ADUM1301CRWZN [ADI]

Interface Circuit, CMOS, PDSO16;
ADUM1301CRWZN
型号: ADUM1301CRWZN
厂家: ADI    ADI
描述:

Interface Circuit, CMOS, PDSO16

光电二极管
文件: 总32页 (文件大小:541K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Triple-Channel Digital Isolators  
Data Sheet  
ADuM1300/ADuM1301  
FEATURES  
GENERAL DESCRIPTION  
Qualified for automotive applications  
Low power operation  
5 V operation  
1.2 mA per channel maximum at 0 Mbps to 2 Mbps  
3.5 mA per channel maximum at 10 Mbps  
32 mA per channel maximum at 90 Mbps  
3 V operation  
The ADuM1300/ADuM13011 are triple-channel digital isolators  
based on the Analog Devices, Inc., iCoupler® technology.  
Combining high speed CMOS and monolithic transformer  
technology, these isolation components provide outstanding  
performance characteristics superior to alternatives, such as  
optocouplers.  
By avoiding the use of LEDs and photodiodes, iCoupler  
devices remove the design difficulties commonly associated  
with optocouplers. The typical optocoupler concerns regarding  
uncertain current transfer ratios, nonlinear transfer functions, and  
temperature and lifetime effects are eliminated with the simple  
iCoupler digital interfaces and stable performance characteristics.  
The need for external drivers and other discrete components is  
eliminated with these iCoupler products. Furthermore, iCoupler  
devices consume one-tenth to one-sixth of the power of  
optocouplers at comparable signal data rates.  
0.8 mA per channel maximum at 0 Mbps to 2 Mbps  
2.2 mA per channel maximum at 10 Mbps  
20 mA per channel maximum at 90 Mbps  
Bidirectional communication  
3 V/5 V level translation  
High temperature operation: 125°C  
High data rate: dc to 90 Mbps (NRZ)  
Precise timing characteristics  
2 ns maximum pulse width distortion  
2 ns maximum channel-to-channel matching  
High common-mode transient immunity: >25 kV/μs  
Output enable function  
16-lead SOIC wide body package  
RoHS-compliant models available  
Safety and regulatory approvals  
UL recognition: 2500 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice 5A  
VDE Certificate of Conformity  
The ADuM1300/ADuM1301 isolators provide three independent  
isolation channels in a variety of channel configurations and  
data rates (see the Ordering Guide). Both models operate with  
the supply voltage on either side ranging from 2.7 V to 5.5 V,  
providing compatibility with lower voltage systems as well as  
enabling a voltage translation functionality across the isolation  
barrier. In addition, the ADuM1300/ADuM1301 provide low  
pulse width distortion (<2 ns for CRW grade) and tight channel-  
to-channel matching (<2 ns for CRW grade). Unlike other  
optocoupler alternatives, the ADuM1300/ADuM1301 isolators  
have a patented refresh feature that ensures dc correctness in the  
absence of input logic transitions and when power is not applied  
to one of the supplies.  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
V
IORM = 560 V peak  
TÜV approval: IEC/EN/UL/CSA 61010-1  
APPLICATIONS  
General-purpose multichannel isolation  
SPI interface/data converter isolation  
RS-232/RS-422/RS-485 transceivers  
Industrial field bus isolation  
1 Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329.  
Automotive systems  
FUNCTIONAL BLOCK DIAGRAMS  
1
2
3
4
5
6
7
8
16  
V
V
DD1  
DD2  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
V
V
DD1  
DD2  
GND  
15 GND  
2
1
IA  
IB  
IC  
GND  
GND  
1
IA  
IB  
2
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
14  
13  
12  
11  
10  
9
V
V
V
V
V
V
OA  
OB  
OC  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
ENCODE  
V
V
V
V
V
OA  
OB  
IC  
V
OC  
NC  
NC  
NC  
NC  
NC  
V
E2  
V
V
E1  
E2  
GND  
GND  
2
1
GND  
GND  
1
2
Figure 1. ADuM1300 Functional Block Diagram  
Document Feedback  
Figure 2. ADuM1301 Functional Block Diagram  
Rev. K  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2003–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADuM1300/ADuM1301  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 Insulation  
Characteristics ............................................................................ 20  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 3  
Specifications..................................................................................... 4  
Electrical Characteristics—5 V, 105°C Operation ................... 4  
Electrical Characteristics—3 V, 105°C Operation ................... 6  
Recommended Operating Conditions .................................... 20  
Absolute Maximum Ratings ......................................................... 21  
ESD Caution................................................................................ 21  
Pin Configurations and Function Descriptions......................... 22  
Typical Performance Characteristics ........................................... 23  
Applications Information.............................................................. 25  
Printed Circuit Board (PCB) Layout ....................................... 25  
Propagation Delay-Related Parameters................................... 25  
DC Correctness and Magnetic Field Immunity .......................... 25  
Power Consumption .................................................................. 26  
Insulation Lifetime..................................................................... 27  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 29  
Automotive Products................................................................. 29  
Electrical Characteristics—Mixed 5 V/3 V or 3 V/5 V,  
105°C Operation........................................................................... 8  
Electrical Characteristics—5 V, 125°C Operation ................. 11  
Electrical Characteristics—3 V, 125°C Operation ................. 13  
Electrical Characteristics—Mixed 5 V/3 V, 125°C Operation... 15  
Electrical Characteristics—Mixed 3 V/5 V, 125°C Operation....17  
Package Characteristics ............................................................. 19  
Regulatory Information............................................................. 19  
Insulation and Safety-Related Specifications.......................... 19  
Rev. K | Page 2 of 32  
Data Sheet  
ADuM1300/ADuM1301  
REVISION HISTORY  
11/15—Rev. J to Rev. K  
2/06—Rev. D to Rev. E  
Changes to Table 9 and Table 10 ...................................................19  
Changes to Ordering Guide...........................................................29  
Updated Format ................................................................. Universal  
Added TÜV Approval ....................................................... Universal  
Changes to Figure 2 ..........................................................................1  
4/14—Rev. I to Rev. J  
Change to Table 9............................................................................19  
5/05—Rev. C to Rev. D  
Changes to Format............................................................. Universal  
Changes to Figure 2 ..........................................................................1  
Changes to Table 6 ..........................................................................10  
Changes to Ordering Guide...........................................................18  
3/12—Rev. H to Rev. I  
Created Hyperlink for Safety and Regulatory Approvals  
Entry in Features Section .................................................................1  
Change to PC Board Layout Section ............................................25  
Updated Outline Dimensions........................................................28  
Moved Automotive Products Section...........................................28  
6/04—Rev. B to Rev. C  
Changes to Format............................................................. Universal  
Changes to Features..........................................................................1  
Changes to Electrical Characteristics—5 V Operation................3  
Changes to Electrical Characteristics—3 V Operation................5  
Changes to Electrical Characteristics—Mixed 5 V/3 V or  
3 V/5 V Operation ............................................................................7  
Changes to Ordering Guide...........................................................18  
5/08—Rev. G to Rev. H  
Added ADuM1300W and ADuM1301W Parts............. Universal  
Changes to Features List...................................................................1  
Added Table 4 ..................................................................................11  
Added Table 5 ..................................................................................13  
Added Table 6 ..................................................................................15  
Added Table 7 ..................................................................................17  
Changes to Table 12 ........................................................................20  
Changes to Table 13 ........................................................................21  
Added Automotive Products Section ...........................................27  
Changes to Ordering Guide...........................................................28  
5/04—Rev. A to Rev. B  
Changes to the Format ...................................................... Universal  
Changes to the Features....................................................................1  
Changes to Table 7 and Table 8 .....................................................14  
Changes to Table 9 ..........................................................................15  
Changes to the DC Correctness and Magnetic Field Immunity  
Section ..............................................................................................19  
Changes to the Power Consumption Section..............................20  
Changes to the Ordering Guide ....................................................21  
11/07—Rev. F to Rev. G  
Changes to Note 1 and Figure 2 ......................................................1  
Added ADuM130xARW Change vs. Temperature Parameter ...3  
Added ADuM130xARW Change vs. Temperature Parameter ...5  
Added ADuM130xARW Change vs. Temperature Parameter ...8  
Changes to Figure 14 ......................................................................16  
9/03—Rev. 0 to Rev. A  
Edits to Regulatory Information...................................................13  
Edits to Absolute Maximum Ratings............................................15  
Deleted the Package Branding Information ................................16  
6/07—Rev. E to Rev. F  
Updated VDE Certification Throughout.......................................1  
Changes to Features, Note 1, Figure 1, and Figure 2....................1  
Changes to Regulatory Information Section...............................10  
Added Table 10 ................................................................................12  
Added Insulation Lifetime Section ...............................................17  
Updated Outline Dimensions........................................................19  
Changes to Ordering Guide...........................................................19  
9/03—Revision 0: Initial Version  
Rev. K | Page 3 of 32  
 
ADuM1300/ADuM1301  
Data Sheet  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V, 105°C OPERATION  
All voltages are relative to their respective ground. 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all minimum/maximum specifications apply  
over the entire recommended operation range, unless otherwise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. These  
specifications do not apply to ADuM1300W and ADuM1301W automotive grade versions.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM1300 Total Supply Current, Three Channels1  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.50 0.53 mA  
0.19 0.24 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.6  
0.7  
2.5  
1.0  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
6.5  
1.9  
8.1  
2.5  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
57  
16  
77  
18  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM1301 Total Supply Current, Three Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.3  
1.0  
2.1  
1.4  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
5.0  
3.4  
6.2  
4.2  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
43  
29  
57  
37  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
For All Models  
Input Currents  
IIA, IIB, IIC, IE1, IE2 −10  
+0.01 +10 µA  
V
0 V ≤ VIA, VIB, VIC ≤ VDD1 or VDD2  
0 V ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH, VEH  
VIL, VEL  
2.0  
0.8  
V
V
V
V
V
V
VOAH, VOBH, VOCH (VDD1 or VDD2) − 0.1 5.0  
(VDD1 or VDD2) − 0.4 4.8  
VOAL, VOBL, VOCL  
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
Logic Low Output Voltages  
0.0  
0.1  
0.04 0.1  
0.2  
0.4  
SWITCHING SPECIFICATIONS  
ADuM1300ARW/ADuM1301ARW  
Minimum Pulse Width2  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate3  
1
50  
Propagation Delay4  
tPHL, tPLH  
PWD  
65  
11  
4
40  
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Change vs. Temperature  
ps/°C  
ns  
ns  
Propagation Delay Skew5  
tPSK  
tPSKCD/tPSKOD  
50  
50  
Channel-to-Channel Matching6  
Rev. K | Page 4 of 32  
 
 
Data Sheet  
ADuM1300/ADuM1301  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
ADuM1300BRW/ADuM1301BRW  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
100 ns  
CL = 15 pF, CMOS signal levels  
10  
20  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Propagation Delay4  
tPHL, tPLH  
PWD  
32  
5
50  
3
4
ns  
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
|
ps/°C  
ns  
tPSK  
15  
3
Channel-to-Channel Matching, Codirectional  
Channels6  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels6  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
ADuM1300CRW/ADuM1301CRW  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
8.3  
120  
27  
0.5  
3
11.1 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
90  
18  
Propagation Delay4  
tPHL, tPLH  
PWD  
32  
2
4
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Change vs. Temperature  
Propagation Delay Skew5  
ps/°C  
ns  
tPSK  
10  
2
Channel-to-Channel Matching, Codirectional  
Channels6  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels6  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
For All Models  
Output Disable Propagation Delay (High/Low  
to High Impedance)  
Output Enable Propagation Delay (High  
Impedance to High/Low)  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity at Logic  
High Output7  
tPHZ, tPLH  
tPZH, tPZL  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
VIx = VDD1 or VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
tR/tF  
|CMH|  
2.5  
35  
ns  
kV/µs  
25  
25  
Common-Mode Transient Immunity at Logic  
Low Output7  
|CML|  
35  
kV/µs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.2  
Mbps  
Input Dynamic Supply Current per Channel8  
Output Dynamic Supply Current per Channel8  
IDDI (D)  
IDDO (D)  
0.19  
0.05  
mA/Mbps  
mA/Mbps  
1 The supply current values are for all three channels combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section.  
See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through  
Figure 12 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM1300/ADuM1301 channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
7 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
8 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. K | Page 5 of 32  
ADuM1300/ADuM1301  
Data Sheet  
ELECTRICAL CHARACTERISTICS—3 V, 105°C OPERATION  
All voltages are relative to their respective ground. 2.7 V ≤ VDD1 ≤ 3.6 V, 2.7 V ≤ VDD2 ≤ 3.6 V; all minimum/maximum specifications apply  
over the entire recommended operation range, unless otherwise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.0 V.  
These specifications do not apply to ADuM1300W and ADuM1301W automotive grade versions.  
Table 2.  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM1300 Total Supply Current, Three Channels1  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.26 0.31 mA  
0.11 0.15 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
0.9  
0.4  
1.7  
0.7  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
3.4  
1.1  
4.9  
1.6  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
31  
8
48  
13  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM1301 Total Supply Current, Three Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
0.7  
0.6  
1.4  
0.9  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
2.6  
1.8  
3.7  
2.5  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
24  
16  
36  
23  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
For All Models  
Input Currents  
IIA, IIB, IIC, IE1, IE2 −10  
+0.01 +10 µA  
V
0 V ≤ VIA, VIB, VIC ≤ VDD1 or VDD2  
0 V ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH, VEH  
VIL, VEL  
1.6  
0.4  
V
V
V
V
V
V
VOAH, VOBH, VOCH (VDD1 or VDD2) − 0.1 3.0  
(VDD1 or VDD2) − 0.4 2.8  
VOAL, VOBL, VOCL  
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
Logic Low Output Voltages  
0.0  
0.1  
0.04 0.1  
0.2  
0.4  
SWITCHING SPECIFICATIONS  
ADuM1300ARW/ADuM1301ARW  
Minimum Pulse Width2  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate3  
1
50  
Propagation Delay4  
tPHL, tPLH  
PWD  
75  
11  
4
40  
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Change vs. Temperature  
ps/°C  
ns  
ns  
Propagation Delay Skew5  
tPSK  
tPSKCD/tPSKOD  
50  
50  
Channel-to-Channel Matching6  
Rev. K | Page 6 of 32  
 
Data Sheet  
ADuM1300/ADuM1301  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
ADuM1300BRW/ADuM1301BRW  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
100 ns  
CL = 15 pF, CMOS signal levels  
10  
20  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Propagation Delay4  
tPHL, tPLH  
PWD  
38  
5
50  
3
4
ns  
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
|
ps/°C  
ns  
tPSK  
26  
3
Channel-to-Channel Matching, Codirectional  
Channels6  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels6  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
ADuM1300CRW/ADuM1301CRW  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
8.3  
120  
34  
0.5  
3
11.1 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
90  
20  
Propagation Delay4  
tPHL, tPLH  
PWD  
45  
2
4
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Change vs. Temperature  
Propagation Delay Skew5  
ps/°C  
ns  
tPSK  
16  
2
Channel-to-Channel Matching, Codirectional  
Channels6  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels6  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
For All Models  
Output Disable Propagation Delay (High/Low to  
High Impedance)  
Output Enable Propagation Delay (High  
Impedance to High/Low)  
tPHZ, tPLH  
tPZH, tPZL  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Output Rise/Fall Time (10% to 90%)  
tR/tF  
3
ns  
Common-Mode Transient Immunity at  
Logic High Output7  
Common-Mode Transient Immunity at  
Logic Low Output7  
|CMH|  
25  
25  
35  
kV/µs  
VIx = VDD1 or VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
|CML|  
35  
kV/µs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.1  
Mbps  
Input Dynamic Supply Current per Channel8  
Output Dynamic Supply Current per Channel8  
IDDI (D)  
IDDO (D)  
0.10  
0.03  
mA/Mbps  
mA/Mbps  
1 The supply current values are for all three channels combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section.  
See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through  
Figure 12 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM1300/ADuM1301 channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
7 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
8 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. K | Page 7 of 32  
ADuM1300/ADuM1301  
Data Sheet  
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V, 105°C OPERATION  
All voltages are relative to their respective ground. 5 V/3 V operation: 4.5 V ≤ VDD1 ≤ 5.5 V, 2.7 V ≤ VDD2 ≤ 3.6 V; 3 V/5 V operation:  
2.7 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all minimum/maximum specifications apply over the entire recommended operation range,  
unless otherwise noted; all typical specifications are at TA = 25°C; VDD1 = 3.0 V, VDD2 = 5 V or VDD1 = 5 V, V DD2 = 3.0 V. These specifica-  
tions do not apply to ADuM1300W and ADuM1301W automotive grade versions.  
Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
5 V/3 V Operation  
IDDI (Q)  
0.50  
0.26  
0.53 mA  
0.31 mA  
3 V/5 V Operation  
Output Supply Current per Channel, Quiescent  
5 V/3 V Operation  
3 V/5 V Operation  
IDDO (Q)  
0.11  
0.19  
0.15 mA  
0.24 mA  
ADuM1300 Total Supply Current, Three Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (Q)  
1.6  
0.9  
2.5  
1.7  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (Q)  
0.4  
0.7  
0.7  
1.0  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
6.5  
3.4  
8.1  
4.9  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (10)  
1.1  
1.9  
1.6  
2.5  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (90)  
57  
31  
77  
48  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (90)  
8
16  
13  
18  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM1301 Total Supply Current, Three Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (Q)  
1.3  
0.7  
2.1  
1.4  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (Q)  
0.6  
1.0  
0.9  
1.4  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
5.0  
2.6  
6.2  
3.7  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (10)  
1.8  
3.4  
2.5  
4.2  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
Rev. K | Page 8 of 32  
 
Data Sheet  
ADuM1300/ADuM1301  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (90)  
43  
24  
57  
36  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
IDD2 (90)  
16  
29  
23  
37  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
For All Models  
Input Currents  
IIA, IIB, IIC, IE1, IE2 −10  
+0.01  
+10 µA  
0 V ≤ VIA, VIB, VIC ≤ VDD1 or VDD2  
0 V ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
5 V/3 V Operation  
3 V/5 V Operation  
VIH, VEH  
2.0  
1.6  
V
V
Logic Low Input Threshold  
5 V/3 V Operation  
3 V/5 V Operation  
VIL, VEL  
0.8  
0.4  
V
V
V
V
V
V
V
Logic High Output Voltages  
VOAH, VOBH, VOCH (VDD1 or VDD2) − 0.1 (VDD1 or VDD2  
)
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
(VDD1 or VDD2) − 0.4 (VDD1 or VDD2) − 0.2  
Logic Low Output Voltages  
VOAL, VOBL, VOCL  
0.0  
0.04  
0.2  
0.1  
0.1  
0.4  
SWITCHING SPECIFICATIONS  
ADuM1300ARW/ADuM1301ARW  
Minimum Pulse Width2  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate3  
1
50  
Propagation Delay4  
tPHL, tPLH  
PWD  
70  
11  
4
40  
ns  
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
Channel-to-Channel Matching6  
ADuM1300BRW/ADuM1301BRW  
Minimum Pulse Width2  
|
ps/°C  
ns  
ns  
tPSK  
tPSKCD/tPSKOD  
50  
50  
PW  
100 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate3  
Propagation Delay4  
10  
15  
tPHL, tPLH  
PWD  
35  
5
50  
3
4
ns  
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
|
ps/°C  
ns  
tPSK  
6
3
Channel-to-Channel Matching, Codirectional tPSKCD  
Channels6  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels6  
tPSKOD  
22  
ns  
CL = 15 pF, CMOS signal levels  
ADuM1300CRW/ADuM1301CRW  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
8.3  
120  
30  
0.5  
3
11.1 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
90  
20  
Propagation Delay4  
tPHL, tPLH  
PWD  
40  
2
4
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Change vs. Temperature  
Propagation Delay Skew5  
ps/°C  
ns  
tPSK  
14  
2
Channel-to-Channel Matching,  
Codirectional Channels6  
tPSKCD  
ns  
Channel-to-Channel Matching,  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels6  
Rev. K | Page 9 of 32  
ADuM1300/ADuM1301  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
For All Models  
Output Disable Propagation Delay  
(High/Low to High Impedance)  
Output Enable Propagation Delay (High  
Impedance to High/Low)  
Output Rise/Fall Time (10% to 90%)  
5 V/3 V Operation  
3 V/5 V Operation  
Common-Mode Transient Immunity at  
Logic High Output7  
Common-Mode Transient Immunity at  
Logic Low Output7  
tPHZ, tPLH  
tPZH, tPZL  
tR/tF  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
3.0  
2.5  
35  
ns  
ns  
kV/µs  
|CMH|  
|CML|  
fr  
25  
25  
VIx = VDD1 or VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
35  
kV/µs  
transient magnitude = 800 V  
Refresh Rate  
5 V/3 V Operation  
3 V/5 V Operation  
1.2  
1.1  
Mbps  
Mbps  
Input Dynamic Supply Current per Channel8  
5 V/3 V Operation  
3 V/5 V Operation  
Output Dynamic Supply Current per Channel8  
IDDI (D)  
0.19  
0.10  
mA/Mbps  
mA/Mbps  
IDDO (D)  
5 V/3 V Operation  
3 V/5 V Operation  
0.03  
0.05  
mA/Mbps  
mA/Mbps  
1 The supply current values are for all three channels combined when running at identical data rates. Output supply current values are specified with no output load present. The  
supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 6 through  
Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 12 for total VDD1 and VDD2  
supply currents as a function of data rate for ADuM1300/ADuM1301 channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is measured  
from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the  
recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation  
barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing  
sides of the isolation barrier.  
7 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate that can be  
sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the  
range over which the common mode is slewed.  
8 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information on  
per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given  
data rate.  
Rev. K | Page 10 of 32  
Data Sheet  
ADuM1300/ADuM1301  
ELECTRICAL CHARACTERISTICS—5 V, 125°C OPERATION  
All voltages are relative to their respective ground. 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all minimum/maximum specifications apply  
over the entire recommended operation range, unless otherwise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. These  
specifications apply to ADuM1300W and ADuM1301W automotive grade versions.  
Table 4.  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM1300W, Total Supply Current, Three Channels1  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.50 0.53 mA  
0.19 0.24 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.6  
0.7  
2.5 mA  
1.0 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
6.5  
1.9  
8.1 mA  
2.5 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
ADuM1301W, Total Supply Current, Three Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.3  
1.0  
2.1 mA  
1.4 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
5.0  
3.4  
6.2 mA  
4.2 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
For All Models  
Input Currents  
IIA, IIB, IIC, IE1, IE2 −10  
+0.01 +10 µA  
V
0 V ≤ VIA, VIB, VIC ≤ VDD1 or VDD2  
0 V ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH, VEH  
VIL, VEL  
2.0  
0.8  
V
V
V
V
V
V
VOAH, VOBH, VOCH VDD1, VDD2 − 0.1 5.0  
VDD1, VDD2 − 0.4 4.8  
VOAL, VOBL, VOCL  
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
Logic Low Output Voltages  
0.0  
0.1  
0.04 0.1  
0.2  
0.4  
SWITCHING SPECIFICATIONS  
ADuM1300WSRWZ/ADuM1301WSRWZ  
Minimum Pulse Width2  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate3  
1
50  
Propagation Delay4  
Pulse Width Distortion, |tPLH − tPHL  
Propagation Delay Skew5  
tPHL, tPLH  
PWD  
tPSK  
65  
4
|
40  
50  
50  
ns  
ns  
ns  
Channel-to-Channel Matching6  
tPSKCD/tPSKOD  
ADuM1300WTRWZ/ADuM1301WTRWZ  
Minimum Pulse Width2  
PW  
100 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate3  
10  
18  
Propagation Delay4  
Pulse Width Distortion, |tPLH − tPHL  
tPHL, tPLH  
PWD  
27  
5
32  
3
4
|
ns  
Change vs. Temperature  
Propagation Delay Skew5  
Channel-to-Channel Matching, Codirectional  
Channels6  
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
15  
3
Channel-to-Channel Matching, Opposing-  
Directional Channels6  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
Rev. K | Page 11 of 32  
 
ADuM1300/ADuM1301  
Data Sheet  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
For All Models  
Output Disable Propagation Delay  
(High/Low to High Impedance)  
Output Enable Propagation Delay  
(High Impedance to High/Low)  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity at Logic  
High Output7  
tPHZ, tPLH  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
tPZH, tPZL  
tR/tF  
|CMH|  
2.5  
35  
ns  
kV/µs  
25  
25  
Common-Mode Transient Immunity at Logic  
Low Output7  
|CML|  
35  
kV/µs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.2  
0.19  
0.05  
Mbps  
mA/Mbps  
mA/Mbps  
Input Dynamic Supply Current per Channel8  
IDDI (D)  
Output Dynamic Supply Current per Channel8 IDDO (D)  
1 The supply current values are for all three channels combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section.  
See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through  
Figure 12 for total VDD1 and VDD2 supply currents as a function of data rate for ADUM1300W/ADUM1301W channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
7 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
8 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. K | Page 12 of 32  
Data Sheet  
ADuM1300/ADuM1301  
ELECTRICAL CHARACTERISTICS—3 V, 125°C OPERATION  
All voltages are relative to their respective ground. 3.0 V ≤ VDD1 ≤ 3.6 V, 3.0 V ≤ VDD2 ≤ 3.6 V; all minimum/maximum specifications apply  
over the entire recommended operation range, unless otherwise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.0 V.  
These specifications apply to ADuM1300W and ADuM1301W automotive grade versions.  
Table 5.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM1300W, Total Supply Current, Three Channels1  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.26 0.31 mA  
0.11 0.15 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
0.9  
0.4  
1.7  
0.7  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
ADuM1301W, Total Supply Current, Three Channels1  
IDD1 (10)  
IDD2 (10)  
3.4  
1.1  
4.9  
1.6  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
0.7  
0.6  
1.4  
0.9  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
2.6  
1.8  
3.7  
2.5  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
For All Models  
Input Currents  
IIA, IIB, IIC, IE1, IE2 −10  
+0.01 +10 µA  
V
0 V ≤ VIA, VIB, VIC ≤ VDD1 or VDD2  
0 V ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH, VEH  
VIL, VEL  
1.6  
0.4  
V
V
V
V
V
V
VOAH, VOBH, VOCH VDD1, VDD2 − 0.1 3.0  
VDD1, VDD2 − 0.4 2.8  
VOAL, VOBL, VOCL  
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
Logic Low Output Voltages  
0.0  
0.1  
0.04 0.1  
0.2  
0.4  
SWITCHING SPECIFICATIONS  
ADuM1300WSRWZ/ADuM1301WSRWZ  
Minimum Pulse Width2  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate3  
1
50  
Propagation Delay4  
tPHL, tPLH  
PWD  
75  
4
40  
50  
50  
ns  
ns  
ns  
Pulse Width Distortion, |tPLH − tPHL  
Propagation Delay Skew5  
|
tPSK  
tPSKCD/tPSKOD  
Channel-to-Channel Matching6  
ADuM1300WTRWZ/ADuM1301WTRWZ  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
100 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
20  
Propagation Delay4  
tPHL, tPLH  
PWD  
34  
5
45  
3
4
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Change vs. Temperature  
Propagation Delay Skew5  
ps/°C  
ns  
tPSK  
26  
3
Channel-to-Channel Matching,  
Codirectional Channels6  
tPSKCD  
ns  
Channel-to-Channel Matching,  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels6  
Rev. K | Page 13 of 32  
 
ADuM1300/ADuM1301  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
For All Models  
Output Disable Propagation Delay (High/Low to  
High Impedance)  
Output Enable Propagation Delay (High Impedance tPZH, tPZL  
to High/Low)  
tPHZ, tPLH  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Output Rise/Fall Time (10% to 90%)  
tR/tF  
3
ns  
Common-Mode Transient Immunity at  
Logic High Output7  
Common-Mode Transient Immunity at  
Logic Low Output7  
|CMH|  
25  
25  
35  
kV/µs  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
|CML|  
35  
kV/µs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.1  
Mbps  
Input Dynamic Supply Current per Channel8  
Output Dynamic Supply Current per Channel8  
IDDI (D)  
IDDO (D)  
0.10  
0.03  
mA/Mbps  
mA/Mbps  
1 The supply current values are for all three channels combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section.  
See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through  
Figure 12 for total VDD1 and VDD2 supply currents as a function of data rate for ADUM1300W/ADUM1301W channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
7 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
8 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. K | Page 14 of 32  
Data Sheet  
ADuM1300/ADuM1301  
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V, 125°C OPERATION1  
All voltages are relative to their respective ground. 4.5 V ≤ VDD1 ≤ 5.5 V, 3.0 V ≤ VDD2 ≤ 3.6 V; all minimum/maximum specifications apply  
over the entire recommended operation range, unless otherwise noted; all typical specifications are at TA = 25°C; VDD1 = 5 V, VDD2 = 3.0 V.  
These specifications apply to ADuM1300W and ADuM1301W automotive grade versions.  
Table 6.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM1300W, Total Supply Current, Three Channels2  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.50  
0.11  
0.53 mA  
0.15 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.6  
0.4  
2.5  
0.7  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
ADuM1301W, Total Supply Current, Three Channels1  
IDD1 (10)  
IDD2 (10)  
6.5  
1.1  
8.1  
1.6  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.3  
0.6  
2.1  
0.9  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
5.0  
1.8  
6.2  
2.5  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
For All Models  
Input Currents  
IIA, IIB, IIC, IE1, IE2 −10  
+0.01  
+10 μA  
V
0 V ≤ VIA, VIB, VIC ≤ VDD1 or VDD2  
0 V ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH, VEH  
VIL, VEL  
2.0  
0.8  
V
V
V
VOAH, VOBH, VOCH VDD1, VDD2 − 0.1 VDD1, VDD2  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
VDD1, VDD2 − 0.4 VDD1  
,
VDD2 − 0.2  
Logic Low Output Voltages  
VOAL, VOBL, VOCL  
0.0  
0.04  
0.2  
0.1  
0.1  
0.4  
V
V
V
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
SWITCHING SPECIFICATIONS  
ADuM1300WSRWZ/ADuM1301WSRWZ  
Minimum Pulse Width3  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate4  
1
50  
Propagation Delay5  
tPHL, tPLH  
PWD  
70  
4
40  
50  
50  
ns  
ns  
ns  
Pulse Width Distortion, |tPLH − tPHL  
Propagation Delay Skew6  
|
tPSK  
Channel-to-Channel Matching7  
tPSKCD/tPSKOD  
ADuM1300WTRWZ/ADuM1301WTRWZ  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
100 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
20  
Propagation Delay4  
tPHL, tPLH  
PWD  
30  
5
40  
3
4
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Change vs. Temperature  
Propagation Delay Skew5  
ps/°C  
ns  
tPSK  
6
3
Channel-to-Channel Matching, Codirectional  
Channels6  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels6  
tPSKOD  
22  
ns  
CL = 15 pF, CMOS signal levels  
Rev. K | Page 15 of 32  
 
ADuM1300/ADuM1301  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
For All Models  
Output Disable Propagation Delay (High/Low  
to High Impedance)  
Output Enable Propagation Delay (High  
Impedance to High/Low)  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity at  
Logic High Output8  
tPHZ, tPLH  
tPZH, tPZL  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
tR/tF  
|CMH|  
3.0  
35  
ns  
kV/µs  
25  
25  
Common-Mode Transient Immunity at  
Logic Low Output7  
|CML|  
35  
kV/µs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.2  
Mbps  
Input Dynamic Supply Current per Channel9  
Output Dynamic Supply Current per Channel8  
IDDI (D)  
IDDO (D)  
0.19  
0.03  
mA/Mbps  
mA/Mbps  
1 All voltages are relative to their respective ground.  
2 The supply current values are for all three channels combined when running at identical data rates. Output supply current values are specified with no output load present. The  
supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 6 through  
Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 12 for total VDD1 and VDD2  
supply currents as a function of data rate for ADUM1300W/ADUM1301W channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is measured  
from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the  
recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation  
barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing  
sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate that can be  
sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the  
range over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information on  
per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a  
given data rate.  
Rev. K | Page 16 of 32  
 
Data Sheet  
ADuM1300/ADuM1301  
ELECTRICAL CHARACTERISTICS—MIXED 3 V/5 V, 125°C OPERATION  
All voltages are relative to their respective ground. 3.0 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all minimum/maximum specifications apply  
over the entire recommended operation range, unless otherwise noted; all typical specifications are at TA = 25°C; VDD1 = 3.0 V, VDD2 = 5 V.  
These apply to ADuM1300W and ADuM1301W automotive grade versions.  
Table 7.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM1300W, Total Supply Current, Three Channels1  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.26  
0.19  
0.31 mA  
0.24 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2(Q)  
0.9  
0.7  
1.7  
1.0  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
ADuM1301W, Total Supply Current, Three Channels1  
IDD1 (10)  
IDD2 (10)  
3.4  
1.9  
4.9  
2.5  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
0.7  
1.0  
1.4  
1.4  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
2.6  
3.4  
3.7  
4.2  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
For All Models  
Input Currents  
IIA, IIB, IIC, IE1, IE2 −10  
+0.01  
+10 μA  
V
0 V ≤ VIA, VIB, VIC ≤ VDD1 or VDD2  
0 V ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH, VEH  
VIL, VEL  
1.6  
0.4  
V
V
V
VOAH, VOBH, VOCH VDD1, VDD2 − 0.1 VDD1, VDD2  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
VDD1, VDD2 − 0.4 VDD1  
,
VDD2 − 0.2  
Logic Low Output Voltages  
VOAL, VOBL, VOCL  
0.0  
0.04  
0.2  
0.1  
0.1  
0.4  
V
V
V
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
SWITCHING SPECIFICATIONS  
ADuM1300WSRWZ/ADuM1301WSRWZ  
Minimum Pulse Width2  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate3  
1
50  
Propagation Delay4  
tPHL, tPLH  
PWD  
70  
4
40  
50  
50  
ns  
ns  
ns  
Pulse Width Distortion, |tPLH − tPHL  
Propagation Delay Skew5  
|
tPSK  
Channel-to-Channel Matching6  
tPSKCD/tPSKOD  
ADuM1300WTRWZ/ADuM1301WTRWZ  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
100 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
20  
Propagation Delay4  
tPHL, tPLH  
PWD  
30  
5
40  
3
4
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Change vs. Temperature  
Propagation Delay Skew5  
ps/°C  
ns  
tPSK  
6
3
Channel-to-Channel Matching, Codirectional  
Channels6  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels6  
tPSKOD  
22  
ns  
CL = 15 pF, CMOS signal levels  
Rev. K | Page 17 of 32  
 
ADuM1300/ADuM1301  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
For All Models  
Output Disable Propagation Delay (High/Low  
to High Impedance)  
Output Enable Propagation Delay  
(High Impedance to High/Low)  
Output Rise/Fall Time (10% to 90%)  
5 V/3 V Operation  
3 V/5 V Operation  
Common-Mode Transient Immunity at Logic  
High Output7  
Common-Mode Transient Immunity at Logic  
Low Output7  
tPHZ, tPLH  
tPZH, tPZL  
tR/tF  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
3.0  
2.5  
35  
ns  
ns  
kV/µs  
|CMH|  
|CML|  
25  
25  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
35  
kV/µs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.1  
Mbps  
Input Dynamic Supply Current per Channel8  
Output Dynamic Supply Current per Channel8  
IDDI (D)  
IDDO (D)  
0.10  
0.05  
mA/Mbps  
mA/Mbps  
1 The supply current values are for all three channels combined when running at identical data rates. Output supply current values are specified with no output load present. The  
supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 6 through  
Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 12 for total VDD1 and VDD2  
supply currents as a function of data rate for ADuM1300W/ADuM1301W channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is measured  
from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the  
recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation  
barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing  
sides of the isolation barrier.  
7 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate that can be  
sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the  
range over which the common mode is slewed.  
8 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information on  
per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a  
given data rate.  
Rev. K | Page 18 of 32  
 
Data Sheet  
ADuM1300/ADuM1301  
PACKAGE CHARACTERISTICS  
Table 8.  
Parameter  
Symbol  
RI-O  
CI-O  
CI  
θJCI  
Min  
Typ  
1012  
1.7  
4.0  
33  
Max  
Unit  
Ω
pF  
pF  
°C/W  
Test Conditions  
Resistance (Input-to-Output)1  
Capacitance (Input-to-Output)1  
Input Capacitance2  
f = 1 MHz  
IC Junction-to-Case Thermal Resistance, Side 1  
Thermocouple located at center of  
package underside  
IC Junction-to-Case Thermal Resistance, Side 2  
θJCO  
28  
°C/W  
1 Device is considered a 2-terminal device; Pin 1, Pin 2, Pin 3, Pin 4, Pin 5, Pin 6, Pin 7, and Pin 8 are shorted together and Pin 9, Pin 10, Pin 11, Pin 12, Pin 13, Pin 14,  
Pin 15, and Pin 16 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
REGULATORY INFORMATION  
The ADuM1300/ADuM1301 are approved by the organizations listed in Table 9. Refer to Table 14 and the Insulation Lifetime section for  
details regarding recommended maximum working voltages for specific crossisolation waveforms and insulation levels.  
Table 9.  
UL  
CSA  
CQC  
VDE  
TÜV  
Recognized  
Under 1577  
Component  
Recognition  
Program1  
Approved under  
CSA Component  
Acceptance Notice 5A  
Approved under  
CQC11-471543-2012  
Certified according  
Approved according to  
to DIN V VDE V 0884-10  
IEC 61010-1:2001 (2nd Edition),  
(VDE V 0884-10):2006-122 EN 61010-1:2001 (2nd Edition),  
UL 61010-1:2004 CSA  
C22.2.61010.1:2005  
Single Protection, Basic insulation per  
Basic insulation per  
GB4943.1-2011  
Reinforced insulation,  
560 V peak  
Reinforced insulation, 400 V rms  
maximum working voltage  
2500 V rms  
Isolation  
Voltage  
CSA 60950-1-03 and  
IEC 60950-1, 800 V rms  
(1131 V peak) maximum  
working voltage  
Reinforced insulation per  
CSA 60950-1-03 and  
IEC 60950-1, 400 V rms  
(566 V peak) maximum  
working voltage  
Basic insulation,  
415 V rms (588 V peak)  
maximum working  
voltage, tropical climate,  
altitude ≤ 5000 m  
File E214100  
File 205078  
File: CQC14001114900  
File 2471900-4880-0001 Certificate U8V 05 06 56232 002  
1 In accordance with UL 1577, each ADuM1300/ADuM1301 is proof tested by applying an insulation test voltage ≥3000 V rms for 1 sec (current leakage detection limit = 5 μA).  
2 In accordance with DIN V VDE V 0884-10, each ADuM1300/ADuM1301 is proof tested by applying an insulation test voltage ≥1050 V peak for 1 sec (partial discharge  
detection limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 10.  
Parameter  
Symbol Value  
Unit  
Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
2500  
7.7 min  
V rms 1-minute duration  
L(I01)  
L(I02)  
mm  
mm  
Measured from input terminals to output terminals,  
shortest distance through air  
Measured from input terminals to output terminals,  
shortest distance path along body  
Minimum External Tracking (Creepage)  
8.1 min  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017 min mm  
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
>400  
II  
V
Rev. K | Page 19 of 32  
 
 
 
 
ADuM1300/ADuM1301  
Data Sheet  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 INSULATION CHARACTERISTICS  
These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by  
protective circuits. The asterisk (*) marking on packages denotes DIN V VDE V 0884-10 approval for 560 V peak working voltage.  
Table 11.  
Description  
Conditions  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method B1  
I to IV  
I to III  
I to II  
40/105/21  
2
VIORM  
VPR  
560  
1050  
V peak  
V peak  
VIORM × 1.875 = VPR, 100% production test, tm = 1 sec,  
partial discharge < 5 pC  
Input-to-Output Test Voltage, Method A  
After Environmental Tests Subgroup 1  
After Input and/or Safety Test Subgroup 2 VIORM × 1.2 = VPR, tm = 60 sec, partial discharge < 5 pC  
and Subgroup 3  
VIORM × 1.6 = VPR, tm = 60 sec, partial discharge < 5 pC  
VPR  
896  
672  
V peak  
V peak  
Highest Allowable Overvoltage  
Safety-Limiting Values  
Transient overvoltage, tTR = 10 seconds  
Maximum value allowed in the event of a failure  
(see Figure 3)  
VTR  
4000  
V peak  
Case Temperature  
Side 1 Current  
Side 2 Current  
TS  
IS1  
IS2  
RS  
150  
265  
335  
>109  
°C  
mA  
mA  
Ω
Insulation Resistance at TS  
VIO = 500 V  
350  
300  
250  
RECOMMENDED OPERATING CONDITIONS  
Table 12.  
Parameter  
Rating  
Operating Temperature (TA)1  
Operating Temperature (TA)2  
−40°C to +105°C  
−40°C to +125°C  
2.7 V to 5.5 V  
3.0 V to 5.5 V  
1.0 ms  
SIDE #2  
200  
150  
100  
50  
1, 3  
Supply Voltages (VDD1, VDD2  
Supply Voltages (VDD1, VDD2  
)
)
2, 3  
SIDE #1  
Input Signal Rise and Fall Times  
1 Does not apply to ADuM1300W and ADuM1301W automotive grade versions.  
2 Applies to ADuM1300W and ADuM1301W automotive grade versions.  
3 All voltages are relative to their respective ground. See the DC Correctness  
and Magnetic Field Immunity section for information on immunity to external  
magnetic fields.  
0
0
50  
100  
CASE TEMPERATURE (°C)  
150  
200  
Figure 3. Thermal Derating Curve, Dependence of Safety-Limiting  
Values with Case Temperature per DIN V VDE V 0884-10  
Rev. K | Page 20 of 32  
 
 
 
Data Sheet  
ADuM1300/ADuM1301  
ABSOLUTE MAXIMUM RATINGS  
Ambient temperature = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 13.  
Parameter  
Rating  
Storage Temperature (TST)  
−65°C to +150°C  
Ambient Operating Temperature (TA)1 −40°C to +105°C  
Ambient Operating Temperature (TA)2 −40°C to +125°C  
Supply Voltages (VDD1, VDD2  
3
)
−0.5 V to +7.0 V  
Input Voltage (VIA, VIB, VIC, VE1, VE2)3, 4  
Output Voltage (VOA, VOB, VOC)3, 4  
Average Output Current per Pin5  
Side 1 (IO1)  
−0.5 V to VDDI + 0.5 V  
−0.5 V to VDDO + 0.5 V  
ESD CAUTION  
−23 mA to +23 mA  
Side 2 (IO2)  
Common-Mode Transients6  
−30 mA to +30 mA  
−100 kV/µs to +100 kV/µs  
1 Does not apply to ADuM1300W and ADuM1301W automotive grade versions.  
2 Applies to ADuM1300W and ADuM1301W automotive grade versions.  
3 All voltages are relative to their respective ground.  
4 VDDI and VDDO refer to the supply voltages on the input and output sides of a  
given channel, respectively. See the Printed Circuit Board (PCB) Layout  
section.  
5 See Figure 3 for maximum rated current values for various temperatures.  
6 This refers to common-mode transients across the insulation barrier.  
Common-mode transients exceeding the Absolute Maximum Ratings may  
cause latch-up or permanent damage.  
Table 14. Maximum Continuous Working Voltage1  
Parameter  
Max  
Unit  
Constraint  
AC Voltage, Bipolar Waveform  
AC Voltage, Unipolar Waveform  
Basic Insulation  
Reinforced Insulation  
DC Voltage  
565  
V peak  
50-year minimum lifetime  
1131  
560  
V peak  
V peak  
Maximum approved working voltage per IEC 60950-1  
Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10  
Basic Insulation  
Reinforced Insulation  
1131  
560  
V peak  
V peak  
Maximum approved working voltage per IEC 60950-1  
Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10  
1 Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.  
Table 15. Truth Table (Positive Logic)  
VIx Input1 VEx Input1, 2 VDDI State1 VDDO State1 VOx Output1  
Notes  
H
L
X
X
X
X
H or NC  
H or NC  
L
H or NC  
L
X
Powered  
Powered  
Powered  
Unpowered Powered  
Unpowered Powered  
Powered  
Powered  
Powered  
H
L
Z
H
Z
Outputs return to the input state within 1 µs of VDDI power restoration.  
Powered  
Unpowered Indeterminate Outputs return to the input state within 1 µs of VDDO power restoration  
if the VEx state is H or NC. Outputs return to a high impedance state  
within 8 ns of VDDO power restoration if the VEx state is L.  
1 VIx and VOx refer to the input and output signals of a given channel (A, B, or C). VEx refers to the output enable signal on the same side as the VOx outputs. VDDI and VDDO  
refer to the supply voltages on the input and output sides of the given channel, respectively.  
2 In noisy environments, connecting VEx to an external logic high or low is recommended.  
Rev. K | Page 21 of 32  
 
 
 
 
ADuM1300/ADuM1301  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
16  
V
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
DD2  
DD1  
*GND  
15 GND *  
*GND  
15 GND *  
1
IA  
IB  
IC  
2
1
IA  
IB  
2
V
14  
13  
12  
V
V
V
V
V
14  
13  
12  
V
V
V
OA  
OB  
OC  
OA  
OB  
IC  
ADuM1300  
TOP VIEW  
(Not to Scale)  
ADuM1301  
V
V
TOP VIEW  
(Not to Scale)  
V
OC  
NC  
NC  
11 NC  
NC  
11 NC  
10  
9
V
10  
9
V
V
E2  
E2  
E1  
*GND  
GND *  
*GND  
GND *  
2
1
2
1
NC = NO CONNECT  
NC = NO CONNECT  
*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED, AND CONNECTING  
*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED, AND CONNECTING  
BOTH TO GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY  
BOTH TO GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY  
1
1
CONNECTED, AND CONNECTING BOTH TO GND IS RECOMMENDED.  
2
CONNECTED, AND CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 5. ADuM1301 Pin Configuration  
Figure 4. ADuM1300 Pin Configuration  
Table 16. ADuM1300 Pin Function Descriptions  
Pin  
No. Mnemonic Description  
1
2
3
VDD1  
GND1  
VIA  
Supply Voltage for Isolator Side 1.  
Ground 1. Ground reference for Isolator Side 1.  
Logic Input A.  
4
VIB  
Logic Input B.  
5
VIC  
Logic Input C.  
6
NC  
No Connect.  
7
NC  
No Connect.  
8
9
10  
GND1  
GND2  
VE2  
Ground 1. Ground reference for Isolator Side 1.  
Ground 2. Ground reference for Isolator Side 2.  
Output Enable 2. Active high logic input. VOA, VOB, and VOC outputs are enabled when VE2 is high or disconnected. VOA, VOB, and VOC  
outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic high or low is recommended.  
11  
12  
13  
14  
15  
16  
NC  
VOC  
VOB  
VOA  
GND2  
VDD2  
No Connect.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Ground 2. Ground reference for Isolator Side 2.  
Supply Voltage for Isolator Side 2.  
Table 17. ADuM1301 Pin Function Descriptions  
Pin  
No. Mnemonic Description  
1
2
3
4
5
6
7
VDD1  
GND1  
VIA  
VIB  
VOC  
NC  
Supply Voltage for Isolator Side 1.  
Ground 1. Ground reference for Isolator Side 1.  
Logic Input A.  
Logic Input B.  
Logic Output C.  
No Connect.  
VE1  
Output Enable 1. Active high logic input. VOC output is enabled when VE1 is high or disconnected. VOC output is disabled when VE1 is  
low. In noisy environments, connecting VE1 to an external logic high or low is recommended.  
8
9
10  
GND1  
GND2  
VE2  
Ground 1. Ground reference for Isolator Side 1.  
Ground 2. Ground reference for Isolator Side 2.  
Output Enable 2. Active high logic input. VOA and VOB outputs are enabled when VE2 is high or disconnected. VOA and VOB outputs are  
disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic high or low is recommended.  
11  
12  
13  
14  
15  
16  
NC  
VIC  
VOB  
VOA  
GND2  
VDD2  
No Connect.  
Logic Input C.  
Logic Output B.  
Logic Output A.  
Ground 2. Ground reference for Isolator Side 2.  
Supply Voltage for Isolator Side 2.  
Rev. K | Page 22 of 32  
 
Data Sheet  
ADuM1300/ADuM1301  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
60  
50  
40  
30  
20  
10  
0
18  
16  
14  
12  
5V  
10  
8
5V  
6
3V  
3V  
4
2
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 6. Typical Input Supply Current per Channel vs. Data Rate  
for 5 V and 3 V Operation  
Figure 9. Typical ADuM1300 VDD1 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
6
5
4
3
16  
14  
12  
10  
8
5V  
5V  
6
4
2
3V  
3V  
1
2
0
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 7. Typical Output Supply Current per Channel vs. Data Rate  
for 5 V and 3 V Operation (No Output Load)  
Figure 10. Typical ADuM1300 VDD2 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
50  
45  
40  
35  
30  
10  
9
8
7
6
5
25  
5V  
4
20  
3V  
15  
5V  
3
2
3V  
10  
5
1
0
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 8. Typical Output Supply Current per Channel vs. Data Rate  
for 5 V and 3 V Operation (15 pF Output Load)  
Figure 11. Typical ADuM1301 VDD1 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
Rev. K | Page 23 of 32  
 
 
 
 
 
ADuM1300/ADuM1301  
Data Sheet  
30  
25  
20  
15  
40  
35  
30  
25  
3V  
5V  
10  
3V  
5
0
5V  
0
20  
40  
60  
80  
100  
–50  
–25  
0
25  
50  
75  
100  
DATA RATE (Mbps)  
TEMPERATURE (°C)  
Figure 12. Typical ADuM1301 VDD2 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
Figure 13. Propagation Delay vs. Temperature, C Grade  
Rev. K | Page 24 of 32  
 
Data Sheet  
ADuM1300/ADuM1301  
APPLICATIONS INFORMATION  
PRINTED CIRCUIT BOARD (PCB) LAYOUT  
DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY  
Positive and negative logic transitions at the isolator input cause  
narrow (approximately 1 ns) pulses to be sent to the decoder via  
the transformer. The decoder is bistable and is therefore either  
set or reset by the pulses, indicating input logic transitions. In  
the absence of logic transitions at the input for more than  
approximately 1 μs, a periodic set of refresh pulses indicative of  
the correct input state are sent to ensure dc correctness at the  
output. If the decoder receives no internal pulses for more than  
about 5 μs, the input side is assumed to be unpowered or  
nonfunctional, in which case the isolator output is forced to  
a default state (see Table 15) by the watchdog timer circuit.  
The ADuM1300/ADuM1301 digital isolator requires no external  
interface circuitry for the logic interfaces. Power supply bypassing is  
strongly recommended at the input and output supply pins (see  
Figure 14). Bypass capacitors are most conveniently connected  
between Pin 1 and Pin 2 for VDD1 and between Pin 15 and Pin 16  
for VDD2. The capacitor value should be between 0.01 μF and 0.1 μF.  
The total lead length between both ends of the capacitor and  
the input power supply pin should not exceed 20 mm. Bypassing  
between Pin 1 and Pin 8 and between Pin 9 and Pin 16 should  
also be considered unless the ground pair on each package side  
is connected close to the package.  
The ADuM1300/ADuM1301 is extremely immune to external  
magnetic fields. The limitation on the magnetic field immunity  
of the ADuM1300/ADuM1301 is set by the condition in which  
induced voltage in the receiving coil of the transformer is  
sufficiently large enough to either falsely set or reset the decoder.  
The following analysis defines the conditions under which this  
may occur. The 3 V operating condition of the ADuM1300/  
ADuM1301 is examined because it represents the most  
susceptible mode of operation.  
V
GND  
V
DD2  
DD1  
GND  
1
IA  
IB  
2
V
V
V
V
V
OA  
OB  
V
OC/ IC  
V
V
IC/ OC  
NC  
NC  
NC/V  
V
E1  
E2  
GND  
GND  
1
2
Figure 14. Recommended Printed Circuit Board Layout  
In applications involving high common-mode transients,  
take care to ensure that board coupling across the isolation  
barrier is minimized. Furthermore, the board layout should be  
designed such that any coupling that does occur equally affects  
all pins on a given component side. Failure to ensure this could  
cause voltage differentials between pins exceeding the absolute  
maximum ratings of the device, thereby leading to latch-up or  
permanent damage.  
The pulses at the transformer output have an amplitude greater  
than 1.0 V. The decoder has a sensing threshold at about 0.5 V,  
thus establishing a 0.5 V margin in which induced voltages can be  
tolerated. The voltage induced across the receiving coil is given by  
2
V = (−dβ/dt)∑∏rn ; n = 1, 2, … , N  
where:  
See the AN-1109 Application Note for board layout guidelines.  
β is magnetic flux density (gauss).  
N is the number of turns in the receiving coil.  
rn is the radius of the nth turn in the receiving coil (cm).  
PROPAGATION DELAY-RELATED PARAMETERS  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component. The propagation  
delay to a logic low output may differ from the propagation  
delay to a logic high output.  
Given the geometry of the receiving coil in the ADuM1300/  
ADuM1301 and an imposed requirement that the induced  
voltage be 50% at most of the 0.5 V margin at the decoder, a  
maximum allowable magnetic field is calculated as shown in  
Figure 16.  
INPUT (V  
)
50%  
Ix  
tPLH  
tPHL  
100  
OUTPUT (V  
)
50%  
Ox  
10  
1
Figure 15. Propagation Delay Parameters  
Pulse width distortion is the maximum difference between  
these two propagation delay values and is an indication of  
how accurately the timing of the input signal is preserved.  
0.1  
Channel-to-channel matching refers to the maximum amount  
that the propagation delay differs between channels within a  
single ADuM1300/ADuM1301 component.  
0.01  
Propagation delay skew refers to the maximum amount that the  
propagation delay differs between multiple ADuM1300/  
ADuM1301 components operating under the same conditions.  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 16. Maximum Allowable External Magnetic Flux Density  
Rev. K | Page 25 of 32  
 
 
 
 
 
 
ADuM1300/ADuM1301  
Data Sheet  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 kgauss induces a  
voltage of 0.25 V at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
Similarly, if such an event occurs during a transmitted pulse  
(and has the worst-case polarity), it reduces the received pulse  
from >1.0 V to 0.75 V—still well above the 0.5 V sensing  
threshold of the decoder.  
POWER CONSUMPTION  
The supply current at a given channel of the ADuM1300/  
ADuM1301 isolator is a function of the supply voltage, the data  
rate of the channel, and the output load of the channel.  
For each input channel, the supply current is given by  
IDDI = IDDI (Q)  
f ≤ 0.5 fr  
f > 0.5 fr  
IDDI = IDDI (D) × (2f − fr) + IDDI (Q)  
The preceding magnetic flux density values correspond to  
specific current magnitudes at given distances from the  
ADuM1300/ADuM1301 transformers. Figure 17 shows these  
allowable current magnitudes as a function of frequency for  
selected distances. The ADuM1300/ADuM1301 is extremely  
immune and can be affected only by extremely large currents  
operated at a high frequency very close to the component. For  
the 1 MHz example noted, one would have to place a 0.5 kA  
current 5 mm away from the ADuM1300/ADuM1301 to affect  
the operation of the component.  
For each output channel, the supply current is given by  
I
I
DDO = IDDO (Q)  
f ≤ 0.5 fr  
DDO = (IDDO (D) + (0.5 × 10−3) × CL × VDDO) × (2f − fr) + IDDO (Q)  
f > 0.5 fr  
where:  
IDDI (D), IDDO (D) are the input and output dynamic supply currents  
per channel (mA/Mbps).  
CL is the output load capacitance (pF).  
V
DDO is the output supply voltage (V).  
1000  
f is the input logic signal frequency (MHz); it is half of the input  
data rate expressed in units of Mbps.  
fr is the input stage refresh rate (Mbps).  
DISTANCE = 1m  
100  
IDDI (Q), IDDO (Q) are the specified input and output quiescent  
supply currents (mA).  
10  
To calculate the total VDD1 and VDD2 supply current, the supply  
currents for each input and output channel corresponding to  
DISTANCE = 100mm  
1
VDD1 and VDD2 are calculated and totaled. Figure 6 and Figure 7  
DISTANCE = 5mm  
provide per-channel supply currents as a function of data rate  
for an unloaded output condition. Figure 8 provides per-channel  
supply current as a function of data rate for a 15 pF output  
condition. Figure 9 through Figure 12 provide total VDD1 and  
VDD2 supply current as a function of data rate for ADuM1300/  
ADuM1301 channel configurations.  
0.1  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 17. Maximum Allowable Current  
for Various Current-to-ADuM1300/ADuM1301 Spacings  
Note that at combinations of strong magnetic field and high  
frequency, any loops formed by printed circuit board traces  
could induce error voltages sufficiently large enough to trigger  
the thresholds of succeeding circuitry. Take care in the layout of  
such traces to avoid this possibility.  
Rev. K | Page 26 of 32  
 
 
 
Data Sheet  
ADuM1300/ADuM1301  
In the case of unipolar ac or dc voltage, the stress on the  
insulation is significantly lower, which allows operation at  
higher working voltages while still achieving a 50-year service  
life. The working voltages listed in Table 14 can be applied while  
maintaining the 50-year minimum lifetime provided the voltage  
conforms to either the unipolar ac or dc voltage cases. Any cross  
insulation voltage waveform that does not conform to Figure 19  
or Figure 20 should be treated as a bipolar ac waveform, and its  
peak voltage should be limited to the 50-year lifetime voltage  
value listed in Table 14.  
INSULATION LIFETIME  
All insulation structures eventually break down when subjected to  
voltage stress over a sufficiently long period. The rate of insulation  
degradation is dependent on the characteristics of the voltage  
waveform applied across the insulation. In addition to the  
testing performed by the regulatory agencies, Analog Devices  
carries out an extensive set of evaluations to determine the  
lifetime of the insulation structure within the ADuM1300/  
ADuM1301.  
Analog Devices performs accelerated life testing using voltage  
levels higher than the rated continuous working voltage. Accel-  
eration factors for several operating conditions are determined.  
These factors allow calculation of the time to failure at the actual  
working voltage. The values shown in Table 14 summarize the  
peak voltage for 50 years of service life for a bipolar ac operating  
condition and the maximum CSA/VDE approved working  
voltages. In many cases, the approved working voltage is higher  
than the 50-year service life voltage. Operation at these high  
working voltages can lead to shortened insulation life in some  
cases.  
Note that the voltage presented in Figure 19 is shown as sinusoidal  
for illustration purposes only. It is meant to represent any voltage  
waveform varying between 0 V and some limiting value. The  
limiting value can be positive or negative, but the voltage  
cannot cross 0 V.  
RATED PEAK VOLTAGE  
0V  
Figure 18. Bipolar AC Waveform  
RATED PEAK VOLTAGE  
The insulation lifetime of the ADuM1300/ADuM1301 depends  
on the voltage waveform type imposed across the isolation barrier.  
The iCoupler insulation structure degrades at different rates  
depending on whether the waveform is bipolar ac, unipolar ac,  
or dc. Figure 18, Figure 19, and Figure 20 illustrate these different  
isolation voltage waveforms, respectively.  
0V  
Figure 19. Unipolar AC Waveform  
RATED PEAK VOLTAGE  
Bipolar ac voltage is the most stringent environment. The goal  
of a 50-year operating lifetime under the ac bipolar condition  
determines the Analog Devices recommended maximum  
working voltage.  
0V  
Figure 20. DC Waveform  
Rev. K | Page 27 of 32  
 
 
 
 
ADuM1300/ADuM1301  
OUTLINE DIMENSIONS  
Data Sheet  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 21. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (RW-16)  
Dimensions shown in millimeters (and inches)  
Rev. K | Page 28 of 32  
 
Data Sheet  
ADuM1300/ADuM1301  
ORDERING GUIDE  
Number  
Number  
Maximum Maximum  
Maximum  
of Inputs, of Inputs, Data Rate Propagation  
Pulse Width  
Distortion (ns)  
Package  
Model1, 2, 3  
VDD1 Side VDD2 Side (Mbps)  
Delay, 5 V (ns)  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Option4  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
ADuM1300ARW  
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
10  
10  
90  
90  
1
100  
100  
100  
100  
50  
50  
32  
32  
40  
40  
40  
40  
3
3
2
2
ADuM1300ARW-RL  
ADuM1300ARWZ  
ADuM1300ARWZ-RL  
ADuM1300BRWZ  
ADuM1300BRWZ-RL  
ADuM1300CRWZ  
ADuM1300CRWZ-RL  
ADuM1300WSRWZ  
ADuM1300WSRWZ-RL  
ADuM1300WTRWZ  
ADUM1300WTRWZ-RL  
ADuM1301ARW  
ADUM1301ARW-RL  
ADUM1301ARWZ  
ADUM1301ARWZ-RL  
ADuM1301BRW  
ADuM1301BRW-RL  
ADUM1301BRWZ  
ADUM1301BRWZ-RL  
ADuM1301CRW  
100  
100  
32  
40  
40  
3
1
10  
10  
1
1
1
32  
3
100  
100  
100  
100  
50  
50  
50  
50  
32  
40  
40  
40  
40  
3
3
3
3
2
1
10  
10  
10  
10  
90  
90  
90  
1
ADuM1301CRWZ  
ADuM1301CRWZ-RL  
ADuM1301WSRWZ  
ADUM1301WSRWZ-RL  
ADuM1301WTRWZ  
ADUM1301WTRWZ-RL  
EVAL-ADuMQSEBZ  
32  
32  
2
2
100  
100  
32  
40  
40  
3
1
10  
10  
32  
3
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
3 The addition of an -RL suffix designates a 13” (1,000 units) tape-and-reel option.  
4 RW-16 = 16-lead wide body SOIC.  
AUTOMOTIVE PRODUCTS  
The ADuM1300W/ADuM1301W models are available with controlled manufacturing to support the quality and reliability requirements  
of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore,  
designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for  
use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and  
to obtain the specific Automotive Reliability reports for these models.  
Rev. K | Page 29 of 32  
 
 
ADuM1300/ADuM1301  
NOTES  
Data Sheet  
Rev. K | Page 30 of 32  
Data Sheet  
NOTES  
ADuM1300/ADuM1301  
Rev. K | Page 31 of 32  
ADuM1300/ADuM1301  
NOTES  
Data Sheet  
©2003–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03787-0-11/15(K)  
Rev. K | Page 32 of 32  

相关型号:

ADuM1301WSRWZ

Triple-Channel Digital Isolators
ADI

ADUM1301WSRWZ

SPECIALTY ANALOG CIRCUIT, PDSO16, ROHS COMPLIANT, MS-013AA, SOIC-16
ROCHESTER

ADUM1301WSRWZ-RL

Triple-Channel Digital Isolator
ADI

ADUM1301WSRWZ35

Interface Circuit
ADI

ADUM1301WSRWZ35-RL

Interface Circuit
ADI

ADUM1301WSRWZ53

Interface Circuit
ADI

ADUM1301WSRWZ53-RL

Interface Circuit
ADI

ADuM1301WTRWZ

Triple-Channel Digital Isolators
ADI

ADUM1301WTRWZ

SPECIALTY ANALOG CIRCUIT, PDSO16, ROHS COMPLIANT, MS-013AA, SOIC-16
ROCHESTER

ADUM1301WTRWZ-RL

SPECIALTY ANALOG CIRCUIT, PDSO16, ROHS COMPLIANT, MS-013AA, SOIC-16
ROCHESTER

ADUM1301WTRWZ-RL

Triple-Channel Digital Isolator
ADI

ADUM1301WTRWZ35

Interface Circuit
ADI