ADUM140E1BRWZ [ADI]

Robust, Quad Channel Isolator W/ Output Enable & 0 Reverse Channels;
ADUM140E1BRWZ
型号: ADUM140E1BRWZ
厂家: ADI    ADI
描述:

Robust, Quad Channel Isolator W/ Output Enable & 0 Reverse Channels

光电二极管
文件: 总18页 (文件大小:409K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.75 kV rms Quad Digital Isolators  
ADuM140D/ADuM140E  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
High common-mode transient immunity: 100 kV/μs  
High robustness to radiated and conducted noise  
Low propagation delay: 13 ns maximum for 5 V operation  
150 Mbps minimum data rate  
3.75 kV rms withstand voltage rating  
Safety and regulatory approvals (pending)  
UL recognition (pending)  
3750 V rms for 1 minute per UL 1577  
CSA component acceptance notice 5A  
VDE certificate of conformity  
ADuM140D  
1
2
3
16  
15  
14  
V
V
DD2  
DD1  
GND  
GND  
2
1
IA  
IB  
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
V
V
V
V
OA  
OB  
OC  
4
5
13  
12  
V
V
V
IC  
ID  
V
11 OD  
6
7
8
NIC  
10  
9
DISABLE  
1
GND  
GND  
1
2
NIC = NO INTERNAL CONNECTION. LEAVE THIS PIN FLOATING.  
Figure 1. ADuM140D Functional Block Diagram  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
V
IORM = 848 V peak  
ADuM140E  
1
2
3
16  
15  
14  
V
V
DD2  
DD1  
CQC11-471543-2012  
Backward compatibility  
GND  
V
GND  
1
2
V
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
IA  
IB  
IC  
ID  
OA  
ADuM140E1 pin compatible with ADuM1400  
Low dynamic power consumption  
1.8 V to 5 V level translation  
High temperature operation: 125°C  
Failsafe high or low options  
V
V
V
V
4
5
13  
12  
OB  
V
OC  
V
6
7
8
11  
10  
9
OD  
V
NIC  
GND  
E2  
GND  
16-lead, RoHS-compliant, SOIC package  
1
2
NIC = NO INTERNAL CONNECTION. LEAVE THIS PIN FLOATING.  
APPLICATIONS  
Figure 2. ADuM140E Functional Block Diagram  
General-purpose multichannel isolation  
SPI interface/data converter isolation  
Industrial field bus isolation  
GENERAL DESCRIPTION  
The ADuM140D/ADuM140E1 are quad-channel digital isolators  
based on Analog Devices, Inc., iCoupler® technology. Combining  
high speed, complementary metal-oxide semiconductor (CMOS)  
and monolithic air core transformer technology, these isolation  
components provide outstanding performance characteristics  
superior to alternatives such as optocoupler devices and other  
integrated couplers. The maximum propagation delay is 13 ns  
with a pulse width distortion of less than 3 ns at 5 V operation.  
Channel matching is tight at 3.0 ns maximum.  
voltage rating of 3.75 kV rms (see the Ordering Guide). The  
devices operate with the supply voltage on either side ranging  
from 1.8 V to 5 V, providing compatibility with lower voltage  
systems as well as enabling voltage translation functionality  
across the isolation barrier.  
Unlike other optocoupler alternatives, dc correctness is ensured  
in the absence of input logic transitions. Two different fail-safe  
options are available, in which the outputs transition to a  
predetermined state when the input power supply is not applied  
or the inputs are disabled. The ADuM140E1 is pin compatible  
with the ADuM1400.  
The ADuM140D/ADuM140E data channels are independent  
and are available in a variety of configurations with a withstand  
1 Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329. Other patents are pending.  
Rev. 0 Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2015 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADuM140D/ADuM140E  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Recommended Operating Conditions .................................... 10  
Absolute Maximum Ratings ......................................................... 11  
ESD Caution................................................................................ 11  
Pin Configurations and Function Descriptions......................... 13  
Typical Performance Characteristics ........................................... 14  
Applications Information .............................................................. 15  
Overview ..................................................................................... 15  
PCB Layout ................................................................................. 15  
Propagation Delay Related Parameters ................................... 16  
Jitter Measurement..................................................................... 16  
Insulation Lifetime..................................................................... 16  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 V Operation................................ 3  
Electrical Characteristics—3.3 V Operation ............................ 4  
Electrical Characteristics—2.5 V Operation ............................ 5  
Electrical Characteristics—1.8 V Operation ............................ 7  
Insulation and Safety Related Specifications ............................ 8  
Package Characteristics ............................................................... 8  
Regulatory Information............................................................... 9  
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation  
Characteristics ............................................................................ 10  
REVISION HISTORY  
4/15—Revision 0: Initial Version  
Rev. 0 | Page 2 of 18  
 
Data Sheet  
ADuM140D/ADuM140E  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. Minimum/maximum specifications apply over the entire recommended  
operation range of 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.  
Table 1.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Pulse Width  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
PW  
6.6  
150  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
Within pulse width distortion (PWD) limit  
Within PWD limit  
50% input to 50% output  
tPHL, tPLH 4.8  
PWD  
7.2  
0.5  
1.5  
13  
3
|tPLH − tPHL|  
tPSK  
6.1  
Between any two units at the  
same temperature, voltage, and load  
Channel Matching  
Codirectional  
Opposing Direction  
Jitter  
tPSKCD  
tPSKOD  
0.5  
0.5  
490  
3.0  
3.0  
ns  
ns  
ps p-p  
See the Jitter Measurement section  
DC SPECIFICATIONS  
Input Threshold  
Logic High  
VIH  
VIL  
0.7 × VDDx  
V
V
Logic Low  
0.3 × VDDx  
Output Voltage  
Logic High  
2
VOH  
VOL  
VDDx − 0.1 VDDx  
VDDx − 0.4 VDDx − 0.2  
V
V
V
V
IOx1 = −20 µA, VIx = VIxH  
2
IOx1 = −4 mA, VIx = VIxH  
3
Logic Low  
0.0  
0.2  
0.1  
0.4  
IOx1 = 20 µA, VIx = VIxL  
3
IOx1 = 4 mA, VIx = VIxL  
Input Current per Channel  
VE2 Enable Input Pull-Up Current  
DISABLE1 Input Pull-Down Current  
Tristate Output Current per Channel  
Supply Current per Channel  
Quiescent Input  
Quiescent Output  
Quiescent Input  
Quiescent Output  
Dynamic Input  
II  
−10  
−10  
+0.01  
−3  
9
+10  
µA  
µA  
µA  
µA  
0 V ≤ VIx ≤ VDDx  
VE2 = 0 V  
DISABLE1 = VDDx  
0 V ≤ VOx ≤ VDDx  
IPU  
IPD  
IOZ  
15  
+10  
−10  
+0.01  
IDDI (Q)  
0.3  
0.5  
3.0  
0.5  
0.01  
0.02  
0.55  
0.68  
5.0  
mA  
mA  
mA  
mA  
VI4 = 0 (E0, D0), 1 (E1, D1)5  
VI4 = 0 (E0, D0), 1 (E1, D1)5  
VI4 = 1 (E0, D0), 0 (E1, D1)5  
VI4 = 1 (E0, D0), 0 (E1, D1)5  
IDDO (Q)  
IDDI (Q)  
IDDO (Q)  
IDDI (D)  
IDDO (D)  
UVLO  
VDDxUV+  
VDDxUV−  
VDDxUVH  
0.73  
mA/Mbps Inputs switching, 50% duty cycle  
mA/Mbps Inputs switching, 50% duty cycle  
Dynamic Output  
Undervoltage Lockout  
Positive VDDx Threshold  
Negative VDDx Threshold  
VDDx Hysteresis  
1.6  
1.5  
0.1  
V
V
V
Rev. 0 | Page 3 of 18  
 
 
ADuM140D/ADuM140E  
Data Sheet  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
AC SPECIFICATIONS  
Output Rise/Fall Time  
tR/tF  
2.5  
100  
ns  
kV/µs  
10% to 90%  
VIx = VDDx, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
Common-Mode Transient Immunity6 |CMH|  
75  
75  
|CML|  
100  
kV/µs  
transient magnitude = 800 V  
1 IOx is the Channel x output current, where x = A, B, C, or D.  
2 VIxH is the input side logic high.  
3 VIxL is the input side logic low.  
4 VI is the voltage input.  
5 E0 is the ADuM140E0 model, D0 is the ADuM140D0 model, E1 is the ADuM140E1 model, and D1 is the ADuM140D1 model. See the Ordering Guide section.  
6 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-  
mode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode  
voltage edges.  
Table 2. Total Supply Current vs. Data Throughput  
1 Mbps  
Typ  
25 Mbps  
Typ  
100 Mbps  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
SUPPLY CURRENT  
Supply Current Side 1  
Supply Current Side 2  
IDD1  
IDD2  
6.8  
2.1  
10  
3.7  
7.8  
3.9  
12  
5.7  
11.8  
9.2  
17.4  
13  
mA  
mA  
ELECTRICAL CHARACTERISTICS—3.3 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.3 V. Minimum/maximum specifications apply over the entire recommended  
operation range: 3.0 V ≤ VDD1 ≤ 3.6 V, 3.0 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.  
Table 3.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Pulse Width  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
PW  
6.6  
150  
4.8  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
Within PWD limit  
Within PWD limit  
50% input to 50% output  
|tPLH − tPHL|  
tPHL, tPLH  
PWD  
6.8  
0.7  
1.5  
14  
3
tPSK  
7.5  
Between any two units at the same  
temperature, voltage, and load  
Channel Matching  
Codirectional  
Opposing Direction  
Jitter  
tPSKCD  
tPSKOD  
0.7  
0.7  
580  
3.0  
3.0  
ns  
ns  
ps p-p  
See the Jitter Measurement section  
DC SPECIFICATIONS  
Input Threshold  
Logic High  
VIH  
VIL  
0.7 × VDDx  
V
V
Logic Low  
0.3 × VDDx  
Output Voltage  
Logic High  
2
VOH  
VOL  
VDDx − 0.1 VDDx  
VDDx − 0.4 VDDx − 0.2  
V
V
V
V
IOx1 = −20 µA, VIx = VIxH  
2
IOx1 = −2 mA, VIx = VIxH  
3
Logic Low  
0.0  
0.2  
0.1  
0.4  
IOx1 = 20 µA, VIx = VIxL  
3
IOx1 = 2 mA, VIx = VIxL  
Input Current per Channel  
II  
−10  
−10  
+0.01  
−3  
9
+10  
µA  
µA  
µA  
µA  
0 V ≤ VIx ≤ VDDx  
VE2 = 0 V  
DISABLE1 = VDDx  
0 V ≤ VOx ≤ VDDx  
VE2 Enable Input Pull-Up Current  
DISABLE1 Input Pull-Down Current  
Tristate Output Current per Channel  
IPU  
IPD  
IOZ  
15  
+10  
−10  
+0.01  
Rev. 0 | Page 4 of 18  
 
 
 
Data Sheet  
ADuM140D/ADuM140E  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Supply Current per Channel  
Quiescent Input  
Quiescent Output  
Quiescent Input  
Quiescent Output  
Dynamic Input  
Dynamic Output  
Undervoltage Lockout  
Positive VDDx Threshold  
Negative VDDx Threshold  
VDDx Hysteresis  
IDDI (Q)  
0.3  
0.5  
3.0  
0.5  
0.01  
0.01  
0.53  
0.67  
4.9  
mA  
mA  
mA  
mA  
VI4 = 0 (E0, D0), 1 (E1, D1)5  
VI4 = 0 (E0, D0), 1 (E1, D1)5  
VI4 = 1 (E0, D0), 0 (E1, D1)5  
VI4 = 1 (E0, D0), 0 (E1, D1)5  
IDDO (Q)  
IDDI (Q)  
IDDO (Q)  
IDDI (D)  
IDDO (D)  
UVLO  
VDDxUV+  
VDDxUV−  
VDDxUVH  
0.7  
mA/Mbps Inputs switching, 50% duty cycle  
mA/Mbps Inputs switching, 50% duty cycle  
1.6  
1.5  
0.1  
V
V
V
AC SPECIFICATIONS  
Output Rise/Fall Time  
tR/tF  
2.5  
100  
ns  
kV/µs  
10% to 90%  
VIx = VDDx, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
Common-Mode Transient Immunity6 |CMH|  
75  
75  
|CML|  
100  
kV/µs  
transient magnitude = 800 V  
1 IOx is the Channel x output current, where x = A, B, C, or D.  
2 VIxH is the input side logic high.  
3 VIxL is the input side logic low.  
4 VI is the voltage input.  
5 E0 is the ADuM140E0 model, D0 is the ADuM140D0 model, E1 is the ADuM140E1 model, and D1 is the ADuM140D1 model. See the Ordering Guide section.  
6 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-  
mode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode  
voltage edges.  
Table 4. Total Supply Current vs. Data Throughput  
1 Mbps  
Typ  
25 Mbps  
Typ  
100 Mbps  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
SUPPLY CURRENT  
Supply Current Side 1  
Supply Current Side 2  
IDD1  
IDD2  
6.6  
2.0  
9.8  
3.7  
7.4  
3.5  
11.2  
5.5  
10.7  
8.2  
15.9  
11.6  
mA  
mA  
ELECTRICAL CHARACTERISTICS—2.5 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 2.5 V. Minimum/maximum specifications apply over the entire recommended  
operation range: 2.25 V ≤ VDD1 ≤ 2.75 V, 2.25 V ≤ VDD2 ≤ 2.75 V, 40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.  
Table 5.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Pulse Width  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
PW  
6.6  
150  
5.0  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
Within PWD limit  
Within PWD limit  
50% input to 50% output  
|tPLH − tPHL|  
tPHL, tPLH  
PWD  
7.0  
0.7  
1.5  
14  
3
tPSK  
6.8  
Between any two units at the  
same temperature, voltage, load  
Channel Matching  
Codirectional  
Opposing Direction  
Jitter  
tPSKCD  
tPSKOD  
0.7  
0.7  
800  
3.0  
3.0  
ns  
ns  
ps p-p  
See the Jitter Measurement section  
Rev. 0 | Page 5 of 18  
 
ADuM140D/ADuM140E  
Data Sheet  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Input Threshold  
Logic High  
VIH  
VIL  
0.7 × VDDx  
V
V
Logic Low  
0.3 × VDDx  
Output Voltage  
Logic High  
2
VOH  
VOL  
VDDx − 0.1  
VDDx − 0.4 VDDx − 0.2  
VDDx  
V
V
V
V
IOx1 = −20 µA, VIx = VIxH  
2
IOx1 = −2 mA, VIx = VIxH  
3
Logic Low  
0.0  
0.2  
0.1  
0.4  
IOx1 = 20 µA, VIx = VIxL  
3
IOx1 = 2 mA, VIx = VIxL  
Input Current per Channel  
VE2 Enable Input Pull-Up Current  
DISABLE1 Input Pull-Down Current  
Tristate Output Current per Channel  
Supply Current per Channel  
Quiescent Input  
Quiescent Output  
Quiescent Input  
Quiescent Output  
Dynamic Input  
II  
−10  
−10  
+0.01  
−3  
9
+10  
µA  
µA  
µA  
µA  
0 V ≤ VIx ≤ VDDx  
VE2 = 0 V  
DISABLE1 = VDDx  
0 V ≤ VOx ≤ VDDx  
IPU  
IPD  
IOZ  
15  
+10  
−10  
+0.01  
IDDI (Q)  
IDDO (Q)  
IDDI (Q)  
IDDO (Q)  
IDDI (D)  
IDDO (D)  
0.3  
0.5  
3.0  
0.5  
0.01  
0.01  
0.5  
0.66  
4.9  
mA  
mA  
mA  
mA  
VI4 = 0 (E0, D0), 1 (E1, D1)5  
VI4 = 0 (E0, D0), 1 (E1, D1)5  
VI4 = 1 (E0, D0), 0 (E1, D1)5  
VI4 = 1 (E0, D0), 0 (E1, D1)5  
0.69  
mA/Mbps Inputs switching, 50% duty cycle  
mA/Mbps Inputs switching, 50% duty cycle  
Dynamic Output  
Undervoltage Lockout  
Positive VDDx Threshold  
Negative VDDx Threshold  
VDDx Hysteresis  
VDDxUV+  
VDDxUV−  
VDDxUVH  
1.6  
1.5  
0.1  
V
V
V
AC SPECIFICATIONS  
Output Rise/Fall Time  
Common-Mode Transient Immunity6  
tR/tF  
|CMH|  
2.5  
100  
ns  
kV/µs  
10% to 90%  
VIx = VDDx, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
75  
75  
|CML|  
100  
kV/µs  
transient magnitude = 800 V  
1 IOx is the Channel x output current, where x = A, B, C, or D.  
2 VIxH is the input side logic high.  
3 VIxL is the input side logic low.  
4 VI is the voltage input.  
5 E0 is the ADuM140E0 model, D0 is the ADuM140D0 model, E1 is the ADuM140E1 model, and D1 is the ADuM140D1 model. See the Ordering Guide section.  
6 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-  
mode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode  
voltage edges.  
Table 6. Total Supply Current vs. Data Throughput  
1 Mbps  
Typ  
25 Mbps  
Typ  
100 Mbps  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
SUPPLY CURRENT  
Supply Current Side 1  
Supply Current Side 2  
IDD1  
IDD2  
6.5  
2.0  
9.8  
3.6  
7.3  
3.3  
11.1  
5.2  
10.4  
7.3  
15.5  
10.2  
mA  
mA  
Rev. 0 | Page 6 of 18  
Data Sheet  
ADuM140D/ADuM140E  
ELECTRICAL CHARACTERISTICS—1.8 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 1.8 V. Minimum/maximum specifications apply over the entire recommended  
operation range: 1.7 V ≤ VDD1 ≤ 1.9 V, 1.7 V ≤ VDD2 ≤ 1.9 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.  
Table 7.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Pulse Width  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
PW  
6.6  
150  
5.8  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
Within PWD limit  
Within PWD limit  
50% input to 50% output  
|tPLH − tPHL|  
tPHL, tPLH  
PWD  
8.7  
0.7  
1.5  
15  
3
tPSK  
7.0  
Between any two units at the same  
temperature, voltage, and load  
Channel Matching  
Codirectional  
Opposing Direction  
Jitter  
tPSKCD  
tPSKOD  
0.7  
0.7  
470  
3.0  
3.0  
ns  
ns  
ps p-p  
See the Jitter Measurement section  
DC SPECIFICATIONS  
Input Threshold  
Logic High  
Logic Low  
Output Voltage  
Logic High  
VIH  
VIL  
0.7 × VDDx  
VDDx − 0.1  
V
V
0.3 × VDDx  
2
VOH  
VOL  
VDDx  
V
V
V
V
IOx1 = −20 µA, VIx = VIxH  
2
VDDx − 0.4 VDDx − 0.2  
IOx1 = −2 mA, VIx = VIxH  
3
Logic Low  
0.0  
0.2  
0.1  
0.4  
IOx1 = 20 µA, VIx = VIxL  
3
IOx1 = 2 mA, VIx = VIxL  
Input Current per Channel  
VE2 Enable Input Pull-Up Current  
DISABLE1 Input Pull-Down Current  
Tristate Output Current per Channel  
Supply Current per Channel  
Quiescent Input  
Quiescent Output  
Quiescent Input  
Quiescent Output  
Dynamic Input  
II  
−10  
−10  
+0.01  
−3  
9
+10  
µA  
µA  
µA  
µA  
0 V ≤ VIx ≤ VDDx  
VE2 = 0 V  
DISABLE1 = VDDx  
0 V ≤ VOx ≤ VDDx  
IPU  
IPD  
IOZ  
15  
+10  
−10  
+0.01  
IDDI (Q)  
0.3  
0.5  
3.0  
0.5  
0.01  
0.01  
0.48  
0.66  
4.9  
mA  
mA  
mA  
mA  
VI4 = 0 (E0, D0), 1 (E1, D1)5  
VI4 = 0 (E0, D0), 1 (E1, D1)5  
VI4 = 1 (E0, D0), 0 (E1, D1)5  
VI4 = 1 (E0, D0), 0 (E1, D1)5  
IDDO (Q)  
IDDI (Q)  
IDDO (Q)  
IDDI (D)  
IDDO (D)  
UVLO  
VDDxUV+  
VDDxUV−  
VDDxUVH  
0.69  
mA/Mbps Inputs switching, 50% duty cycle  
mA/Mbps Inputs switching, 50% duty cycle  
Dynamic Output  
Undervoltage Lockout  
Positive VDDx Threshold  
Negative VDDx Threshold  
VDDx Hysteresis  
1.6  
1.5  
0.1  
V
V
V
AC SPECIFICATIONS  
Output Rise/Fall Time  
tR/tF  
2.5  
100  
ns  
kV/µs  
10% to 90%  
VIx = VDDx, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
Common-Mode Transient Immunity6 |CMH|  
75  
75  
|CML|  
100  
kV/µs  
transient magnitude = 800 V  
1 IOx is the Channel x output current, where x = A, B, C, or D.  
2 VIxH is the input side logic high.  
3 VIxL is the input side logic low.  
4 VI is the voltage input.  
5 E0 is the ADuM140E0 model, D0 is the ADuM140D0 model, E1 is the ADuM140E1 model, and D1 is the ADuM140D1 model. See the Ordering Guide section.  
6 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-  
mode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode  
voltage edges.  
Rev. 0 | Page 7 of 18  
 
ADuM140D/ADuM140E  
Data Sheet  
Table 8. Total Supply Current vs. Data Throughput  
1 Mbps  
Typ  
25 Mbps  
Typ  
100 Mbps  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
SUPPLY CURRENT  
Supply Current Side 1  
Supply Current Side 2  
IDD1  
IDD2  
6.4  
1.9  
9.8  
3.5  
7.2  
3.1  
11  
5.0  
10.2  
6.8  
15.2  
10  
mA  
mA  
INSULATION AND SAFETY RELATED SPECIFICATIONS  
For additional information, see www.analog.com/icouplersafety.  
Table 9.  
Parameter  
Symbol Value Unit  
Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
3750  
7.8  
V rms  
1-minute duration  
L (I01)  
L (I02)  
L (PCB)  
mm min Measured from input terminals to output terminals,  
shortest distance through air  
mm min Measured from input terminals to output terminals,  
shortest distance path along body  
mm min Measured from input terminals to output terminals,  
shortest distance through air, line of sight, in the PCB  
mounting plane  
Minimum External Tracking (Creepage)  
7.8  
8.1  
Minimum Clearance in the Plane of the Printed  
Circuit Board (PCB Clearance)  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Material Group  
25.5  
>400  
II  
μm min  
V
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
PACKAGE CHARACTERISTICS  
Table 10.  
Parameter  
Symbol Min Typ Max Unit Test Conditions/Comments  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
RI-O  
CI-O  
CI  
1013  
2.2  
4.0  
45  
pF  
pF  
f = 1 MHz  
IC Junction to Ambient Thermal Resistance  
θJA  
°C/W Thermocouple located at center of package underside  
1 The device is considered a 2-terminal device: Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
Rev. 0 | Page 8 of 18  
 
 
 
Data Sheet  
ADuM140D/ADuM140E  
REGULATORY INFORMATION  
See Table 15 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross-  
isolation waveforms and insulation levels.  
Table 11.  
UL (Pending)  
CSA (Pending)  
VDE (Pending)  
CQC (Pending)  
Recognized under 1577  
Component Recognition  
Program1  
Approved under CSA Component Acceptance  
Notice 5A  
Certified according to  
Certified by  
DIN V VDE V 0884-10 (VDE CQC11-471543-2012  
V 0884-10):2006-122  
Single Protection, 3750 V rms Basic insulation per CSA 60950-1-07+A1+A2 and  
Reinforced insulation,  
849 V peak  
Basic insulation per  
GB4943.1-2011  
Isolation Voltage  
IEC 60950-1, Second Edition +A1+A2, 800 V rms  
(1131 V peak)  
Reinforced insulation per CSA 60950-1-07+A1+A2  
and IEC 60950-1 Second Edition +A1+A2, 400 V rms  
(565 V peak) maximum working voltage  
Reinforced insulation (2MOPP) per IEC 60601-1  
Edition 3.1, 250 V rms (353 V peak) maximum  
Working voltage  
800 V rms (1131 V peak),  
tropical climate, altitude  
≤5000 meters  
Reinforced insulation per CSA 61010-1-12 and  
IEC 61010-1 Third Edition (Pollution Degree 2,  
Material Group III, Overvoltage Category II, and  
Overvoltage Category III): 300 V rms (424 V peak)  
maximum working voltage  
File E214100  
File 205078  
File 2471900-4880-0001  
File (pending)  
1 In accordance with UL 1577, each ADuM140D/ADuM140E is proof tested by applying an insulation test voltage ≥ 4500 V rms for 1 sec.  
2 In accordance with DIN V VDE V 0884-10, each ADuM140D/ADuM140E is proof tested by applying an insulation test voltage ≥ 1018 V peak for 1 sec (partial discharge  
detection limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.  
Rev. 0 | Page 9 of 18  
 
ADuM140D/ADuM140E  
Data Sheet  
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS  
These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance  
of the safety data. The * marking on packages denotes DIN V VDE V 0884-10 approval.  
Table 12.  
Description  
Test Conditions/Comments  
Symbol  
Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method B1  
I to IV  
I to III  
I to III  
40/125/21  
2
VIORM  
Vpd (m)  
848  
1592  
V peak  
V peak  
VIORM × 1.875 = Vpd (m), 100% production test,  
t
ini = tm = 1 sec, partial discharge < 5 pC  
Input to Output Test Voltage, Method A  
After Environmental Tests Subgroup 1  
Vpd (m)  
VIORM × 1.5 = Vpd (m), tini = 60 sec, tm = 10 sec,  
partial discharge < 5 pC  
VIORM × 1.2 = Vpd (m), tini = 60 sec, tm = 10 sec,  
partial discharge < 5 pC  
1274  
1019  
V peak  
V peak  
After Input and/or Safety Test Subgroup 2  
and Subgroup 3  
Highest Allowable Overvoltage  
Surge Isolation Voltage  
VIOTM  
VIOSM  
5303  
8000  
V peak  
V peak  
V peak = 12.8 kV, 1.2 µs rise time, 50 µs,  
50% fall time  
Safety Limiting Values  
Maximum value allowed in the event of a  
failure (see Figure 3)  
Maximum Junction Temperature  
Total Power Dissipation at 25°C  
Insulation Resistance at TS  
TS  
PS  
RS  
150  
2.78  
>109  
°C  
W
VIO = 500 V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
RECOMMENDED OPERATING CONDITIONS  
Table 13.  
Parameter  
Symbol  
TA  
VDD1, VDD2  
Rating  
Operating Temperature  
Supply Voltages  
Input Signal Rise and Fall Times  
−40°C to +125°C  
1.7 V to 5.5 V  
1.0 ms  
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
Figure 3. Thermal Derating Curve, Dependence of Safety Limiting Values  
with Ambient Temperature per DIN V VDE V 0884-10  
Rev. 0 | Page 10 of 18  
 
 
 
Data Sheet  
ADuM140D/ADuM140E  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 15. Maximum Continuous Working Voltage1  
Parameter  
Rating  
Constraint  
Table 14.  
Parameter  
AC Voltage  
Bipolar Waveform  
Basic Insulation  
Rating  
Storage Temperature (TST) Range  
Ambient Operating Temperature  
(TA) Range  
Supply Voltages (VDD1, VDD2  
Input Voltages (VIA, VIB, VIC, VID, VE2,  
DISABLE1)  
Output Voltages (VOA, VOB, VOC, VOD)  
Average Output Current per Pin3  
Side 1 Output Current (IO1)  
−65°C to +150°C  
−40°C to +125°C  
849 V peak  
790 V peak  
50-year minimum  
insulation lifetime  
50-year minimum  
insulation lifetime  
Reinforced Insulation  
)
−0.5 V to +7.0 V  
−0.5 V to VDDI1 + 0.5 V  
Unipolar Waveform  
Basic Insulation  
1698 V peak 50-year minimum  
insulation lifetime  
849 V peak  
−0.5 V to VDDO2 + 0.5 V  
Reinforced Insulation  
50-year minimum  
insulation lifetime  
−10 mA to +10 mA  
Side 2 Output Current (IO2)  
Common-Mode Transients4  
−10 mA to +10 mA  
−150 kV/μs to +150 kV/μs  
DC Voltage  
Basic Insulation  
1118 V peak Lifetime limited by  
package creepage  
maximum  
1 VDDI is the input side supply voltage.  
2 VDDO is the output side supply voltage.  
approved working  
voltage per IEC  
60950-1  
3 See Figure 3 for the maximum rated current values for various temperatures.  
4 Refers to the common-mode transients across the insulation barrier.  
Common-mode transients exceeding the absolute maximum ratings may  
cause latch-up or permanent damage.  
Reinforced Insulation  
559 V peak  
Lifetime limited by  
package creepage  
maximum  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
approved working  
voltage per IEC  
60950-1  
1 Refers to the continuous voltage magnitude imposed across the isolation  
barrier. See the Insulation Lifetime section for more details.  
ESD CAUTION  
Rev. 0 | Page 11 of 18  
 
 
 
ADuM140D/ADuM140E  
Data Sheet  
Truth Tables  
Table 16. ADuM140D Truth Table (Positive Logic)  
Default Low (D0),3  
VOx Output1, 2  
Default High (D1),3  
VOx Output1, 2  
Test Conditions/  
Comments  
VIx Input1, 2 VDISABLE1 Input1, 2  
VDDI State2  
Powered  
Powered  
Powered  
VDDO State2  
Powered  
Powered  
Powered  
L
H
X
L or NC  
L or NC  
H
L
H
L
L
H
H
Normal operation  
Normal operation  
Inputs disabled,  
fail-safe output  
Fail-safe output  
X4  
X4  
X4  
X4  
Unpowered  
Powered  
Powered  
Unpowered  
L
H
Indeterminate  
Indeterminate  
1 H means high, L means low, X means don’t care, and NC means not connected.  
2 VIx and VOx refer to the input and output signals of a given channel (A, B, C, or D). VDISABLE1 refers to the input disable signal on the same side as the VIx inputs. VDDI and  
VDDO refer to the supply voltages on the input and output sides of the given channel, respectively.  
3 D0 is the ADuM140D0 model and D1 is the ADuM140D1 model. See the Ordering Guide section.  
4 Input pins (VIx, DISABLE1, and VE2) on the same side as an unpowered supply must be in a low state to avoid powering the device through its ESD protection circuitry.  
Table 17. ADuM140E Truth Table (Positive Logic)  
Default Low (E0),3 Default High (E1),3 Test Conditions/  
VIx Input1, 2 VEx Input1, 2  
VDDI State2  
Powered  
Powered  
Powered  
VDDO State2  
Powered  
Powered  
Powered  
Powered  
Powered  
Unpowered  
VOx Output1, 2  
VOx Output1, 2  
Comments  
L
H or NC  
H or NC  
L
L
H
Z
L
L
H
Z
H
Normal operation  
Normal operation  
Outputs disabled  
Fail-safe output  
Outputs disabled  
H
X
L
X4  
X4  
H or NC  
L4  
X4  
Unpowered  
Unpowered  
Powered  
Z
Z
Indeterminate  
Indeterminate  
1 H means high, L means low, X means don’t care, and NC means not connected, and Z means high impedance.  
2 VIx and VOx refer to the input and output signals of a given channel (A, B, C, or D). VDISABLE1 refers to the input disable signal on the same side as the VIx inputs. VDDI and  
V
DDO refer to the supply voltages on the input and output sides of the given channel, respectively.  
3 E0 is the ADuM140E0 model and E1 is the ADuM140E1 model. See the Ordering Guide section.  
4 Input pins (VIx, DISABLE1, and VE2) on the same side as an unpowered supply must be in a low state to avoid powering the device through its ESD protection circuitry.  
Rev. 0 | Page 12 of 18  
Data Sheet  
ADuM140D/ADuM140E  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
16  
V
V
1
2
3
4
5
6
7
8
16  
V
DD1  
DD2  
DD1  
DD2  
GND  
15 GND  
GND  
15 GND  
1
IA  
IB  
IC  
ID  
2
1
IA  
IB  
IC  
ID  
2
V
V
V
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
V
V
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
OA  
OB  
OC  
OD  
OA  
OB  
OC  
OD  
E2  
ADuM140D  
ADuM140E  
TOP VIEW  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
DISABLE  
GND  
NC  
NC  
GND  
1
1
GND  
GND  
2
2
1
NIC = NO INTERNAL CONNECTION.  
LEAVE THIS PIN FLOATING.  
NIC = NO INTERNAL CONNECTION.  
LEAVE THIS PIN FLOATING.  
Figure 5. ADuM140E Pin Configuration  
Figure 4. ADuM140D Pin Configuration  
Reference the AN-1109 Application Note for specific layout guidelines.  
Table 18. Pin Function Descriptions  
Pin No.  
ADuM140D  
ADuM140E  
Mnemonic Description  
1
2, 8  
3
4
5
1
2, 8  
3
4
5
VDD1  
GND1  
VIA  
VIB  
VIC  
Supply Voltage for Isolator Side 1.  
Ground 1. Ground reference for Isolator Side 1.  
Logic Input A.  
Logic Input B.  
Logic Input C.  
Logic Input D.  
6
6
VID  
7
Not applicable DISABLE1  
Input Disable 1. This pin disables the isolator inputs. Outputs take on the logic state  
determined by the fail-safe option shown in the Ordering Guide.  
9, 15  
10  
9, 15  
7
GND2  
NIC  
Ground 2. Ground reference for Isolator Side 2.  
No Internal Connection. Leave this pin floating.  
Not applicable  
10  
VE2  
Output Enable 2. Active high logic input. When VE2 is high or disconnected, the VOA, VOB,  
VOC, and VOD outputs are enabled. When VE2 is low, the VOA, VOB, VOC, and VOD outputs are  
disabled to the high-Z state.  
11  
12  
13  
14  
16  
11  
12  
13  
14  
16  
VOD  
VOC  
VOB  
VOA  
VDD2  
Logic Output D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Supply Voltage for Isolator Side 2.  
Rev. 0 | Page 13 of 18  
 
ADuM140D/ADuM140E  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
14  
12  
10  
8
16  
V
V
V
V
= V  
= V  
= V  
= V  
= 5V  
V
V
V
V
= V  
= V  
= V  
= V  
= 5V  
DD1  
DD1  
DD1  
DD1  
DD2  
DD2  
DD2  
DD2  
DD1  
DD1  
DD1  
DD1  
DD2  
DD2  
DD2  
DD2  
= 3.3V  
= 2.5V  
= 1.8V  
= 3.3V  
= 2.5V  
= 1.8V  
14  
12  
10  
8
6
6
4
4
2
2
0
–40  
0
–20  
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
160  
TEMPERATURE (°C)  
DATA RATE (Mbps)  
Figure 8. Propagation Delay, TPLH vs. Temperature at Various Voltages  
Figure 6. IDD1 Supply Current vs. Data Rate at Various Voltages  
14  
16  
V
V
V
V
= V  
= V  
= V  
= V  
= 5V  
V
V
V
V
= V  
= V  
= V  
= V  
= 5V  
DD1  
DD1  
DD1  
DD1  
DD2  
DD2  
DD2  
DD2  
DD1  
DD1  
DD1  
DD1  
DD2  
DD2  
DD2  
DD2  
= 3.3V  
= 2.5V  
= 1.8V  
= 3.3V  
= 2.5V  
= 1.8V  
14  
12  
10  
8
12  
10  
8
6
6
4
4
2
2
0
–40  
0
–20  
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
160  
TEMPERATURE (°C)  
DATA RATE (Mbps)  
Figure 9. Propagation Delay, TPHL vs. Temperature at Various Voltages  
Figure 7. IDD2 Supply Current vs. Data Rate at Various Voltages  
Rev. 0 | Page 14 of 18  
 
Data Sheet  
ADuM140D/ADuM140E  
APPLICATIONS INFORMATION  
OVERVIEW  
PCB LAYOUT  
The ADuM140D/ADuM140E use a high frequency carrier to  
transmit data across the isolation barrier using iCoupler chip  
scale transformer coils separated by layers of polyimide isolation.  
Using an on-off keying (OOK) technique and the differential  
architecture shown in Figure 11 and Figure 12, the ADuM140D/  
ADuM140E have very low propagation delay and high speed.  
Internal regulators and input/output design techniques allow  
logic and supply voltages over a wide range from 1.7 V to 5.5 V,  
offering voltage translation of 1.8 V, 2.5 V, 3.3 V, and 5 V logic.  
The architecture is designed for high common-mode transient  
immunity and high immunity to electrical noise and magnetic  
interference. Radiated emissions are minimized with a spread  
spectrum OOK carrier and other techniques.  
The ADuM140D/ADuM140E digital isolators require no external  
interface circuitry for the logic interfaces. Power supply bypassing  
is strongly recommended at the input and output supply pins  
(see Figure 10). Bypass capacitors are most conveniently connected  
between Pin 1 and Pin 2 for VDD1 and between Pin 15 and Pin 16  
for VDD2. The recommended bypass capacitor value is between  
0.01 μF and 0.1 μF. The total lead length between both ends of  
the capacitor and the input power supply pin must not exceed  
10 mm. Bypassing between Pin 1 and Pin 8 and between Pin 9  
and Pin 16 must also be considered, unless the ground pair on  
each package side is connected close to the package.  
V
V
DD2  
DD1  
GND  
GND  
1
IA  
IB  
IC  
ID  
2
V
V
V
V
V
V
V
V
OA  
OB  
OC  
OD  
Figure 11 illustrates the waveforms for models of the ADuM140D/  
ADuM140E with the condition of the fail-safe output state equal  
to low, where the carrier waveform is off when the input state is  
low. If the input side is off or not operating, the fail-safe output state  
of low sets the output to low. For the ADuM140D/ADuM140E  
with a fail-safe output state of high, Figure 12 illustrates the  
conditions where the carrier waveform is off when the input  
state is high. When the input side is off or not operating, the  
fail-safe output state of high sets the output to high. See the  
Ordering Guide for the model numbers that have the fail-safe  
output state of low or the fail-safe output state of high.  
DISABLE /N/A  
NIC/V  
E2  
1
GND  
GND  
2
1
NIC = NO INTERNAL CONNECTION. LEAVE THIS PIN FLOATING.  
N/A = NOT APPLICABLE.  
Figure 10. Recommended Printed Circuit Board Layout  
In applications involving high common-mode transients, ensure  
that board coupling across the isolation barrier is minimized.  
Furthermore, design the board layout such that any coupling  
that does occur equally affects all pins on a given component  
side. Failure to ensure this can cause voltage differentials between  
pins exceeding the Absolute Maximum Ratings of the device,  
thereby leading to latch-up or permanent damage.  
See the AN-1109 Application Note for board layout guidelines.  
REGULATOR  
REGULATOR  
TRANSMITTER  
RECEIVER  
V
V
OUT  
IN  
GND  
GND  
2
1
Figure 11. Operational Block Diagram of a Single Channel with a Low Fail-Safe Output State  
REGULATOR  
REGULATOR  
TRANSMITTER  
RECEIVER  
V
V
OUT  
IN  
GND  
GND  
2
1
Figure 12. Operational Block Diagram of a Single Channel with a High Fail-Safe Output State  
Rev. 0 | Page 15 of 18  
 
 
 
 
 
 
ADuM140D/ADuM140E  
Data Sheet  
PROPAGATION DELAY RELATED PARAMETERS  
INSULATION LIFETIME  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component. The propagation  
delay to a Logic 0 output may differ from the propagation delay  
to a Logic 1 output.  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of  
insulation degradation is dependent on the characteristics of the  
voltage waveform applied across the insulation as well as on the  
materials and material interfaces.  
INPUT (V  
)
50%  
Ix  
The two types of insulation degradation of primary interest are  
breakdown along surfaces exposed to the air and insulation  
wear out. Surface breakdown is the phenomenon of surface  
tracking, and the primary determinant of surface creepage  
requirements in system level standards. Insulation wear out is the  
phenomenon where charge injection or displacement currents  
inside the insulation material cause long-term insulation  
degradation.  
tPLH  
tPHL  
OUTPUT (V  
)
50%  
Ox  
Figure 13. Propagation Delay Parameters  
Pulse width distortion is the maximum difference between these  
two propagation delay values and is an indication of how  
accurately the timing of the input signal is preserved.  
Channel matching is the maximum amount the propagation delay  
differs between channels within a single ADuM140D/  
ADuM140E component.  
Surface Tracking  
Surface tracking is addressed in electrical safety standards by  
setting a minimum surface creepage based on the working voltage,  
the environmental conditions, and the properties of the insulation  
material. Safety agencies perform characterization testing on the  
surface insulation of components that allows the components to be  
categorized in different material groups. Lower material group  
ratings are more resistant to surface tracking and, therefore, can  
provide adequate lifetime with smaller creepage. The minimum  
creepage for a given working voltage and material group is in each  
system level standard and is based on the total rms voltage  
across the isolation, pollution degree, and material group.  
The material group and creepage for the ADuM140D/ADuM140E  
isolators are presented in Table 9.  
Propagation delay skew is the maximum amount the  
propagation delay differs between multiple ADuM140D/  
ADuM140E components operating under the same conditions  
JITTER MEASUREMENT  
Figure 14 shows the eye diagram for the ADuM140D/ADuM140E.  
The measurement was taken using an Agilent 81110A pulse  
pattern generator at 150 Mbps with pseudorandom bit sequences  
(PRBS) 2(n − 1), n = 14, for 5 V supplies. Jitter was measured  
with the Tektronix Model 5104B oscilloscope, 1 GHz, 10 GS/sec  
with the DPOJET jitter and eye diagram analysis tools. The result  
shows a typical measurement on the ADuM140D/ADuM140E  
with 490 ps p-p jitter.  
Insulation Wear Out  
The lifetime of insulation caused by wear out is determined by  
its thickness, material properties, and the voltage stress applied.  
It is important to verify that the product lifetime is adequate at  
the application working voltage. The working voltage supported  
by an isolator for wear out may not be the same as the working  
voltage supported for tracking. It is the working voltage  
5
4
3
2
1
0
applicable to tracking that is specified in most standards.  
Testing and modeling have shown that the primary driver of long-  
term degradation is displacement current in the polyimide  
insulation causing incremental damage. The stress on the  
insulation can be broken down into broad categories, such as:  
dc stress, which causes very little wear out because there is no  
displacement current, and an ac component time varying  
voltage stress, which causes wear out.  
–10  
–5  
0
5
10  
TIME (ns)  
Figure 14. ADuM140D/ADuM140E Eye Diagram  
The ratings in certification documents are usually based on  
60 Hz sinusoidal stress because this reflects isolation from line  
voltage. However, many practical applications have combinations  
of 60 Hz ac and dc across the barrier as shown in Equation 1.  
Because only the ac portion of the stress causes wear out, the  
equation can be rearranged to solve for the ac rms voltage, as is  
shown in Equation 2. For insulation wear out with the  
polyimide materials used in these products, the ac rms voltage  
determines the product lifetime.  
Rev. 0 | Page 16 of 18  
 
 
 
 
Data Sheet  
ADuM140D/ADuM140E  
2
The working voltage across the barrier from Equation 1 is  
V
RMS VAC RMS2 VDC  
(1)  
(2)  
2
V
RMS VAC RMS2 VDC  
VRMS 2402 4002  
RMS = 466 V  
or  
2
VAC RMS VRMS2 VDC  
V
where:  
VAC RMS is the time varying portion of the working voltage.  
VDC is the dc offset of the working voltage.  
VRMS is the total rms working voltage.  
This is the working voltage used together with the material  
group and pollution degree when looking up the creepage  
required by a system standard.  
Calculation and Use of Parameters Example  
To determine if the lifetime is adequate, obtain the time varying  
portion of the working voltage. To obtain the ac rms voltage,  
use Equation 2.  
The following example frequently arises in power conversion  
applications. Assume that the line voltage on one side of the  
isolation is 240 VAC RMS and a 400 VDC bus voltage is present on  
the other side of the isolation barrier. The isolator material is  
polyimide. To establish the critical voltages in determining the  
creepage, clearance and lifetime of a device, see Figure 15 and  
the following equations.  
2
VAC RMS VRMS2 VDC  
V
AC RMS 4662 4002  
AC RMS = 240 V rms  
V
In this case, the ac rms voltage is simply the line voltage of  
240 V rms. This calculation is more relevant when the waveform is  
not sinusoidal. The value is compared to the limits for working  
voltage in Table 15 for the expected lifetime, less than a 60 Hz  
sine wave, and it is well within the limit for a 50-year service life.  
V
AC RMS  
V
V
V
DC  
PEAK  
RMS  
Note that the dc working voltage limit in Table 15 is set by the  
creepage of the package as specified in IEC 60664-1. This value  
can differ for specific system level standards.  
TIME  
Figure 15. Critical Voltage Example  
Rev. 0 | Page 17 of 18  
 
ADuM140D/ADuM140E  
OUTLINE DIMENSIONS  
Data Sheet  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 16. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
No. of  
Inputs, Inputs, Voltage  
No. of  
Withstand  
Fail-Safe  
Output  
State  
Temperature  
Range  
VDD1  
Side  
VDD2  
Side  
Rating  
(kV rms)  
Input  
Output Package  
Package  
Option  
Model1  
Disable Enable Description  
ADuM140D1BRWZ  
−40°C to +125°C  
4
4
4
4
4
4
4
4
0
0
0
0
0
0
0
0
3.75  
3.75  
3.75  
3.75  
3.75  
3.75  
3.75  
3.75  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
ADuM140D1BRWZ-RL −40°C to +125°C  
ADuM140D0BRWZ −40°C to +125°C  
ADuM140D0BRWZ-RL −40°C to +125°C  
ADuM140E1BRWZ −40°C to +125°C  
ADuM140E1BRWZ-RL −40°C to +125°C  
ADuM140E0BRWZ −40°C to +125°C  
ADuM140E0BRWZ-RL −40°C to +125°C  
1 Z = RoHS Compliant Part.  
©2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13119-0-4/15(0)  
Rev. 0 | Page 18 of 18  
 
 

相关型号:

ADUM140E1BRWZ-RL

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI

ADUM140E1BRZ

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI

ADUM140E1BRZ-RL7

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI

ADUM140X

Digital Isolator Product Selection and Resource Guide
ADI

ADUM1410

Quad-Channel Digital Isolators
ADI

ADUM1410ARWZ

Quad-Channel Digital Isolators
ADI

ADUM1410ARWZ-RL

Quad-Channel Digital Isolators
ADI

ADUM1410BRWZ

Quad-Channel Digital Isolators
ADI

ADUM1410BRWZ-RL

Quad-Channel Digital Isolators
ADI

ADUM1410_07

Quad-Channel Digital Isolators
ADI

ADUM1410_10

Quad-Channel Digital Isolators
ADI

ADUM1410_15

Quad-Channel Digital Isolators
ADI