ADUCM420BCBZ-RL7 [ADI]

Precision Analog Microcontroller, 12-Bit Analog Input/Output with MDIO Interface, Arm Cortex-M33;
ADUCM420BCBZ-RL7
型号: ADUCM420BCBZ-RL7
厂家: ADI    ADI
描述:

Precision Analog Microcontroller, 12-Bit Analog Input/Output with MDIO Interface, Arm Cortex-M33

微控制器
文件: 总25页 (文件大小:335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Analog Microcontroller, 12-Bit Analog  
Input/Output with MDIO Interface, Arm Cortex-M33  
Data Sheet  
ADuCM420  
Package and temperature range  
3.46 mm × 3.46 mm 64-ball WLCSP  
Fully specified for −40°C to +105°C operation  
Tools  
Low cost quick start development system  
Full third-party support  
FEATURES  
Analog input/output  
Multichannel, 12-bit, 2 MSPS ADC  
Up to 12 external channels  
On-chip die temperature monitor  
3 power monitor channels  
Single-ended mode  
0 V to VREF analog input range  
Input buffers  
12-bit voltage output DACs  
8× 0 V to 2.5 V, 1 kΩ load  
4× 0 V to 2.5 V, 2.5 kΩ load  
APPLICATIONS  
Optical networking 100 Gbps/200 Gbps/400 Gbps and  
higher frequency modules  
GENERAL DESCRIPTION  
The ADuCM420 is a fully integrated, single package device that  
On-chip low drift voltage reference, 1.25 V or 2.5 V  
Buffered 1.25 V or 2.5 V output  
4 voltage comparators  
incorporates high performance analog peripherals together  
with digital peripherals (controlled by a 160 MHz Arm®  
Cortex™-M33 processor) and integrated flash for code and data.  
Microcontroller  
The analog-to-digital converter (ADC) on the ADuCM420  
provides 12-bit, 2 MSPS data acquisition using up to 12 input  
pins for single-ended mode. Additionally, the die temperature and  
supply voltages can be measured.  
32-bit Arm Cortex-M33 core, 32-bit RISC architecture, FPU  
Serial wire port supports code download and debug  
Clocking options  
16 MHz on-chip oscillator  
160 MHz PLL output with programmable divider  
External clock source  
Memory  
2× 256 kB independent Flash/EE memories with ECC  
10,000-cycle Flash/EE endurance  
20-year Flash/EE retention  
64 kB SRAM with ECC  
Software triggered, in circuit reprogrammability via MDIO or I2C  
On-chip peripherals  
2× UART, 2× SPI, 3× I2C serial input/output  
Multilevel voltage (3.3 V, 1.8 V, 1.2 V) GPIOs  
MDIO slave up to 10 MHz  
The ADC input voltage is 0 V to VREF. A sequencer is  
provided that allows a user to select a set of ADC channels to be  
measured in sequence without software involvement during the  
sequence. The sequence can optionally repeat automatically at a  
user-selectable rate.  
Up to 12 channels of 12-bit digital-to-analog converters  
(DACs) are provided with output buffers supported.  
The ADuCM420 can be configured so that the digital and analog  
outputs retain their output voltages through a watchdog or  
software reset sequence. Therefore, a product can remain  
functional even while the ADuCM420 is resetting itself.  
5 general-purpose timers  
Wake-up timer (WUTs)  
Watchdog timers (WDTs)  
32-element PLA  
The ADuCM420 has a low power Arm Cortex-M33 processor  
and a 32-bit reduced instruction set computer (RISC) machine  
that offers up to 240 MIPS peak performance with a floating-  
point unit (FPU). Also integrated on chip are 2× 256 kB  
Flash/EE memories and 64 kB of static random access memory  
(SRAM), both with with single-error correction (SEC) and  
double error detection (DED) error checking and correction  
(ECC). The flash comprises two separate 256 kB blocks  
supporting execution from one flash block and simultaneous  
writing and/or erasing of the other flash block.  
16-bit PWM  
All GPIOs support external interrupt, 5 can support wake-up  
Power  
Multiple supplies: 3.3 V for voltage DACs and ADCs, and  
3.3 V, 1.8 V, or 1.2 V for digital inputs/outputs  
Flexible operating modes for low power applications  
Continued on Page 3  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2021 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
ADuCM420  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Typical Performance Characteristics .......................................... 15  
Pin Configuration and Function Descriptions .......................... 16  
Theory of Operation ...................................................................... 21  
Applications Information ............................................................. 22  
Power Supplies ........................................................................... 22  
Power-Up Requirements .......................................................... 22  
Recommended Circuit and Component Values ................... 23  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 25  
Applications ...................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 4  
Specifications .................................................................................... 5  
Timing Specifications .................................................................. 9  
Absolute Maximum Ratings ......................................................... 14  
Thermal Resistance.................................................................... 14  
Electrostatic Discharge (ESD) Ratings.................................... 14  
ESD Caution................................................................................ 14  
REVISION HISTORY  
1/2021—Revision 0: Initial Version  
Rev. 0| Page 2 of 25  
 
Data Sheet  
ADuCM420  
The ADuCM420 operates from an on-chip oscillator and has a  
phase-locked loop (PLL) of 160 MHz. This clock can optionally  
be divided down to reduce current consumption. Additional  
low power modes can be set via the ADuCM420 software.  
The GPIO pins (Px.x) power up in high impedance input  
mode. In output mode, the software chooses between open-  
drain mode and push/pull mode. The pull-up and pull-down  
resistors can be disabled and enabled in the software. The GPIO  
pins can be configured with different voltage levels according to  
the IOVDDx pin, such as 3.3 V, 1.8 V, and 1.2 V. In GPIO  
output mode, the inputs can remain enabled to monitor the  
GPIO pins. The GPIO pins can also be programmed to handle  
digital or analog peripheral signals, in which case, the pin  
characteristics are matched to the specific requirement.  
The device includes a management data input/output (MDIO)  
interface capable of operating up to 10 MHz. User programming  
is eased by incorporating physical address (PHYADR) and device  
address (DEVADD) hardware comparators. The nonerasable  
kernel code combined with flags in user flash allow user code to  
reliably switch between the two hardware independent flash  
blocks.  
A large support ecosystem is available for the Arm Cortex-M33  
processor to ease product development of the ADuCM420.  
Access is via the Arm serial wire debug port. On-chip factory  
firmware supports in-circuit serial download via MDIO or I2C.  
These features are incorporated into a low cost quick start  
development system supporting this precision analog  
microcontroller  
The ADuCM420 integrates a range of on-chip peripherals that  
can be configured under software control, as required in the  
application. These peripherals include 2× universal asynchronous  
receiver transmitter (UART), 3× I2C, and 2× serial peripheral  
interface (SPI) serial input/output communication controllers,  
general-purpose inputs/outputs (GPIOs), a 32-element  
programmable logic array (PLA), five general-purpose timers, a  
wake-up timer (WUT), and a system watchdog timer (WDT).  
A 16-bit pulse-width modulation (PWM) with eight output  
channels is also provided.  
Note that throughout this data sheet, multifunction pins, such  
as AIN4/VDAC0, are referred to either by the entire pin name  
or by a single function of the pin, for example, AIN4, when  
only that function is relevant.  
.
Rev. 0| Page 3 of 25  
ADuCM420  
Data Sheet  
FUNCTIONAL BLOCK DIAGRAM  
1
1
1
VDAC0  
VDAC1  
VDAC10 VDAC11  
AIN0  
AIN1  
AIN2  
AIN3  
ADuCM420  
1
AIN4  
AIN7  
AIN8/COM0P  
COMP  
GP TIMER  
WATCHDOG  
TIMER  
AIN9/COM0N  
2
12-BIT  
SAR ADC  
AT 2MSPS  
GPIO  
PLA  
GPIOs  
VDAC8  
WAKE-UP TIMER  
BUF  
PLAOx  
PLAIx  
AIN8  
2 × 256kB FLASH/EE  
WITH ECC  
AIN10/COM1P  
COMP  
64kB SRAM  
WITH ECC  
VDAC9  
4
MDIO  
MDIO  
SPI  
CACHE  
AIN14  
CONTROLLER  
5
SPIs  
AVDD/2  
IOVDD/2  
AGND  
DMA  
AIN12/COM2P  
COMP  
SDAx,  
SCLx  
AIN13/COM2N  
16MHz  
OSC  
32kHz  
6
7
WIC  
NVIC  
2
PLL  
ALP  
I C  
OSC  
POR  
0.9V  
TEMPERATURE  
SENSOR  
VDAC10  
Arm Cortex-M33  
WITH DSP  
UP TO 160MHz  
HP  
REF  
SOUTx,  
SINx  
UART  
PWM  
8
9
REF  
1
COMP  
AIN14/COM3P  
BUF  
2.5V  
ALDO  
DLP  
VDAC11  
10  
11  
12  
SERIAL WIRE DEBUG  
REF  
DLDO  
1
BUF0_VREF  
AVDD_REG  
DVDD_REG  
SERIAL WIRE  
3
EMULATION  
1
THIS IS A PARTIAL FUNCTION OF A MULTIFUNCTION PIN. FOR EXAMPLE, VDAC0 AND AIN4 ARE SEPARATE FUNCTIONS  
ON THE SAME PIN, AIN4/VDAC0.  
2
GPIOs REFER TO Px.x.  
3
4
SERIAL WIRE EMULATION REFERS TO SWDIO, SWCLK, AND SWO.  
MDIO REFERS TO PRTADDRx, MDIO, AND MCK.  
SPIs REFER TO SCLKx, CSx, MOSIx, SRDYx, AND MISOx.  
NVIC IS NESTED VECTORED INTERRUPT CONTROLLER.  
WAKE-UP INTERRUPT CONTROLLER.  
5
6
7
8
HP REF IS HIGH POWER REFERENCE.  
9
ALP REF IS ANALOG LOW POWER REFERENCE.  
ALDO IS ANALOG LOW DROPOUT REGULATOR.  
10  
11  
DLP REF IS DIGITAL LOW POWER REFERENCE.  
DLDO IS DIGITAL LOW DROPOUT REGULATOR.  
12  
Figure 1.  
Rev. 0| Page 4 of 25  
 
Data Sheet  
ADuCM420  
SPECIFICATIONS  
AVDD = IOVDD0 = 2.85 V to 3.6 V, IOVDD1 = 1.2 V or 1.8 V, DVDD = 1.8 V to 3.6 V, VREF = 2.5 V for the internal reference, the  
core frequency (fCORE) = 160 MHz, and TA = −40°C to +105°C, unless otherwise noted. HCLK is the high speed system clock.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
ADC CHANNEL SPECIFICATIONS  
ADC Power-Up Time  
Single-ended mode only  
5
μs  
Data Rate (fADC  
Resolution  
Integral Nonlinearity  
Differential Nonlinearity  
DC Code Distribution1  
)
2
MSPS  
Bits  
LSB  
LSB  
12  
2.5 V internal reference  
1
0.ꢀ  
2
0.ꢁ  
Minimum and maximum range from mean  
ADC codes for 1000 samples  
2
LSB  
ꢂV  
ADC input 1.25 V, single ended; fADC = 1 MSPS  
ENDPOINT ERRORS  
Offset Error  
−ꢁ20  
400  
+720  
External channels  
Offset Error Drift  
Offset Error Drift Matching  
4
1
ꢂV/°C  
ꢂV/°C  
Matching compared to AIN0; for voltage  
input channels  
Full-Scale Error  
Gain Error Drift  
Gain Error Drift Matching  
−1500  
500  
5
0.5  
+1000  
ꢂV  
ppm/°C  
ppm/°C  
External channels  
Matching compared to AIN0; for voltage  
input channels  
DYNAMIC PERFORMANCE  
Signal-to-Noise Ratio (SNR)  
Input frequency (fIN) = 500 Hz sine wave,  
sampling frequency (fSAMPLE) = 1 MSPS internally  
Includes distortion and noise components;  
voltage input  
73  
dB  
Total Harmonic Distortion (THD)  
Peak Harmonic or Spurious Noise  
Channel to Channel Crosstalk  
ANALOG INPUT  
−85  
−82  
−ꢁꢀ  
dB  
dB  
dB  
Measured on adjacent channels  
Input Voltage Ranges  
Single-Ended Mode  
0
2.5  
V
Leakage Current  
Input Current  
5
50  
230  
30  
nA  
nA  
nA  
pF  
Input voltage to AINx = 0.15 V to 2.5 V  
At 100 kHz sample rate from 0.15 V to 2.5 V  
2 MSPS ADC sample rate  
420  
Input Capacitance  
During ADC acquisition  
ON-CHIP VOLTAGE REFERENCE  
4.7 μF decoupling capacitor between  
ADCREFP and ADCREFN  
Output Voltage  
2.5  
V
Accuracy  
Reference Temperature Coefficient  
5
30  
20  
mV  
ppm/°C  
ppm/°C  
TA = 25°C  
TA = −40°C to +25°C range  
TA = 25°C to 105°C range  
10  
10  
Power Supply Rejection Ratio (PSRR)  
DC  
AC  
70  
ꢀ0  
dB  
dB  
AVDD change effects, 2.85 V to 3.ꢀ V  
Tested with AVDD noise of 1 kHz, 10 kHz,  
100 kHz, and 1 MHz  
Output Impedance  
2
Ω
Do not use as external reference source;  
TA = 25°C  
EXTERNAL REFERENCE INPUT  
Input Voltage Range  
Input Impedance  
2.5  
5
V
kΩ  
Only supports 2.5 V external reference input  
Do not use as external reference source  
Rev. 0| Page 5 of 25  
 
 
 
ADuCM420  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
BUFFERED VREF OUTPUT (BUF0_VREF)  
Output Voltage  
1 μF capacitor required on output  
1.25 or  
2.5  
V
Accuracy  
Reference Temperature Coefficient  
30  
20  
mV  
TA = 25°C, load capacitance (CL) = 4 mA  
TA = −40°C to +25°C range  
TA = 25°C to 105°C range  
10  
10  
2.5  
2.5  
ppm/°C  
ppm/°C  
mV/mA  
Ω
mA  
dB  
Load Regulation  
Output Impedance  
Load Current  
PSRR  
4
70  
VOLTAGE DAC (VDAC) CHANNEL  
SPECIFICATIONS  
VDAC Channel 0 to Channel 7: buffer on,  
load resistance (RL) = 1 kΩ, CL = 100 pF,  
DACCONx, Bit ꢁ = 0 (normal drive, unless  
otherwise stated); VDAC Channel 8 to  
Channel 11: buffer on, RL = 2.5 kΩ, CL = 100 pF  
DC Accuracy  
Resolution  
12  
−2  
−0.ꢁ  
−13.5  
−15  
−15  
Bits  
LSB  
LSB  
mV  
mV  
mV  
Relative Accuracy2  
Differential Nonlinearity1  
Calculated Offset Error  
Actual Offset Error  
1.5  
0.5  
5
+2  
+2  
+3  
+0.ꢁ  
+15.5  
+15  
+15  
Guaranteed monotonic  
2.5 V internal reference  
Measured at Code 0  
VDAC Channel 0 to Channel 7: DACCONx,  
Bit ꢁ = 1; RL = 250 Ω; CL = 100 pF  
Gain Error  
−0.7  
−0.7  
0.2  
0.2  
+0.5  
+0.5  
% of FS3  
% of FS3  
VDAC Channel 0 to Channel 7: DACCONx,  
Bit ꢁ = 1; RL = 250 Ω; CL = 100 pF  
Offset Error Drift  
Gain Error Drift  
Short-Circuit Current  
10  
15  
32  
μV/°C  
ppm/°C  
mA  
VDAC Channel 0 to Channel 7  
VDAC Channel 8 to Channel 11  
15  
mA  
VDAC OUTPUTS  
Output Range1  
0
0
2.5  
V
V
VDAC Channel 0 to Channel 7  
VDAC Channel 8 to Channel 11  
Lower of 2.5  
or AVDD − 0.7  
Output Impedance  
1
Ω
VDAC AC CHARACTERISTICS  
Slew Rate  
Voltage Output Settling Time  
Digital to Analog Glitch Energy  
2.5  
10  
20  
V/ꢂs  
ꢂs  
nV-sec  
1 LSB change at major carry (where  
maximum number of bits simultaneously  
changes in the DACDATx register)  
COMPARATOR INPUT  
Offset Voltage  
15  
mV  
The offset voltage is dependent on the  
comparator being enabled with its input  
pins connected to external biasing circuits; if  
the comparator is left powered down or if  
the inputs to the comparator are left  
floating, over time the offset error may  
increase  
Bias Current  
−30  
740  
+3  
10  
50  
+43  
ꢁ40  
nA  
nA  
nA  
nA  
Noninverting (positive) input  
Inverting (negative) input, hysteresis disabled  
Inverting (negative) input, hysteresis = 10 mV  
Inverting (negative) input, hysteresis = 210 mV  
840  
Rev. 0| Page ꢀ of 25  
 
Data Sheet  
ADuCM420  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Voltage Range  
0.5  
AVDD − 1.2  
V
Negative input range (reference node of the  
comparator)  
AGND  
0
AVDD  
2.0  
V
V
Positive input range to comparator  
Differential input range; positive input −  
negative input voltage  
Capacitance  
Hysteresis  
Hysteresis Voltage Accuracy  
7
50  
10  
pF  
mV  
% of target  
hysteresis  
10  
210  
35  
1ꢀ configurable options4  
10 mV to 35 mV settings  
5
5
15  
% of target  
hysteresis  
ꢂs  
50 mV to 210 mV settings  
Response Time  
POWER-ON RESET (POR)  
POR Trip Level (DVDD)  
Refers to voltage at DVDD pin  
Power-on level (see Figure 17)  
Power-down level (brownout)  
1.ꢀ  
1.ꢀ2  
1.77  
1.7  
V
V
ms  
1.ꢀꢀ  
32  
Timeout from POR  
FLASH MEMORY  
Endurance  
10,000  
10  
20  
Cycles  
Years  
Years  
MHz  
%
Data Retention  
Junction temperature (TJ) = 125°C  
TJ = 85°C  
INTERNAL HIGH POWER OSCILLATOR  
Accuracy  
1ꢀ  
3
TEMPERATURE SENSOR  
Voltage Output at 25°C  
Voltage Temperature Coefficient  
Accuracy with No Calibration  
INTERNAL LOW POWER OSCILLATOR  
Accuracy  
Indicates die temperature  
0.13ꢀ25  
0.45ꢀ8  
2
32  
7
V
mV/°C  
°C  
−3  
+4.4  
+10  
kHz  
%
−10  
3.3 V GPIO  
Logic Inputs  
IOVDD0 = 3.3 V  
IOVDD0 × 0.3  
Input Low Voltage (VINL  
)
0.ꢁꢁ  
V
Input High Voltage (VINH  
)
2
V
Pull-Up Current  
Pull-Down Current  
Internal Pull-Up or Pull-Down  
Disabled  
120  
115  
−32  
1ꢀ0  
1ꢀ3  
+1  
210  
210  
+ꢀ5  
ꢂA  
ꢂA  
nA  
Input voltage (VIN) = 0 V  
VIN = 3.3 V  
Logic Outputs  
Output High Voltage (VOH)  
Output Low Voltage (VOL)  
2.4  
V
V
Source current (ISOURCE) = 12 mA  
0.4  
10  
Sink current (ISINK) = 12 mA for SCL0 and  
SDA0 (I2C0); and for SCL2 and SDA2 (I2C2),  
I
SINK = 20 mA  
Input Capacitor  
Short-Circuit Current  
1.8 V GPIO  
pF  
mA  
13  
IOVDD1 = 1.8 V  
Logic Inputs  
VINL  
0.54  
V
VINH  
1.2ꢀ  
150  
170  
V
Pull-Up Current  
Pull-Down Current  
Internal Pull-Up or Pull-Down  
Disabled  
1ꢁ4  
217  
+25  
240  
270  
+2000  
ꢂA  
ꢂA  
nA  
VIN = 0 V  
VIN = 1.8 V  
IOVDD1 power source  
−520  
Rev. 0| Page 7 of 25  
ADuCM420  
Data Sheet  
Parameter  
Logic Outputs  
VOH  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
1.4  
V
V
pF  
mA  
ISOURCE = 12 mA  
ISINK = 12 mA  
VOL  
0.3ꢀ  
10  
Input Capacitor  
Short-Circuit Current  
1.2 V GPIO  
Logic Inputs  
VINL  
17  
IOVDD1 = 1.2 V  
0.3ꢀ  
V
VINH  
0.84  
55  
55  
V
Pull-Up Current  
Pull-Down Current  
Internal Pull-Up or Pull-Down  
Disabled  
7ꢀ  
82  
+20  
100  
110  
+1510  
ꢂA  
ꢂA  
nA  
VIN = 0 V  
VIN = 1.2 V  
IOVDD1 power source  
−450  
Logic Outputs  
VOH  
VOL  
1.0  
V
V
pF  
mA  
ISOURCE = ꢀ mA  
ISINK = ꢀ mA  
0.18  
10  
Input Capacitor  
Short-Circuit Current  
MDIO  
7
Logic Inputs  
VINL  
VINH  
Logic Output  
VOH  
0.3ꢀ  
V
V
0.84  
1.0  
V
ISOURCE = 4 mA  
ISINK = 4 mA  
VOL  
0.2  
10  
V
pF  
mA  
Input Capacitor  
Short-Circuit Current  
7
MICROCONTROLLER UNIT (MCU)  
CLOCK RATE  
Using PLL Output  
1ꢀ0  
1ꢀ3  
MHz  
ꢂs  
EXTERNAL RESET  
Minimum Pulse Duration  
PROCESSOR START-UP TIME  
At Power-On  
10  
Pin voltage must stay low for this period  
32  
1
ms  
ms  
Includes kernel execution time  
Includes kernel execution time  
After Reset Event  
After Processor Power-Down  
Core Sleep Mode (Mode 1)  
System Sleep Mode (Mode 2)  
Hibernate Mode (Mode 3)  
POWER REQUIREMENTS  
Power Supply Voltage Range  
AVDD to AGND  
30  
85  
3
HCLK cycles Fixed number of HCLK periods  
ꢂs  
ꢂs  
HCLK = 1ꢀ0 MHz from PLL  
HCLK = 1ꢀ MHz from internal oscillator  
2.85  
1.7  
3.3  
1.8 or  
3.3  
3.ꢀ  
3.ꢀ  
V
V
DVDD to DGND  
IOVDD0 to IOGND  
IOVDD1 to IOGND  
2.85  
1.08  
3.3  
1.2 or  
1.8  
3.ꢀ  
1.ꢁ8  
V
V
If unused, can be tied to DVDD_REG or to  
DGND  
Analog Power Supply Currents  
AVDD Current  
ꢁ00  
1050  
ꢂA  
Analog peripherals in idle mode  
Digital Power Supply Current  
Current in Normal Mode  
IOVDD0  
175  
20  
200  
ꢀ0  
ꢂA  
ꢂA  
IOVDD1  
Rev. 0| Page 8 of 25  
Data Sheet  
ADuCM420  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DVDD Current  
Active Mode  
Executing typical code  
1ꢀ  
4.8  
11  
4.3  
2.4ꢀ  
2.44  
mA  
mA  
mA  
mA  
mA  
mA  
HCLK = 1ꢀ0 MHz clock  
HCLK = 1ꢀ MHz from internal oscillator  
HCLK = 1ꢀ0 MHz clock  
Core Sleep Mode (Mode 1)  
HCLK = 1ꢀ MHz from internal oscillator  
System Sleep Mode (Mode 2)  
Hibernate Mode (Mode 1)  
Additional Power Supply Currents  
ADC  
1ꢁ  
20  
HCLK = 1ꢀ0 MHz clock  
2.8  
330  
18.8  
3.4  
350  
mA  
ꢂA  
mA  
Continuously converting at 2 MSPS  
Per powered up DAC, excluding load current  
Active mode with PLL clock of 1ꢀ0 MHz and  
ADC enabled  
DAC  
Total Supply Current  
1 These numbers are not production tested but are guaranteed by design and/or characterization data at production release.  
2 VDAC linearity specifications generated using reduced DAC code range of 82 to 40ꢁ5. For VDAC Channel 8 to Channel 11, end code of 40ꢁ5 only used when AVDD −  
0.7 V > 2.5 V.  
3 FS is full scale.  
4 These options include 10 mV, 25 mV, 35 mV, 50 mV, ꢀ0 mV, 75 mV, 100 mV, 110 mV, 125 mV, 135 mV, 150 mV, 1ꢀ0 mV, 175 mV, 185 mV, 200 mV, and 210 mV.  
TIMING SPECIFICATIONS  
I2C Timing  
Table 2. I2C Timing in Standard Mode (100 kHz)—Slave/Master  
Parameter  
Description  
Min  
4.7  
4.0  
4.0  
250  
0
Typ  
Max  
Unit  
ꢂs  
ꢂs  
ꢂs  
ns  
tL  
tH  
tSHD  
tDSU  
tDHD  
SCLx low pulse width  
SCLx high pulse width  
Start condition hold time  
Data setup time  
Data hold time (SDAx held internally after falling edge of SCLx, duration set via  
TCTL register, THDATIN bits)  
3.45  
ꢂs  
tRSU  
tPSU  
tBUF  
tR  
Setup time for repeated start  
Stop condition setup time  
Bus free time between a stop condition and a start condition  
Rise time for both SCLx and SDAx  
Fall time for both SCLx and SDAx  
Data valid time  
4.7  
4.0  
4.7  
ꢂs  
ꢂs  
ꢂs  
ꢂs  
ns  
ꢂs  
ꢂs  
pF  
1
tF  
15  
300  
3.45  
3.45  
400  
tVD; DAT  
tVD;ACK  
CB  
Data valid acknowledge time  
Capacitive load for each bus line (not shown in Figure 2)  
Table 3. I2C Timing in Fast Mode (400 kHz)—Slave/Master  
Parameter Description  
Min Typ Max Unit  
tL  
tH  
tSHD  
tDSU  
tDHD  
SCLx low pulse width  
SCLx high pulse width  
Start condition hold time  
Data setup time  
Data hold time (SDAx held internally after falling edge of SCLx, duration set via TCTL register,  
THDATIN bits)  
1.3  
0.ꢀ  
0.ꢀ  
100  
0
ꢂs  
ꢂs  
ꢂs  
ns  
ꢂs  
tRSU  
tPSU  
tBUF  
tR  
Setup time for repeated start  
Stop condition setup time  
Bus free time between a stop condition and a start condition  
Rise time for both SCLx and SDAx  
Fall time for both SCLx and SDAx  
Data valid time  
Data valid acknowledge time  
Capacitive load for each bus line (not shown in Figure 2)  
Rev. 0| Page ꢁ of 25  
0.ꢀ  
0.ꢀ  
1.3  
20  
ꢂs  
ꢂs  
ꢂs  
ns  
ns  
ꢂs  
ꢂs  
pF  
300  
300  
0.ꢁ  
0.ꢁ  
400  
tF  
15  
tVD; DAT  
tVD; ACK  
CB  
 
 
 
ADuCM420  
Data Sheet  
I2C GPIOs (P0.7 to P0.4 and P1.3 to P1.2) drive strength set to 20 mA.  
Table 4. I2C Timing in Fast Mode Plus (1 MHz)—Slave/Master  
Parameter Description  
Min Typ Max Unit  
tL  
tH  
tSHD  
tDSU  
tDHD  
SCLx low pulse width  
SCLx high pulse width  
Start condition hold time  
Data setup time  
Data hold time (SDAx held internally after falling edge of SCLx, duration set via TCTL register,  
THDATIN bits)  
0.5  
0.2ꢀ  
0.2ꢀ  
50  
ꢂs  
ꢂs  
ꢂs  
ns  
ꢂs  
0
tRSU  
tPSU  
tBUF  
tR  
Setup time for repeated start  
Stop condition setup time  
Bus free time between a stop condition and a start condition  
Rise time for both SCLx and SDAx  
Fall time for both SCLx and SDAx  
Data valid time  
0.2ꢀ  
0.2ꢀ  
0.5  
ꢂs  
ꢂs  
ꢂs  
ns  
ns  
120  
120  
tF  
tVD; DAT  
tVD; ACK  
CB  
0.45 ꢂs  
0.45 ꢂs  
Data valid acknowledge time  
Capacitive load for each bus line (not shown in Figure 2)  
550  
pF  
I2C GPIOs (P0.7 to P0.4 and P1.3 to P1.2) drive strength set to 20 mA.  
Table 5. I2C Timing in High Speed Mode (3.4 MHz)—Slave Only  
Parameter  
Description  
Min  
1ꢀ0  
ꢀ0  
1ꢀ0  
10  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
tL  
tH  
tSHD  
tDSU  
tDHD  
SCLx low pulse width  
SCLx high pulse width  
Start condition hold time  
Data setup time  
Data hold time (SDAx held internally after falling edge of SCLx, duration set via  
TCTL register, THDATIN bits)  
0
ns  
tRSU  
tPSU  
tBUF  
tR  
Setup time for repeated start  
Stop condition setup time  
Bus free time between a stop condition and a start condition  
Rise time for both SCLx and SDAx  
Up to CB = 100 pF  
1ꢀ0  
1ꢀ0  
200  
10  
ns  
ns  
ns  
ns  
40  
Up to CB = 400 pF  
Fall time for both SCLx and SDAx  
Up to CB = 400 pF  
80  
40  
80  
400  
ns  
ns  
ns  
pF  
tF  
10  
CB  
Capacitive load for each bus line (not shown in Figure 2)  
tBUF  
tR  
SDAx (I/O)  
MSB  
LSB  
ACK  
MSB  
tDSU  
tDSU  
tDHD  
tRSU  
tF  
tDHD  
tPSU  
tVD; DAT  
tR  
tH  
tSHD  
tVD; ACK  
1
2–7  
8
9
1
SCLx (I)  
tL  
P
S
S(R)  
tF  
STOP  
START  
REPEATED  
START  
CONDITION CONDITION  
Figure 2. I2C-Compatible Interface Timing  
Rev. 0| Page 10 of 25  
 
 
Data Sheet  
ADuCM420  
SPI Timing Specifications: Slave Mode  
SPI GPIOs (P0.3 to P0.0, P1.7 to P1.4) drive strength set to 12 mA, IOVDD1 ≥ 1.2 V, and 40 MHz SPI clock. See Figure 3 and Figure 4.  
Table 6. SPI Slave Mode Timing  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
TIMING REQUIREMENTS  
CSx  
tCS  
25  
25  
ns  
ns  
to SCLKx Edge  
CSx  
tCS  
Minimum Valid  
Inactive Period  
M
SCLKx Low Pulse Width  
SCLKx High Pulse Width  
Data Input Setup Time Before SCLKx Edge  
Data Input Hold Time After SCLKx Edge  
SCLKx Rise Time  
tSL  
tSH  
tDSU  
tDHD  
tSR  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
5
5
5
5
SCLKx Fall Time  
tSF  
SWITCHING CHARACTERISTICS  
Data Output Valid After SCLKx Edge  
tDAV  
tDOCS  
tSFS  
10  
15  
ns  
ns  
ns  
CSx  
Data Output Valid After  
Edge  
CSx  
8.75  
High After SCLKx Edge  
tCSM  
CSx  
tCS  
tSFS  
SCLKx  
(POLARITY = 0)  
tSH  
tSL  
tSR  
tSF  
SCLKx  
(POLARITY = 1)  
tDAV  
tDOCS  
tDF  
tDR  
MSB  
MISOx  
MOSIx  
Figure 3. SPI Slave Mode Timing (Serial Clock Phase Mode, CTL Register, Bit 2, CPHA = 0)  
tCSM  
CSx  
tCS  
tSFS  
SCLKx  
(POLARITY = 0)  
tSH  
tSL  
SCLKx  
(POLARITY = 1)  
tDAV  
tDOCS  
tDF  
tDR  
BIT 6 TO BIT 1  
MISOx  
MSB  
LSB  
MOSIx  
MSB IN  
tDSU  
BIT 6 TO BIT 1  
LSB IN  
tDHD  
Figure 4. SPI Slave Mode Timing (CPHA = 1)  
Rev. 0| Page 11 of 25  
 
 
ADuCM420  
Data Sheet  
SPI Timing Specifications: Master Mode  
SCLKx = 40 MHz, SPI SPI GPIOs (P0.3 to P0.0, P1.7 to P1.4) pin drive strength set to 12 mA. IOVDD1 ≥ 1.2 V. DIV is the SPI clock  
divider, in the SPI baud rate selection register (see the ADuCM420 hardware reference manual for more information). tHCLK is the time  
period of HCLK set up by the user.  
Table 7. SPI Master Mode Timing (CPHA = 0 and 1)  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSL  
tSH  
SCLKx low pulse width  
SCLKx high pulse width  
Data output valid after SCLKx edge  
Data input setup time before SCLKx edge  
Data input hold time after SCLKx edge  
Data output fall time  
Data output rise time  
SCLKx rise time  
SCLKx fall time  
(DIV + 1) × tHCLK/2  
(DIV + 1) × tHCLK/2  
tDAV  
tDSU  
tDHD  
tDF  
tDR  
tSR  
0
5
5
5
5
5
5
tSF  
ns  
SCLKx  
(POLARITY = 0)  
tSH  
tSL  
tSR  
tSF  
SCLKx  
(POLARITY = 1)  
tDAV  
tDF  
tDR  
MOSIx  
MISOx  
MSB  
BIT 6 TO BIT 1  
LSB  
MSB IN  
BIT 6 TO BIT 1  
LSB IN  
tDSU  
tDHD  
Figure 5. SPI Master Mode Timing (CPHA = 1)  
SCLKx  
(POLARITY = 0)  
tSH  
tSL  
tSR  
tSF  
SCLKx  
(POLARITY = 1)  
tDAV  
tDF  
tDR  
MOSIx  
MISOx  
MSB  
BIT 6 TO BIT 1  
LSB  
MSB IN  
BIT 6 TO BIT 1  
LSB IN  
tDSU  
tDHD  
Figure 6. SPI Master Mode Timing (CPHA = 0)  
Rev. 0| Page 12 of 25  
Data Sheet  
ADuCM420  
Table 8. MDIO vs. Management Data Clock (MDC) Timing  
Parameter1  
Description  
Min  
Typ  
Max  
10  
4
Unit  
MHz  
MHz  
ns  
ns  
ns  
Maximum MCK Clock Speed  
Push/pull mode  
Open-drain mode, pull-up resistance (RPULLUP) = 312 Ω  
MDIO setup before MCK edge (push/pull mode)  
Open-drain mode, RPULLUP = 312 Ω  
MDIO valid after MCK edge (push/pull mode)  
Open-drain mode, RPULLUP = 312 Ω  
Data output after MCK edge (push/pull mode)  
Open-drain mode, RPULLUP = 312 Ω  
tSETUP  
tHOLD  
tDELAY  
5
10  
7
10  
ns  
ns  
2ꢀ  
100  
1 In Figure 7, CFP is C formfactor pluggable. VIH is the voltage input high level, and VIL is voltage input low level.  
MCK  
V
V
IH  
IL  
CFP  
INPUT  
MDIO  
V
V
IH  
IL  
CFP  
INPUT  
MDIO  
V
V
OH  
OL  
CFP  
OUTPUT  
tSETUP tHOLD  
tDELAY  
Figure 7. MDIO Timing  
Rev. 0| Page 13 of 25  
 
ADuCM420  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 9.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
AVDD to AGND  
IOVDD0 to IOGND  
IOVDD1 to IOGND  
DVDD to DGND  
AVDD to IOVDD0  
Analog Input Voltage to AGND  
(AVDD Range = 2.85 V to 3.ꢀ V)  
Digital Input Voltage to IOGND  
−0.3 V to +3.ꢀ3 V  
−0.3 V to +3.ꢀ3 V  
−0.3 V to +1.ꢁ8 V  
−0.3 V to +3.ꢀ3 V  
IOVDD0 0.3 V  
−0.3 V to AVDD + 0.3 V,  
must be ≤3.ꢀ3 V  
−0.3 V to IOVDD0 + 0.3 V,  
must be ≤3.ꢀ3 V  
θJA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure. θJC is  
the junction to case thermal resistance.  
Table 10. Thermal Resistance  
Package Type  
1
θJA  
θJC  
Unit  
CB-ꢀ4-2  
34  
0.1ꢀ  
°C/W  
Digital Input Voltage to IOGND (P1.0 −0.3 V to IOVDD1 + 0.3 V,  
to P1.7 and P0.0 to P0.3 Only)1  
AGND to DGND  
must be ≤1.ꢁ8 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
0 mA to 40 mA  
−40 mA to 0 mA  
1 JEDEC 2S2P.  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
IOGND to DGND  
Total Positive GPIO Pins Current  
Total Negative GPIO Pins Current  
Temperature Ranges  
Storage  
Operating  
Reflow Profiles  
The following ESD information is provided for handling of  
ESD sensitive devices in an ESD protected area only.  
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.  
Field induced charged device model (FICDM) per  
ANSI/ESDA/JEDEC JS-002.  
−ꢀ5°C to +150°C  
−40°C to +105°C  
ESD Ratings for ADuCM420  
SnPb Assemblies (10 sec to 30 sec) 240°C  
Pb-Free Assemblies (20 sec to  
40 sec)  
Junction Temperature  
2ꢀ0°C  
Table 11. ADuCM420, 64-Ball WLCSP  
ESD Model  
Withstand Threshold (kV)  
Class  
2
C2A  
150°C  
HBM  
3
1 When IOVDD1 is the selected power rail.  
FICDM  
0.5  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
ESD CAUTION  
Rev. 0| Page 14 of 25  
 
 
 
 
 
Data Sheet  
ADuCM420  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.510  
16  
14  
12  
10  
8
DEVICE 1  
DEVICE 2  
DEVICE 3  
2.508  
2.506  
2.504  
2.502  
2.500  
2.498  
2.496  
2.494  
2.492  
2.490  
6
4
DEVICE 5, AIN0  
DEVICE 5, AIN1  
DEVICE 5, AIN2  
DEVICE 5, AIN3  
DEVICE 5, AIN4  
DEVICE 5, AIN7  
DEVICE 5, AIN8  
DEVICE 5, AIN9  
DEVICE 5, AIN10  
DEVICE 5, AIN12  
DEVICE 5, AIN13  
DEVICE 5, AIN14  
2
DEVICE 6, AIN0  
DEVICE 6, AIN1  
DEVICE 6, AIN2  
DEVICE 6, AIN3  
DEVICE 6, AIN4  
0
DEVICE 6, AIN7  
DEVICE 6, AIN8  
–2  
0.1  
0.5  
0.9  
1.3  
1.7  
2.1  
2.5  
2.9  
3.3  
3.7  
4.0  
0.30  
0.60  
0.90  
1.20  
1.35  
1.65  
1.95  
2.25  
2.50  
VOLTAGE ON AINx (V)  
LOAD CURRENT (mA)  
Figure 11. Input Current vs. Voltage on AINx, fSAMPLE = 100 kSPS  
Figure 8. BUF0_VREF Load Regulation, 2.5 V Output Setting  
3
1.258  
DEVICE 1  
DEVICE 2  
DEVICE 3  
1.256  
1.254  
1.252  
1.250  
1.248  
1.246  
1.244  
1.242  
1.240  
2
1
0
–1  
–2  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
0.1  
0.5  
0.9  
1.3  
1.7  
2.1  
2.5  
2.9  
3.3  
3.7  
4.0  
LOAD CURRENT (mA)  
Figure 12. Temperature Sensor Accuracy, No Calibration, 240 Devices  
Figure 9. BUF0_VREF Load Regulation, 1.25 V Output Setting  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
2.495  
2.494  
350  
300  
250  
200  
150  
100  
50  
DEVICE 5, AIN8  
DEVICE 5, AIN9  
DEVICE 5, AIN10  
DEVICE 5, AIN12  
DEVICE 5, AIN13  
DEVICE 5, AIN14  
DEVICE 5, AIN0  
DEVICE 5, AIN1  
DEVICE 5, AIN2  
DEVICE 5, AIN3  
DEVICE 5, AIN4  
DEVICE 5, AIN7  
DEVICE 6, AIN0  
DEVICE 6, AIN1  
DEVICE 6, AIN2  
DEVICE 6, AIN3  
DEVICE 6, AIN4  
DEVICE 6, AIN7  
DEVICE 6, AIN8  
0
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
0.30  
0.60  
0.90  
1.20  
1.35  
1.65  
1.95  
2.25  
2.50  
VOLTAGE ON AINx (V)  
Figure 10. Input Current vs. Voltage on AINx, fSAMPLE = 2 MSPS  
Figure 13. Reference Voltage Drift vs. Temperature, 250 Devices  
Rev. 0| Page 15 of 25  
 
ADuCM420  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
P2.1/DM/  
IRQ2/  
ECLKIN/  
COMPDIN3/  
PLAI9  
P2.0/  
ADCCONV/  
COMPDIN2/  
PLAI8  
IOGND  
SWDIO  
VDAC7  
VDAC6  
VDAC5  
VDAC3  
A
B
C
D
E
F
P0.3/IRQ0/  
P0.2/MOSI0/  
PLACLK1/  
PLAI2  
P2.3/  
BM  
PLAI10  
CS0/  
PLACLK0/  
PLAI3  
SWCLK  
RESET  
VDAC1  
VREF  
AIN2  
AVDD  
P2.2/  
POR/  
CLKOUT/  
SWO  
P0.0/SCLK0/  
COMOUT0/  
PLAI0  
P1.0/SIN1/  
COMOUT2/  
PLAI4  
P0.1/MISO0/  
COMOUT1/  
PLAI1  
AIN14/  
COM3P/  
BUF0_VREF  
AIN4/  
VDAC0  
IOVDD1  
DVDD_REG  
IOVDD0  
P1.2/  
SCL1/  
PWM0/  
PLAI6  
P1.3/  
SDA1/  
PWM1/  
PLAI7  
P1.1/  
SOUT1/  
COMOUT3/  
PLAI5  
AIN10/  
COM1P  
AIN0  
DGND  
AIN3  
P1.4/  
P1.7/  
SCLK1/  
PWM2/  
PLAO10  
AIN12/  
COM2P  
VDAC8/  
P5.0  
IRQ1/CS1/  
PWM5/  
PLAO13  
AGND  
AVDD_REG  
ADCREFP  
IOGND  
P1.5/  
P1.6/  
P0.7/IRQ4/  
SDA2/  
COMPDIN1/  
PLAO5  
P3.2/  
AIN8/  
COM0P  
VDAC9/  
P5.1  
MISO1/  
PWM3/  
PLAO11  
MOSI1/  
PWM4/  
PLAO12  
PRTADDR2/  
PWMTRIP/  
PLAI14  
ADCREFN  
P0.6/IRQ3/  
SCL2/  
P3.1/  
P0.4/SCL0/  
SIN0/  
P0.5/SDA0/  
SOUT0/  
PRTADDR1/  
PWMSYNC/  
PLAI13  
VDAC11/  
P5.3  
AIN7/  
AIN9/  
G
H
AIN1  
COMPDIN0/  
PLAO4  
VDAC2  
COM0N  
PLAO2  
PLAO3  
P3.5/  
MCK/  
SRDY1/  
PLAO27  
P3.0/  
PRTADDR0/  
SRDY0/  
P3.6/  
MDIO  
VDAC10/  
P5.2  
AIN13/  
COM2N  
IOGND  
DVDD  
VDAC4  
PLAI12  
Figure 14. Pin Configuration  
Table 12. Pin Function Descriptions  
Pin No. Mnemonic  
Type1  
Description  
A1  
A2  
IOGND  
S
I/O  
Ground for Digital Inputs/Outputs.  
Digital Input/Output Port 2.0 (P2.0).  
P2.0/ADCCONV/COMPDIN2/PLAI8  
External Input to Start ADC Conversions (ADCCONV).  
Comparator 2 Digital Input for Three-State (COMPDIN2).  
Input to PLA Element 8 (PLAI8).  
Digital I/O Port 2.1 (P2.1).  
A3  
P2.1/DM/IRQ2/ECLKIN/COMPDIN3/PLAIꢁ I/O  
Download Mode Selection (DM).  
External Interrupt 2 (IRQ2).  
External Input Clock (ECLKIN).  
Comparator 3 Digital Input for Three-State (COMPDIN3).  
Input to PLA Element ꢁ (PLAIꢁ).  
Serial Wire Bidirectional Data.  
Voltage DAC 7 Output.  
Voltage DAC ꢀ Output.  
A4  
A5  
Aꢀ  
A7  
A8  
SWDIO  
VDAC7  
VDACꢀ  
VDAC5  
VDAC3  
I/O  
AO  
AO  
AO  
AO  
Voltage DAC 5 Output.  
Voltage DAC 3 Output.  
Rev. 0 | Page 1ꢀ of 25  
 
 
Data Sheet  
ADuCM420  
Pin No. Mnemonic  
Type1  
Description  
B1  
P0.3/IRQ0/CS0/PLACLK0/PLAI3  
I/O  
Digital Input/Output Port 0.3 (P0.3).  
External Interrupt 0 (IRQ0).  
SPI Channel 0 (SPI0) Chip Select (CS0).  
PLA Clock 0 (PLACLK0).  
Input to PLA Element 3 (PLAI3).  
Ball B1 is a multilevel voltage input/output with 3.3 V, 1.8 V, or 1.2 V  
support. Note that 3.3 V is the default.  
B2  
B3  
P0.2/MOSI0/PLACLK1/PLAI2  
I/O  
I/O  
Digital Input/Output Port 0.2 (P0.2).  
SPI0 Master Output, Slave Input (MOSI0).  
PLA Clock 1 (PLACLK1).  
Input to PLA Element 2 (PLAI2).  
Ball B2 is a multilevel voltage input/output with 3.3 V, 1.8 V, or 1.2 V  
support. Note that 3.3 V is the default.  
P2.3/BM/PLAI10  
Digital Input/Output Port 2.3 (P2.3). An internal pull-up resistor is enabled  
at power-up on P2.3.  
Boot Mode (BM). This pin determines the start-up sequence after every reset.  
Input to PLA Element 10 (PLAI10).  
B4  
B5  
Bꢀ  
B7  
B8  
C1  
C2  
SWCLK  
RESET  
I
I
Serial Wire Debug Clock.  
Reset Input (Active Low). An internal pull-up resistor is included with this pin.  
Voltage DAC 1 Output.  
0.ꢁ2 V Reference with 100 nF Capacitor.  
3.3 V Analog Power Supply.  
1.2 V or 1.8 V GPIO Supply.  
Digital Input/Output Port 0.1 (P0.1).  
SPI0 Master Input, Slave Output (MISO0).  
Comparator 1 Output (COMOUT1)  
VDAC1  
VREF  
AVDD  
IOVDD1  
AO  
AO/AI  
S
S
I/O  
P0.1/MISO0/COMOUT1/PLAI1  
Input to PLA Element 1 (PLAI1).  
Ball C2 is a multilevel voltage input/output with 3.3 V, 1.8 V, or 1.2 V  
support. Note that 3.3 V is the default.  
C3  
C4  
P0.0/SCLK0/COMOUT0/PLAI0  
P1.0/SIN1/COMOUT2/PLAI4  
I/O  
I/O  
Digital Input/Output Port 0.0 (P0.0).  
SPI0 Clock (SCLK0).  
Comparator 0 Output (COMOUT0).  
Input to PLA Element 0 (PLAI0).  
Ball C3 is a multilevel voltage input/output with 3.3 V, 1.8 V, or 1.2 V  
support. Note that 3.3 V is the default.  
Digital Input/Output Port 1.0 (P1.0).  
UART Input 1 (SIN1).  
Comparator 2 Output (COMOUT2).  
Input to PLA Element 4 (PLAI4).  
Ball C4 is a multilevel voltage input/output with 3.3 V, 1.8 V, or 1.2 V  
support. Note that 3.3 V is the default.  
C5  
Cꢀ  
P2.2/POR/CLKOUT/SWO  
I/O  
Digital Input/Output Port 2.2 (P2.2).  
Reset Output (POR). This pin function is an output, and it is the default.  
Clock Output (CLKOUT).  
SWD Output (SWO).  
Analog Input 14 (AIN14).  
AIN14/COM3P/BUF0_VREF  
AI/AO  
Comparator 3 Emitter Voltage (VE) Positive (COM3P).  
Buffered Reference Voltage source (BUF0_VREF).  
Analog Input 2.  
C7  
C8  
AIN2  
AIN4/VDAC0  
AI  
AI  
Analog Input 4 (AIN4).  
Voltage DAC 0 Output (VDAC0).  
D1  
D2  
DVDD_REG  
DGND  
AO  
S
0.ꢁ V Digital Regulator Supply with 0.47 ꢂF Decoupling Capacitor. Do not  
use DVDD_REG to power external circuits.  
Digital Ground.  
Rev. 0| Page 17 of 25  
ADuCM420  
Data Sheet  
Pin No. Mnemonic  
Type1  
Description  
D3  
D4  
D5  
P1.2/SCL1/PWM0/PLAIꢀ  
I/O  
Digital Input/Output Port 1.2 (P1.2).  
I2C Channel 1 (I2C1) Serial Clock (SCL1).  
PWM Output 0 (PWM0).  
Input to PLA Element ꢀ (PLAIꢀ).  
Ball D3 is a multilevel voltage input/output with 3.3 V, 1.8 V, or 1.2 V  
support. Note that 3.3 V is the default.  
Digital Input/Output Port 1.3 (P1.3).  
I2C1 Serial Data (SDA1).  
PWM Output 1 (PWM1).  
Input to PLA Element 7 (PLAI7).  
Ball D4 is a multilevel voltage input/output with 3.3 V, 1.8 V, or 1.2 V  
support. Note that 3.3 V is the default.  
P1.3/SDA1/PWM1/PLAI7  
I/O  
I/O  
P1.1/SOUT1/COMOUT3/PLAI5  
Digital Input/Output Port 1.1 (P1.1).  
UART Output 1 (SOUT1).  
Comparator 3 Output (COMOUT3)  
Input to PLA Element 5 (PLAI5).  
Ball D5 is a multilevel voltage input/output with 3.3 V, 1.8 V, or 1.2 V  
support. Note that 3.3 V is the default.  
Dꢀ  
D7  
D8  
AIN3  
AIN0  
AIN10/COM1P  
AI  
AI  
AI  
Analog Input 3.  
Analog Input 0.  
Analog Input 10 (AIN10).  
Comparator 1 VE Positive (COM1P).  
3.3 V GPIO Supply.  
Ground for Digital Inputs/Outputs.  
Digital Input/Output Port 1.4 (P1.4).  
SPI Channel 1 (SPI1) Clock (SCLK1).  
PWM Output 2 (PWM2).  
E1  
E2  
E3  
IOVDD0  
IOGND  
P1.4/SCLK1/PWM2/PLAO10  
S
S
I/O  
Output of PLA Element 10 (PLAO10).  
Ball E3 is a multilevel voltage input/output with 3.3 V, 1.8 V, or 1.2 V  
support. Note that 3.3 V is the default.  
E4  
P1.7/IRQ1/CS1/PWM5/PLAO13  
I/O  
Digital Input/Output Port 1.7 (P1.7).  
External Interrupt 1 (IRQ1).  
SPI1 Chip Select (CS1).  
PWM Output 5 (PWM5).  
Output of PLA Element 13 (PLAO13).  
Ball E4 is a multilevel voltage input/output with 3.3 V, 1.8 V, or 1.2 V  
support. Note that 3.3 V is the default.  
E5  
Eꢀ  
VDAC8/P5.0  
AO/I/O Voltage DAC 8 Output (VDAC8).  
Digital Input/Output Port 5.0 (P5.0).  
AIN12/COM2P  
AI  
Analog Input 12 (AIN12).  
Comparator 2 VE Positive (COM2P).  
Analog Ground.  
E7  
E8  
AGND  
AVDD_REG  
S
AO  
2.5 V Analog Regulator Supply with 0.47 ꢂF Decoupling Capacitor. Do not  
use AVDD_REG to power external circuits.  
F1  
P1.5/MISO1/PWM3/PLAO11  
I/O  
Digital Input/Output Port 1.5 (P1.5).  
SPI1 Master Input, Slave Output (MISO1).  
PWM Output 3 (PWM3).  
Output of PLA Element 11 (PLAO11).  
Ball F1 is a multilevel voltage input/output with 3.3 V, 1.8 V, or 1.2 V  
support. Note that 3.3 V is the default.  
Rev. 0 | Page 18 of 25  
Data Sheet  
ADuCM420  
Pin No. Mnemonic  
Type1  
Description  
F2  
P1.ꢀ/MOSI1/PWM4/PLAO12  
I/O  
Digital Input/Output Port 1.ꢀ (P1.ꢀ).  
SPI1 Master Output, Slave Input (MOSI1).  
PWM Output 4 (PWM4).  
Output of PLA Element 12 (PLAO12).  
Ball F2 is a multilevel voltage input/output with 3.3 V, 1.8 V, or 1.2 V  
support. Note that 3.3 V is the default.  
F3  
F4  
P0.7/IRQ4/SDA2/COMPDIN1/PLAO5  
P3.2/PRTADDR2/PWMTRIP/PLAI14  
I/O  
I/O  
Digital Input/Output Port 0.7 (P0.7).  
External Interrupt 4 (IRQ4).  
I2C Channel 2 (I2C2) Serial Data (SDA2).  
Comparator 1 Digital Input for Three-State (COMPDIN1).  
Output of PLA Element 5 (PLAO5).  
Digital Input/Output Port 3.2 (P3.2).  
MDIO Port Address Bit 2 (PRTADDR2).  
PWM Trip (PWMTRIP).  
Input to PLA Element 14 (PLAI14).  
F5  
Fꢀ  
VDACꢁ/P5.1  
AIN8/COM0P  
AO/I/O Voltage DAC ꢁ Output (VDACꢁ).  
Digital Input/Output Port 5.1 (P5.1).  
AI  
Analog Input 8 (AIN8).  
Comparator 0 VE Positive (COM0P).  
F7  
F8  
ADCREFN  
ADCREFP  
AO/AI  
AO/AI  
Decoupling Capacitor Connection for ADC. Connect this pin to AGND.  
Decoupling Capacitor Connection for ADC Reference Buffer with 4.7 ꢂF  
Decoupling Capacitor.  
G1  
G2  
G3  
P0.4/SCL0/SIN0/PLAO2  
I/O  
I/O  
I/O  
Digital Input/Output Port 0.4 (P0.4).  
I2C Channel 0 (I2C0) Serial Clock (SCL0).  
UART 0 Input (SIN0).  
Output of PLA Element 2 (PLAO2).  
Digital Input/Output Port 0.5 (P0.5).  
I2C0 Serial Data (SDA0).  
P0.5/SDA0/SOUT0/PLAO3  
P0.ꢀ/IRQ3/SCL2/COMPDIN0/PLAO4  
UART Output 0 (SOUT0).  
Output of PLA Element 3 (PLAO3).  
Digital Input/Output Port 0.ꢀ (P0.ꢀ).  
External Interrupt 3 (IRQ3).  
I2C2 Serial Clock (SCL2).  
Comparator 0 Digital Input for Three-State (COMPDIN0).  
Output of PLA Element 4 (PLAO4).  
Digital Input/Output Port 3.1 (P3.1).  
MDIO Port Address Bit 1 (PRTADDR1).  
PWM Synchronization (PWMSYNC).  
Input to PLA Element 13 (PLAI13).  
G4  
P3.1/PRTADDR1/PWMSYNC/PLAI13  
I/O  
G5  
Gꢀ  
VDAC11/P5.3  
AIN7/VDAC2  
AO/I/O Voltage DAC 11 Output (VDAC11).  
Digital Input/Output Port 5.1 (P5.3).  
AI  
Analog Input 7 (AIN7).  
Voltage DAC 2 Output (VDAC2).  
Analog Input 1.  
Analog Input ꢁ (AINꢁ).  
G7  
G8  
AIN1  
AINꢁ/COM0N  
AI  
AI  
Comparator 0 VE Negative (COM0N).  
Ground for Digital Inputs/Outputs.  
1.8 V or 3.3 V Digital Power Supply.  
Digital Input/Output Port 3.ꢀ (P3.ꢀ).  
MDIO Slave Data (MDIO).  
H1  
H2  
H3  
IOGND  
DVDD  
P3.ꢀ/MDIO  
S
S
I/O  
H4  
P3.5/MCK/SRDY1/PLAO27  
I/O  
Digital Input/Output Port 3.5 (P3.5).  
MDIO Slave Clock (MCK).  
SPI1 Ready (SRDY1).  
Output of PLA Element 27 (PLAO27).  
Rev. 0| Page 1ꢁ of 25  
ADuCM420  
Data Sheet  
Pin No. Mnemonic  
Type1  
Description  
H5  
P3.0/PRTADDR0/SRDY0/PLAI12  
I/O  
Digital Input/Output Port 3.0 (P3.0).  
MDIO Port Address Bit 0 (PRTADDR0).  
SPI0 Ready (SRDY0).  
Input to PLA Element 12 (PLAI12).  
Hꢀ  
VDAC10/P5.2  
AO/I/O Voltage DAC 10 Output (VDAC10).  
Digital Input/Output Port 5.2 (P5.2).  
H7  
H8  
VDAC4  
AIN13/COM2N  
AO  
AI  
Voltage DAC 4 Output.  
Analog Input 13 (AIN13).  
Comparator 2 VE Negative (COM2N).  
1 S is supply, I/O is input/output, AO is analog output, I is digital input, and AI is analog input.  
Rev. 0 | Page 20 of 25  
Data Sheet  
ADuCM420  
THEORY OF OPERATION  
The ADuCM420 is an on-chip system. The ADuCM420 is  
mixed-signal microcontroller based on the Arm Cortex-M33  
processor.  
to, all register details and information about the various  
features and operation of the power management unit, the Arm  
Cortex-M33 processor, the ADC circuit, the flash controller,  
and the SPI, I2C, and UART interfaces.  
See the ADuCM420 hardware reference manual for full details  
on the operation of the ADuCM420, including, but not limited  
Rev. 0| Page 21 of 25  
 
ADuCM420  
Data Sheet  
APPLICATIONS INFORMATION  
Note that the analog and digital ground pins on the ADuCM420  
must be referenced to the same system ground reference point  
at all times.  
POWER SUPPLIES  
The ADuCM420 operational power supply voltage is 2.85 V to  
3.6 V for AVDD and IOVDD0, 1.2 V or 1.8 V for IOVDD1,  
and 1.8 V to 3.6 V for DVDD. Separate analog (AVDD) and  
digital power supply pins (IOVDD1 and DVDD) allow AVDD  
to be kept relatively free of noisy digital signals often present in  
the system DVDD line. In this mode, the ADuCM420 can also  
operate with split supplies. That is, the device can use different  
voltage levels for each supply as long as the minimum and  
maximum specifications defined in Table 1 and Table 9 for  
each supply are adhered to. A typical split supply configuration  
is shown in Figure 15.  
POWER-UP REQUIREMENTS  
Figure 17 and Figure 18 show the power-up requirements for  
DVDD and AVDD. Figure 19 shows the power-up requirement  
for IOVDD0 if no external pull-up is applied to the  
P2.3/BM/PLAI10 pin.  
3.6  
AFTER 50ms DVDD MUST  
STAY ABOVE 1.7V INCLUDING  
NOISE EXCURSIONS  
DIGITAL SUPPLY  
ANALOG SUPPLY  
3.3V  
10µF  
10µF  
1.8  
1.7  
ADuCM420  
AVDD  
DVDD  
0.1µF  
0.1µF  
0.1µF  
10µF  
0.1µF  
0.1µF  
IOVDD0  
50ms MIN  
DVDD MUST BE ABOVE  
1.8V FOR AT LEAST 50ms  
TO COMPLETE POR  
1
GND  
REF  
1.6  
AGND  
IOVDD1  
DGND  
1.8V  
TIME (Not to Scale)  
1
GND  
IS A COMMON GROUND BETWEEN AGND AND DGND.  
REF  
Figure 17. DVDD Power-Up Requirements  
Figure 15. External Multiple Supply Connections  
25ms  
DVDD  
As an alternative to providing two separate power supplies, the  
user can reduce noise on AVDD by placing a small series  
resistor and/or ferrite bead between AVDD and DVDD and  
then decoupling AVDD separately to ground. An example of  
this configuration is shown in Figure 16. With this configuration,  
other analog circuitry (such as op amps and voltage reference)  
can be powered from the AVDD supply line as well.  
AVDD  
2.85V  
1.6V  
AFTER DVDD RISES  
ABOVE 1.6V  
(POR THRESHOLD),  
AVDD MUST REACH  
2.85V (min.) WITHIN 25ms.  
OTHERWISE, RESET ADC  
BEAD  
1.6V  
1
3.3V  
AND VDACs IN SOFTWARE .  
10µF  
10µF  
ADuCM420  
AVDD  
DVDD  
0.1µF  
0.1µF  
10µF  
0.1µF  
TIME  
DETAILS IN HARDWARE REFERENCE MANUAL.  
IOVDD0  
1
0.1µF  
0.1µF  
1
GND  
REF  
LDO  
1.8V  
Figure 18. AVDD Power-Up Requirements  
AGND  
IOVDD1  
DGND  
25ms  
DVDD  
IOVDD0  
1
GND  
IS A COMMON GROUND BETWEEN AGND AND DGND.  
2.85V  
1.6V  
REF  
Figure 16. External Single-Supply Connections  
In both Figure 15 and Figure 16, a large value (10 μF) reservoir  
capacitor is connected to DVDD, and a separate 10 μF capacitor is  
connected to AVDD. In addition, local small value (0.1 μF)  
capacitors are located at each AVDD, IOVDD0, IOVDD1, and  
DVDD pin of the chip. As per standard design practice, include  
all of these capacitors and ensure that the smaller capacitors are  
close to each supply pin with trace lengths as short as possible.  
Connect the ground terminal of each of these capacitors  
directly to the underlying ground plane.  
TIME  
Figure 19. IOVDD0 Power-Up Requirement, No External Pull-Up  
Rev. 0 | Page 22 of 25  
 
 
 
 
 
 
 
 
 
Data Sheet  
ADuCM420  
Similarly, the analog supply pin (AVDD) requires a 0.1 μF  
RECOMMENDED CIRCUIT AND COMPONENT  
VALUES  
capacitor placed as near as possible to each ball and its  
associated AGND ball. Also, place a 10 ꢀF capacitor near these  
balls.  
Figure 20 shows a typical connection diagram for the ADuCM420.  
Adequately decouple the supplies and regulators with  
capacitors connected between the AVDD_REG, DVDD_REG,  
and IOVDDx balls and their associated ground balls (AGND  
and DGND). Table 12 indicates which ground balls are paired  
with which supply balls.  
The ADC reference requires a 4.7 ꢀF capacitor be placed  
between ADCREFP and ADCREFN and located as near as  
possible to each ball. ADCREFN must be connected directly to  
AGND. The ADuCM420 contains two internal regulators.  
These regulators require external decoupling capacitors. The  
DVDD_REG and AVDD_REG balls each require a 0.47 μF  
capacitor to DGND and AGND, respectively. Take care in the  
layout to ensure that currents flowing from the ground end of  
each decoupling capacitor to its associated ground ball share as  
little track as possible with other ground currents on the PCB.  
There are three digital supply balls, IOVDD0, IOVDD1, and  
DVDD. Decouple these balls with a 0.1 μF capacitor placed as  
near as possible to each of the three balls and their associated  
ground balls (IOGND and DGND). In addition, place a 10 ꢀF  
capacitor near these balls.  
For DVDD, to improve noise reduction, place a ferrite bead in  
series with a 10 ꢀF capacitor to DGND.  
Rev. 0| Page 23 of 25  
 
ADuCM420  
Data Sheet  
0.47µF  
IOVDD0  
10kΩ  
RESET  
IOVDD0  
10kΩ  
ADuCM420  
P2.3/BM/PLAI10  
P1.0/SIN1/COMOUT2/PLAI4  
SWCLK  
P1.1/SOUT1/COMOUT3/PLAI5  
SWDIO  
0.47µF  
0.1µF  
4.7µF  
RESET  
GND  
RESET  
SWDIO  
Tx  
SWCLK  
Rx  
NC  
IOVDD0  
AVDD  
LT3022EMSE  
VIN  
IN  
OUT  
IOVDD1  
0.1µF  
0.1µF  
0.1µF  
10µF  
10kΩ  
0.1µF  
10µF  
0.1µF  
10µF  
PGND  
AVDD  
ADJ/SENSE  
AGND  
10µF  
ADP7104ARDZ-3.3  
AVDD  
VIN  
VIN  
VOUT  
PG  
10kΩ  
10µF  
0.1µF  
10µF  
0.1µF  
10µF  
EN/UVLO  
SENSE/ADJ  
GND  
Figure 20. Recommended Circuit and Component Values (ADuCM420, LT3022EMSE, and ADP7104ARDZ-3.3)  
Rev. 0 | Page 24 of 25  
 
Data Sheet  
ADuCM420  
OUTLINE DIMENSIONS  
3.50  
3.46 SQ  
3.42  
8
7
6
5
4
3
2
1
A
BALL A1  
IDENTIFIER  
B
C
D
E
F
2.80  
REF  
G
H
0.40  
BSC  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
0.330  
0.300  
0.270  
2.80 REF  
0.560  
0.500  
0.440  
SIDE VIEW  
COPLANARITY  
0.05  
0.300  
0.260  
0.220  
SEATING  
PLANE  
0.230  
0.200  
0.170  
Figure 21. 64-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-64-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
CB-ꢀ4-2  
CB-ꢀ4-2  
ADUCM420BCBZ-RL  
ADUCM420BCBZ-RL7  
EVAL-ADuCM420QSP1Z  
−40°C to +105°C  
−40°C to +105°C  
ꢀ4-Ball Wafer Level Chip Scale Package [WLCSP]  
ꢀ4-Ball Wafer Level Chip Scale Package [WLCSP]  
WLCSP Evaluation Board and Quick Start Development System  
1 Z = RoHS Compliant Part.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2021 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D25843-1/21(0)  
Rev. 0 | Page 25 of 25  
 
 
 

相关型号:

ADUCRF101

Precision Analog Microcontroller ARM Cortex - M3 with ISM band
ADI

ADUCRF101BCPZ128

Precision Analog Microcontroller ARM Cortex M3 with RF Transceiver
ADI

ADUCRF101BCPZ128R7

IC RF TXRX+MCU - 64-VFQFN
ADI

ADUCRF101BCPZ64

IC RISC MICROCONTROLLER, Microcontroller
ADI

ADUCRF101CCPZ128

IC RISC MICROCONTROLLER, Microcontroller
ADI

ADUM1100

iCoupler Digital Isolator
ADI

ADUM1100

3.3-V/5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ADUM1100AR

iCoupler Digital Isolator
ADI

ADUM1100AR-REEL

SPECIALTY TELECOM CIRCUIT, PDSO8, MS-012AA, SOIC-8
ADI

ADUM1100AR-RL7

iCoupler Digital Isolator
ADI

ADUM1100ARWZ

ESD/Latch-Up Considerations with iCoupler® Isolation Products
ADI

ADUM1100ARZ

iCoupler Digital Isolator
ADI