ADUM1280CRZ [ADI]

3 kV RMS Dual Channel Digital Isolators; 3千伏RMS双通道数字隔离器
ADUM1280CRZ
型号: ADUM1280CRZ
厂家: ADI    ADI
描述:

3 kV RMS Dual Channel Digital Isolators
3千伏RMS双通道数字隔离器

文件: 总16页 (文件大小:329K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3 kV RMS Dual Channel Digital Isolators  
Data Sheet  
ADuM1280/ADuM1281/ADuM1285/ADuM1286  
FEATURES  
GENERAL DESCRIPTION  
Up to 100 Mbps data rate (NRZ)  
Low propagation delay: 20 ns typical  
Low dynamic power consumption  
Bidirectional communication  
3 V to 5 V level translation  
High temperature operation: 125°C  
The ADuM1280/ADuM1281/ADuM1285/ADuM12861 (also  
referred to as ADuM128x in this data sheet) are dual-channel  
digital isolators based on the Analog Devices, Inc., iCoupler®  
technology. Combining high speed CMOS and monolithic air  
core transformer technology, these isolation components  
provide outstanding performance characteristics superior to  
High common-mode transient immunity: >25 kV/μs  
Default high output: ADuM1280/ADuM1281  
Default low output: ADuM1285/ADuM1286  
Narrow body, RoHS-compliant, 8-lead SOIC  
Safety and regulatory approvals (pending)  
UL recognition: 3000 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice #5A  
alternatives, such as optocoupler devices and other integrated  
couplers.  
With propagation delay at 20 ns, pulse width distortion is less  
than 2 ns for C grade. Channel-to-channel matching is tight at  
5 ns for C grade. The two channels of the ADuM128x are  
independent isolation channels and are available in two channel  
configurations with three different data rates up to 100 Mbps  
(see the Ordering Guide). All models operate with the supply  
voltage on either side ranging from 2.7 V to 5.5 V, providing  
compatibility with lower voltage systems as well as enabling a  
voltage translation functionality across the isolation barrier.  
Unlike other optocoupler alternatives, the ADuM128x isolators  
have a patented refresh feature that ensures dc correctness in  
the absence of input logic transitions. When power is first  
applied or is not yet applied to the input side, the ADuM1280  
and ADuM1281 have a default high output, and the ADuM1285  
and ADuM1286 have a default low output.  
VDE Certificate Of Conformity  
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12  
V
IORM = 560 V peak  
APPLICATIONS  
General-purpose multichannel isolation  
Data converter isolation  
Industrial field bus isolation  
For more information on safety and regulatory approvals, go to  
http://www.analog.com/icouplersafety.  
FUNCTIONAL BLOCK DIAGRAMS  
ADuM1280/  
ADuM1281/  
ADuM1286  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
V
V
V
V
V
V
V
V
DD1  
DD2  
OA  
OB  
DD1  
DD2  
ADuM1285  
ENCODE  
DECODE  
DECODE  
DECODE  
ENCODE  
DECODE  
V
V
V
OA  
IA  
IB  
IA  
ENCODE  
ENCODE  
V
IB  
OB  
GND  
GND  
GND  
GND  
2
1
2
1
Figure 1. ADuM1280/ADuM1285  
Figure 2. ADuM1281/ADuM1286  
1 Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329. Other patents are pending.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADuM1280/ADuM1281/ADuM1285/ADuM1286  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Recommended Operating Conditions .......................................8  
Absolute Maximum Ratings ............................................................9  
ESD Caution...................................................................................9  
Pin Configurations and Function Descriptions......................... 10  
Typical Performance Characteristics ........................................... 12  
Applications Information .............................................................. 13  
PC Board Layout ........................................................................ 13  
Propagation Delay-Related Parameters................................... 13  
DC Correctness and Magnetic Field Immunity..................... 13  
Power Consumption .................................................................. 14  
Insulation Lifetime..................................................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 V Operation................................ 3  
Electrical Characteristics—3 V Operation................................ 4  
Electrical Characteristics—Mixed 5 V/3 V Operation............ 5  
Electrical Characteristics—Mixed 3 V/5 V Operation............ 6  
Package Characteristics ............................................................... 7  
Regulatory Information............................................................... 7  
Insulation and Safety-Related Specifications............................ 7  
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12  
Insulation Characteristics............................................................ 8  
REVISION HISTORY  
5/12—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
Data Sheet  
ADuM1280/ADuM1281/ADuM1285/ADuM1286  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. Minimum/maximum specifications apply over the entire recommended  
operation range: 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V, 40°C ≤ TA ≤ 125°C, unless otherwise noted. Switching specifications are  
tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 1.  
A Grade  
Typ  
B Grade  
Typ  
C Grade  
Typ  
Parameter  
Symbol  
Min  
Min  
Min  
Max  
Min  
10  
Max  
Unit  
Test Conditions  
SWITCHING SPECIFICATIONS  
Pulse Width  
PW  
1000  
40  
Within PWD limit  
ns  
Data Rate  
1
25  
35  
3
Within PWD limit  
100  
24  
2
Mbps  
ns  
ns  
ps/°C  
ns  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
tPHL, tPLH  
PWD  
50  
10  
13  
50% input to 50% output  
18  
|tPLH − tPHL  
|
7
2
3
1.5  
tPSK  
38  
12  
Between any two units  
at same operating  
conditions  
9
Channel Matching  
Codirectional  
Opposing Direction  
Jitter  
tPSKCD  
tPSKOD  
5
3
6
2
5
ns  
ns  
ns  
10  
2
1
Table 2.  
1 Mbps–A, B, C Grade  
25 Mbps–B Grade  
100 Mbps–B Grade  
Parameter  
Symbol  
Min  
Typ  
Min  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Test Conditions  
SUPPLY CURRENT  
ADuM1280/ADuM1285  
No load  
IDD1  
IDD2  
IDD1  
IDD2  
1.1  
2.7  
2.1  
2.3  
1.6  
4.5  
2.6  
2.9  
6.2  
4.8  
4.9  
4.7  
7.0  
7.0  
6.0  
6.4  
20  
9.5  
15  
25  
15  
19  
19  
mA  
mA  
mA  
mA  
ADuM1281/ADuM1286  
15.6  
Table 3. For All Models  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH  
VIL  
0.7 VDDx  
VDDx − 0.1  
V
0.3 VDDx  
V
VOH  
5.0  
4.8  
0.0  
0.2  
V
V
V
V
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
0 V ≤ VIx ≤ VDDx  
VDDx − 0.4  
Logic Low Output Voltages  
VOL  
II  
0.1  
0.4  
+10  
Input Current per Channel  
Supply Current per Channel  
−10  
+0.01  
µA  
Quiescent Input Supply Current  
Quiescent Output Supply Current  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
Undervoltage Lockout  
IDDI(Q)  
IDDO(Q)  
IDDI(D)  
IDDO(D)  
0.54  
1.6  
0.09  
0.04  
0.8  
2.0  
mA  
mA  
mA/Mbps  
mA/Mbps  
Positive VDDx Threshold  
VDDXUV+  
VDDXUV-  
VDDXUVH  
2.6  
2.4  
0.2  
V
V
V
Negative VDDx Threshold  
VDDx Hysteresis  
AC SPECIFICATIONS  
Output Rise/Fall Time  
Common-Mode Transient Immunity1  
tR/tF  
|CM|  
2.5  
35  
ns  
kV/µs  
10% to 90%  
VIx = VDDx, VCM = 1000 V,  
25  
transient magnitude = 800 V  
Refresh Period  
tr  
1.6  
µs  
1|CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining Vo > 0.8 VDDx. The common-mode voltage slew rates apply to both  
rising and falling common-mode voltage edges.  
Rev. 0 | Page 3 of 16  
 
 
ADuM1280/ADuM1281/ADuM1285/ADuM1286  
Data Sheet  
ELECTRICAL CHARACTERISTICS—3 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.0 V. Minimum/maximum specifications apply over the entire recommended  
operation range: 2.7 V ≤ VDD1 ≤ 3.6 V, 2.7 V ≤ VDD2 ≤ 3.6 V, 40°C ≤ TA ≤ 125°C, unless otherwise noted. Switching specifications are  
tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 4.  
A Grade  
Typ  
B Grade  
Typ  
C Grade  
Typ  
Parameter  
Symbol  
Min  
Min  
Min  
Max  
Min  
10  
Max  
Unit  
Test Conditions  
SWITCHING SPECIFICATIONS  
Pulse Width  
PW  
1000  
40  
Within PWD limit  
ns  
Data Rate  
1
25  
35  
3
Within PWD limit  
100  
33  
2.5  
Mbps  
ns  
ns  
ps/°C  
ns  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
tPHL, tPLH  
PWD  
50  
10  
20  
50% input to 50% output  
25  
|tPLH − tPHL|  
7
2
3
1.5  
tPSK  
38  
16  
Between any two units  
at same operating  
conditions  
12  
Channel Matching  
Codirectional  
tPSKCD  
tPSKOD  
5
3
6
2.5  
5
ns  
ns  
ns  
Opposing-Direction  
10  
Jitter  
2
1
7
Codirectional channel matchi ng is the absol ute value o f the diff erence in propa gation delays betwee n any two c hannels with i nputs on the same side of the isolati on barrier. Opposing-directio nal channel matching is the abs olute val ue o f the differe nce in propagati on delays betwee n any two c hannels wit h inputs on opposi ng sides of the is olation barrier.  
Table 5.  
1 Mbps–A, B, C Grade  
25 Mbps–B, C Grade  
100 Mbps–C Grade  
Parameter  
Symbol  
Min  
Typ  
Min  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Test Conditions  
SUPPLY CURRENT  
No load  
ADuM1280/ADuM1285  
IDD1  
IDD2  
IDD1  
IDD2  
1.4  
3.5  
2.1  
2.3  
mA  
mA  
mA  
mA  
0.75  
2.0  
1.6  
5.1  
2.7  
3.8  
3.9  
9.0  
4.6  
5.0  
6.2  
17  
4.8  
11  
11  
23  
9
15  
15  
ADuM1281/ADuM1286  
1.7  
Table 6. For All Models  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH  
VIL  
0.7 VDDx  
V
0.3 VDDx  
V
VOH  
VDDx − 0.1  
VDDx − 0.4  
3.0  
2.8  
0.0  
0.2  
V
V
V
V
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
0 V ≤ VIx ≤ VDDx  
Logic Low Output Voltages  
VOL  
II  
0.1  
0.4  
Input Current per Channel  
Supply Current per Channel  
−10  
+0.01  
+10  
µA  
Quiescent Input Supply Current  
Quiescent Output Supply Current  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
Undervoltage Lockout  
IDDI(Q)  
IDDO(Q)  
IDDI(D)  
IDDO(D)  
0.4  
1.2  
0.08  
0.015  
0.6  
1.7  
mA  
mA  
mA/Mbps  
mA/Mbps  
Positive VDDx Threshold  
Negative VDDx Threshold  
VDDX Hysteresis  
VDDxUV+  
VDDxUV−  
VDDxUVH  
2.6  
2.4  
0.2  
V
V
V
AC SPECIFICATIONS  
Output Rise/Fall Time  
Common-Mode Transient Immunity1  
tR/tF  
3
ns  
10% to 90%  
VIx = VDDx, VCM = 1000 V,  
|CM|  
25  
35  
kV/µs  
transient magnitude = 800 V  
Refresh Period  
tr  
1.6  
µs  
1|CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining Vo > 0.8 VDDX. The common-mode voltage slew rates apply to both  
rising and falling common-mode voltage edges.  
Rev. 0 | Page 4 of 16  
 
Data Sheet  
ADuM1280/ADuM1281/ADuM1285/ADuM1286  
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = 5 V, VDD2 = 3.0 V. Minimum/maximum specifications apply over the entire  
recommended operation range: 4.5 V ≤ VDD1 ≤ 5.5 V, 2.7 V ≤ VDD2 ≤ 3.6 V; and −40°C ≤ TA ≤ 125°C, unless otherwise noted. Switching  
specifications are tested with CL = 15 pF and CMOS signal levels unless otherwise noted.  
Table 7.  
A Grade  
Typ  
B Grade  
Typ  
C Grade  
Typ  
Parameter  
Symbol  
Min  
Min  
Min  
Max  
Min  
10  
Max  
Unit  
Test Conditions  
SWITCHING SPECIFICATIONS  
Pulse Width  
PW  
1000  
40  
Within PWD limit  
ns  
Data Rate  
1
25  
35  
3
Within PWD limit  
100  
26  
2
Mbps  
ns  
ns  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
tPHL, tPLH  
PWD  
50  
10  
13  
50% input to 50% output  
20  
|tPLH − tPHL  
|
ps/C  
7
2
3
1.5  
tPSK  
38  
16  
Between any two units  
at same operating  
conditions  
12  
ns  
Channel Matching  
Codirectional  
tPSKCD  
tPSKOD  
5
3
6
2
5
ns  
ns  
ns  
Opposing-Direction  
10  
Jitter  
2
1
7
Codirectional channel matchi ng is the absol ute value o f the diff erence in propa gation delays betwee n any two c hannels with i nputs on the same side of the isolati on barrier. Opposing-directio nal channel matching is the abs olute val ue o f the differe nce in propagati on delays betwee n any two c hannels wit h inputs on opposi ng sides of the is olatio n barrier.  
Table 8.  
1 Mbps–A, B, C Grade  
25 Mbps–B, C Grade  
100 Mbps–C Grade  
Parameter  
Symbol  
Min  
Typ  
Min  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Test Conditions  
SUPPLY CURRENT  
No load  
ADuM1280/ADuM1285  
IDD1  
IDD2  
IDD1  
IDD2  
1.6  
3.5  
2.6  
2.3  
7.0  
4.6  
6.0  
6.2  
25  
9.0  
19  
15  
mA  
mA  
mA  
mA  
1.1  
2.0  
2.1  
1.7  
6.2  
2.7  
4.9  
3.9  
20  
4.8  
15  
11  
ADuM1281/ADuM1286  
Table 9. For All Models  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH  
VIL  
0.7 VDDx  
VDDx − 0.1  
V
0.3 VDDx  
V
VOH  
VDDx  
VDDx − 0.2  
0.0  
V
V
V
V
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
0 V ≤ VIx ≤ VDDx  
VDDx − 0.4  
Logic Low Output Voltages  
VOL  
II  
0.1  
0.4  
0.2  
Input Current per Channel  
Supply Current per Channel  
−10  
+10  
µA  
+0.01  
Quiescent Input Supply Current  
Quiescent Output Supply Current  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
Undervoltage Lockout  
IDDI(Q)  
IDDO(Q)  
IDDI(D)  
IDDO(D)  
0.75  
2.0  
mA  
mA  
0.54  
1.2  
0.09  
0.02  
mA/Mbps  
mA/Mbps  
Positive VDDX Threshold  
VDDxUV+  
VDDxUV−  
VDDxUVH  
V
V
V
2.6  
2.4  
0.2  
Negative VDDX Threshold  
VDDX Hysteresis  
AC SPECIFICATIONS  
Output Rise/Fall Time  
Common-Mode Transient Immunity1  
tR/tF  
ns  
10% to 90%  
2.5  
35  
|CM|  
25  
kV/µs  
VIx = VDDx, VCM = 1000 V,  
transient magnitude = 800 V  
Refresh Period  
tr  
µs  
1.6  
1|CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining Vo > 0.8 VDDX. The common-mode voltage slew rates apply to both  
rising and falling common-mode voltage edges.  
Rev. 0 | Page 5 of 16  
 
ADuM1280/ADuM1281/ADuM1285/ADuM1286  
Data Sheet  
ELECTRICAL CHARACTERISTICS—MIXED 3 V/5 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = 3.0 V, VDD2 = 5 V. Minimum/maximum specifications apply over the entire  
recommended operation range: 2.7 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V; and −40°C ≤ TA ≤ 125°C; unless otherwise noted. Switching  
specifications are tested with CL=15 pF and CMOS signal levels, unless otherwise noted.  
Table 10.  
A Grade  
Typ  
B Grade  
Typ  
C Grade  
Typ  
Parameter  
Symbol  
Min  
Min  
Min  
Max  
Min  
10  
Max  
Unit  
Test Conditions  
SWITCHING SPECIFICATIONS  
Pulse Width  
PW  
1000  
40  
Within PWD limit  
ns  
Data Rate  
1
25  
35  
3
Within PWD limit  
100  
30  
2.5  
Mbps  
ns  
ns  
ps/C  
ns  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
tPHL, tPLH  
PWD  
50  
10  
16  
50% input to 50% output  
24  
|tPLH − tPHL|  
7
2
3
2
1.5  
tPSK  
38  
16  
Between any two units at  
same operating conditions  
12  
Channel Matching  
Codirectional  
tPSKCD  
tPSKOD  
5
3
6
2.5  
5
ns  
ns  
ns  
Opposing-Direction  
10  
Jitter  
1
7
Codirectional channel matchi ng is the absol ute value o f the diff erence in propa gation delays betwee n any two c hannels with i nputs on the same side of the isolati on barrier. Opposing-directio nal channel matching is the abs olute val ue o f the differe nce in propagati on delays betwee n any two c hannels wit h inputs on opposi ng sides of the is olation barrier.  
Table 11.  
1 Mbps–A, B, C Grade  
25 Mbps–B, C Grade  
100 Mbps–C Grade  
Parameter  
Symbol  
Min  
Typ  
Min  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Test Conditions  
SUPPLY CURRENT  
No load  
ADuM1280/ADuM1285  
IDD1  
IDD2  
IDD1  
IDD2  
mA  
mA  
mA  
mA  
0.75  
2.7  
1.6  
1.4  
4.5  
2.1  
2.3  
5.1  
4.8  
3.8  
3.9  
9.0  
7.0  
5.0  
6.2  
17  
9.5  
11  
11  
23  
15  
15  
15  
ADuM1281/ADuM1286  
1.7  
Table 12. For All Models  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH  
VIL  
0.7 VDDx  
V
0.3 VDDx  
V
VOH  
VDDx − 0.1  
VDDx − 0.4  
VDDx  
VDDx − 0.2  
0.0  
V
V
V
V
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
0 V ≤ VIx ≤ VDDx  
Logic Low Output Voltages  
VOL  
II  
0.1  
0.4  
+10  
0.2  
Input Current per Channel  
Supply Current per Channel  
−10  
µA  
+0.01  
Quiescent Input Supply Current  
Quiescent Output Supply Current  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
IDDI(Q)  
IDDO(Q)  
IDDI(D)  
IDDO(D)  
0.75  
2.0  
mA  
mA  
0.4  
1.6  
0.08  
mA/Mbps  
mA/Mbps  
0.03  
Undervoltage-Lockout  
Positive VDDX Threshold  
Negative VDDX Threshold  
VDDX Hysteresis  
VDDxUV+  
VDDxUV−  
VDDxUVH  
V
V
V
2.6  
2.4  
0.2  
AC SPECIFICATIONS  
Output Rise/Fall Time  
Common-Mode Transient Immunity1  
tR/tF  
ns  
10% to 90%  
2.5  
35  
|CM|  
25  
kV/µs  
VIx = VDDx, VCM = 1000 V,  
transient magnitude = 800 V  
Refresh Period  
tr  
µs  
1.6  
1|CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining Vo > 0.8 VDDX. The common-mode voltage slew rates apply to both  
rising and falling common-mode voltage edges.  
Rev. 0 | Page 6 of 16  
 
Data Sheet  
ADuM1280/ADuM1281/ADuM1285/ADuM1286  
PACKAGE CHARACTERISTICS  
Table 13.  
Parameter  
Symbol Min Typ Max Unit  
Test Conditions  
Resistance (Input-to-Output)1  
Capacitance (Input-to-Output)1  
Input Capacitance2  
RI-O  
CI-O  
CI  
1013  
2
4.0  
85  
pF  
pF  
f = 1 MHz  
IC Junction-to-Ambient Thermal  
Resistance  
θJA  
°C/W Thermocouple located at center of package underside  
1 The device is considered a 2-terminal device; Pin 1 through Pin 4 are shorted together and Pin 5 through Pin 8 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
REGULATORY INFORMATION  
The ADuM128x is pending approval by the organizations listed in Table 14. See Table 18 and Table 19 for recommended maximum  
working voltages for specific cross-isolation waveforms and insulation levels.  
Table 14.  
UL (Pending)  
CSA (Pending)  
VDE (Pending)  
Recognized under UL 1577  
Approved under CSA Component Acceptance  
Notice #5A  
Certified according to DIN V VDE V 0884-10  
(VDE V 0884-10): 2006-122  
Component Recognition Program1  
Single Protection, 3000 V RMS  
Isolation Voltage  
Basic insulation per CSA 60950-1-03 and  
IEC 60950-1, 400 V rms (565 V peak) maximum  
working voltage  
Reinforced insulation, 560 V peak  
File E214100  
File 205078  
File 2471900-4880-0001  
1 In accordance with UL 1577, each ADuM128x is proof tested by applying an insulation test voltage ≥ 3600 V rms for 1 second (current leakage detection limit = 6 µA).  
2 In accordance with DIN V VDE V 0884-10, each ADuM128x is proof tested by applying an insulation test voltage ≥1050 V peak for 1 second (partial discharge detection  
limit = 5 pC). The asterisk (*) marked on the component designates DIN V VDE V 0884-10 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 15.  
Parameter  
Symbol Value  
Unit  
Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
3000  
4.0  
V rms  
1-minute duration  
L(I01)  
L(I02)  
mm min Measured from input terminals to output terminals,  
shortest distance through air  
mm min Measured from input terminals to output terminals,  
shortest distance path along body  
Minimum External Tracking (Creepage)  
4.0  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017  
>400  
II  
mm min Insulation distance through insulation  
CTI  
V
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
Rev. 0 | Page 7 of 16  
 
 
 
 
 
ADuM1280/ADuM1281/ADuM1285/ADuM1286  
Data Sheet  
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 INSULATION CHARACTERISTICS  
These isolators are suitable for reinforced electrical isolation within the safety limit data only. Maintenance of the safety data is ensured by  
protective circuits. The asterisk (*) marked on packages denotes DIN V VDE V 0884-10 approval.  
Table 16.  
Description  
Conditions  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method B1  
I to IV  
I to III  
I to II  
40/105/21  
2
VIORM  
Vpd(m)  
560  
1050  
VPEAK  
VPEAK  
VIORM × 1.875 = Vpd(m), 100% production test,  
tini = tm = 1 sec, partial discharge < 5 pC  
Input-to-Output Test Voltage, Method A  
After Environmental Tests Subgroup 1  
VIORM × 1.5 = Vpd(m), tini=60 sec, tm = 10 sec,  
partial discharge < 5 pC  
VIORM × 1.2 = Vpd(m), tini = 60 sec, tm = 10 sec,  
partial discharge < 5 pC  
Vpd(m)  
Vpd(m)  
840  
672  
VPEAK  
VPEAK  
After Input and/or Safety Test Subgroup 2  
and Subgroup 3  
Highest Allowable Overvoltage  
Withstand Isolation Voltage  
Surge Isolation Voltage  
VIOTM  
VISO  
VIOSM  
4000  
3000  
6000  
VPEAK  
VRMS  
VPEAK  
1 minute withstand rating  
VPEAK = 10 kV, 1.2 µs rise time, 50 µs, 50% fall time  
Safety Limiting Values  
Maximum value allowed in the event of a failure  
(see Figure 3)  
Case Temperature  
Side 1 IDD1 Current  
Insulation Resistance at TS  
TS  
IS1  
RS  
150  
290  
>109  
°C  
mA  
VIO = 500 V  
300  
250  
200  
150  
100  
50  
RECOMMENDED OPERATING CONDITIONS  
Table 17.  
Parameter  
Symbol  
Min Max Unit  
Operating Temperature  
Supply Voltages1  
Input Signal Rise and Fall Times  
TA  
−40 +125 °C  
VDD1, VDD2 2.7  
5.5  
1.0  
V
ms  
1 See the DC Correctness and Magnetic Field Immunity section.  
0
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
Figure 3. Thermal Derating Curve at VDDx = 5 V, Dependence of Safety-  
Limiting Values with Case Temperature per DIN V VDE V 0884-10  
Rev. 0 | Page 8 of 16  
 
 
 
Data Sheet  
ADuM1280/ADuM1281/ADuM1285/ADuM1286  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 18.  
Parameter  
Rating  
Storage Temperature (TST) Range  
Ambient Operating Temperature  
(TA) Range  
−65°C to +150°C  
−40°C to +125°C  
Supply Voltages (VDD1, VDD2  
Input Voltages (VIA, VIB)  
Output Voltages (VOA, VOB)  
)
−0.5 V to +7.0 V  
−0.5 V to VDDI + 0.5 V  
−0.5 V to VDD2 + 0.5 V  
ESD CAUTION  
Average Output Current per Pin1  
Side 1 (IO1)  
−10 mA to +10 mA  
Side 2 (IO2)  
Common-Mode Transients2  
−10 mA to +10 mA  
−100 kV/μs to +100 kV/μs  
1 See Figure 3 for maximum rated current values for various temperatures.  
2 Refers to common-mode transients across the insulation barrier. Common-  
mode transients exceeding the absolute maximum ratings may cause  
latch-up or permanent damage.  
Table 19. Maximum Continuous Working Voltage1  
Parameter  
Max  
Unit  
Constraint  
AC Voltage, Bipolar Waveform  
AC Voltage, Unipolar Waveform  
Basic Insulation  
Reinforced Insulation  
DC Voltage  
565  
V peak  
50-year minimum lifetime  
1131  
560  
V peak  
V peak  
Maximum approved working voltage per IEC 60950-1  
Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10  
Basic Insulation  
Reinforced Insulation  
1131  
560  
V peak  
V peak  
Maximum approved working voltage per IEC 60950-1  
Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10  
1 Refers to continuous voltage magnitude imposed across the isolation barrier. See the  
Insulation Lifetime section for more details.  
Rev. 0 | Page 9 of 16  
 
 
 
 
 
 
ADuM1280/ADuM1281/ADuM1285/ADuM1286  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
8
7
6
5
V
V
V
V
DD1  
DD2  
OA  
OB  
ADuM1280/  
ADuM1285  
TOP VIEW  
(Not to Scale)  
V
IA  
V
IB  
GND  
GND  
2
1
Figure 4. ADuM1280/ADuM1285 Pin Configuration  
Table 20. ADuM1280/ADuM1285 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
VDD1  
VIA  
VIB  
GND1  
GND2  
VOB  
VOA  
VDD2  
2.7 V to 5.5 V Supply Voltage for Isolator Side 1.  
Logic Input A.  
Logic Input B.  
Ground 1. Ground reference for Isolator Side 1.  
Ground 2. Ground reference for Isolator Side 2.  
Logic Output B.  
Logic Output A.  
2.7 V to 5.5 V Supply Voltage for Isolator Side 2.  
1
2
3
4
8
7
6
5
V
V
V
V
DD1  
DD2  
ADuM1281/  
ADuM1286  
TOP VIEW  
(Not to Scale)  
V
OA  
IA  
V
IB  
GND  
OB  
GND  
1
2
Figure 5. ADuM1281/ADuM1286 Pin Configuration  
Table 21. ADuM1281/ADuM1286 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
VDD1  
VOA  
VIB  
GND1  
GND2  
VOB  
VIA  
VDD2  
2.7 V to 5.5 V Supply Voltage for Isolator Side 1.  
Logic Output A.  
Logic Input B.  
Ground 1. Ground reference for Isolator Side 1.  
Ground 2. Ground reference for Isolator Side 2.  
Logic Output B.  
Logic Input A.  
2.7 V to 5.5 V Supply Voltage for Isolator Side 2.  
For specific layout guidelines, refer to the AN-1109 Application Note, Recommendations for Control of Radiated Emissions with iCoupler  
Devices.  
Rev. 0 | Page 10 of 16  
 
 
 
Data Sheet  
ADuM1280/ADuM1281/ADuM1285/ADuM1286  
Table 22. ADuM1280 Truth Table (Positive Logic)  
VIA Input  
VIB Input  
VDD1 State  
Powered  
Powered  
Powered  
Powered  
Unpowered  
VDD2 State  
Powered  
Powered  
Powered  
Powered  
Powered  
VOA Output  
VOB Output  
Notes  
H
L
H
L
H
L
L
H
L
H
L
H
L
H
L
L
H
H
L
H
Outputs return to the input state within  
1.6 µs of VDDI power restoration.  
X
X
Powered  
Unpowered  
Indeterminate  
Indeterminate  
Outputs return to the input state within  
1.6 µs of VDDO power restoration.  
Table 23. ADuM1281 Truth Table (Positive Logic)  
VIA Input  
VIB Input  
VDD1 State  
Powered  
Powered  
Powered  
Powered  
Unpowered  
VDD2 State  
Powered  
Powered  
Powered  
Powered  
Powered  
VOA Output  
VOB Output  
Notes  
H
L
H
L
H
L
L
H
L
H
L
H
L
H
L
L
H
H
X
Indeterminate  
Outputs return to the input state within  
1.6 µs of VDD1 power restoration.  
L
X
Powered  
Unpowered  
H
Indeterminate  
Outputs return to the input state within  
1.6 µs of VDDO power restoration.  
Table 24. ADuM1285 Truth Table (Positive Logic)  
VIA Input  
VIB Input  
VDD1 State  
Powered  
Powered  
Powered  
Powered  
Unpowered  
VDD2 State  
Powered  
Powered  
Powered  
Powered  
Powered  
VOA Output  
VOB Output  
Notes  
H
L
H
L
H
L
L
H
L
H
L
H
L
H
L
L
H
L
L
L
Outputs return to the input state within  
1.6 µs of VDDI power restoration.  
X
X
Powered  
Unpowered  
Indeterminate  
Indeterminate  
Outputs return to the input state within  
1.6 µs of VDDO power restoration.  
Table 25. ADuM1286 Truth Table (Positive Logic)  
VIA Input  
VIB Input  
VDD1 State  
Powered  
Powered  
Powered  
Powered  
Unpowered  
VDD2 State  
Powered  
Powered  
Powered  
Powered  
Powered  
VOA Output  
VOB Output  
Notes  
H
L
H
L
H
L
L
H
L
H
L
H
L
H
L
L
H
L
X
Indeterminate  
Outputs return to the input state within  
1.6 µs of VDD1 power restoration.  
L
X
Powered  
Unpowered  
L
Indeterminate  
Outputs return to the input state within  
1.6 µs of VDDO power restoration.  
Rev. 0 | Page 11 of 16  
ADuM1280/ADuM1281/ADuM1285/ADuM1286  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
10  
20  
15  
10  
5
8
6
5V  
3V  
5V  
3V  
4
2
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 6. Typical Supply Current per Input Channel vs. Data Rate  
for 5 V and 3 V Operation  
Figure 9. Typical ADuM1280 or ADuM1285 VDD1 Supply Current vs.  
Data Rate for 5 V and 3 V Operation  
10  
20  
8
15  
6
10  
4
5V  
5V  
5
2
3V  
3V  
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 7. Typical Supply Current per Output Channel vs. Data Rate  
for 5 V and 3 V Operation (No Output Load)  
Figure 10. Typical ADuM1280 or ADuM1285 VDD2 Supply Current vs.  
Data Rate for 5 V and 3 V Operation  
10  
20  
8
15  
6
5V  
10  
4
5V  
3V  
5
2
0
3V  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 8. Typical Supply Current per Output Channel vs. Data Rate  
for 5 V and 3 V Operation (15 pF Output Load)  
Figure 11. Typical ADuM1281 or ADuM1286 VDD1 or VDD2 Supply Current vs.  
Data Rate for 5 V and 3 V Operation  
Rev. 0 | Page 12 of 16  
 
 
 
 
 
 
 
Data Sheet  
ADuM1280/ADuM1281/ADuM1285/ADuM1286  
APPLICATIONS INFORMATION  
DC CORRECTNESS AND MAGNETIC FIELD  
IMMUNITY  
PC BOARD LAYOUT  
The ADuM128x digital isolator requires no external interface  
circuitry for the logic interfaces. Power supply bypassing is  
strongly recommended at both input and output supply pins  
Positive and negative logic transitions at the isolator input  
cause narrow (~1 ns) pulses to be sent via the transformer to  
the decoder. The decoder is bistable and is, therefore, either set  
or reset by the pulses indicating input logic transitions. In the  
absence of logic transitions at the input for more than ~1.6 µs,  
a periodic set of refresh pulses indicative of the correct input  
state are sent to ensure dc correctness at the output.  
V
DD1 and VDD2 (see Figure 12). The capacitor value should be  
between 0.01 µF and 0.1 µF. The total lead length between both  
ends of the capacitor and the input power supply pin should not  
exceed 20 mm.  
The ADuM128x can readily meet CISPR 22 Class A (and  
FCC Class A) emissions standards, as well as the more  
stringent CISPR 22 Class B (and FCC Class B) standards in  
an unshielded environment, with proper PCB design choices.  
Refer to the AN-1109 Applicaton Note, Recommendations for  
Control of Radiated Emissions with iCoupler Devices for PCB-  
related EMI mitigation techniques, including board layout and  
stack-up issues.  
If the decoder receives no pulses for more than about 6.4 µs, the  
input side is assumed to be unpowered or nonfunctional, in which  
case, the isolator output is forced to a default low state by the  
watchdog timer circuit.  
The limitation on the devices magnetic field immunity is set  
by the condition in which induced voltage in the transformer  
receiving coil is sufficiently large to either falsely set or reset the  
decoder. The following analysis defines such conditions. The  
ADuM1280 is examined in a 3 V operating condition because it  
represents the most susceptible mode of operation of this product.  
PROPAGATION DELAY-RELATED PARAMETERS  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component. The input-to-  
output propagation delay time for a high-to-low transition may  
differ from the propagation delay time of a low-to-high  
transition.  
The pulses at the transformer output have an amplitude greater  
than 1.5 V. The decoder has a sensing threshold of about 1.0 V,  
therefore establishing a 0.5 V margin in which induced voltages  
can be tolerated. The voltage induced across the receiving coil is  
given by  
INPUT (V  
)
50%  
Ix  
2
V = (−/dt)∑πrn ; n = 1, 2, …, N  
tPLH  
tPHL  
where:  
OUTPUT (V  
)
50%  
Ox  
β is the magnetic flux density.  
Figure 12. Propagation Delay Parameters  
rn is the radius of the nth turn in the receiving coil.  
N is the number of turns in the receiving coil.  
Pulse width distortion is the maximum difference between  
these two propagation delay values and an indication of how  
accurately the timing of the input signal is preserved.  
Given the geometry of the receiving coil in the ADuM1280 and  
an imposed requirement that the induced voltage be, at most,  
50% of the 0.5 V margin at the decoder, a maximum allowable  
magnetic field is calculated, as shown in Figure 13.  
100  
Channel-to-channel matching refers to the maximum amount  
the propagation delay differs between channels within a single  
ADuM128x component.  
Propagation delay skew refers to the maximum amount the  
propagation delay differs between multiple ADuM128x  
components operating under the same conditions.  
10  
1
0.1  
0.01  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 13. Maximum Allowable External Magnetic Flux Density  
Rev. 0 | Page 13 of 16  
 
 
 
 
 
 
 
ADuM1280/ADuM1281/ADuM1285/ADuM1286  
Data Sheet  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.08 kgauss induces  
a voltage of 0.25 V at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
If such an event occurs, with the worst-case polarity, during a  
transmitted pulse, it would reduce the received pulse from >1.0 V  
to 0.75 V. This is still well above the 0.5 V sensing threshold of  
the decoder.  
Note that at combinations of strong magnetic field and high  
frequency, any loops formed by printed circuit board traces  
could induce sufficiently large error voltages to trigger the  
thresholds of succeeding circuitry. Take care to avoid PCB  
structures that form loops.  
POWER CONSUMPTION  
The supply current at a given channel of the ADuM128x  
isolator is a function of the supply voltage, the data rate of  
the channel, and the output load of the channel.  
The preceding magnetic flux density values correspond to specific  
current magnitudes at given distances away from the ADuM1280  
transformers. Figure 14 expresses these allowable current magni-  
tudes as a function of frequency for selected distances. The  
ADuM1280 is very insensitive to external fields. Only extremely  
large, high frequency currents, very close to the component  
could potentially be a concern. For the 1 MHz example noted,  
one would have to place a 0.2 kA current 5 mm away from the  
ADuM1280 to affect component operation.  
For each input channel, the supply current is given by  
I
DDI = IDDI (Q)  
f ≤ 0.5 fr  
f > 0.5 fr  
IDDI = IDDI (D) × (2f fr) + IDDI (Q)  
For each output channel, the supply current is given by  
DDO = IDDO (Q) f ≤ 0.5 fr  
DDO = (IDDO (D) + (0.5 × 10−3) × CL × VDDO) × (2f − fr) + IDDO (Q)  
f > 0.5 fr  
I
I
1000  
DISTANCE = 1m  
where:  
DDI (D), IDDO (D) are the input and output dynamic supply currents  
100  
I
per channel (mA/Mbps).  
CL is the output load capacitance (pF).  
10  
VDDO is the output supply voltage (V).  
DISTANCE = 100mm  
f is the input logic signal frequency (MHz); it is half the input  
data rate, expressed in units of Mbps.  
1
DISTANCE = 5mm  
fr is the input stage refresh rate (Mbps) = 1/tr (µs).  
0.1  
IDDI (Q), IDDO (Q) are the specified input and output quiescent  
supply currents (mA).  
0.01  
To calculate the total VDD1 and VDD2 supply current, the supply  
currents for each input and output channel corresponding to  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
V
DD1 and VDD2 are calculated and totaled. Figure 6 and Figure 7  
Figure 14. Maximum Allowable Current for  
Various Current to ADuM1280 Spacings  
show per-channel supply currents as a function of data rate for  
an unloaded output condition. Figure 8 shows the per-channel  
supply current as a function of data rate for a 15 pF output  
condition. Figure 9 through Figure 11 show the total VDD1 and  
V
DD2 supply current as a function of data rate for ADuM1280/  
ADuM1281 channel configurations.  
Rev. 0 | Page 14 of 16  
 
 
 
 
Data Sheet  
ADuM1280/ADuM1281/ADuM1285/ADuM1286  
In the case of unipolar ac or dc voltage, the stress on the  
insulation is significantly lower. This allows operation at higher  
working voltages while still achieving a 50-year service life. The  
working voltages listed in Table 19 can be applied while main-  
taining the 50-year minimum lifetime provided the voltage  
conforms to either the unipolar ac or dc voltage case. Any cross-  
insulation voltage waveform that does not conform to Figure 16  
or Figure 17 should be treated as a bipolar ac waveform, and its  
peak voltage should be limited to the 50-year lifetime voltage  
value listed in Table 19.  
INSULATION LIFETIME  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of  
insulation degradation is dependent on the characteristics of the  
voltage waveform applied across the insulation. In addition to  
the testing performed by the regulatory agencies, Analog  
Devices carries out an extensive set of evaluations to determine  
the lifetime of the insulation structure within the ADuM128x.  
Analog Devices performs accelerated life testing using voltage  
levels higher than the rated continuous working voltage.  
Acceleration factors for several operating conditions are  
determined. These factors allow calculation of the time to  
failure at the actual working voltage. The values shown in  
Table 19 summarize the peak voltage for 50 years of service life  
for a bipolar ac operating condition and the maximum  
CSA/VDE approved working voltages. In many cases, the  
approved working voltage is higher than the 50-year service  
life voltage. Operation at these high working voltages can  
lead to shortened insulation life in some cases.  
Note that the voltage presented in Figure 17 is shown as  
sinusoidal for illustration purposes only. It is meant to represent  
any voltage waveform varying between 0 V and some limiting  
value. The limiting value can be positive or negative, but the  
voltage cannot cross 0 V.  
RATED PEAK VOLTAGE  
0V  
Figure 15. Bipolar AC Waveform  
The insulation lifetime of the ADuM128x depends on the  
voltage waveform type imposed across the isolation barrier.  
The iCoupler insulation structure degrades at different rates  
depending on whether the waveform is bipolar ac, unipolar  
ac, or dc. Figure 15, Figure 16, and Figure 17 illustrate these  
different isolation voltage waveforms.  
RATED PEAK VOLTAGE  
0V  
Figure 16. Unipolar AC Waveform  
Bipolar ac voltage is the most stringent environment. The goal  
of a 50-year operating lifetime under the ac bipolar condition  
determines the Analog Devices recommended maximum  
working voltage.  
RATED PEAK VOLTAGE  
0V  
Figure 17. DC Waveform  
Rev. 0 | Page 15 of 16  
 
 
 
 
ADuM1280/ADuM1281/ADuM1285/ADuM1286  
OUTLINE DIMENSIONS  
Data Sheet  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 19-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters (inches)  
ORDERING GUIDE  
No. of Inputs, No. of Inputs, Max  
Max Prop Output  
Temperature  
Package  
Option  
Model1  
VDD1 Side  
VDD2 Side  
Data Rate Delay, 5 V Default State Range  
Package Description  
ADuM1280ARZ  
2
2
2
2
2
2
1
1
1
1
1
1
2
2
2
2
2
2
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1 Mbps  
1 Mbps  
25 Mbps  
25 Mbps  
50  
50  
35  
35  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
−40°C to +125°C 8-Lead SOIC_N  
R-8  
ADuM1280ARZ-RL7  
ADuM1280BRZ  
−40°C to +125°C 8-Lead SOIC_N 7” Tape and Reel R-8  
−40°C to +125°C 8-Lead SOIC_N  
R-8  
−40°C to +125°C 8-Lead SOIC_N 7” Tape and Reel R-8  
−40°C to +125°C 8-Lead SOIC_N  
R-8  
−40°C to +125°C 8-Lead SOIC_N 7” Tape and Reel R-8  
−40°C to +125°C 8-Lead SOIC_N  
R-8  
−40°C to +125°C 8-Lead SOIC_N 7” Tape and Reel R-8  
−40°C to +125°C 8-Lead SOIC_N  
R-8  
−40°C to +125°C 8-Lead SOIC_N 7” Tape and Reel R-8  
−40°C to +125°C 8-Lead SOIC_N  
R-8  
−40°C to +125°C 8-Lead SOIC_N 7” Tape and Reel R-8  
−40°C to +125°C 8-Lead SOIC_N  
R-8  
−40°C to +125°C 8-Lead SOIC_N 7” Tape and Reel R-8  
−40°C to +125°C 8-Lead SOIC_N  
R-8  
−40°C to +125°C 8-Lead SOIC_N 7” Tape and Reel R-8  
−40°C to +125°C 8-Lead SOIC_N  
R-8  
−40°C to +125°C 8-Lead SOIC_N 7” Tape and Reel R-8  
−40°C to +125°C 8-Lead SOIC_N  
R-8  
−40°C to +125°C 8-Lead SOIC_N 7” Tape and Reel R-8  
−40°C to +125°C 8-Lead SOIC_N  
R-8  
−40°C to +125°C 8-Lead SOIC_N 7” Tape and Reel R-8  
−40°C to +125°C 8-Lead SOIC_N  
R-8  
−40°C to +125°C 8-Lead SOIC_N 7” Tape and Reel R-8  
ADuM1280BRZ-RL7  
ADuM1280CRZ  
100 Mbps 24  
100 Mbps 24  
ADuM1280CRZ-RL7  
ADuM1281ARZ  
1 Mbps  
1 Mbps  
25 Mbps  
25 Mbps  
50  
50  
35  
35  
ADuM1281ARZ-RL7  
ADuM1281BRZ  
ADuM1281BRZ-RL7  
ADuM1281CRZ  
100 Mbps 24  
100 Mbps 24  
ADuM1281CRZ-RL7  
ADuM1285ARZ  
1 Mbps  
1 Mbps  
25 Mbps  
25 Mbps  
50  
50  
35  
35  
ADuM1285ARZ-RL7  
ADuM1285BRZ  
ADuM1285BRZ-RL7  
ADuM1285CRZ  
100 Mbps 24  
100 Mbps 24  
ADuM1285CRZ-RL7  
ADuM1286ARZ  
1 Mbps  
1 Mbps  
25 Mbps  
25 Mbps  
50  
50  
35  
35  
ADuM1286ARZ-RL7  
ADuM1286BRZ  
ADuM1286BRZ-RL7  
ADuM1286CRZ  
100 Mbps 24  
100 Mbps 24  
ADuM1286CRZ-RL7  
1 Z = RoHS Compliant Part.  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10444-0-5/12(0)  
Rev. 0 | Page 16 of 16  
 
 
 

相关型号:

ADUM1280CRZ-RL7

3 kV RMS Dual Channel Digital Isolators
ADI

ADUM1280WARZ

3 kV RMS Dual Channel Digital Isolators
ADI

ADUM1280WBRZ

3 kV RMS Dual Channel Digital Isolators
ADI

ADUM1280WCRZ

3 kV RMS Dual Channel Digital Isolators
ADI

ADUM1281

3 kV RMS Dual Channel Digital Isolators
ADI

ADUM1281ARZ

3 kV RMS Dual Channel Digital Isolators
ADI

ADUM1281ARZ-RL7

3 kV RMS Dual Channel Digital Isolators
ADI

ADUM1281BRZ

3 kV RMS Dual Channel Digital Isolators
ADI

ADUM1281BRZ-RL7

3 kV RMS Dual Channel Digital Isolators
ADI

ADUM1281CRZ

3 kV RMS Dual Channel Digital Isolators
ADI

ADUM1281CRZ-RL7

3 kV RMS Dual Channel Digital Isolators
ADI

ADUM1281WARZ

3 kV RMS Dual Channel Digital Isolators
ADI