  
 
 
 
ADuCM320  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
10  
11  
IDAC_  
TST  
A
B
C
D
E
F
PVDD2  
IDAC2  
PGND  
IDAC3  
PVDD3  
PVDD1  
IDAC1  
IREF  
IDAC0  
PVDD0  
P1.2/  
PWM0/  
PLAI[6]  
P3.3/  
PRTADDR3/  
PLAI[15]  
P1.1/SOUT/  
PLACLK1/  
PLAI[5]  
P1.0/SIN/  
ECLKIN/  
PLAI[4]  
RESET  
IOVDD1  
IOGND1  
CDAMP0 CDAMP2  
PGND  
CDAMP3  
CDAMP1  
P2.2/  
P1.4/  
PWM2/  
SCLK1/  
PLAO[10]  
P1.5/  
PWM3/  
MISO1/  
PLAO[11]  
P1.6/  
PWM4/  
MOSI1/  
PLAO[12]  
P2.0/IRQ2/  
P1.7/IRQ1/  
PWM5/  
P0.0/  
SCLK0/  
PLAI[0]  
P1.3/  
PWM1/  
PLAI[7]  
P3.4/  
PRTADDR4/  
PLAO[26]  
IRQ4/POR/  
PWMTRIP/  
P2.3/BM  
CLKOUT/  
PLACLK2/  
CS1/  
PLAI[10]  
PLAI[8]  
PLAO[13]  
P2.4/IRQ5/  
ADCCONV/  
PWM6/  
P0.1/  
MISO0/  
PLAI[1]  
P0.2/  
MOSI0/  
PLAI[2]  
P3.2/  
PRTADDR2/  
PLAI[14]  
DGND2  
SWDIO  
IOVDD2  
IOGND2  
VREF_1V2  
AVDD4  
PLAO[18]  
P0.3/  
P0.4/  
SCL0/  
PLAO[2]  
P0.5/  
SDA0/  
PLAO[3]  
IRQ0/CS0/  
PLACLK0/  
PLAI[3]  
SWCLK  
ADuCM320  
P2.6/  
IRQ7/  
PLAO[20] PLAO[5]  
P0.7/  
SDA1/  
P0.6/  
SCL1/  
PLAO[4]  
AVDD_  
REG1  
AVDD_  
REG0  
TOP VIEW  
(Not to Scale)  
P2.7/  
IRQ8/  
PLAO[21]  
P3.1/  
PRTADDR1/  
PLAI[13]  
P3.0/  
PRTADDR0/  
PLAI[12]  
AIN15/  
P4.7  
AIN13/  
P4.5  
G
P3.5/  
MCK/  
AIN14/  
P4.6  
AIN12/  
P4.4  
XTALO  
XTALI  
AGND4  
MDIO  
H
J
PLAO[27]  
AIN11/  
BUF_  
VREF2V5  
VDAC7/  
P5.2  
VDAC4  
AIN2  
AIN3  
AIN4  
IOVDD3  
IOGND3  
DGND1  
AGND1  
VDAC1  
AIN0  
VDD1  
AIN1  
AIN7  
AIN6  
AIN5  
AIN10  
VDAC6/  
P5.1  
AIN9/  
P4.3  
ADC_  
REFP  
VDAC3/  
P5.0  
DVDD_  
2V5  
K
L
AGND2  
AGND3  
VDAC2/  
P3.7/  
PLAO[29]  
VDAC0/  
P5.3  
AIN8/  
P4.2  
ADC_  
REFN  
DVDD_1V8  
VDAC5  
AVDD3  
Figure 8. Pin Configuration  
Table 11. Pin Function Descriptions  
Pin  
No.  
Mnemonic  
RESET  
Type1  
Description  
B2  
I
Reset Input (Active Low). An internal pull-up resistor is included.  
Digital I/O Port 0.0 (P0.0).  
C2  
P0.0/SCLK0/PLAI[0]  
I/O  
SPI0 Clock (SCLK0).  
Input to PLA Element 0 (PLAI[0]).  
Digital I/O Port 0.1 (P0.1).  
SPI0 Master In, Slave Out (MISO0).  
Input to PLA Element 1 (PLAI[1]).  
Digital I/O Port 0.2 (P0.2).  
SPI0 Master Out, Slave In (MOSI0).  
Input to PLA Element 2 (PLAI[2]).  
Digital I/O Port 0.3 (P0.3).  
D2  
D1  
E3  
P0.1/MISO0/PLAI[1]  
P0.2/MOSI0/PLAI[2]  
I/O  
I/O  
I/O  
P0.3/IRQ0/CS0/PLACLK0/PLAI[3]  
External Interrupt 0 (IRQ0).  
SPI0 Chip Select 0 (CS0). When using SPI0, configure this pin as CS0.  
PLA Clock 0 (PLACLK0).  
Input to PLA Element 3 (PLAI[3]).  
Digital I/O Port 0.4 (P0.4).  
E2  
E1  
P0.4/SCL0/PLAO[2]  
P0.5/SDA0/PLAO[3]  
I/O  
I/O  
I2C0 Serial Clock (SCL0).  
Output of PLA Element 2 (PLAO[2]).  
Digital I/O Port 0.5 (P0.5).  
I2C0 Serial Data (SDA0).  
Output of PLA Element 3 (PLAO[3]).  
Rev. C | Page 22 of 30  
 
 
Data Sheet  
ADuCM320  
Pin  
No.  
Mnemonic  
Type1  
Description  
F3  
P0.6/SCL1/PLAO[4]  
I/O  
Digital I/O Port 0.6 (P0.6).  
I2C1 Serial Clock (SCL1).  
Output of PLA Element 4 (PLAO[4]).  
Digital I/O Port 0.7 (P0.7).  
I2C1 Serial Data (SDA1).  
Output of PLA Element 5 (PLAO[5]).  
Digital I/O Port 1.0 (P1.0).  
UART Input (SIN).  
F2  
B9  
P0.7/SDA1/PLAO[5]  
I/O  
I/O  
P1.0/SIN/ECLKIN/PLAI[4]  
External Input Clock (ECLKIN).  
Input to PLA Element 4 (PLAI[4]).  
Digital I/O Port 1.1 (P1.1).  
UART Output (SOUT)  
B10  
P1.1/SOUT/PLACLK1/PLAI[5]  
I/O  
PLA Clock 1(PLACLK1).  
Input to PLA Element 5 (PLAI[5]).  
Digital I/O Port 1.2 (P1.2).  
PWM Output 0 (PWM0).  
Input to PLA Element 6 (PLAI[6]).  
Digital I/O Port 1.3 (P1.3).  
PWM Output 1 (PWM1).  
Input to PLA Element 7 (PLAI[7]).  
Digital I/O Port 1.4 (P1.4).  
PWM Output 2 (PWM2).  
B11  
C6  
P1.2/PWM0/PLAI[6]  
I/O  
I/O  
I/O  
P1.3/PWM1/PLAI[7]  
C7  
P1.4/PWM2/SCLK1/PLAO[10]  
SPI1 Clock (SCLK1).  
Output of PLA Element 10 (PLAO[10]).  
Digital I/O Port 1.5 (P1.5).  
PWM Output 3 (PWM3).  
SPI1 Master In, Slave Out (MISO1).  
Output of PLA Element 11 (PLAO[11]).  
Digital I/O Port 1.6 (P1.6).  
PWM Output 4 (PWM4).  
SPI1 Master Out, Slave Input (MOSI1).  
Output of PLA Element 12 (PLAO[12]).  
Digital I/O Port 1.7 (P1.7).  
External Interrupt 1 (IRQ1).  
PWM Output 5 (PWM5).  
C8  
P1.5/PWM3/MISO1/PLAO[11]  
P1.6/PWM4/MOSI1/PLAO[12]  
P1.7/IRQ1/PWM5/CS1/PLAO[13]  
I/O  
I/O  
I/O  
C9  
C10  
SPI1 Chip Select 1 (CS1). When using SPI1, configure this pin as CS1.  
Output of PLA Element 13 (PLAO[13]).  
Digital I/O Port 2.0 (P2.0).  
External Interrupt 2 (IRQ2).  
PWM Trip (PWMTRIP).  
PLA Input Clock 2 (PLACLK2).  
Input to PLA Element 8 (PLAI[8]).  
Digital I/O Port 2.2 (P2.2).  
C5  
C4  
P2.0/IRQ2/PWMTRIP/PLACLK2/PLAI[8] I/O  
P2.2/IRQ4/POR/CLKOUT/PLAI[10]  
I/O  
I/O  
External Interrupt 4 (IRQ4).  
Reset Output (POR). This pin function is an output and it is the default for Pin C4.  
Clock Output (CLKOUT).  
Input to PLA Element 10 (PLAI[10]).  
Digital I/O Port 2.3 (P2.3).  
C3  
P2.3/BM  
Boot Mode (BM). This pin determines the start-up sequence after every reset.  
Pull-up is enabled at power-up.  
Rev. C | Page 23 of 30  
ADuCM320  
Data Sheet  
Pin  
No.  
Mnemonic  
P2.4/IRQ5/ADCCONV/PWM6/PLAO[18] I/O  
Type1  
Description  
D9  
Digital I/O Port 2.4 (P2.4).  
External Interrupt 5 (IRQ5).  
External Input to Start ADC Conversions (ADCCONV).  
PWM Output 6 (PWM6).  
Output of PLA Element 18 (PLAO[18]).  
Digital I/O Port 2.6 (P2.6).  
External Interrupt 7 (IRQ7).  
Output of PLA Element 20 (PLAO[20]).  
Digital I/O Port 2.7 (P2.7).  
External Interrupt 8 (IRQ8).  
F1  
G1  
G3  
P2.6/IRQ7/PLAO[20]  
P2.7/IRQ8/PLAO[21]  
P3.0/PRTADDR0/PLAI[12]  
I/O  
I/O  
I/O  
Output of PLA Element 21 (PLAO[21]).  
Digital I/O Port 3.0 (P3.0).  
MDIO Port Address Bit 0 (PRTADDR0). See the digital inputs parameter in Table 1  
for details.  
Input to PLA Element 12 (PLAI[12]).  
Digital I/O Port 3.1 (P3.1).  
MDIO Port Address Bit 1 (PRTADDR1). See the digital inputs parameter in Table 1  
for details.  
Input to PLA Element 13 (PLAI[13]).  
Digital I/O Port 3.2 (P3.2).  
MDIO Port Address Bit 2 (PRTADDR2). See the digital inputs parameter in Table 1  
for details.  
Input to PLA Element 14 (PLAI[14]).  
Digital I/O Port 3.3 (P3.3).  
MDIO Port Address Bit 3 (PRTADDR3). See the digital inputs parameter in Table 1  
for details.  
Output of PLA Element 15 (PLAI[15]).  
Digital I/O Port 3.4 (P3.4).  
MDIO Port Address Bit 4 (PRTADDR4). See the digital inputs parameter in Table 1  
for details.  
G2  
D3  
B3  
P3.1/PRTADDR1/PLAI[13]  
P3.2/PRTADDR2/PLAI[14]  
P3.3/PRTADDR3/PLAI[15]  
P3.4/PRTADDR4/PLAO[26]  
P3.5/MCK/PLAO[27]  
I/O  
I/O  
I/O  
I/O  
I/O  
C11  
H1  
Output of PLA Element 26 (PLAO[26]).  
Digital I/O Port 3.5 (P3.5).  
MDIO Clock (MCK) See the digital inputs parameter in Table 1 for more details.  
Output of PLA Element 27 (PLAO[27]).  
H3  
E9  
E10  
F11  
MDIO  
I/O  
I
I/O  
S
MDIO Data.  
Serial Wire Debug Clock.  
Serial Wire Bidirectional Data.  
1.2 V Reference. This pin cannot be used to source current externally. Connect  
VREF_1V2 to AGNDx via a 470 nF capacitor.  
SWCLK  
SWDIO  
VREF_1V2  
A11  
IREF  
AI  
IDAC Reference Current. This pin generates the reference current for the IDACs  
and is set by an external resistor, REXT. Connect REXT from IREF to AGND4.  
J6  
AIN0  
AI  
Analog Input 0.  
J7  
AIN1  
AI  
Analog Input 1.  
J8  
AIN2  
AI  
Analog Input 2.  
K8  
L8  
L9  
K9  
J9  
AIN3  
AIN4  
AIN5  
AIN6  
AI  
AI  
AI  
AI  
Analog Input 3.  
Analog Input 4.  
Analog Input 5. AIN5 can be the −ve input for the comparator.  
Analog Input 6. AIN6 is also the +ve input for the comparator.  
Analog Input 7.  
AIN7  
AI  
L10  
AIN8/P4.2  
AI/I/O  
Analog Input 8 (AIN8).  
Digital I/O Port 4.2 (P4.2).  
Analog Input 9 (AIN9).  
Digital I/O Port 4.3 (P4.3).  
Analog Input 10.  
K10  
J10  
AIN9/P4.3  
AIN10  
AI/I/O  
AI  
Rev. C | Page 24 of 30  
Data Sheet  
ADuCM320  
Pin  
No.  
Mnemonic  
Type1  
Description  
J11  
AIN11/BUF_VREF2V5  
AI/AO  
Analog Input 11 (AIN11).  
Buffered 2.5 V Bias (BUF_VREF2V5). The maximum load = 1.2 mA. Connect  
BUF_VREF2V5 to AGNDx via a 100 nF capacitor.  
H10  
G10  
H9  
AIN12/P4.4  
AIN13/P4.5  
AIN14/P4.6  
AIN15/P4.7  
VDAC0/P5.3  
AI/I/O  
AI/I/O  
AI/I/O  
AI/I/O  
Analog Input 12 (AIN12).  
Digital I/O Port 4.4 (P4.4).  
Analog Input 13 (AIN13).  
Digital I/O Port 4.5 (P4.5).  
Analog Input 14 (AIN14).  
Digital I/O Port 4.6 (P4.6).  
Analog Input 15 (AIN15).  
Digital I/O Port 4.7 (P4.7).  
G9  
L5  
AO/I/O Voltage DAC0 Output (VDAC0).  
Digital I/O Port 5.3 (P5.3).  
K5  
L4  
VDAC1  
VDAC2/P3.7/PLAO[29]  
AO  
Voltage DAC1 Output.  
AO/I/O Voltage DAC2 Output (VDAC2).  
Digital I/O Port 3.7 (P3.7).  
Output of PLA Element 29 (PLAO[29]).  
AO/I/O Voltage DAC3 Output (VDAC3).  
Digital I/O Port 5.0 (P5.0).  
K4  
VDAC3/P5.0  
J4  
L3  
K3  
VDAC4  
VDAC5  
VDAC6/P5.1  
AO  
AO  
Voltage DAC4 Output (VDAC4).  
Voltage DAC5 Output (VDAC5).  
AO/I/O Voltage DAC6 Output (VDAC6).  
Digital I/O Port 5.1 (P5.1).  
J3  
VDAC7/P5.2  
AO/I/O Voltage DAC7 Output (VDAC7).  
Digital I/O Port 5.2 (P5.2).  
A2  
A3  
B4  
A10  
A9  
B8  
A5  
A4  
B5  
A7  
A8  
B7  
B6  
A6  
A1  
L2  
IDAC0  
AO  
S
AI  
AO  
S
AI  
AO  
S
AI  
AO  
S
AI  
IDAC0. 0 mA to 150 mA full-scale output.  
Power for IDAC0.  
Damping Capacitor 0. Connect damping capacitor from this pin to PVDD0.  
IDAC1. 0 mA to 150 mA full-scale output.  
Power for IDAC1.  
Damping Capacitor 1. Connect damping capacitor from this pin to PVDD1.  
IDAC2. 0 mA to 150 mA full-scale output.  
Power for IDAC2.  
Damping Capacitor 2. Connect damping capacitor from this pin to PVDD2.  
IDA3C. 0 mA to 150 mA full-scale output.  
Power for IDAC3.  
PVDD0  
CDAMP0  
IDAC1  
PVDD1  
CDAMP1  
IDAC2  
PVDD2  
CDAMP2  
IDAC3  
PVDD3  
CDAMP3  
PGND  
Damping Capacitor 3. Connect damping capacitor from this pin to PVDD3.  
Power Supply Ground for IDACs.  
Power Supply Ground for IDACs.  
S
S
PGND  
IDAC_TST  
DVDD_1V8  
AI/AO  
AO  
Pin for IDAC Test Purposes. Leave IDAC_TST unconnected.  
1.8 V Digital Supply. A 470 nF capacitor to DGND1 must be connected to this pin  
to stabilize the internal 1.8 V regulator that supplies flash memory and the ARM  
Cortex-M3 processor.  
K2  
DVDD_2V5  
AO  
2.5 V Digital Supply. A 470 nF capacitor to IOGND3 must be connected to this  
pin to stabilize the internal 2.5 V regulator that supplies the analog digital  
control.  
F9  
AVDD_REG0  
AVDD_REG1  
AO  
AO  
Analog Regulator 0 Supply. A 470 nF capacitor to AGND4 must be connected to  
this pin to stabilize the internal 2.5 V regulator that supplies the ADC.  
Analog Regulator 1 Supply. Output of 2.5 V on-chip LDO regulator. A 470 nF  
capacitor to AGND4 must be connected to this pin. This regulator supplies the  
IDACs.  
F10  
L1  
D10  
B1  
DGND1  
DGND2  
IOVDD1  
S
S
S
Digital Ground 1 for DVDD_1V8.  
Digital Ground 2. Connect to DGND1.  
3.3 V GPIO Supply.  
Rev. C | Page 25 of 30  
ADuCM320  
Data Sheet  
Pin  
No.  
D11  
J1  
C1  
E11  
K1  
J5  
K7  
L7  
H11  
K6  
Mnemonic  
IOVDD2  
IOVDD3  
IOGND1  
IOGND2  
IOGND3  
AGND1  
AGND2  
AGND3  
AGND4  
VDD1  
Type1  
Description  
S
S
S
S
S
S
S
S
S
S
S
S
3.3 V GPIO Supply and Interdie Communications.  
3.3 V GPIO Supply.  
Ground for IOVDD1.  
Ground for IOVDD2.  
Ground for IOVDD3 and Interdie Communications.  
Analog Ground for VDD1.  
ESD Ground for Pad Ring.  
Ground for AVDD3.  
Ground for AVDD4, AVDD_REG0, and AVDD_REG1.  
3.3 V Supply for Digital Die.  
VDAC and IDAC Supply (3.3 V).  
ADC Supply (3.3 V).  
Decoupling Capacitor Connection for ADC Reference Buffer. Connect this pin to  
AGND4.  
L6  
G11  
L11  
AVDD3  
AVDD4  
ADC_REFN  
AO/A  
K11  
ADC_REFP  
AO/A  
Decoupling Capacitor Connection for ADC Reference Buffer. Connect this pin to  
a 4.7 µF capacitor to the ADC_REFN pin. ADC_REFP can be overdriven by an  
external reference.  
H2  
J2  
XTALO  
XTALI  
O
I
Output from the Crystal Oscillator Inverter. When not using an external crystal,  
leave XTALO unconnected.  
Input to the Crystal Oscillator Inverter and Input to the Internal Clock Generator  
Circuits. When not using an external crystal, connect XTALI to DGND.  
1 AI is analog input, AO is analog output, I is digital input, O is digital output, S is supply.  
Rev. C | Page 26 of 30  
Data Sheet  
ADuCM320  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
50000  
IDAC0  
IDAC1  
IDAC2  
IDAC3  
DEVICE 1  
DEVICE 2  
DEVICE 3  
DEVICE 4  
DEVICE 5  
45000  
40000  
35000  
30000  
25000  
100  
1k  
10k  
100k  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 9. Typical Temperature Measurement vs. Internal Temperature  
(VDD = 3.3 V, 50 kSPS)  
Figure 12. Typical PVDD AC PSRR vs. Frequency  
90  
MAX PULL UP  
MIN PULL UP  
80  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
MIN PULLDOWN  
MAX PULLDOWN  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
V
MAX  
MIN  
OH  
OH  
OL  
OL  
MIN  
MAX  
–10  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
2
4
6
8
10  
12  
14  
16  
PIN VOLTAGE (V)  
LOAD CURRENT (mA)  
Figure 10. Typical Pull-Up/Pull-Down Pin Current vs. Pin Voltage  
(VDD = 3.3 V, 25°C)  
Figure 13. Typical Output Voltage vs. Load Current  
350  
IDAC 2  
IDAC 3  
3.60  
IDAC 0  
300  
IDAC 1  
250  
200  
150  
100  
50  
AFTER 50ms DVDD MUST  
STAY ABOVE 2.85V INCLUDING  
NOISE EXCURSIONS  
2.90  
2.85  
50ms min  
DVDD MUST BE ABOVE 2.9V  
FOR AT LEAST 50ms TO  
COMPLETE POR  
0
0
25  
50  
75  
100  
125  
150  
TIME (Not to Scale)  
IDAC OUTPUT CURRENT (mA)  
Figure 11. Typical IDAC Headroom vs. IDAC Output Current  
Figure 14. VDD1 Power-On Requirements  
Rev. C | Page 27 of 30  
 
 
 
 
 
 
ADuCM320  
Data Sheet  
RECOMMENDED CIRCUIT AND COMPONENT VALUES  
Figure 15 shows a typical connection diagram for the ADuCM320.  
The IDAC output filters depend on a 10 nF capacitor being  
placed between the CDAMPx and PVDDx.  
Supplies and regulators must be adequately decoupled with  
capacitors connected between the AVDDx, PVDDx, DVDD_x,  
AVDD_REGx, IOVDDx, and VDD1 balls and their associated  
GND balls (AGNDx, PGND, IOGNDx, and DGNDx). Table 11  
indicates which ground balls are paired with which supply balls.  
The ADC reference requires a 4.7 μF capacitor placed between  
ADC_REFP and ADC_REFN and located as near as possible to  
each ball. ADC_REFN must be connected directly to AGND4.  
The ADuCM320 contains four internal regulators. These  
regulators require external decoupling capacitors. The  
DVDD_1V8 and DVDD_2V5 balls each require a 470 nF  
capacitor to DGND1 and IOGND3, respectively. AVDD_REG0  
and AVDD_REG1 each require a decoupling capacitor to  
AGND4.  
There are four digital supply balls, IOVDD1, IOVDD2, IOVDD3,  
and VDD1. Decouple these balls with a 100 nF capacitor placed  
as near as possible to each of the four balls and their associated  
GND balls (IOGNDx and AGND1, respectively). In addition,  
place a 10 μF capacitor conveniently near to these balls.  
Similarly, the analog supply pins, AVDD3 and AVDD4, each  
require a 100 nF capacitor placed as near as possible to each ball  
and its associated AGNDx ball, and place a 10 μF capacitor  
conveniently near to these balls.  
To generate an accurate and low drift reference current, connect  
the IREF ball to AGND4 via a low ppm 3.16 kΩ resistor.  
Take care in the layout to ensure that currents flowing from the  
ground end of each decoupling capacitor to its associated  
ground ball share as little track as possible with other ground  
currents on the printed circuit board.  
The IDACs source their output currents from the PVDDx  
supply balls. Each PVDDx supply ball must have a 100 nF  
capacitor near to each ball and their associated GND balls  
(PGND). In addition, place at least one 10 μF capacitor at the  
source of the PVDDx supply.  
Rev. C | Page 28 of 30  
 
Data Sheet  
ADuCM320  
DVDD  
VDD1  
0.47µF 0.47µF  
DGND  
K2  
L1  
D10  
J1  
C1  
E11  
K1  
B1  
D11  
K6  
L2  
VDD1  
10k  
RESET  
B2  
RESET  
12pF  
12pF  
J2  
XTALI  
H2  
XTALO  
VDD1  
10kΩ  
PVDD  
A3  
A9  
PVDD0  
PVDD1  
P2.3/BM C3  
ADuCM320  
A4 PVDD2  
A8 PVDD3  
B4 CDAMP0  
B8 CDAMP1  
B5 CDAMP2  
P1.0/SIN/ECLKIN/PLAI[4] B9  
SWCLK  
E9  
10nF  
10nF  
10nF  
B10  
P1.1/SOUT  
10nF  
SWDIO E10  
B7 CDAMP3  
A6 PGND  
B6 PGND  
J5  
L6  
G11  
F11  
A11  
K11 L11  
F9  
F10  
K7  
H11  
L7  
AVDD  
0.47µF 3.16k4.7µF  
0.47µF 0.47µF  
RESET  
GND  
RESET  
AGND  
DGND  
SWDIO  
TX  
SWCLK  
RX  
NC  
VDD1  
DVDD  
1.6Ω  
0.1µF  
10µF  
0.1µF  
DGND DGND1  
AVDD  
AGND1  
V
DVDD  
10µF  
ADP7102ARDZ3.3  
IN  
1.6Ω  
VIN VOUT  
SENSE0  
0.1µF  
10µF  
10µF  
0.1µF  
0.1µF  
10kΩ  
EN  
PG  
GND  
DGND  
AGND AGND  
PVDD  
+2.5V  
ADP1741ACPZ  
VIN VOUT  
EN  
10µF  
PGND  
30kΩ  
10kΩ  
10µF  
ADJ  
EP  
SS  
GND  
10µF  
PGND  
PGND  
Figure 15. Recommended Circuit and Component Values  
Rev. C | Page 29 of 30  
 
ADuCM320  
Data Sheet  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
6.10  
6.00 SQ  
5.90  
A1 BALL  
CORNER  
A1 BALL  
CORNER  
11 10  
7 4 2 1  
6
9 8 5 3  
A
B
C
D
E
F
5.00 REF  
SQ  
G
H
J
0.50  
BSC  
K
L
BOTTOM VIEW  
DETAIL A  
0.50  
TOP VIEW  
REF  
0.93  
0.86  
0.79  
DETAIL A  
1.200  
1.083  
1.000  
0.223 NOM  
0.173 MIN  
0.35  
0.30  
0.25  
COPLANARITY  
0.08  
SEATING  
PLANE  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MO-195-AC  
WITH THE EXCEPTION TO BALL COUNT.  
Figure 16. 96-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-96-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range Package Description  
−40°C to +105°C  
Package Option Ordering Quantity  
ADuCM320BBCZ  
ADuCM320BBCZ-RL −40°C to +105°C  
EV-ADuCM320QSPZ  
96-Ball Chip Scale Package Ball Grid Array [CSP_BGA] BC-96-2  
96-Ball Chip Scale Package Ball Grid Array [CSP_BGA] BC-96-2  
Evaluation Board with QuickStart Development System  
429  
2,500  
1
1 Z = RoHS Compliant Part.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2014–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12272-0-10/15(C)  
www.analog.com/ADuCM320  
Rev. C | Page 30 of 30  
 
 
 

相关型号:

ADUCM320BBCZ-RL

ADUCM320BBCZ-RL
ADI

ADUCM320BBCZI

ADUCM320BBCZI
ADI

ADUCM322BBCZ

ADUCM322BBCZ
ADI

ADUCM322BBCZI

ADUCM322BBCZI
ADI

ADUCM330

Dual channel, simultaneous sampling
ADI

ADUCM330WDCPZ

Integrated, Precision Battery Sensor for Automotive Systems
ADI

ADuCM330WDCPZ-RL

Dual channel, simultaneous sampling
ADI

ADUCM330WFS

Integrated, Precision Battery Sensor for Automotive Systems
ADI

ADUCM330WFSBCPZ-RL

Integrated, Precision Battery Sensor for Automotive Systems
ADI

ADUCM331

车用集成精密电池传感器
ADI

ADuCM331WDCPZ

Dual channel, simultaneous sampling
ADI

ADuCM331WDCPZ-RL

Dual channel, simultaneous sampling
ADI