ADUM1412BRWZ-RL [ADI]

Quad-Channel Digital Isolators; 四通道数字隔离器
ADUM1412BRWZ-RL
型号: ADUM1412BRWZ-RL
厂家: ADI    ADI
描述:

Quad-Channel Digital Isolators
四通道数字隔离器

驱动程序和接口 接口集成电路 光电二极管
文件: 总20页 (文件大小:517K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad-Channel Digital Isolators  
ADuM1410/ADuM1411/ADuM1412  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
Low power operation  
5 V operation  
1
2
3
16  
15  
14  
V
V
DD1  
DD2  
ADuM1410  
GND  
GND  
1
2
1.3 mA per channel max @ 0 Mbps to 2 Mbps  
4.0 mA per channel max @ 10 Mbps  
3 V operation  
0.8 mA per channel max @ 0 Mbps to 2 Mbps  
1.8 mA per channel max @ 10 Mbps  
Bidirectional communication  
3 V/5 V level translation  
High temperature operation: 105°C  
Up to 10 Mbps data rate (NRZ)  
Programmable default output state  
High common-mode transient immunity: >25 kV/μs  
16-lead, Pb-free, SOIC wide body package  
Safety and regulatory approvals  
UL recognition: 2500 V rms for 1 minute per UL 1577  
CSA component acceptance notice #5A  
VDE certificate of conformity (pending)  
DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01  
DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000  
V
V
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
V
V
V
V
IA  
OA  
OB  
OC  
OD  
4
5
13  
12  
IB  
V
IC  
6
7
8
11  
10  
9
V
ID  
DISABLE  
GND  
CTRL  
GND  
1
2
Figure 1. ADuM1410 Functional Block Diagram  
1
2
3
16  
15  
14  
V
V
DD1  
DD2  
ADuM1411  
GND  
GND  
1
2
V
V
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
V
V
V
V
IA  
OA  
OB  
OC  
ID  
4
5
13  
12  
IB  
V
IC  
6
7
8
11  
10  
9
V
OD  
CTRL  
GND  
CTRL  
2
1
GND  
1
2
Figure 2. ADuM1411 Functional Block Diagram  
V
IORM = 560 V peak  
1
2
3
16  
15  
14  
V
V
DD2  
DD1  
ADuM1412  
APPLICATIONS  
GND  
V
GND  
1
2
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
ENCODE  
V
General-purpose multichannel isolation  
SPI® interface/data converter isolation  
RS-232/RS-422/RS-485 transceiver  
Industrial field bus isolation  
IA  
IB  
OA  
V
4
5
13  
12  
V
OB  
V
V
V
V
OC  
IC  
ID  
6
7
8
11  
10  
9
OD  
CTRL  
GND  
CTRL  
2
1
GND  
1
2
Figure 3. ADuM1412 Functional Block Diagram  
GENERAL DESCRIPTION  
Furthermore, iCoupler devices consume one-tenth to one-sixth  
The ADuM141x1 are four-channel digital isolators based on  
Analog Devices, Inc. iCoupler® technology. Combining high  
speed CMOS and monolithic air core transformer technologies,  
these isolation components provide outstanding performance  
characteristics superior to alternatives such as optocoupler devices.  
the power of optocouplers at comparable signal data rates.  
The ADuM141x isolators provide four independent isolation  
channels in a variety of channel configurations and data rates  
(see the Ordering Guide) up to 10 Mbps. All models operate  
with the supply voltage on either side ranging from 2.7 V to 5.5 V,  
providing compatibility with lower voltage systems as well as  
enabling voltage translation functionality across the isolation  
barrier. All products also have a default output control pin. This  
allows the user to define the logic state the outputs are to adopt  
in the absence of the input power. Unlike other optocoupler  
alternatives, the ADuM141x isolators have a patented refresh  
feature that ensures dc correctness in the absence of input logic  
transitions and during power-up/power-down conditions.  
By avoiding the use of LEDs and photodiodes, iCoupler devices  
remove the design difficulties commonly associated with opto-  
couplers. The usual concerns that arise with optocouplers, such  
as uncertain current transfer ratios, nonlinear transfer functions,  
and temperature and lifetime effects are eliminated with the  
simple iCoupler digital interfaces and stable performance charac-  
teristics. The need for external drivers and other discrete  
components is eliminated with these iCoupler products.  
1 Protected by U.S. Patents 5,952,849, 6,873,065 and 7,075,329. Other patents pending.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADuM1410/ADuM1411/ADuM1412  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ......................................................... 12  
Recommended Operating Conditions .................................... 12  
ESD Caution................................................................................ 12  
Pin Configurations and Function Descriptions......................... 13  
Typical Performance Characteristics ........................................... 16  
Application Information................................................................ 18  
PC Board Layout ........................................................................ 18  
Propagation Delay-Related Parameters................................... 18  
DC Correctness and Magnetic Field Immunity........................... 18  
Power Consumption .................................................................. 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 V Operation................................ 3  
Electrical Characteristics—3 V Operation................................ 5  
Electrical Characteristics—Mixed 5 V/3 V or 3 V/5 V  
Operation....................................................................................... 7  
Package Characteristics ............................................................. 10  
Regulatory Information............................................................. 10  
Insulation and Safety-Related Specifications.......................... 10  
DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation  
Characteristics ............................................................................ 11  
REVISION HISTORY  
10/06—Rev. D to Rev. E  
Added ADuM1411 and ADuM1412................................Universal  
Deleted ADuM1310 ...........................................................Universal  
Changes to Features.......................................................................... 1  
Changes to Specifications Section.................................................. 3  
Updated Outline Dimensions....................................................... 20  
Changes to Ordering Guide .......................................................... 20  
3/06—Rev. C to Rev. D  
Added Note 1 and Changes to Figure 2......................................... 1  
Changes to Absolute Maximum Ratings..................................... 11  
11/05—Rev. SpB to Rev. C: Initial Version  
Rev. E | Page 2 of 20  
 
ADuM1410/ADuM1411/ADuM1412  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V OPERATION  
4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all min/max specifications apply over the entire recommended operation range, unless  
otherwise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. 1  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel,  
Quiescent  
Output Supply Current per Channel,  
Quiescent  
IDDI (Q)  
0.50  
0.38  
0.73  
0.53  
mA  
mA  
IDDO (Q)  
ADuM1410, Total Supply Current, Four  
Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
10 Mbps (BRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
2.4  
1.2  
3.2  
1.6  
mA  
mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
IDD1 (10)  
IDD2 (10)  
8.8  
2.8  
12  
4.0  
mA  
mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
ADuM1411, Total Supply Current, Four  
Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
10 Mbps (BRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
2.2  
1.8  
2.8  
2.4  
mA  
mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
IDD1 (10)  
IDD2 (10)  
5.4  
3.8  
7.6  
5.3  
mA  
mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
ADuM1412, Total Supply Current, Four  
Channels2  
DC to 2 Mbps  
VDD1 or VDD2 Supply Current  
10 Mbps (BRW Grade Only)  
VDD1 or VDD2 Supply Current  
For All Models  
IDD1 (Q), IDD2 (Q)  
IDD1 (10), IDD2 (10)  
IIA, IIB, IIC,  
2.0  
4.6  
2.6  
6.5  
mA  
mA  
μA  
DC to 1 MHz logic signal frequency  
5 MHz logic signal frequency  
Input Currents  
−10  
2.0  
+0.01 +10  
0 ≤ VIA,VIB, VIC,VID ≤ VDD1 or VDD2,  
IID, ICTRL1  
,
0 ≤ VCTRL1,VCTRL2 ≤ VDD1 or VDD2  
,
I
CTRL2, IDISABLE  
VDISABLE ≤ VDD1  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH  
VIL  
V
V
V
V
V
V
V
0.8  
VOAH, VOBH  
,
VDD1, VDD2 − 0.1 5.0  
VDD1, VDD2 − 0.4 4.8  
0.0  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
VOCH, VODH  
Logic Low Output Voltages  
VOAL, VOBL  
,
0.1  
0.1  
0.4  
VOCL, VODL  
0.04  
0.2  
SWITCHING SPECIFICATIONS  
ADuM1411ARW and ADuM1412ARW  
Minimum Pulse Width3  
PW  
1000 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate4  
1
20  
Propagation Delay5  
Pulse Width Distortion, |tPLH − tPHL  
Propagation Delay Skew6  
tPHL, tPLH  
PWD  
tPSK  
65  
100  
40  
5
|
ns  
ns  
ns  
50  
50  
Channel-to-Channel Matching7  
tPSKCD/OD  
Rev. E | Page 3 of 20  
 
ADuM1410/ADuM1411/ADuM1412  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
ADuM141xBRW  
Minimum Pulse Width3  
PW  
100  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate4  
10  
20  
Propagation Delay5  
tPHL, tPLH  
PWD  
30  
5
50  
5
5
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels7  
|
tPSK  
tPSKCD  
30  
5
ns  
Channel-to-Channel Matching,  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
For All Models  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity |CMH|  
at Logic High Output8  
Common-Mode Transient Immunity |CML|  
at Logic Low Output8  
tR/tF  
2.5  
35  
ns  
kV/μs  
CL = 15 pF, CMOS signal levels  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
transient magnitude = 800 V  
25  
25  
35  
kV/μs  
Refresh Rate  
Input Enable Time9  
Input Disable Time9  
Input Dynamic Supply Current per  
Channel10  
Output Dynamic Supply Current per IDDO (D)  
Channel10  
fr  
1.2  
Mbps  
μs  
μs  
tENABLE  
tDISABLE  
IDDI (D)  
2.0  
5.0  
VIA, VIB, VIC, VID, = 0 or VDD1  
VIA, VIB, VIC, VID, = 0 or VDD1  
0.12  
0.04  
mA/Mbps  
mA/Mbps  
1 All voltages are relative to their respective ground.  
2 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section.  
See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through  
Figure 15 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM1410/ADuM1411/ADuM1412 channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
9 Input enable time is the duration from when VDISABLE is set low until the output states are guaranteed to match the input states in the absence of any input data logic  
transitions. If an input data logic transition within a given channel does occur within this time interval, the output of that channel reaches the correct state within the  
much shorter duration as determined by the propagation delay specifications within this data sheet. Input disable time is the duration from when VDISABLE is set high  
until the output states are guaranteed to reach their programmed output levels, as determined by the CTRL logic state (See Table 10).  
10 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. E | Page 4 of 20  
 
 
ADuM1410/ADuM1411/ADuM1412  
ELECTRICAL CHARACTERISTICS—3 V OPERATION  
2.7 V ≤ VDD1 ≤ 3.6 V, 2.7 V ≤ VDD2 ≤ 3.6 V; all min/max specifications apply over the entire recommended operation range, unless  
otherwise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.0 V. 1  
Table 2.  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
IDDI (Q)  
0.25 0.38 mA  
0.19 0.33 mA  
Output Supply Current per Channel, Quiescent IDDO (Q)  
ADuM1410, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.2  
0.8  
1.6 mA  
1.0 mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
10 Mbps (BRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
4.5  
1.4  
6.5 mA  
1.8 mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
ADuM1411, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.0  
0.9  
1.9 mA  
1.7 mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
10 Mbps (BRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
3.1  
2.1  
4.5 mA  
3.0 mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
ADuM1412, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 or VDD2 Supply Current  
10 Mbps (BRW Grade Only)  
VDD1 or VDD2 Supply Current  
For All Models  
IDD1 (Q), IDD2 (Q)  
IDD1 (10), IDD2 (10)  
IIA, IIB, IIC,  
1.0  
2.6  
1.8 mA  
3.8 mA  
DC to 1 MHz logic signal frequency  
5 MHz logic signal frequency  
Input Currents  
−10  
1.6  
+0.01 +10 μA  
0 ≤ VIA,VIB, VIC,VID ≤ VDD1 or VDD2,  
IID, ICTRL1  
,
0 ≤ VCTRL1,VCTRL2 ≤ VDD1 or VDD2  
,
ICTRL2, IDISABLE  
VIH  
VIL  
VDISABLE ≤ VDD1  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
V
0.4  
0.1  
V
V
V
V
V
V
VOAH, VOBH  
,
VDD1, VDD2 − 0.1 3.0  
VDD1, VDD2 − 0.4 2.8  
0.0  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
VOCH, VODH  
Logic Low Output Voltages  
VOAL, VOBL  
,
VOCL, VODL  
0.04 0.1  
0.2  
0.4  
SWITCHING SPECIFICATIONS  
ADuM1411ARW and ADuM1412ARW  
Minimum Pulse Width3  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate4  
1
20  
Propagation Delay5  
tPHL, tPLH  
PWD  
tPSK  
75  
5
Pulse Width Distortion, |tPLH − tPHL  
Propagation Delay Skew6  
Channel-to-Channel Matching7  
ADuM141xBRW  
|
40  
50  
50  
ns  
ns  
ns  
tPSKCD/OD  
Minimum Pulse Width3  
Maximum Data Rate4  
Propagation Delay5  
PW  
100 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
20  
tPHL, tPLH  
40  
60  
Rev. E | Page 5 of 20  
 
ADuM1410/ADuM1411/ADuM1412  
Parameter  
Pulse Width Distortion, |tPLH − tPHL  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
5
|
PWD  
5
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels7  
5
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
30  
5
Channel-to-Channel Matching,  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
For All Models  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity  
at Logic High Output8  
Common-Mode Transient Immunity  
at Logic Low Output8  
tR/tF  
|CMH|  
2.5  
35  
ns  
kV/μs  
CL = 15 pF, CMOS signal levels  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
transient magnitude = 800 V  
25  
25  
|CML|  
35  
kV/μs  
Refresh Rate  
Input Enable Time9  
Input Disable Time9  
1.1  
2.0  
5.0  
Mbps  
μs  
μs  
tENABLE  
tDISABLE  
VIA, VIB, VIC, VID = 0 or VDD1  
VIA, VIB, VIC, VID = 0 or VDD1  
Input Dynamic Supply Current per Channel10 IDDI (D)  
Output Dynamic Supply Current per Channel10 IDDO (D)  
0.07  
0.02  
mA/Mbps  
mA/Mbps  
1 All voltages are relative to their respective ground.  
2 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section.  
See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through  
Figure 15 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM1410/ADuM1411/ADuM1412 channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
9 Input enable time is the duration from when VDISABLE is set low until the output states are guaranteed to match the input states in the absence of any input data logic  
transitions. If an input data logic transition within a given channel does occur within this time interval, the output of that channel reaches the correct state within the  
much shorter duration as determined by the propagation delay specifications within this data sheet. Input disable time is the duration from when VDISABLE is set high  
until the output states are guaranteed to reach their programmed output levels, as determined by the CTRL logic state (See Table 10).  
10 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. E | Page 6 of 20  
 
 
 
ADuM1410/ADuM1411/ADuM1412  
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V OPERATION  
5 V/3 V operation1: 4.5 V ≤ VDD1 ≤ 5.5 V, 2.7 V ≤ VDD2 ≤ 3.6 V; 3 V/5 V operation: 2.7 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all min/max  
specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at TA = 25°C;  
VDD1 = 3.0 V, VDD2 = 5 V or VDD1 = 5 V, VDD2 = 3.0 V.  
Table 3.  
Parameter  
Symbol Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent IDDI (Q)  
5 V/3 V Operation  
3 V/5 V Operation  
0.50  
0.25  
0.73 mA  
0.38 mA  
Output Supply Current per Channel, Quiescent IDDO (Q)  
5 V/3 V Operation  
3 V/5 V Operation  
0.19  
0.38  
0.33 mA  
0.53 mA  
ADuM1410, Total Supply Current, Four  
Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (Q)  
2.4  
1.2  
3.2 mA  
1.6 mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (Q)  
0.8  
1.2  
1.0 mA  
1.6 mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
10 Mbps (BRW Grade Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
8.6  
3.4  
11  
mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
3 V/5 V Operation  
6.5 mA  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (10)  
1.4  
2.6  
1.8 mA  
3.0 mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
ADuM1411, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (Q)  
2.2  
1.0  
2.8 mA  
1.9 mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (Q)  
0.9  
1.7  
1.7 mA  
2.4 mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
10 Mbps (BRW Grade Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
5.4  
3.1  
7.6 mA  
4.5 mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (10)  
2.1  
3.8  
3.0 mA  
5.3 mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
ADuM1412, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (Q)  
2.0  
1.0  
2.6 mA  
1.8 mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (Q)  
1.0  
2.0  
1.8 mA  
2.6 mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
Rev. E | Page 7 of 20  
 
ADuM1410/ADuM1411/ADuM1412  
Parameter  
10 Mbps (BRW Grade Only)  
Symbol Min  
Typ  
Max Unit  
Test Conditions  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (10)  
4.6  
2.6  
6.5 mA  
3.8 mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
IDD2 (10)  
2.6  
4.6  
3.8 mA  
6.5 mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
For All Models  
Input Currents  
IIA, IIB, IIC, −10  
+0.01  
+10 μA  
0 ≤ VIA,VIB, VIC,VID ≤ VDD1 or VDD2,  
IID, ICTRL1  
ICTRL2  
IDISABLE  
VIH  
,
0 ≤ VCTRL1,VCTRL2 ≤ VDD1 or VDD2  
VDISABLE ≤ VDD1  
,
,
Logic High Input Threshold  
5 V/3 V Operation  
3 V/5 V Operation  
2.0  
1.6  
V
V
Logic Low Input Threshold  
5 V/3 V Operation  
3 V/5 V Operation  
VIL  
0.8  
0.4  
V
V
V
V
V
V
V
Logic High Output Voltages  
VOAH, VOBH, VDD1, VDD2 − 0.1 VDD1, VDD2  
VOCH, VODH  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
VDD1, VDD2 − 0.4 VDD1, VDD − 0.2  
Logic Low Output Voltages  
VOAL, VOBL  
VOCL, VODL  
,
0.0  
0.04  
0.2  
0.1  
0.1  
0.4  
SWITCHING SPECIFICATIONS  
ADuM1411ARW and ADuM1412ARW  
Minimum Pulse Width3  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate4  
1
25  
Propagation Delay5  
tPHL, tPLH  
PWD  
tPSK  
70  
5
Pulse Width Distortion, |tPLH − tPHL  
Propagation Delay Skew6  
Channel-to-Channel Matching7  
ADuM141xBRW  
|
40  
50  
50  
ns  
ns  
ns  
tPSKCD/OD  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
100 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
25  
Propagation Delay5  
tPHL, tPLH  
PWD  
35  
5
60  
5
5
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels7  
|
ns  
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
30  
5
Channel-to-Channel Matching,  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
For All Models  
Output Rise/Fall Time (10% to 90%)  
5 V/3 V Operation  
3 V/5 V Operation  
Common-Mode Transient Immunity  
at Logic High Output8  
Common-Mode Transient Immunity  
at Logic Low Output8  
tR/tf  
CL = 15 pF, CMOS signal levels  
2.5  
2.5  
35  
ns  
ns  
kV/μs  
|CMH|  
|CML|  
fr  
25  
25  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V, transient  
magnitude = 800 V  
35  
kV/μs  
Refresh Rate  
5 V/3 V Operation  
3 V/5 V Operation  
Input Enable Time9  
1.2  
1.1  
2.0  
Mbps  
Mbps  
μs  
tENABLE  
VIA, VIB, VIC, VID = 0 or VDD1  
Rev. E | Page 8 of 20  
ADuM1410/ADuM1411/ADuM1412  
Parameter  
Input Disable Time9  
Symbol Min  
tDISABLE  
IDDI (D)  
Typ  
Max Unit  
Test Conditions  
5.0  
μs  
VIA, VIB, VIC, VID = 0 or VDD1  
Input Dynamic Supply Current per Channel10  
5 V Operation  
3 V Operation  
Output Dynamic Supply Current per Channel10 IDDI (D)  
0.12  
0.07  
mA/Mbps  
mA/Mbps  
5 V Operation  
3 V Operation  
0.04  
0.02  
mA/Mbps  
mA/Mbps  
1 All voltages are relative to their respective ground.  
2 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section.  
See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through  
Figure 15 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM1410/ADuM1411/ADuM1412 channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
9 Input enable time is the duration from when VDISABLE is set low until the output states are guaranteed to match the input states in the absence of any input data logic  
transitions. If an input data logic transition within a given channel does occur within this time interval, the output of that channel reaches the correct state within the  
much shorter duration as determined by the propagation delay specifications within this data sheet. Input disable time is the duration from when VDISABLE is set high  
until the output states are guaranteed to reach their programmed output levels, as determined by the CTRL logic state (See Table 10).  
10 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. E | Page 9 of 20  
 
 
ADuM1410/ADuM1411/ADuM1412  
PACKAGE CHARACTERISTICS  
Table 4.  
Parameter  
Symbol  
RI-O  
CI-O  
CI  
θJCI  
Min  
Typ  
1012  
2.2  
4.0  
33  
Max  
Unit  
Ω
pF  
pF  
°C/W  
°C/W  
Test Conditions  
Resistance (Input-to-Output)1  
Capacitance (Input-to-Output)1  
Input Capacitance2  
f = 1 MHz  
IC Junction-to-Case Thermal Resistance, Side 1  
IC Junction-to-Case Thermal Resistance, Side 2  
Thermocouple located at  
center of package underside  
θJCO  
28  
1 The ADuM141x device is considered a 2-terminal device; Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
REGULATORY INFORMATION  
The ADuM141x have been approved by the organizations listed in Table 5.  
Table 5.  
UL1  
CSA  
VDE2 (ADuM1411 and ADuM1412 pending)  
Recognized under 1577  
component recognition  
program1  
Approved under CSA Component  
Acceptance Notice #5A  
Certified according to DIN EN 60747-5-2  
(VDE 0884 Part 2): 2003-012  
1 In accordance with UL1577, each ADuM141x is proof tested by applying an insulation test voltage ≥3000 V rms for 1 second (current leakage detection limit = 5 μA).  
2 In accordance with DIN EN 60747-5-2, each ADuM141x is proof tested by applying an insulation test voltage ≥1050 V peak for 1 second (partial discharge detection  
limit = 5 pC). The * marking branded on the component designates DIN EN 60747-5-2 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 6.  
Parameter  
Symbol Value  
Unit Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
2500  
7.7 min  
V rms 1 minute duration  
L(I01)  
L(I02)  
mm  
Measured from input terminals to output terminals,  
shortest distance through air  
Minimum External Tracking (Creepage)  
8.1 min  
mm  
Measured from input terminals to output terminals,  
shortest distance path along body  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017 min mm  
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
>175  
IIIa  
V
Rev. E | Page 10 of 20  
 
 
 
 
ADuM1410/ADuM1411/ADuM1412  
DIN EN 60747-5-2 (VDE 0884 PART 2) INSULATION CHARACTERISTICS  
These isolators are suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by  
protective circuits. The * marking on packages denotes DIN EN 60747-5-2 approval.  
Table 7.  
Description  
Conditions  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree (DIN VDE 0110, Table 1)  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method B1  
I to IV1  
I to III  
I to II  
40/105/21  
2
VIORM  
VPR  
560  
1050  
V peak  
V peak  
VIORM × 1.875 = VPR, 100% Production Test, tm = 1 sec,  
partial discharge < 5 pC  
Input-to-Output Test Voltage, Method A  
After Environmental Tests Subgroup 1  
After Input and/or Safety Test Subgroup 2 VIORM × 1.2 = VPR, tm = 60 sec, Partial Discharge < 5 pC  
and Subgroup 3  
VIORM × 1.6 = VPR, tm = 60 sec, Partial Discharge < 5 pC  
VPR  
896  
672  
V peak  
V peak  
Highest Allowable Overvoltage  
Safety-Limiting Values  
Transient overvoltage, tTR = 10 seconds  
Maximum value allowed in the event of a failure; see  
Figure 7  
VTR  
4000  
V peak  
Case Temperature  
Side 1 Current  
Side 2 Current  
TS  
IS1  
IS2  
RS  
150  
265  
335  
>109  
°C  
mA  
mA  
Ω
Insulation Resistance at TS  
VIO = 500 V  
1 See DIN VDE 0110 for definition of Classification 1 through Classification IV listed in the Characteristic column.  
Rev. E | Page 11 of 20  
 
ADuM1410/ADuM1411/ADuM1412  
ABSOLUTE MAXIMUM RATINGS  
Ambient temperature (TA) = 25°C, unless otherwise noted.  
Table 8.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Storage Temperature (TST)  
−65°C to +150°C  
−40°C to +105°C  
Ambient Operating  
Temperature (TA)  
Supply Voltages1 (VDD1, VDD2  
)
−0.5 V to +7.0 V  
Input Voltages1, 2 (VIA, VIB, VIC, VID,  
VE1, VE2)  
−0.5 V to VDDI + 0.5 V  
RECOMMENDED OPERATING CONDITIONS  
Output Voltages1, 2 (VOA, VOB, VOC, VOD)  
−0.5 V to VDDO + 0.5 V  
All voltages are relative to their respective ground. See the DC  
Correctness and Magnetic Field Immunity section for information  
on immunity to external magnetic fields.  
Average Output Current per Pin3  
Side 1 (IO1)  
−18 mA to +18 mA  
Side 2 (IO2)  
−22 mA to +22 mA  
−100 kV/ꢀs to +100 kV/ꢀs  
Table 9.  
Parameter  
Common-Mode Transients4  
Symbol  
Min Max Unit  
1
All voltages are relative to their respective ground.  
Operating Temperature  
Supply Voltages  
Input Signal Rise and Fall Times  
TA  
−40 +105 °C  
2 VDDI and VDDO refer to the supply voltages on the input and output sides of a  
given channel, respectively. See the PC Board Layout section.  
3 See Figure 7 for maximum rated current values for various temperatures.  
4 Refers to common-mode transients across the insulation barrier. Common-  
mode transients exceeding the absolute maximum ratings may cause latch-  
up or permanent damage.  
VDD1, VDD2 2.7  
5.5  
1.0  
V
ms  
ESD CAUTION  
Table 10. Truth Table (Positive Logic)  
VIX  
CTRL  
VDISABLE VDDI  
VDDO  
VOX  
Input1 Input2 State3 State4  
State5  
Output1 Notes  
H
L
X
X
X
X
X
L or NC Powered  
L or NC Powered  
Powered  
Powered  
Powered  
Powered  
H
L
H
L
Normal operation, data is high.  
Normal operation, data is low.  
Inputs disabled. Outputs are in the default state as determined by CTRL.  
Inputs disabled. Outputs are in the default state as determined by CTRL.  
Input unpowered. Outputs are in the default state as determined by CTRL.  
Outputs return to input state within 1 μs of VDDI power restoration.  
See the Pin Configurations and Function Descriptions section for more  
details.  
H or NC H  
L
H or NC X  
X
X
H
Unpowered Powered  
H
X
X
L
X
X
Unpowered Powered  
L
Input unpowered. Outputs are in the default state as determined by CTRL.  
Outputs return to input state within 1 μs of VDDI power restoration.  
See the Pin Configurations and Function Descriptions section for more  
details.  
Output unpowered. Output pins are in high impedance state.  
Outputs return to input state within 1 μs of VDDO power restoration.  
See the Pin Configurations and Function Descriptions section for more  
details.  
X
Powered  
Unpowered  
Z
1 VIX and VOX refer to the input and output signals of a given channel (A, B, C, or D).  
2 CTRL refers to the CTRL signal on the input side of a given channel (A, B, C, or D).  
3 Available only on ADuM1410.  
4 VDDI refers to the power supply on the input side of a given channel (A, B, C, or D).  
5 VDDO refers to the power supply on the output side of a given channel (A, B, C, or D).  
Rev. E | Page 12 of 20  
 
 
 
 
 
 
 
 
 
 
ADuM1410/ADuM1411/ADuM1412  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
GND *  
15 GND *  
1
2
V
V
V
V
14  
13  
12  
11  
V
V
V
V
IA  
IB  
IC  
ID  
OA  
OB  
OC  
OD  
ADuM1410  
TOP VIEW  
(Not to Scale)  
DISABLE  
GND *  
10 CTRL  
GND *  
9
1
2
*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED. CONNECTING BOTH  
TO GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY  
1
CONNECTED. CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 4. ADuM1410 Pin Configuration  
Table 11. ADuM1410 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
VDD1  
GND1  
Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 8 are internally connected, and connecting both to GND1 is  
recommended.  
3
4
5
6
7
VIA  
VIB  
VIC  
VID  
Logic Input A.  
Logic Input B.  
Logic Input C.  
Logic Input D.  
DISABLE  
Input Disable. Disables the isolator inputs and halts the dc refresh circuits. Outputs take on the logic state determined  
by CTRL.  
8
GND1  
GND2  
CTRL  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 8 are internally connected, and connecting both to GND1 is  
recommended.  
Ground 2. Ground reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and connecting both to GND2 is  
recommended.  
Default Output Control. Controls the logic state the outputs assume when the input power is off. VOA, VOB, VOC, and VOD  
outputs are high when CTRL is high or disconnected and VDD1 is off. VOA, VOB, VOC, and VOD outputs are low when CTRL is  
low and VDD1 is off. When VDD1 power is on, this pin has no effect.  
9
10  
11  
12  
13  
14  
15  
VOD  
VOC  
VOB  
VOA  
Logic Output D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
GND2  
Ground 2. Ground reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and connecting both to GND2 is  
recommended.  
16  
VDD2  
Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.  
Rev. E | Page 13 of 20  
 
 
ADuM1410/ADuM1411/ADuM1412  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
GND *  
15 GND *  
1
2
V
V
V
14  
13  
12  
11  
V
V
V
V
IA  
IB  
IC  
OA  
OB  
OC  
ID  
ADuM1411  
TOP VIEW  
(Not to Scale)  
V
OD  
CTRL  
10 CTRL  
1
2
GND *  
9
GND *  
2
1
*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED. CONNECTING BOTH  
TO GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY  
1
CONNECTED. CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 5. ADuM1411 Pin Configuration  
Table 12. ADuM1411 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
VDD1  
GND1  
Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 8 are internally connected, and connecting both to GND1 is  
recommended.  
3
4
5
6
7
VIA  
VIB  
VIC  
VOD  
CTRL1  
Logic Input A.  
Logic Input B.  
Logic Input C.  
Logic Output D.  
Default Output Control. Controls the logic state the outputs assume when the input power is off. VOD output is high  
when CTRL1 is high or disconnected and VDD2 is off. VOD output is low when CTRL1 is low and VDD2 is off. When VDD2  
power is on, this pin has no effect.  
8
GND1  
GND2  
CTRL2  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 8 are internally connected, and connecting both to GND1 is  
recommended.  
Ground 2. Ground reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and connecting both to GND2 is  
recommended.  
Default Output Control. Controls the logic state the outputs assume when the input power is off. VOA, VOB, and VOC  
outputs are high when CTRL2 is high or disconnected and VDD1 is off. VOA, VOB, and VOC outputs are low when CTRL2 is  
low and VDD1 is off. When VDD1 power is on, this pin has no effect.  
9
10  
11  
12  
13  
14  
15  
VID  
VOC  
VOB  
VOA  
GND2  
Logic Input D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Ground 2. Ground reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and connecting both to GND2 is  
recommended.  
16  
VDD2  
Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.  
Rev. E | Page 14 of 20  
ADuM1410/ADuM1411/ADuM1412  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
GND *  
15 GND *  
1
2
V
V
14  
13  
12  
11  
V
V
V
V
IA  
OA  
OB  
IC  
ADuM1412  
IB  
TOP VIEW  
(Not to Scale)  
V
V
OC  
OD  
ID  
CTRL  
10 CTRL  
2
1
GND *  
9
GND *  
2
1
*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED. CONNECTING BOTH  
TO GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY  
1
CONNECTED. CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 6. ADuM1412 Pin Configuration  
Table 13. ADuM1412 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
VDD1  
GND1  
Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 8 are internally connected, and connecting both to GND1 is  
recommended.  
3
4
5
6
7
VIA  
VIB  
VOC  
VOD  
CTRL1  
Logic Input A.  
Logic Input B.  
Logic Output C.  
Logic Output D.  
Default Output Control. Controls the logic state the outputs assume when the input power is off. VOC and VOD outputs  
are high when CTRL1 is high or disconnected and VDD2 is off. VOC and VOD outputs are low when CTRL1 is low and VDD2 is  
off. When VDD2 power is on, this pin has no effect.  
8
GND1  
GND2  
CTRL2  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 8 are internally connected, and connecting both to GND1 is  
recommended.  
Ground 2. Ground reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and connecting both to GND2 is  
recommended.  
Default Output Control. Controls the logic state the outputs assume when the input power is off. VOA and VOB outputs  
are high when CTRL2 is high or disconnected and VDD1 is off. VOA and VOB outputs are low when CTRL2 is low and VDD1 is  
off. When VDD1 power is on, this pin has no effect.  
9
10  
11  
12  
13  
14  
15  
VID  
VIC  
VOB  
VOA  
GND2  
Logic Input D.  
Logic Input C.  
Logic Output B.  
Logic Output A.  
Ground 2. Ground reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and connecting both to GND2 is  
recommended.  
16  
VDD2  
Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.  
Rev. E | Page 15 of 20  
ADuM1410/ADuM1411/ADuM1412  
TYPICAL PERFORMANCE CHARACTERISTICS  
350  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
300  
250  
SIDE #2  
200  
5V  
3V  
150  
SIDE #1  
100  
50  
0
0
50  
100  
150  
200  
0
2
4
6
8
10  
CASE TEMPERATURE (°C)  
DATA RATE (Mbps)  
Figure 7. Thermal Derating Curve, Dependence of Safety-Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
Figure 10. Typical Supply Current per Output Channel vs. Data Rate  
for 5 V and 3 V Operation (15 pF Output Load)  
2.0  
10  
8
1.5  
6
5V  
1.0  
5V  
4
3V  
0.5  
2
3V  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 8. Typical Supply Current per Input Channel vs. Data Rate  
for 5 V and 3 V Operation  
Figure 11. Typical ADuM1410 VDD1 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
1.0  
0.9  
0.8  
0.7  
10  
8
0.6  
6
5V  
0.5  
0.4  
0.3  
4
5V  
3V  
0.2  
2
0.1  
0
3V  
0
0
2
4
6
8
10  
0
2
4
6
8
10  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 9. Typical Supply Current per Output Channel vs. Data Rate  
for 5 V and 3 V Operation (No Output Load)  
Figure 12. Typical ADuM1410 VDD2 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
Rev. E | Page 16 of 20  
 
 
 
 
 
 
 
 
 
 
 
 
ADuM1410/ADuM1411/ADuM1412  
10  
8
10  
8
6
6
4
4
5V  
3V  
5V  
3V  
2
2
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 13. Typical ADuM1411 VDD1 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
Figure 15. Typical ADuM1412 VDD1 or VDD2 Supply Current vs.  
Data Rate for 5 V and 3 V Operation  
10  
8
6
4
5V  
2
3V  
0
0
2
4
6
8
10  
DATA RATE (Mbps)  
Figure 14. Typical ADuM1411 VDD2 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
Rev. E | Page 17 of 20  
 
 
 
ADuM1410/ADuM1411/ADuM1412  
APPLICATION INFORMATION  
PC BOARD LAYOUT  
DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY  
The ADuM141x digital isolator requires no external interface  
circuitry for the logic interfaces. Power supply bypassing is  
strongly recommended at the input and output supply pins  
(see Figure 16). Bypass capacitors are most conveniently con-  
nected between Pin 1 and Pin 2 for VDD1, and between Pin 15  
and Pin 16 for VDD2. The capacitor value should be between  
0.01 μF and 0.1 μF. The total lead length between both ends of  
the capacitor and the input power supply pin should not exceed  
20 mm. Bypassing between Pin 1 and Pin 8 and between Pin 9  
and Pin 16 should also be considered unless the ground pair on  
each package side is connected close to the package.  
Positive and negative logic transitions at the isolator input  
cause narrow (~1 ns) pulses to be sent to the decoder using the  
transformer. The decoder is bistable and is, therefore, either set  
or reset by the pulses, indicating input logic transitions. In the  
absence of logic transitions at the input for more than 2 μs, a  
periodic set of refresh pulses indicative of the correct input state  
are sent to ensure dc correctness at the output. If the decoder  
receives no internal pulses of more than approximately 5 μs, the  
input side is assumed to be unpowered or nonfunctional, in  
which case the isolator output is forced to a default state (see  
Table 10) by the watchdog timer circuit.  
V
GND  
V
DD1  
DD2  
GND  
The magnetic field immunity of the ADuM141x is determined  
by the changing magnetic field which induces a voltage in the  
transformer’s receiving coil large enough to either falsely set or  
reset the decoder. The following analysis defines the conditions  
under which this can occur. The 3 V operating condition of the  
ADuM141x is examined because it represents the most suscep-  
tible mode of operation.  
1
IA  
IB  
IC  
ID  
2
V
V
V
V
V
V
V
V
OA  
OB  
OC  
OD  
DISABLE  
GND  
CTRL  
GND  
1
2
Figure 16. Recommended Printed Circuit Board Layout  
In applications involving high common-mode transients, it  
is important to minimize board coupling across the isolation  
barrier. Furthermore, design the board layout such that any  
coupling that does occur equally affects all pins on a given  
component side. Failure to ensure this can cause voltage  
differentials between pins exceeding the absolute maximum  
ratings of the device, thereby leading to latch-up or permanent  
damage.  
The pulses at the transformer output have an amplitude greater  
than 1.0 V. The decoder has a sensing threshold at about 0.5 V, thus  
establishing a 0.5 V margin in which induced voltages can be  
tolerated. The voltage induced across the receiving coil is given by  
2
V = (−dβ/dt)π rn ; n = 1, 2, … , N  
where:  
β is magnetic flux density (gauss).  
N is the number of turns in the receiving coil.  
rn is the radius of the nth turn in the receiving coil (cm).  
PROPAGATION DELAY-RELATED PARAMETERS  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component. The input to  
output propagation delay time for a high to low transition may  
differ from the propagation delay time of a low to high  
transition.  
Given the geometry of the receiving coil in the ADuM141x and  
an imposed requirement that the induced voltage be, at most,  
50% of the 0.5 V margin at the decoder, a maximum allowable  
magnetic field at a given frequency can be calculated. The result  
is shown in Figure 18.  
INPUT (V  
)
50%  
IX  
100  
tPLH  
tPHL  
OUTPUT (V  
)
50%  
OX  
10  
Figure 17. Propagation Delay Parameters  
1
Pulse width distortion is the maximum difference between  
these two propagation delay values, and it is an indication of  
how accurately the timing of the input signal is preserved.  
0.1  
Channel-to-channel matching refers to the maximum amount  
the propagation delay differs between channels within a single  
ADuM141x component.  
0.01  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
Propagation delay skew refers to the maximum amount the  
propagation delay differs between multiple ADuM141x  
components operating under the same conditions.  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 18. Maximum Allowable External Magnetic Flux Density  
Rev. E | Page 18 of 20  
 
 
 
 
ADuM1410/ADuM1411/ADuM1412  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 kgauss induces a  
voltage of 0.25 V at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
Similarly, if such an event occurs during a transmitted pulse  
(and was of the worst-case polarity), it reduces the received  
pulse from >1.0 V to 0.75 V—still well above the 0.5 V sensing  
threshold of the decoder.  
Note that at combinations of strong magnetic field and high  
frequency, any loops formed by printed circuit board traces  
could induce error voltages sufficiently large enough to trigger  
the thresholds of succeeding circuitry. Care should be taken in  
the layout of such traces to avoid this possibility.  
POWER CONSUMPTION  
The supply current at a given channel of the ADuM141x  
isolator is a function of the supply voltage, the data rate of the  
channel, and the output load of the channel.  
The preceding magnetic flux density values correspond to  
specific current magnitudes at given distances from the  
ADuM141x transformers. Figure 19 expresses these allowable  
current magnitudes as a function of frequency for selected  
distances. As shown, the ADuM141x is extremely immune and  
can be affected only by extremely large currents operated at  
high frequency very close to the component. For the 1 MHz  
example noted, a 0.5 kA current needed to be placed 5 mm  
away from the ADuM141x to affect the operation of the  
component.  
For each input channel, the supply current is given by  
IDDI = IDDI (Q)  
DDI = IDDI (D) × (2f fr) + IDDI (Q)  
f ≤ 0.5 fr  
f > 0.5 fr  
I
For each output channel, the supply current is given by  
IDDO = IDDO (Q) f ≤ 0.5 fr  
I
DDO = (IDDO (D) + (0.5 × 10−3) × CL × VDDO) × (2f − fr) + IDDO (Q)  
f > 0.5 fr  
1000  
DISTANCE = 1m  
where:  
DDI (D), IDDO (D) are the input and output dynamic supply currents  
100  
I
per channel (mA/Mbps).  
CL is the output load capacitance (pF).  
10  
V
DDO is the output supply voltage (V).  
DISTANCE = 100mm  
f is the input logic signal frequency (MHz); it is half of the input  
1
data rate expressed in units of Mbps.  
DISTANCE = 5mm  
fr is the input stage refresh rate (Mbps).  
0.1  
I
DDI (Q), IDDO (Q) are the specified input and output quiescent  
supply currents (mA).  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
To calculate the total VDD1 and VDD2 supply current, the supply  
currents for each input and output channel corresponding to  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 19. Maximum Allowable Current for Various  
Current-to-ADuM141x Spacings  
VDD1 and VDD2 are calculated and totaled. Figure 8 and Figure 9  
provide per-channel supply currents as a function of data rate  
for an unloaded output condition. Figure 10 provides per-  
channel supply current as a function of data rate for a 15 pF  
output condition. Figure 11 through Figure 15 provide total  
VDD1 and VDD2 supply current as a function of data rate for  
ADuM1410/ADuM1411/ADuM1412 channel configurations.  
Rev. E | Page 19 of 20  
 
 
 
 
ADuM1410/ADuM1411/ADuM1412  
OUTLINE DIMENSIONS  
10.50 (0.4134)  
10.10 (0.3976)  
16  
9
8
7.60 (0.2992)  
7.40 (0.2913)  
1
10.65 (0.4193)  
10.00 (0.3937)  
0.50 (0.0197)  
0.25 (0.  
0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 20. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (RW-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Number  
of Inputs,  
DD1 Side  
Number  
of Inputs,  
Maximum  
Maximum  
Maximum Propagation Pulse Width Temperature  
Data Rate Delay, 5 V  
Package  
Option  
Model  
V
VDD2 Side  
Distortion  
5 ns  
Range  
Package Description  
ADuM1410BRWZ1  
ADuM1410BRWZ-RL1  
4
0
10 Mbps  
10 Mbps  
50 ns  
50 ns  
−40°C to +105°C 16-Lead SOIC_W, Wide Body RW-16  
−40°C to +105°C 16-Lead SOIC_W, Wide Body, RW-16  
4
0
5 ns  
13” Reel  
ADuM1411ARWZ1  
ADuM1411ARWZ-RL1  
1 Mbps  
1 Mbps  
3
3
1
1
100 ns  
100 ns  
40 ns  
40 ns  
−40°C to +105°C 16-Lead SOIC_W, Wide Body RW-16  
−40°C to +105°C 16-Lead SOIC_W, Wide Body, RW-16  
13” Reel  
ADuM1411BRWZ1  
ADuM1411BRWZ-RL1  
10 Mbps  
10 Mbps  
3
3
1
1
50 ns  
50 ns  
5 ns  
5 ns  
−40°C to +105°C 16-Lead SOIC_W, Wide Body RW-16  
−40°C to +105°C 16-Lead SOIC_W, Wide Body, RW-16  
13” Reel  
ADuM1412ARWZ1  
ADuM1412ARWZ-RL1  
1 Mbps  
1 Mbps  
2
2
2
2
100 ns  
100 ns  
40 ns  
40 ns  
−40°C to +105°C 16-Lead SOIC_W, Wide Body RW-16  
−40°C to +105°C 16-Lead SOIC_W, Wide Body, RW-16  
13” Reel  
ADuM1412BRWZ1  
ADuM1412BRWZ-RL1  
2
2
2
2
10 Mbps  
10 Mbps  
50 ns  
50 ns  
5 ns  
5 ns  
−40°C to +105°C 16-Lead SOIC_W, Wide Body RW-16  
−40°C to +105°C 16-Lead SOIC_W, Wide Body, RW-16  
13” Reel  
1 Z = Pb-free part.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06502-0-10/06(E)  
Rev. E | Page 20 of 20  
 
 
 
 

相关型号:

ADUM1412_15

Quad-Channel Digital Isolators
ADI

ADUM141D

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI

ADUM141D0BRWZ

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI

ADUM141D0BRWZ-RL

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI

ADUM141D0BRZ

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI

ADUM141D0BRZ-RL7

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI

ADUM141D1BRWZ

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI

ADUM141D1BRWZ-RL

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI

ADUM141D1BRZ

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI

ADUM141D1BRZ-RL7

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI

ADUM141E

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI

ADUM141E0BRWZ

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI