ADUM1440ARSZ [ADI]

Micropower Quad-Channel Digital Isolator, Default High (4/0 Channel Directionality);
ADUM1440ARSZ
型号: ADUM1440ARSZ
厂家: ADI    ADI
描述:

Micropower Quad-Channel Digital Isolator, Default High (4/0 Channel Directionality)

光电二极管 接口集成电路
文件: 总25页 (文件大小:458K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Micropower  
Quad-Channel Digital Isolators  
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
Ultralow power operation  
3.3 V operation (typical)  
V
1
2
3
16  
15  
14  
V
DD1  
ADuM144x  
QSOP  
DD2  
GND  
GND  
1
2
V
V
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
V
V
V
V
IA  
OA  
OB  
5.6 μA per channel quiescent current, refresh enabled  
0.3 μA per channel quiescent current, refresh disabled  
148 μA/Mbps per channel typical dynamic current  
2.5 V operation (typical)  
3.1 μA per channel quiescent current, refresh enabled  
0.1 μA per channel quiescent current, refresh disabled  
117 μA/Mbps per channel typical dynamic current  
Small, 16-lead QSOP and 20-Lead SSOP  
Bidirectional communication  
Up to 2 Mbps data rate (NRZ)  
High temperature operation: 125°C  
High common-mode transient immunity: >25 kV/μs  
Safety and regulatory approvals  
4
5
13  
12  
IB  
V
/V  
IC OC  
/V  
OC IC  
6
7
8
11  
10  
9
V
/V  
ID OD  
/V  
OD ID  
EN  
EN  
2
1
1
GND  
GND  
2
Figure 1.  
1
20  
V
V
DD1  
ADuM144x  
DD2  
2
3
19  
18  
GND  
GND  
2
1
V
V
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
V
V
V
V
IA  
OA  
4
5
17  
16  
IB  
OB  
V
/V  
/V  
IC OC  
OC IC  
6
7
15  
14  
13  
12  
11  
V
/V  
/V  
ID OD  
OD ID  
EN  
EN  
2
1
UL 1577 component recognition program  
2500 V rms for 1 minute per UL 1577 QSOP package  
3750V rms for 1 minute per UL 1577 SSOP package  
CSA Component Acceptance Notice 5A  
VDE certificate of conformity  
8
NIC  
NIC  
NIC  
NIC  
GND  
9
10  
GND  
1
2
Figure 2.  
freeing almost 70% of board space compared to isolators packages  
in wide body SOIC packages.  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
V
V
IORM = 565 VPEAK QSOP package  
IORM = 849 VPEAK SSOP package  
The devices withstand high isolation voltages and meet regulatory  
requirements, such as UL and CSA standards. In addition to the  
space savings, the ADuM1440/ADuM1441/ADuM1442/  
ADuM1445/ADuM1446/ADuM1447 operate with supplies as  
low as 2.25 V.  
IECEx and ATEX intrinsic safety  
Sira 0518 II 1G Ex ia IIC Ga  
APPLICATIONS  
General-purpose, low power multichannel isolation  
1 MHz, low power peripheral interface (SPI)  
4 mA to 20 mA loop process controls  
Despite the low power consumption, all models of the ADuM1440/  
ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
provide low, pulse width distortion at <8 ns. In addition, every  
model has an input glitch filter to protect against extraneous  
noise disturbances.  
GENERAL DESCRIPTION  
The ADuM1440/ADuM1441/ADuM1442/ADuM1445/  
ADuM1446/ADuM14471 are micropower, 4-channel digital  
isolators based on the Analog Devices, Inc., iCoupler® technology.  
Combining high speed, complementary metal oxide semiconductor  
(CMOS) and monolithic air core transformer technologies,  
these isolation components provide outstanding performance  
characteristics superior to the alternatives, such as optocoupler  
devices. As shown in Figure 3, in standard operating mode,  
when ENx = 0 (internal refresh enabled), the current per channel is  
less than 10 μA. When ENx = 1 (internal refresh disabled), the  
current per channel drops to less than 1 μA.  
1000  
100  
10  
EN = 0  
x
EN = 1  
x
1
0.1  
0.1  
The ADuM1440/ADuM1441/ADuM1442/ADuM1445/  
1
10  
100  
1000  
10000  
ADuM1446/ADuM1447 family of quad 2.5 kV digital isolation  
devices are packaged in a small 16-lead QSOP and 20-lead SSOP,  
1 Protected by U.S. Patents 5,952,849, 6,873,065, 7,075,329, 6,262,600. Other patents pending.  
DATA RATE (kbps)  
Figure 3. Typical Total Supply Current per Channel (VDDx = 3.3 V)  
Rev. E  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2013–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
TABLE OF CONTENTS  
Data Sheet  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—3.3 V Operation ............................ 3  
Electrical Characteristics—2.5 V Operation ............................ 5  
Intrinsic Safety............................................................................ 11  
Absolute Maximum Ratings ......................................................... 13  
ESD Caution................................................................................ 13  
Pin Configurations and Function Descriptions......................... 14  
Typical Performance Characteristics ........................................... 17  
Applications Information.............................................................. 20  
PCB Layout ................................................................................. 20  
Propagation Delay-Related Parameters................................... 20  
DC Correctness............................................................................ 20  
Magnetic Field Immunity............................................................. 21  
Power Consumption .................................................................. 22  
Insulation Lifetime..................................................................... 22  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 25  
Electrical Characteristics—VDD1 = 3.3 V, VDD2 = 2.5 V  
Operation....................................................................................... 7  
Electrical Characteristics—VDD1 = 2.5 V, VDD2 = 3.3 V  
Operation....................................................................................... 8  
Package Characteristics ............................................................... 9  
Regulatory Information............................................................... 9  
Insulation and Safety Related Specifications .......................... 10  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 Insulation  
Characteristics ............................................................................ 10  
REVISION HISTORY  
3/2014—Rev. 0 to Rev. A  
Added SSOP Package.........................................................Universal  
Changes to Features Section, Added Figure 2,  
1/2017—Rev. D to Rev. E  
Changes to Features Section............................................................ 1  
Changes to Table 12.......................................................................... 9  
Added Intrinsic Safety Section, Table 16; Renumbered Sequentially,  
and Table 17..................................................................................... 11  
Renumbered Sequentially ................................................................1  
Changes to Output Voltage Logic High Parameter, Table 3 ........4  
Added Table 15, Renumbered Sequentially; Changes to  
Figure 4 ............................................................................................ 11  
Change to Supply Voltages (VDD1, VDD2) Parameter, Table 17........ 12  
Added Figure 6; Changes to Table 20 .......................................... 13  
Added Figure 8; Changes to Table 21 .......................................... 14  
Added Figure 10, Changes to Table 22 ........................................ 15  
Added Figure 30 ............................................................................. 19  
Changes to Power Consumption Section; Added Table 23 ...... 21  
Added Figure 27 ............................................................................. 23  
Changes to Ordering Guide.......................................................... 24  
4/2015—Rev. C to Rev. D  
Change to General Description Section........................................ 1  
4/2015—Rev. B to Rev. C  
Changes to Regulatory Information Section ................................ 9  
3/2015—Rev. A to Rev. B  
Changes to Features Section and Figure 3..................................... 1  
Changes to Table 12.......................................................................... 9  
Changes to Table 13 and Table 14 ................................................ 10  
Updated Outline Dimensions....................................................... 23  
Changes to Ordering Guide .......................................................... 24  
10/2013—Revision 0: Initial Version  
Rev. E | Page 2 of 25  
 
Data Sheet  
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—3.3 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.3 V. Minimum/maximum specifications apply over the entire recommended  
operating range of 3.0 V ≤ VDD1 ≤ 3.6 V, 3.0 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF, and CMOS signal levels, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Data Rate  
2
180  
Mbps  
ns  
ps/°C  
ns  
ns  
ns  
Within pulse-width distortion (PWD) limit  
50% input to 50% output  
Propagation Delay  
Change vs. Temperature  
Minimum Pulse Width  
Pulse-Width Distortion  
Propagation Delay Skew1  
Channel Matching  
Codirectional  
tPHL, tPLH  
80  
200  
PW  
PWD  
tPSK  
500  
Within PWD limit  
|tPLH − tPHL|  
8
10  
tPSKCD  
tPSKOD  
10  
15  
ns  
ns  
Opposing Direction  
1 tPSK is the magnitude of the worst-case difference in tPHL and tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the  
recommended operating conditions.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
2 Mbps, no load  
SUPPLY CURRENT  
ADuM1440/ADuM1445  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
732  
492  
672  
552  
612  
612  
1000  
750  
900  
900  
900  
900  
µA  
µA  
µA  
µA  
µA  
µA  
ENX = 0 V, VIH =VDD, VIL = 0V  
ENX = 0 V, VIH =VDD, VIL = 0V  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ADuM1441/ADuM1446  
ADuM1442/ADuM1447  
Rev. E | Page 3 of 25  
 
 
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
Data Sheet  
Table 3. For All Models  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Input Threshold  
Logic High  
1
VIH  
VIL  
0.7 VDDx  
V
V
1
Logic Low  
0.3 VDDx  
Output Voltages  
Logic High  
VOH  
VOL  
II  
VDDx1 − 0.1  
VDDx1 − 0.4  
3.3  
3.1  
0.0  
0.2  
V
V
V
V
IOUTx = −20 µA, VIx = VIxH  
IOUTx = −4 mA, VIx = VIxH  
IOUTx = 20 µA, VIx = VIxL  
IOUTx = 4 mA, VIx = VIxL  
Logic Low  
0.1  
0.4  
+1  
1
Input Current per Channel  
Input Switching Thresholds  
Positive Threshold Voltage  
Negative Going Threshold  
Input Hysteresis  
Undervoltage Lockout, VDD1 or VDD2  
Supply Current per Channel  
Quiescent Current  
−1  
+0.01  
µA  
0 V ≤ VIx ≤ VDDx  
VT+  
VT−  
ΔVT  
UVLO  
1.8  
1.2  
0.6  
1.5  
V
V
V
V
Input Supply  
Output Supply  
Input (Refresh Off)  
Output (Refresh Off)  
Dynamic Supply Current  
Input  
IDDI (Q)  
IDDO (Q)  
IDDI (Q)  
IDDO (Q)  
4.8  
0.8  
0.12  
0.13  
10  
3.3  
µA  
µA  
µA  
µA  
ENX low  
ENX low  
ENX high  
ENX high  
IDDI (D)  
IDDO (D)  
88  
60  
µA/Mbps  
µA/Mbps  
Output  
AC SPECIFICATIONS  
Output Rise Time/Fall Time  
Common-Mode Transient Immunity2  
tR/tF  
|CM|  
2
40  
ns  
kV/µs  
10% to 90%  
VIx = VDDx1, VCM = 1000 V,  
25  
transient magnitude = 800 V  
Refresh Rate  
fr  
14  
kbps  
1 VDDx = VDD1 or VDD2  
.
2 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VOUT > 0.8 VDDx. The common-mode voltage slew rates apply to both rising and  
falling common-mode voltage edges.  
Rev. E | Page 4 of 25  
 
Data Sheet  
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
ELECTRICAL CHARACTERISTICS—2.5 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 2.5 V. Minimum/maximum specifications apply over the entire recommended  
operating range of 2.25 V ≤ VDD1 ≤ 2.75 V, 2.25 V ≤ VDD2 ≤ 2.75 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching  
specifications are tested with CL = 15 pF, and CMOS signal levels, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Data Rate  
2
180  
Mbps  
ns  
ps/°C  
ns  
ns  
ns  
Within PWD limit  
50% input to 50% output  
Propagation Delay  
Change vs. Temperature  
Pulse-Width Distortion  
Minimum Pulse Width  
Propagation Delay Skew1  
Channel Matching  
Codirectional  
tPHL, tPLH  
112  
280  
PWD  
PW  
tPSK  
12  
10  
|tPLH − tPHL  
|
500  
Within PWD limit  
tPSKCD  
tPSKOD  
10  
30  
ns  
ns  
Opposing Direction  
1 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the  
recommended operating conditions.  
Table 5.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
2 Mbps, no load  
SUPPLY CURRENT  
ADuM1440/ADuM1445  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
623  
337  
552  
409  
480  
480  
800  
500  
750  
750  
750  
750  
µA  
µA  
µA  
µA  
µA  
µA  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ADuM1441/ADuM1446  
ADuM1442/ADuM1447  
Rev. E | Page 5 of 25  
 
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
Data Sheet  
Table 6. For All Models  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Input Threshold  
Logic High  
1
VIH  
VIL  
0.7 VDDx  
V
V
1
Logic Low  
0.3 VDDx  
Output Voltages  
Logic High  
VOH  
VOL  
II  
VDDx1 − 0.1  
VDDx1 − 0.4  
2.5  
2.35  
0.0  
0.1  
+0.01  
V
V
V
V
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
Logic Low  
0.1  
0.4  
+1  
1
Input Current per Channel  
Input Switching Thresholds  
Positive Threshold Voltage  
Negative Going Threshold  
Input Hysteresis  
Undervoltage Lockout, VDD1 or VDD2  
Supply Current per Channel  
Quiescent Current  
−1  
µA  
0 V ≤ VIx ≤ VDDx  
VT+  
VT−  
ΔVT  
UVLO  
1.5  
1.0  
0.5  
1.5  
V
V
V
V
Input Supply  
Output Supply  
Input (Refresh Off)  
Output (Refresh Off)  
Dynamic Supply Current  
Input  
IDDI (Q)  
IDDO (Q)  
IDDI (Q)  
IDDO (Q)  
2.6  
0.5  
0.05  
0.05  
3.3  
1.8  
µA  
µA  
µA  
µA  
ENX low  
ENX low  
ENX high  
ENX high  
IDDI (D)  
IDDO (D)  
76  
41  
µA/Mbps  
µA/Mbps  
Output  
AC SPECIFICATIONS  
Output Rise Time/Fall Time  
Common-Mode Transient Immunity2  
tR/tF  
|CM|  
2
40  
ns  
kV/µs  
10% to 90%  
VIx = VDDx1, VCM = 1000 V,  
25  
transient magnitude = 800 V  
Refresh Rate  
fr  
14  
kbps  
1 VDDx = VDD1 or VDD2  
.
2 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VOUT > 0.8 VDDx. The common-mode voltage slew rates apply to both rising and  
falling common-mode voltage edges.  
Rev. E | Page 6 of 25  
 
Data Sheet  
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
ELECTRICAL CHARACTERISTICS—VDD1 = 3.3 V, VDD2 = 2.5 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = 3.3 V, and.VDD2 = 2.5 V. Minimum/maximum specifications apply over the entire  
recommended operating range of 3.0 V ≤ VDD1 ≤ 3.6 V, 2.25 V ≤ VDD2 ≤ 2.75 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Switching specifications are tested with CL = 15 pF, and CMOS signal levels, unless otherwise noted.  
For dc specifications and ac specifications, see Table 3 for Side 1 and see Table 6 for Side 2.  
Table 7.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Data Rate  
2
Mbps  
Within PWD limit  
Propagation Delay  
Side 1 to Side 2  
Side 2 to Side 1  
Change vs. Temperature  
Pulse-Width Distortion  
Pulse Width  
Propagation Delay Skew1  
Channel Matching  
Codirectional  
tPHL, tPLH  
tPHL, tPLH  
84  
120  
280  
180  
180  
ns  
ns  
ps/°C  
ns  
ns  
50% input to 50% output  
50% input to 50% output  
PWD  
PW  
tPSK  
12  
10  
|tPLH − tPHL  
|
500  
Within PWD limit  
ns  
tPSKCD  
tPSKOD  
10  
60  
ns  
ns  
Opposing Direction  
1 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the  
recommended operating conditions.  
Table 8.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
2 Mbps, no load  
SUPPLY CURRENT  
ADuM1440/ADuM1445  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
732  
337  
672  
409  
612  
480  
1000  
750  
900  
750  
900  
750  
µA  
µA  
µA  
µA  
µA  
µA  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ADuM1441/ADuM1446  
ADuM1442/ADuM1447  
Rev. E | Page 7 of 25  
 
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
Data Sheet  
ELECTRICAL CHARACTERISTICS—VDD1 = 2.5 V, VDD2 = 3.3 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = 2.5, and VDD2 = 3.3 V. Minimum/maximum specifications apply over the entire  
recommended operating range of 2.25 V ≤ VDD1 ≤ 2.75 V, 3.0 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Switching specifications are tested with CL = 15 pF, and CMOS signal levels, unless otherwise noted.  
For dc specifications and ac specifications, see Table 6 for Side 1 and see Table 3 for Side 2.  
Table 9.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Data Rate  
2
Mbps  
Within PWD limit  
Propagation Delay  
Side 1 to Side 2  
Side 2 to Side 1  
tPHL, tPLH  
tPHL, tPLH  
120  
84  
180  
180  
ns  
ns  
50% input to 50% output  
50% input to 50% output  
Change vs. Temperature  
Pulse-Width Distortion  
Pulse Width  
Propagation Delay Skew1  
Channel Matching  
Codirectional  
200  
ps/°C  
ns  
ns  
PWD  
PW  
tPSK  
12  
10  
|tPLH − tPHL  
Within PWD limit  
|
500  
ns  
tPSKCD  
tPSKOD  
10  
60  
ns  
ns  
Opposing Direction  
1 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the  
recommended operating conditions.  
Table 10.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
2 Mbps, no load  
SUPPLY CURRENT  
ADuM1440/ADuM1445  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
623  
492  
552  
552  
480  
612  
1000  
750  
750  
900  
750  
900  
µA  
µA  
µA  
µA  
µA  
µA  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ENX = 0 V, VIH = VDD, VIL = 0 V  
ADuM1441/ADuM1446  
ADuM1442/ADuM1447  
Rev. E | Page 8 of 25  
 
Data Sheet  
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
PACKAGE CHARACTERISTICS  
Table 11.  
Parameter  
Symbol  
RI-O  
CI-O  
CI  
θJA  
Min Typ  
Max  
Unit Test Conditions/Comments  
Resistance (Input-to-Output)1  
Capacitance (Input-to-Output)1  
Input Capacitance2  
1013  
2
4.0  
76  
pF  
pF  
f = 1 MHz  
IC Junction-to-Ambient Thermal  
Resistance (QSOP)  
°C/W Thermocouple located at center of package underside  
IC Junction-to-Ambient Thermal  
Resistance (SSOP)  
θJA  
50.5  
°C/W Thermocouple located at center of package underside  
1 The device is considered a 2-terminal device: Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
REGULATORY INFORMATION  
See Table 20 and the Insulation Lifetime section for the recommended maximum working voltages for specific cross-isolation waveforms  
and insulation levels.  
Table 12. Safety Certifications  
UL  
CSA  
VDE  
CSA/Sira  
Recognized Under UL  
1577 Component  
Approved under CSA  
Component Acceptance  
Notice 5A  
Certified according to  
DIN V VDE V 0884-10  
Certified for use in intrinsic  
safety (IS) to IS applications  
Recognition Program1  
(VDE V 0884-10):2006-122 under ATEX and IECEx  
Single Protection  
CSA 60950-1-07+A1+A2 and  
IEC 60950-1 second edition  
+A1+A2  
QSOP package:  
reinforced insulation,  
565 VPEAK QSOP package  
ATEX: EN 60079-0:2012+A11:2013  
and EN 60079-11:2012  
2500 V RMS Isolation  
Voltage (RQ-16 Only) insulation, 310 V rms  
maximum working voltage  
QSOP package: basic  
SSOP package:  
reinforced insulation,  
849 VPEAK SSOP package  
IECEx: IEC 60079-0:2011 Edition 6  
and IEC 60079-11:2011 Edition 6  
3750 V RMS Isolation  
Voltage (RS-20 Only)  
SSOP package: basic insulation  
at 510 V rms (721 VPEAK  
II 1G Ex ia IIC Ga  
)
maximum working voltage and  
IEC 60601-1 Edition 3.1 250 V  
(1 means of patient protection  
(MOPP)); reinforced insulation at  
255 V rms (360 VPEAK) maximum  
working voltage  
File E214100  
File 205078  
File 2471900-4880-0001 File 70013932  
1 In accordance with UL 1577, each ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447 is proof tested by applying an insulation test voltage and  
measuring leakage during final production testing. QSOP package devices are tested at ≥3000 V rms for 1 sec with a current leakage detection limit = 5 μA. SSOP  
package devices are tested at ≥4500 V rms for 1 sec with a current leakage detection limit = 10 μA.  
2 In accordance with DIN V VDE V 0884-10, each ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447 is proof tested by applying an insulation test  
voltage ≥1059 VPEAK for 1 second (partial discharge detection limit = 5 pC). The asterisk (*) marked on the component designates DIN V VDE V 0884-10 approval.  
Rev. E | Page 9 of 25  
 
 
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
Data Sheet  
INSULATION AND SAFETY RELATED SPECIFICATIONS  
Table 13.  
Parameter  
Symbol Value Unit  
Test Conditions/Comments  
Rated Dielectric Insulation Voltage (RQ-16)  
Rated Dielectric Insulation Voltage (RS-20)  
Minimum External Tracking and Air Gap, RQ-16 (Creepage  
and Clearance)  
2500  
3750  
3.1  
V rms  
V rms  
1-minute duration  
1-minute duration  
L(I02)  
L(I01)  
L(I01)  
L(I02)  
mm min Measured from input terminals to output  
terminals, shortest distance path along  
package body  
mm min Measured from input terminals to output  
terminals, shortest distance through air, line  
of sight, in the PCB mounting plane  
mm min Measured from input terminals to output  
terminals, shortest distance path along  
package body  
mm min Measured from input terminals to output  
terminals, shortest distance through air, line  
of sight, in the PCB mounting plane  
Minimum Clearance in the Plane of the Printed Circuit  
Board, RQ-16 (PCB Clearance)  
3.8  
5.1  
5.1  
Minimum External Tracking and Air Gap, RS-20 (Creepage  
and Clearance)  
Minimum Clearance in the Plane of the Printed Circuit  
Board, RS-20 (PCB Clearance)  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017 mm min Insulation distance through insulation  
CTI  
>400  
II  
V
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 INSULATION CHARACTERISTICS  
These isolators are suitable for reinforced electrical isolation within the safety limit data only. Maintenance of the safety data is ensured by  
protective circuits. The asterisk (*) marked on packages denotes DIN V VDE V 0884-10 approval.  
Table 14. 16-Lead QSOP (RQ-16)  
Description  
Test Conditions/Comments  
Symbol Characteristic  
Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method b1  
I to IV  
I to III  
I to II  
40/105/21  
2
VIORM  
Vpd(m)  
565  
1059  
VPEAK  
VPEAK  
VIORM × 1.875 = Vpd(m), 100% production test,  
t
ini = tm = 1 sec, partial discharge < 5 pC  
Input-to-Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
VIORM × 1.5 = Vpd(m), tini = 60 sec, tm = 10 sec,  
partial discharge < 5 pC  
VIORM × 1.2 = Vpd(m), tini = 60 sec, tm = 10 sec,  
partial discharge < 5 pC  
Vpd(m)  
Vpd(m)  
847  
678  
VPEAK  
VPEAK  
After Input and/or Safety Test Subgroup 2  
and Subgroup 3  
Highest Allowable Overvoltage  
Surge Isolation Voltage  
VIOTM  
VIOSM  
4000  
6250  
VPEAK  
VPEAK  
VPEAK = 10 kV, 1.2 µs rise time, 50 µs, 50% fall time  
Safety Limiting Values  
Maximum value allowed in the event of a failure  
(see Figure 4)  
Case Temperature  
Total Power Dissipation at 25°C  
Insulation Resistance at TS  
TS  
IS1  
RS  
150  
1.64  
>109  
°C  
W
VIO = 500 V  
Rev. E | Page 10 of 25  
 
 
Data Sheet  
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
Table 15. 20-Lead SSOP (RS-20)  
Description  
Conditions  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method b1  
I to IV  
I to IV  
I to III  
40/105/21  
2
VIORM  
Vpd(m)  
849  
1592  
VPEAK  
VPEAK  
VIORM × 1.875 = Vpd(m), 100% production test, tini = tm  
1 sec, partial discharge < 5 pC  
=
Input-to-Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
VIORM × 1.5 = Vpd(m), tini = 60 sec, tm = 10 sec, partial  
discharge < 5 pC  
VIORM × 1.2 = Vpd(m),tini = 60 sec, tm = 10 sec, partial  
discharge < 5 pC  
Vpd(m)  
Vpd(m)  
1273  
1018  
VPEAK  
VPEAK  
After Input and/or Safety Test Subgroup 2  
and Subgroup 3  
Highest Allowable Overvoltage  
Surge Isolation Voltage  
VIOTM  
VIOSM  
6000  
6000  
VPEAK  
VPEAK  
VPEAK = 10 kV, 1.2 µs rise time, 50µs, 50% fall time  
Safety Limiting Values  
Maximum value allowed in the event of a failure  
(see Figure 4)  
Case Temperature  
Total Power Dissipation at 25°C  
TS  
IS1  
RS  
150  
2.5  
°C  
W
Insulation Resistance at TS  
VIO = 500 V  
>109  
INTRINSIC SAFETY  
The ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447 support intrinsic safety for IS to IS applications under  
IEC 60079-11, and carry ATEX and IECEx certifications. These devices do not currently support IS to non IS galvanic isolation  
applications due to the minimum insulation requirements of IEC60079-11.  
Product Conformity Certificate  
Sira 16ATEX2265U and IECEx SIR 16.0091U  
Special Conditions for Safe Use  
These components are certified to comply with IEC 60079-11:2011. When one of these components is used in equipment, the component  
is to be fitted on a PCB inside a suitable enclosure and recertified as equipment. The creepage and clearance distances across the isolating  
component have been evaluated, but the distances to other circuitry remain the responsibility of the user of the certified equipment.  
This assembly is an isolating component between separate intrinsically safe circuits. It is recommended that the assembly be connected to  
suitably certified intrinsically safe circuits considering the entity parameters in Table 16.  
Table 16. IS Entity Parameters  
Package Type  
16-Lead QSOP  
20-Lead SSOP  
Entity Parameters Side 11  
Entity Parameters Side 2  
Ui = 42 V, Ii = 275 mA, Pi = 1.3W, Li = 0, Ci = 4pF  
Ui = 42 V, Ii = 275 mA, Pi = 1.3W, Li = 0, Ci = 4pF  
Ui = 42 V, Ii = 275 mA, Pi = 1.3W, Li = 0, Ci = 4pF  
Ui = 42 V, Ii = 275 mA, Pi = 1.3W. Li = 0, Ci = 4pF  
1 Li is defined as input inductance, Ci is input capacitance, Pi is input power, Ui is input voltage, and Ii is input current.  
The components (for example, digital isolators) being certified have the following safety ratings listed in Table 17. The temperature class is  
determined based on Table 17.  
Table 17. Temperature Class Information  
Maximum Component  
Temperature (°C)  
Package Type  
16-Lead QSOP  
20-Lead SSOP  
Maximum Power Side 1 (W) Maximum Power Side 2 (W)  
Ambient Temperature (°C)  
−40°C to +85°C  
−40°C to +85°C  
1.3  
1.3  
1.3  
1.3  
189.8  
218  
Rev. E | Page 11 of 25  
 
 
 
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
Data Sheet  
3.0  
Recommended Operating Conditions  
SSOP20  
Table 18.  
2.5  
Parameter  
Symbol  
TA  
VDD1, VDD2  
Value  
Operating Temperature  
Supply Voltages1  
Input Signal Rise and Fall Times  
−40°C to +125°C  
2.25 V to 3.6 V  
1.0 ms  
2.0  
1.5  
1.0  
0.5  
0
QSOP16  
1 All voltages are relative to their respective grounds. See the DC Correctness  
section for information on immunity to external magnetic fields.  
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
Figure 4. Thermal Derating Curve, Dependence of Safety-Limiting Values  
with Case Temperature per DIN V VDE V 0884-10  
Rev. E | Page 12 of 25  
 
Data Sheet  
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 20. Maximum Continuous Working Voltage1  
Parameter  
Value  
Constraint  
Table 19.  
Parameter  
AC Voltage  
Rating  
60 Hz Bipolar Waveform  
60 Hz Unipolar Waveform  
Basic Insulation  
DC Voltage  
565 VPEAK 50-year minimum lifetime  
975 VPEAK 50-year minimum lifetime  
975 VPEAK 50-year minimum lifetime  
Supply Voltages (VDD1, VDD2  
)
−0.5 V to +5 V  
−0.5 V to VDDI + 0.5 V  
−0.5 V to VDD2 + 0.5 V  
Input Voltages (VIA, VIB  
Output Voltages (VOA, VOB  
Average Output Current per Pin1  
Side 1 (IO1  
Side 2 (IO2  
Common-Mode Transients2  
)
)
Basic Insulation  
)
)
−10 mA to +10 mA  
−10 mA to +10 mA  
−100 kV/µs to +100 kV/µs  
−65°C to +150°C  
1 Refers to continuous voltage magnitude imposed across the isolation  
barrier. See the Insulation Lifetime section for more details.  
ESD CAUTION  
Storage Temperature (TST) Range  
Ambient Operating Temperature  
(TA) Range  
−40°C to +125°C  
1 See Figure 4 for maximum safety power values for various temperatures.  
2 Refers to common-mode transients across the insulation barrier. Common-mode  
transients exceeding the absolute maximum ratings can cause latch-up or  
permanent damage.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 21. Truth Table (Positive Logic) for all Models  
VIx Input1, 2  
VDDI State3  
Powered  
Powered  
Powered  
Powered  
Unpowered  
VDDO State4  
Powered  
Powered  
Powered  
Powered  
Powered  
ENx Input1  
VOx Output1  
Description  
H
L
H
L
L
L
H
H
L
H
L
H
L5  
Normal operation; data is high and refresh is enabled.  
Normal operation; data is low and refresh is enabled.  
Output is high, and refresh is disabled.  
Output is low, and refresh is disabled.  
Input unpowered. Outputs are in the default state, high for  
ADuM1440, ADuM1441, and ADuM1442, and low ADuM1445,  
ADuM1446, and ADuM1447. Outputs return to input state  
within 150 µs of VDDI power restoration. See the pin function  
descriptions (Table 22 through Table 24) for more details.  
L
Default  
L
Unpowered  
Powered  
Powered  
H
X
Hold  
Z
Input unpowered. Outputs are the last state before input  
power is shut down.  
X
Unpowered  
Output unpowered. Output pins are in high impedance state.  
Outputs return to input state within 34 µs of VDDO power  
restoration. See the pin function descriptions (Table 22 through  
Table 24) for more details.  
1 H = high, L = low, X = don’t care, and Z = high impedance.  
2 VIx and VOx refer to the input and output signals of a given channel (A, B, C, or D).  
3 VDDI refers to the power supply on the input side of a given channel (A, B, C, or D).  
4 VDDO refers to the power supply on the output side of a given channel (A, B, C, or D).  
5 Low input must follow a falling edge; otherwise, it can be in the default low state.  
Rev. E | Page 13 of 25  
 
 
 
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
Data Sheet  
V
1
20  
19  
18  
17  
16  
15  
V
DD2  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
1
DD1  
2
GND  
2
1
2
2
2
GND  
GND  
15 GND  
1
1
V
V
V
V
3
V
V
V
V
V
V
V
V
14  
13  
12  
11  
V
V
V
V
IA  
IB  
IC  
ID  
OA  
OB  
OC  
OD  
IA  
IB  
IC  
ID  
OA  
OB  
OC  
OD  
ADuM1440/  
ADuM1445  
4
ADuM1440/  
ADuM1445  
TOP VIEW  
5
(Not to Scale)  
6
TOP VIEW  
(Not to Scale)  
EN  
7
14 EN  
2
EN  
10 EN  
1
1
1
2
2
9 GND  
2
NIC  
8
13 NIC  
12 NIC  
11 GND  
GND  
1
NIC  
1
9
1
2
2
2
PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED. CONNECTING BOTH  
GND  
10  
1
TO GND IS RECOMMENDED.  
1
PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED. CONNECTING  
NIC = NOT INTERNALLY CONNECTED.  
PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED.  
BOTH TO GND IS RECOMMENDED.  
2
1
2
CONNECTING BOTH TO GND IS RECOMMENDED.  
1
PIN 11 AND PIN 19 ARE INTERNALLY CONNECTED.  
CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 6. ADuM1440/ADuM1445 SSOP Pin Configuration  
Figure 5. ADuM1440/ADuM1445 QSOP Pin Configuration  
Table 22. ADuM1440/ADuM1445 Pin Function Descriptions1  
QSOP  
SSOP  
Pin No.  
Pin No.2  
Mnemonic  
Description  
1
1
VDD1  
Supply Voltage for Isolator Side 1 (2.25 V to 3.6 V). Connect a ceramic bypass capacitor in the 0.01  
µF to 0.1 µF range between VDD1 (Pin 1) and GND1 (Pin 2).  
2, 8  
2, 10  
GND1  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 8 are internally connected, and connecting  
both to GND1 is recommended.  
3
4
5
6
7
3
4
5
3
7
VIA  
VIB  
VIC  
VID  
EN1  
Logic Input A.  
Logic Input B.  
Logic Input C.  
Logic Input D.  
Refresh/Watchdog Enable 1. Connecting Pin 7 to GND1 enables input/output refresh and  
watchdog functionality for Side 1, supporting standard iCoupler operation. Tying Pin 7 to VDD1  
disables refresh and watchdog functionality for lowest power operation, see the Applications  
Information section for a detailed description of this mode. EN1 and EN2 must be set to the same  
logic state.  
9, 15  
10  
11, 19  
14  
GND2  
EN2  
Ground 2. Ground reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and  
connecting both to GND2 is recommended.  
Refresh/Watchdog Enable 2. Connecting Pin 10 to GND2 enables input/output refresh and  
watchdog functionality for Side 2, supporting standard iCoupler operation. Tying Pin 10 to VDD2  
disables refresh and watchdog functionality for lowest power operation, see the Applications  
Information section for a detailed description of this mode. EN1 and EN2 must be set to the same  
logic state.  
11  
12  
13  
14  
16  
15  
16  
17  
18  
20  
VOD  
VOC  
VOB  
VOA  
VDD2  
Logic Output D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Supply Voltage for Isolator Side 2 (2.25 V to 3.6 V). Connect a ceramic bypass capacitor in the 0.01  
µF to 0.1 µF range between VDD2 (Pin 16) and GND2 (Pin 15).  
N/A  
8, 9, 12, 13  
NC  
No Connect. Do not connect to this pin.  
1 Reference the AN-1109 Application Note for specific layout guidelines.  
2 N/A = not applicable.  
Rev. E | Page 14 of 25  
 
 
Data Sheet  
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
V
1
2
20  
2
19 GND  
2
V
V
1
2
3
4
5
6
7
8
16  
V
DD1  
1
DD2  
DD1  
DD2  
1
2
GND  
GND  
15 GND  
1
1
2
V
V
V
3
18  
17  
16  
15  
V
V
V
V
V
V
V
14  
13  
12  
11  
V
V
V
V
IA  
IB  
IC  
OA  
OB  
OC  
ID  
IA  
IB  
IC  
OA  
OB  
OC  
ID  
ADuM1441/  
ADuM1446  
4
ADuM1441/  
ADuM1446  
TOP VIEW  
5
(Not to Scale)  
V
6
TOP VIEW  
V
OD  
OD  
(Not to Scale)  
EN  
7
14 EN  
2
EN  
10 EN  
1
1
1
2
NIC  
8
13 NIC  
12 NIC  
11 GND  
2
9 GND  
2
GND  
1
NIC  
1
9
1
2
2
2
PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED. CONNECTING BOTH  
TO GND IS RECOMMENDED.  
GND  
10  
1
1
PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED. CONNECTING  
NIC = NOT INTERNALLY CONNECTED.  
BOTH TO GND IS RECOMMENDED.  
2
1
2
PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED.  
CONNECTING BOTH TO GND IS RECOMMENDED.  
1
PIN 11 AND PIN 19 ARE INTERNALLY CONNECTED.  
CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 8. ADuM1441/ADuM1446 SSOP Pin Configuration  
Figure 7. ADuM1441/ADuM1446 QSOP Pin Configuration  
Table 23. ADuM1441/ADuM1446 Pin Function Descriptions1  
QSOP SSOP  
Pin No. 2 Pin No.  
Mnemonic Description  
1
1
VDD1  
Supply Voltage for Isolator Side 1 (2.25 V to 3.6 V). Connect a ceramic bypass capacitor in the 0.01  
µF to 0.1 µF range between VDD1 (Pin 1) and GND1 (Pin 2).  
2, 8  
2, 10  
GND1  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 8 are internally connected, and connecting  
both to GND1 is recommended.  
3
4
5
6
7
3
4
5
3
7
VIA  
VIB  
VIC  
VOD  
EN1  
Logic Input A.  
Logic Input B.  
Logic Input C.  
Logic Output D.  
Refresh/Watchdog Enable 1. Connecting Pin 7 to GND1 enables input/output refresh and  
watchdog functionality for Side 1, supporting standard iCoupler operation. Tying Pin 7 to VDD1  
disables refresh and watchdog functionality for lowest power operation, see the Applications  
Information section for a detailed description of this mode. EN1 and EN2 must be set to the same  
logic state.  
9, 15  
10  
11, 19  
14  
GND2  
EN2  
Ground 2. Ground reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and  
connecting both to GND2 is recommended.  
Refresh/Watchdog Enable 2. Connecting Pin 10 to GND2 enables input/output refresh and  
watchdog functionality for Side 2, supporting standard iCoupler operation. Tying Pin 10 to VDD2  
disables refresh and watchdog functionality for lowest power operation, see the Applications  
Information section for a detailed description of this mode. EN1 and EN2 must be set to the same  
logic state.  
11  
12  
13  
14  
16  
15  
16  
17  
18  
20  
VID  
Logic Input D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
VOC  
VOB  
VOA  
VDD2  
Supply Voltage for Isolator Side 2 (2.25 V to 3.6 V). Connect a ceramic bypass capacitor in the 0.01  
µF to 0.1 µF range between VDD2 (Pin 16) and GND2 (Pin 15).  
N/A  
8, 9, 12, 13  
NC  
No Connect. Do not connect to this pin.  
1 Reference the AN-1109 Application Note for specific layout guidelines.  
2 N/A = not applicable.  
Rev. E | Page 15 of 25  
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
Data Sheet  
V
1
2
20  
V
DD2  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
1
DD1  
1
2
2
GND  
19 GND  
GND  
15 GND  
1
2
1
2
V
V
3
18  
17  
16  
15  
V
V
V
V
V
V
14  
13  
12  
11  
V
V
V
V
IA  
IB  
OA  
OB  
IC  
IA  
OA  
OB  
IC  
ADuM1442/  
ADuM1447  
4
IB  
ADuM1442/  
ADuM1447  
TOP VIEW  
V
5
V
OC  
OD  
OC  
OD  
(Not to Scale)  
V
6
V
TOP VIEW  
ID  
ID  
(Not to Scale)  
EN  
7
14 EN  
2
EN  
10 EN  
2
1
1
1
2
9 GND  
2
NIC  
NIC  
8
13 NIC  
12 NIC  
11 GND  
GND  
1
9
1
2
PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED. CONNECTING BOTH  
TO GND IS RECOMMENDED.  
1
2
GND  
10  
1
2
1
PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED. CONNECTING  
NIC = NOT INTERNALLY CONNECTED.  
PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED.  
CONNECTING BOTH TO GND IS RECOMMENDED.  
PIN 11 AND PIN 19 ARE INTERNALLY CONNECTED.  
BOTH TO GND IS RECOMMENDED.  
2
1
2
1
CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 9. ADuM1442/ADuM1447 QSOP Pin Configuration  
Figure 10. ADuM1442/ADuM1447 SSOP Pin Configuration  
Table 24. ADuM1442/ADuM1447 Pin Function Descriptions1  
QSOP SSOP  
Pin No. 2 Pin No.  
Mnemonic  
Description  
1
1
VDD1  
Supply Voltage for Isolator Side 1 (2.25 V to 3.6 V). Connect a ceramic bypass capacitor in the 0.01  
µF to 0.1 µF range between VDD1 (Pin 1) and GND1 (Pin 2).  
2, 8  
2, 10  
GND1  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 8 are internally connected, and connecting  
both to GND1 is recommended.  
3
4
5
6
7
3
4
5
3
7
VIA  
VIB  
VOC  
VOD  
EN1  
Logic Input A.  
Logic Input B.  
Logic Output C.  
Logic Output D.  
Refresh/Watchdog Enable 1. Connecting Pin 7 to GND1 enables input/output refresh and  
watchdog functionality for Side 1, supporting standard iCoupler operation. Tying Pin 7 to VDD1  
disables refresh and watchdog functionality for lowest power operation, see the Applications  
Information section for detailed description of this mode. EN1 and EN2 must be set to the same  
logic state.  
9, 15  
10  
11, 19  
14  
GND2  
EN2  
Ground 2. Ground reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and  
connecting both to GND2 is recommended.  
Refresh/Watchdog Enable 2. Connecting Pin 10 to GND2 enables input/output refresh and  
watchdog functionality for Side 2, supporting standard iCoupler operation. Tying Pin 10 to VDD2  
disables refresh and watchdog functionality for lowest power operation, see the Applications  
Information section for a detailed description of this mode. EN1 and EN2 must be set to the same  
logic state.  
11  
12  
13  
14  
16  
15  
16  
17  
18  
20  
VID  
VIC  
VOB  
VOA  
VDD2  
Logic Input D.  
Logic Input C.  
Logic Output B.  
Logic Output A.  
Supply Voltage for Isolator Side 2 (2.25 V to 3.6 V). Connect a ceramic bypass capacitor in the 0.01  
µF to 0.1 µF range between VDD2 (Pin 16) and GND2 (Pin 15).  
N/A  
8, 9, 12, 13  
NC  
No Connect. Do not connect to this pin.  
1 Reference the AN-1109 Application Note for specific layout guidelines.  
2 N/A = not applicable.  
Rev. E | Page 16 of 25  
 
Data Sheet  
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
TYPICAL PERFORMANCE CHARACTERISTICS  
350  
140  
120  
100  
80  
300  
15  
4
2
0
10  
250  
5
0
0
20  
40  
0
20  
40  
200  
150  
100  
50  
60  
40  
20  
V
INPUT CURRENT  
V
OUTPUT CURRENT  
DDx  
DDx  
0
0
0
500  
1000  
DATA RATE (kbps)  
1500  
2000  
0
500  
1000  
DATA RATE (kbps)  
1500  
2000  
Figure 11. Current Consumption per Input vs. Data Rate for 2.5 V,  
ENx = Low Operation  
Figure 14. Current Consumption per Output vs. Data Rate for 3.3 V,  
ENx = Low Operation  
90  
80  
160  
140  
1.0  
4
2
0
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
0.5  
0
0
5
10  
0
20  
40  
V
INPUT CURRENT  
V
OUTPUT CURRENT  
DDx  
DDx  
0
500  
1000  
DATA RATE (kbps)  
1500  
2000  
0
500  
1000  
DATA RATE (kbps)  
1500  
2000  
Figure 12. Current Consumption per Output vs. Data Rate for 2.5 V,  
ENx = Low Operation  
Figure 15. Current Consumption per Input vs. Data Rate for 2.5 V,  
ENx = High Operation  
400  
90  
80  
350  
15  
1.0  
10  
70  
300  
0.5  
5
60  
0
250  
0
0
20  
40  
0
5
10  
50  
40  
30  
20  
10  
0
200  
150  
100  
50  
V
OUTPUT CURRENT  
V
INPUT CURRENT  
DDx  
DDx  
0
0
500  
1000  
DATA RATE (kbps)  
1500  
2000  
0
500  
1000  
DATA RATE (kbps)  
1500  
2000  
Figure 13. Current Consumption per Input vs. Data Rate for 3.3 V,  
ENx = Low Operation  
Figure 16. Current Consumption per Output vs. Data Rate for 2.5 V,  
ENx = High Operation  
Rev. E | Page 17 of 25  
 
 
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
Data Sheet  
200  
180  
160  
140  
120  
100  
80  
300  
250  
200  
150  
100  
50  
FALLING  
RISING  
1.0  
0.5  
0
0
5
10  
60  
40  
20  
V
INPUT CURRENT  
DDx  
0
0
0
500  
1000  
DATA RATE (kbps)  
1500  
2000  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
DATA INPUT VOLTAGE (V)  
Figure 17. Current Consumption per Input vs. Data Rate for VDDX = 3.3 V,  
ENx = High Operation  
Figure 20. IDDx Current per Input vs. Data Input Voltage for VDDx = 2.5 V  
140  
10  
9
1.0  
120  
8
0.5  
100  
7
0
0
5
10  
6
80  
60  
40  
20  
0
5
4
3
2
1
OUTPUT  
V
OUTPUT CURRENT  
DDx  
INPUT  
0
–40  
0
500  
1000  
DATA RATE (kbps)  
1500  
2000  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
Figure 18. Current Consumption per Output vs. Data Rate for VDDx = 3.3 V,  
ENx = High Operation  
Figure 21. Typical Input and Output Supply Current per Channel vs.  
Temperature for VDDx = 2.5 V, Data Rate = 100 kbps  
600  
10  
9
FALLING  
RISING  
500  
400  
300  
200  
100  
0
8
7
6
5
4
3
2
1
OUTPUT  
INPUT  
0
–40  
0
1
2
3
4
–20  
0
20  
40  
60  
80  
100  
120  
140  
DATA INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
SFigure 19. Typical IDDx Current per Input vs.  
Data Input Voltage for VDDx = 3.3 V  
Figure 22. Typical Input and Output Supply Current per Channel vs.  
Temperature for VDDx = 3.3 V, Data Rate = 100 kbps  
Rev. E | Page 18 of 25  
 
 
 
 
Data Sheet  
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
OUTPUT  
INPUT  
0
2.0  
2.5  
3.0  
3.5  
4.0  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TRANSMITTER V  
(V)  
TEMPERATURE (°C)  
DDx  
Figure 23. Typical Input and Output Supply Current per Channel vs.  
Temperature for VDDx = 2.5 V, Data Rate = 1000 kbps  
Figure 26. Typical Glitch Filter Operation Threshold  
100  
90  
80  
70  
60  
50  
40  
30  
20  
140  
120  
100  
80  
60  
40  
20  
10  
V
V
= 2.5V  
= 3.3V  
DDx  
DDx  
OUTPUT  
INPUT  
0
–40  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 24. Typical Input and Output Supply Current per Channel vs.  
Temperature for VDDx = 3.3 V, Data Rate = 1000 kbps  
Figure 27. Typical Refresh Period vs. Temperature for  
3.3 V and 2.5 V Operation  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
V
V
= 2.5V  
= 3.3V  
DDx  
DDx  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
2.0  
2.5  
3.0  
3.5  
4.0  
TEMPERATURE (°C)  
V
VOLTAGE (V)  
DDx  
Figure 25. Typical Propagation Delay vs. Temperature for  
VDDx = 3.3 V or VDDx = 2.5 V  
Figure 28. Typical Refresh Period vs. VDDX Voltage  
Rev. E | Page 19 of 25  
 
 
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
APPLICATIONS INFORMATION  
Data Sheet  
PCB LAYOUT  
INPUT (V )  
Ix  
50%  
The ADuM1440/ADuM1441/ADuM1442/ADuM1445/  
tPLH  
tPHL  
ADuM1446/ADuM1447 digital isolators require no external  
interface circuitry for the logic interfaces. Power supply bypassing  
is strongly recommended at both input and output supply pins:  
OUTPUT (V  
)
50%  
Ox  
Figure 31. Propagation Delay Parameters  
V
DD1 and VDD2 (see Figure 29). Choose a capacitor value between  
Pulse width distortion is the maximum difference between  
these two propagation delay values and an indication of how  
accurately the timing of the input signal is preserved.  
0.01 µF and 0.1 µF. The total lead length between both ends of the  
capacitor and the input power supply pin must not exceed 20 mm.  
Using proper PCB design choices, the ADuM1440/ADuM1441/  
ADuM1442/ADuM1445/ADuM1446/ADuM1447 readily meets  
CISPR 22 Class A (and FCC Class A) emissions standards, as  
well as the more stringent CISPR 22 Class B (and FCC Class B)  
standards in an unshielded environment. Refer to the AN-1109  
Application Note, Recommendations for Control of Radiated  
Emissions with iCoupler Devices, for PCB-related EMI mitigation  
techniques, including board layout and stack-up issues.  
Channel-to-channel matching is the maximum amount of time  
the propagation delay differs between channels within a single  
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/  
ADuM1447 component.  
Propagation delay skew is the maximum amount of time the  
propagation delay differs between multiple ADuM1440/  
ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
components operating under the same conditions.  
V
V
DD2  
DD1  
GND  
V
V
GND  
1
2
In edge-based systems, it is critical to reject pulses that are too  
short to be handled by the encode and decode circuits. The  
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/  
ADuM1447 implement a glitch filter to reject pulses less than  
the glitch filter operating threshold. This threshold depends on  
the operating voltage, as shown in Figure 26. Any pulse shorter  
than the glitch filter does not pass to the output. When the refresh  
circuit is enabled, pulses that match the glitch filter width have a  
small probability of being stretched until corrected by the next  
refresh cycle, or by the next valid data through that channel. To  
avoid issues with pulse stretching, observe the minimum pulse  
width requirements listed in the switching specifications.  
V
IA  
IB  
OA  
V
OB  
V
V
V
V
V
V
IC/ OC  
OC/ IC  
V
V
ID/ OD  
OD/ ID  
EN  
1
EN  
2
GND  
1
GND  
2
Figure 29. Recommended Printed Circuit Board Layout, QSOP  
V
V
DD2  
DD1  
GND  
V
V
GND  
1
2
V
IA  
IB  
OA  
V
OB  
V
V
V
V
V
V
IC/ OC  
OC/ IC  
V
V
ID/ OD  
OD/ ID  
NC/CTRL  
EN  
CTRL  
NC/EN  
NC  
1
1
2
2
NC  
GND  
GND  
2
1
DC CORRECTNESS  
Standard Operating Mode  
Figure 30. Recommended Printed Circuit Board Layout, SSOP  
For applications involving high common-mode transients, it is  
important to minimize board coupling across the isolation barrier.  
Furthermore, design the board layout so that any coupling that  
does occur equally affects all pins on a given component side.  
Failure to ensure this can cause voltage differentials between  
pins exceeding the absolute maximum ratings of the device,  
thereby leading to latch-up or permanent damage.  
Positive and negative logic transitions at the isolator input cause  
narrow (~1 ns) pulses to be sent to the decoder using the  
transformer. The decoder is bistable and is, therefore, either set  
or reset by the pulses, indicating input logic transitions. When  
refresh and watchdog functions are enabled by pulling EN1 and  
EN2 low, in the absence of logic transitions at the input for more  
than ~140 µs, a periodic set of refresh pulses indicative of the  
correct input state is sent to ensure dc correctness at the output. If  
the decoder receives no internal pulses of more than approximately  
200 µs, the input side is assumed unpowered or nonfunctional,  
in which case, the isolator watchdog circuit forces the output to  
a default state. The default state is either high as in the ADuM1440,  
ADuM1441, and ADuM1442 versions, or low as in the ADuM1445,  
ADuM1446, and ADuM1447 versions.  
PROPAGATION DELAY-RELATED PARAMETERS  
These products are optimized for minimum power consumption  
by eliminating as many internal bias currents as possible. As a  
result, the timing characteristics are more sensitive to operating  
voltage and temperature than in standard iCoupler products.  
Refer to Figure 21 through Figure 28 for the expected variation  
of these parameters.  
Propagation delay is a parameter defined as the time it takes a  
logic signal to propagate through a component. The input-to-  
output propagation delay time for a high-to-low transition can  
differ from the propagation delay time of a low-to-high transition.  
Rev. E | Page 20 of 25  
 
 
 
 
 
Data Sheet  
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
Low Power Operating Mode  
The pulses at the transformer output have an amplitude greater  
than 1.0 V. The decoder has a sensing threshold at about 0.5 V, thus  
establishing a 0.5 V margin in which induced voltages can be  
The ADuM1440/ADuM1441/ADuM1442/ADuM1445/  
ADuM1446/ADuM1447 allow the refresh and watchdog  
functions to be disabled by pulling EN1 and EN2 to logic high for  
the lowest power consumption. These control pins must be set to  
the same value on each side of the component for proper operation.  
tolerated. The voltage induced across the receiving coil is given by  
2
V = (−dβ/dt) ∑ π rn ; n = 1, 2, … , N  
where:  
In this mode, the current consumption of the chip drops to the  
microamp range. However, be careful when using this mode  
because dc correctness is no longer guaranteed at startup. For  
example, if the following sequence of events occurs:  
β is magnetic flux density (gauss).  
rn is the radius of the nth turn in the receiving coil (cm).  
N is the number of turns in the receiving coil.  
Given the geometry of the receiving coil in the ADuM1440/  
ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
and an imposed requirement that the induced voltage be, at most,  
50% of the 0.5 V margin at the decoder, a maximum allowable  
magnetic field at a given frequency can be calculated. The result  
is shown in Figure 32.  
1. Power is applied to Side 1  
2. A high level is asserted on the VIA input  
3. Power is applied to Side 2  
The high on VIA is not automatically transferred to the Side 2  
VOA, and there can be a level mismatch that is not corrected until a  
transition occurs at VIA. After power is stable on each side and a  
transition occurs on the input of the channel, that channel’s input  
and output state is correctly matched. This contingency can be  
addressed in several ways, such as sending dummy data, or toggling  
refresh on for a short period to force synchronization after turn on.  
1000  
100  
10  
Recommended Input Voltage for Low Power Operation  
1
The ADuM1440/ADuM1441/ADuM1442/ADuM1445/  
ADuM1446/ADuM1447 implement Schmitt trigger input buffers  
so that the devices operate cleanly in low data rate or noisy  
environments. Schmitt triggers allow a small amount of shoot  
through current when their input voltage is not approximate to  
either VDDx or GNDx levels. This is because the two transistors are  
both slightly on when input voltages are in the middle of the supply  
range. For many digital devices, this leakage is not a large portion  
of the total supply current and may not be noticed; however, in  
the ultralow power ADuM1440/ADuM1441/ADuM1442/  
ADuM1445/ADuM1446/ADuM1447, this leakage can be larger  
than the total operating current of the device and cannot be  
ignored.  
0.1  
0.01  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 32. Maximum Allowable External Magnetic Flux Density  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.5 kgauss induces a  
voltage of 0.25 V at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
Similarly, if such an event occurred during a transmitted pulse  
(and was of the worst-case polarity), it would reduce the received  
pulse from >1.0 V to 0.75 V, still well above the 0.5 V sensing  
threshold of the decoder.  
To achieve optimum power consumption with the ADuM1440/  
ADuM1441/ADuM1442/ADuM1445/ADuM1446/ ADuM1447,  
always drive the inputs as near to VDDx or GNDx levels as possible.  
Figure 19 and Figure 20 illustrate the shoot through leakage of  
an input; therefore, whereas the logic thresholds of the input are  
standard CMOS levels, optimum power performance is achieved  
when the input logic levels are driven within 0.5 V of either  
The preceding magnetic flux density values correspond to specific  
current magnitudes at given distances from the ADuM1440/  
ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
transformers. Figure 33 shows these allowable current magnitudes  
as a function of frequency for selected distances. As shown, the  
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/  
ADuM1447 are extremely immune and can be affected only by  
extremely large currents operating at a high frequency very near  
to the component. For the 1 MHz example noted previously, a  
1.2 kA current would have to be placed 5 mm away from the  
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/  
ADuM1447 to affect the operation of the component.  
VDDx or GNDx levels.  
MAGNETIC FIELD IMMUNITY  
The magnetic field immunity of the ADuM1440/ADuM1441/  
ADuM1442/ADuM1445/ADuM1446/ADuM1447 is determined  
by the changing magnetic field, which induces a voltage in the  
receiving coil of the transformer large enough to either falsely  
set or reset the decoder. The following analysis defines the  
conditions under which this can occur. The 3.3 V operating  
condition of the ADuM1440/ADuM1441/ADuM1442/  
ADuM1445/ADuM1446/ADuM1447 is examined because it  
represents the most typical mode of operation.  
Rev. E | Page 21 of 25  
 
 
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
Data Sheet  
1000  
The ADuM1440/ADuM1441/ADuM1442/ADuM1445/  
ADuM1446/ADuM1447 devices are intended to operate at an  
ultralow current. This is achieved by operating the part at a low  
average data rate, either by bursting data at high speed at a low  
duty factor or by running low bit rates. If data is burst at high  
data rates, the part sits quiescent for the majority of the time, at  
low data rates, the power consumption approaches the  
100  
10  
1
quiescent power consumption. Table 25 shows the typical  
current for an input and output channel pair as well as the total  
power dissipated for that channel. The total power is summed  
across both sides of the device, so the power is being drawn  
from two different supplies. However, it shows how the power  
depends on the VDD values and the state of the refresh.  
0.1  
0.01  
DISTANCE = 5mm  
DISTANCE = 100mm  
DISTANCE = 1m  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 33. Maximum Allowable Current for Various Current-to-ADuM1440/  
ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447 Spacings  
Table 25. Typical Total Power Dissipation Per Channel  
Typical Input  
Channel  
Typical Output  
Channel  
Note that at combinations of strong magnetic field and high  
frequency, any loops formed by PCB traces can induce error  
voltages sufficiently large enough to trigger the thresholds of  
succeeding circuitry. Take care in the layout of such traces to  
avoid this possibility.  
State of  
Refresh  
VDDI  
IDDI(Q)  
VDDO  
IDDO(Q)  
Power/Ch  
7.8 µW  
Enabled  
2.5 V  
3.3 V  
2.5 V  
3.3 V  
2.6 µA  
4.8 µA  
2.5 V  
3.3 V  
0.5 µA  
0.8 µA  
0.05 µA  
0.13 µA  
18.5 µW  
0.3 µW  
Disabled  
0.05 µA 2.5 V  
0.12 µA 3.3 V  
POWER CONSUMPTION  
0.8 µW  
The supply current at a given channel of the ADuM1440/  
ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
isolator is a function of the supply voltage, the data rate of the  
channel, and the output load of the channel.  
INSULATION LIFETIME  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of  
insulation degradation is dependent on the characteristics of the  
voltage waveform applied across the insulation. In addition to  
the testing performed by the regulatory agencies, Analog Devices  
carries out an extensive set of evaluations to determine the  
lifetime of the insulation structure within the ADuM1440/  
ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447.  
For each input channel, the supply current is given by  
I
DDI = IDDI (Q)  
f ≤ 0.5 fr  
f > 0.5 fr  
IDDI = IDDI (D) × (2f fr) + IDDI (Q)  
For each output channel, the supply current is given by  
DDO = IDDO (Q) f ≤ 0.5 fr  
DDO = (IDDO (D) + (0.5 × 10−3) × CL × VDDO) × (2f − fr) + IDDO (Q)  
f > 0.5 fr  
I
I
Analog Devices performs accelerated life testing using voltage levels  
higher than the rated continuous working voltage. Acceleration  
factors for several operating conditions are determined. These  
factors allow calculation of the time to failure at the actual  
working voltage. The values shown in Table 20 summarize the  
peak voltage for 50 years of service life for a bipolar ac operating  
condition and the maximum CSA approved working voltages.  
In many cases, the approved working voltage is higher than the  
50-year service life voltage. Operation at these high working  
voltages can lead to shortened insulation life, in some cases.  
where:  
DDI (D), IDDO (D) are the input and output dynamic supply currents  
per channel (mA/Mbps).  
DDI (Q), IDDO (Q) are the specified input and output quiescent  
I
I
supply currents (mA).  
f is the input logic signal frequency (MHz); it is half the input  
data rate, expressed in units of Mbps.  
fr is the input stage refresh rate (Mbps).  
CL is the output load capacitance (pF).  
The insulation lifetime of the ADuM1440/ADuM1441/  
ADuM1442/ADuM1445/ADuM1446/ADuM1447 depends on  
the voltage waveform type imposed across the isolation barrier.  
The iCoupler insulation structure degrades at different rates  
depending on whether the waveform is bipolar ac, unipolar ac,  
or dc. Figure 34, Figure 35, and Figure 36 illustrate these  
different isolation voltage waveforms.  
VDDO is the output supply voltage (V).  
To calculate the total VDD1 and VDD2 supply current, the supply  
currents for each input and output channel corresponding to  
V
DD1 and VDD2 are calculated and totaled. Figure 11 through  
Figure 18 show per channel supply currents as a function of  
data rate for an unloaded output condition.  
Bipolar ac voltage is the most stringent environment. The goal  
of a 50-year operating lifetime under the ac bipolar condition  
determines the Analog Devices recommended maximum  
working voltage.  
Rev. E | Page 22 of 25  
 
 
 
 
Data Sheet  
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
In the case of unipolar ac or dc voltage, the stress on the insulation  
is significantly lower. This allows operation at higher working  
voltages while still achieving a 50-year service life. The working  
voltages listed in Table 20 can be applied while maintaining the  
50-year minimum lifetime provided the voltage conforms to  
either the unipolar ac or dc voltage case. Treat any cross-insulation  
voltage waveform that does not conform to Figure 35 or Figure 36  
as a bipolar ac waveform, and limit its peak voltage to the 50-year  
lifetime voltage value listed in Table 20.  
RATED PEAK VOLTAGE  
0V  
Figure 34. Bipolar AC Waveform  
RATED PEAK VOLTAGE  
0V  
Figure 35. Unipolar AC Waveform  
Note that the voltage presented in Figure 35 is shown as sinusoidal  
for illustration purposes only. It is meant to represent any voltage  
waveform varying between 0 V and some limiting value. The  
limiting value can be positive or negative, but the voltage cannot  
cross 0 V.  
RATED PEAK VOLTAGE  
0V  
Figure 36. DC Waveform  
Rev. E | Page 23 of 25  
 
 
 
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
Data Sheet  
OUTLINE DIMENSIONS  
0.197 (5.00)  
0.193 (4.90)  
0.189 (4.80)  
16  
1
9
8
0.158 (4.01)  
0.154 (3.91)  
0.150 (3.81)  
0.244 (6.20)  
0.236 (5.99)  
0.228 (5.79)  
0.010 (0.25)  
0.006 (0.15)  
0.020 (0.51)  
0.010 (0.25)  
0.069 (1.75)  
0.053 (1.35)  
0.065 (1.65)  
0.049 (1.25)  
0.010 (0.25)  
0.004 (0.10)  
0.041 (1.04)  
REF  
SEATING  
PLANE  
8°  
0°  
0.025 (0.64)  
BSC  
0.050 (1.27)  
0.016 (0.41)  
COPLANARITY  
0.004 (0.10)  
0.012 (0.30)  
0.008 (0.20)  
COMPLIANT TO JEDEC STANDARDS MO-137-AB  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 37. 16-Lead Shrink Small Outline Package [QSOP]  
(RQ-16)  
Dimensions shown in inches and (millimeters)  
7.50  
7.20  
6.90  
11  
20  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
1
10  
0.25  
0.09  
1.85  
1.75  
1.65  
2.00 MAX  
8°  
4°  
0°  
0.95  
0.75  
0.55  
0.38  
0.22  
0.05 MIN  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.65 BSC  
COMPLIANT TO JEDEC STANDARDS MO-150-AE  
Figure 38. 20-Lead Shrink Small Outline Package [SSOP]  
(RS-20)  
Dimensions shown in millimeters  
Rev. E | Page 24 of 25  
 
Data Sheet  
ADuM1440/ADuM1441/ADuM1442/ADuM1445/ADuM1446/ADuM1447  
ORDERING GUIDE  
Number  
Number  
Maximum Default Maximum  
of Inputs, of Inputs, Data Rate Output Propagation  
Temperature  
Delay, 3.3 V (ns) Range  
Package  
Description  
Package  
Option  
Model1, 2  
VDD1 Side  
VDD2 Side  
(Mbps)  
State  
High  
High  
High  
Low  
ADuM1440ARQZ  
ADuM1441ARQZ  
ADuM1442ARQZ  
ADuM1445ARQZ  
ADuM1446ARQZ  
ADuM1447ARQZ  
ADuM1440ARSZ  
ADuM1441ARSZ  
ADuM1442ARSZ  
ADuM1445ARSZ  
ADuM1446ARSZ  
ADuM1447ARSZ  
EVAL-ADUM1441EBZ  
4
3
2
4
3
2
4
3
2
4
3
2
0
1
2
0
1
2
0
1
2
0
1
2
2
2
2
2
2
2
2
2
2
2
2
2
180  
180  
180  
180  
180  
180  
180  
180  
180  
180  
180  
180  
−40°C to +125°C 16-Lead QSOP RQ-16  
−40°C to +125°C 16-Lead QSOP RQ-16  
−40°C to +125°C 16-Lead QSOP RQ-16  
−40°C to +125°C 16-Lead QSOP RQ-16  
−40°C to +125°C 16-Lead QSOP RQ-16  
−40°C to +125°C 16-Lead QSOP RQ-16  
Low  
Low  
High  
High  
High  
Low  
Low  
Low  
−40°C to +125°C 20-Lead SSOP  
−40°C to +125°C 20-Lead SSOP  
−40°C to +125°C 20-Lead SSOP  
−40°C to +125°C 20-Lead SSOP  
−40°C to +125°C 20-Lead SSOP  
−40°C to +125°C 20-Lead SSOP  
RS-20  
RS-20  
RS-20  
RS-20  
RS-20  
RS-20  
Evaluation  
Board  
1 Z = RoHS Compliant Part.  
2 Tape and reel is available. The addition of the –RL7 suffix indicates that the product is shipped on 7” tape and reel.  
©2013–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11845-0-1/17(E)  
Rev. E | Page 25 of 25  
 

相关型号:

ADUM1440ARSZ-RL7

Micropower Quad-Channel Digital Isolator, Default High (4/0 Channel Directionality)
ADI

ADUM1441

Micropower Quad-Channel Digital Isolators
ADI

ADuM1441ARQZ

Micropower Quad-Channel Digital Isolators
ADI

ADUM1441ARQZ-RL7

Micropower Quad-Channel Digital Isolator, Default High (3/1 Channel Directionality)
ADI

ADUM1442

Micropower Quad-Channel Digital Isolators
ADI

ADuM1442ARQZ

Micropower Quad-Channel Digital Isolators
ADI

ADUM1442ARQZ-RL7

Micropower Quad-Channel Digital Isolator, Default High (2/2 Channel Directionality)
ADI

ADUM1442ARSZ

Micropower Quad-Channel Digital Isolator, Default High (2/2 Channel Directionality)
ADI

ADUM1442ARSZ-RL7

Micropower Quad-Channel Digital Isolator, Default High (2/2 Channel Directionality)
ADI

ADUM1445

Micropower Quad-Channel Digital Isolators
ADI

ADuM1445ARQZ

Micropower Quad-Channel Digital Isolators
ADI

ADUM1445ARQZ-RL7

Micropower Quad-Channel Digital Isolator, Default Low (4/0 Channel Directionality)
ADI