ADUM3402WBRWZ-RL [ADI]

Quad-Channel, Digital Isolator, Enhanced System-Level ESD Reliability;
ADUM3402WBRWZ-RL
型号: ADUM3402WBRWZ-RL
厂家: ADI    ADI
描述:

Quad-Channel, Digital Isolator, Enhanced System-Level ESD Reliability

光电二极管
文件: 总20页 (文件大小:380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad-Channel, Digital Isolators,  
Enhanced System-Level ESD Reliability  
Data Sheet  
ADuM3400W/ADuM3401W/ADuM3402W  
FEATURES  
GENERAL DESCRIPTION  
Enhanced system-level ESD performance per IEC 61000-4-x  
Low power operation  
5 V operation  
1.4 mA per channel maximum at 0 Mbps to 2 Mbps  
4.3 mA per channel maximum at 10 Mbps  
3.3 V operation  
The ADuM340xW1 are 4-channel digital isolators based on the  
Analog Devices, Inc., iCoupler® technology. Combining high  
speed CMOS and monolithic air core transformer technology,  
these isolation components provide outstanding performance  
characteristics superior to alternatives such as optocoupler devices.  
iCoupler devices remove the design difficulties commonly  
associated with optocouplers. Typical optocoupler concerns  
regarding uncertain current transfer ratios, nonlinear transfer  
functions, and temperature and lifetime effects are eliminated  
with the simple iCoupler digital interfaces and stable performance  
characteristics. The need for external drivers and other discrete  
components is eliminated with these iCoupler products. Further-  
more, iCoupler devices consume one-tenth to one-sixth the power  
of optocouplers at comparable signal data rates.  
0.9 mA per channel maximum at 0 Mbps to 2 Mbps  
2.4 mA per channel maximum at 10 Mbps  
Bidirectional communication  
3.3 V/5 V level translation  
High temperature operation: 125°C  
High data rate: dc to 10 Mbps (NRZ)  
Precise timing characteristics  
3.5 ns maximum pulse width distortion  
3.5 ns maximum channel-to-channel matching  
High common-mode transient immunity: >25 kV/μs  
Output enable function  
16-lead SOIC wide body, RoHS-compliant package  
Safety and regulatory approvals  
UL recognition: 2500 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice #5A  
VDE Certificate of Conformity  
The ADuM340xW isolators provide four independent isolation  
channels in a variety of channel configurations and data rates  
(see the Ordering Guide). All models of the ADuM340xW  
provide operation from 3.135 V to 5.5 V, providing  
compatibility with lower voltage systems as well as enabling a  
voltage level translation function across the isolation barrier. The  
ADuM340xW isolators have a patented refresh feature that ensures  
dc correctness in the absence of input logic transitions and  
during power-up/power-down conditions.  
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12  
VIORM = 560 V peak  
Qualified for automotive applications  
The ADuM340xW isolators contain various circuit and layout  
changes to provide increased capability relative to system-level IEC  
61000-4-x testing (ESD/burst/surge). The precise capability in  
these tests is strongly determined by the design and layout of  
the users board or module. For more information, see the  
AN-793 Application Note, ESD/Latch-Up Considerations with  
iCoupler Isolation Products.  
APPLICATIONS  
Hybrid electric vehicles  
Battery monitor  
Motor drive  
1 Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329.  
FUNCTIONAL BLOCK DIAGRAMS  
1
2
3
16  
15  
14  
V
V
DD2  
1
2
3
16  
15  
14  
V
1
2
3
16  
15  
14  
V
DD2  
V
V
DD2  
DD1  
DD1  
DD1  
GND  
V
GND  
GND  
GND  
GND  
V
GND  
1
2
1
2
1
2
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
ENCODE  
V
V
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
V
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
V
IA  
IB  
OA  
IA  
IB  
OA  
IA  
IB  
OA  
V
4
5
13  
12  
V
V
4
5
13  
12  
V
4
5
13  
12  
V
V
OB  
OB  
OB  
V
V
V
V
V
V
V
V
OC  
OD  
IC  
IC  
OC  
IC  
ID  
OC  
6
7
8
11  
10  
9
V
6
7
8
11  
10  
9
6
7
8
11  
10  
9
V
V
V
ID  
OD  
ID  
OD  
V
V
V
V
NC  
GND  
V
E1  
E2  
E1  
E2  
E2  
GND  
GND  
GND  
GND  
GND  
1
2
1
2
1
2
Figure 3. ADuM3402W Functional Block  
Diagram  
Figure 1. ADuM3400W Functional Block  
Diagram  
Figure 2. ADuM3401W Functional Block  
Diagram  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2012–2014 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADuM3400W/ADuM3401W/ADuM3402W  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ............................................................9  
ESD Caution...................................................................................9  
Pin Configurations and Function Descriptions......................... 10  
Typical Performance Characteristics ........................................... 13  
Application Information................................................................ 15  
PC Board Layout ........................................................................ 15  
System-Level ESD Considerations and Enhancements ........ 15  
Propagation Delay-Related Parameters................................... 15  
DC Correctness and Magnetic Field Immunity........................... 15  
Power Consumption .................................................................. 16  
Insulation Lifetime..................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Automotive Products................................................................. 18  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 V Operation................................ 3  
Electrical Characteristics—3.3 V Operation ............................ 4  
Electrical Characteristics—Mixed 5 V/3.3 V, Operation........ 5  
Electrical Characteristics—Mixed 3.3 V/5 V Operation ........ 6  
Package Characteristics ............................................................... 7  
Regulatory Information............................................................... 7  
Insulation and Safety-Related Specifications............................ 7  
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation  
Characteristics .............................................................................. 8  
Recommended Operating Conditions ...................................... 8  
REVISION HISTORY  
11/14—Rev. A to Rev. B  
Changed Minimum Supply Voltage from 3.0 V to 3.135 V  
(Throughout) .................................................................................... 1  
Changes to Table 3............................................................................ 3  
Changes to Table 6............................................................................ 4  
Changes to Table 9............................................................................ 5  
Changes to Table 12.......................................................................... 6  
4/14—Rev. 0 to Rev. A  
Changes to Table 14.......................................................................... 7  
9/12—Revision 0: Initial Version  
Rev. B | Page 2 of 20  
 
Data Sheet  
ADuM3400W/ADuM3401W/ADuM3402W  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. Minimum/maximum specifications apply over the entire recommended  
operation range of 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 1.  
WA Grade  
Typ  
WB Grade  
Typ Max  
Parameter  
Symbol  
Min  
50  
Max  
Min  
18  
Unit  
Test Conditions  
SWITCHING SPECIFICATIONS  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Pulse Width  
Propagation Delay Skew  
Channel Matching  
Codirectional  
1
100  
40  
10  
36  
3.5  
Mbps  
ns  
Within PWD limit  
50% input to 50% output  
tPHL, tPLH  
PWD  
65  
11  
32  
5
ns  
|tPLH − tPHL|  
ps/°C  
ns  
PW  
tPSK  
1000  
100  
Within PWD limit  
50  
15  
ns  
Between any two units  
tPSKCD  
tPSKOD  
50  
50  
3.5  
6
ns  
ns  
Opposing-Direction  
Table 2.  
1 Mbps—WA, WB Grades  
10 Mbps—WB Grade  
Parameter  
Symbol Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Test Conditions  
SUPPLY CURRENT  
ADuM3400W  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
2.9  
1.2  
2.5  
1.6  
2.0  
2.0  
3.5  
2.0  
3.2  
2.4  
2.8  
2.8  
9.0  
3.0  
7.4  
4.4  
6.0  
6.0  
11.6  
5.5  
10.6  
6.5  
7.5  
7.5  
mA  
mA  
mA  
mA  
mA  
mA  
ADuM3401W  
ADuM3402W  
Table 3. For All Models  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltage  
VIH  
VIL  
2.0  
V
0.8  
V
VOH  
VDDx − 0.1  
VDDx − 0.4  
VDDx  
VDDx− 0.2  
0.0  
0.04  
0.2  
+0.01  
−3  
+0.01  
V
V
V
V
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
0 V ≤ VI x ≤ VDDx  
Logic Low Output Voltage  
VOL  
0.1  
0.1  
0.4  
+10  
V
Input Leakage per Channel  
VEx Input Pull-Up Current  
II  
IPU  
IOZ  
−10  
−10  
−10  
µA  
µA  
µA  
VEx = 0 V  
Tristate Leakage Current per Channel  
Supply Current per Channel  
Quiescent Input Supply Current  
Quiescent Output Supply Current  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
AC SPECIFICATIONS  
+10  
IDDI(Q)  
IDDO(Q)  
IDDI(D)  
IDDO(D)  
0.57  
0.23  
0.20  
0.05  
0.83  
0.35  
mA  
mA  
mA/Mbps  
mA/Mbps  
All inputs at logic low  
All inputs at logic low  
Output Rise/Fall Time  
tR/tF  
|CM|  
tPHZ, tPLH  
tPZH, tPZL  
fr  
2.5  
35  
6
6
1.0  
ns  
kV/µs  
ns  
ns  
Mbps  
10% to 90%  
VIx = VDDx  
High/low-to-high impedance  
High impedance-to-high/low  
Common-Mode Transient Immunity1  
Output Disable Propagation Delay  
Output Enable Propagation Delay  
Refresh Rate  
25  
8
8
1 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VOx > 0.8 VDD. The common-mode voltage slew rates apply to both  
rising and falling common-mode voltage edges. VCM = 1000 V, transient magnitude = 800 V.  
Rev. B | Page 3 of 20  
 
 
ADuM3400W/ADuM3401W/ADuM3402W  
Data Sheet  
ELECTRICAL CHARACTERISTICS—3.3 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.3 V. Minimum/maximum specifications apply over the entire recommended  
operation range: 3.135 V ≤ VDD1 ≤ 3.6 V, 3.135 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching  
specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 4.  
WA Grade  
Typ  
WB Grade  
Typ  
Parameter  
Symbol  
Min  
50  
Max  
Min  
20  
Max  
Unit  
Test Conditions  
SWITCHING SPECIFICATIONS  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Pulse Width  
Propagation Delay Skew  
Channel Matching  
Codirectional  
1
100  
40  
10  
45  
3.5  
Mbps  
ns  
ns  
ps/°C  
ns  
ns  
Within PWD limit  
50% input to 50% output  
|tPLH − tPHL|  
tPHL, tPLH  
PWD  
75  
11  
38  
5
PW  
tPSK  
1000  
100  
Within PWD limit  
Between any two units  
50  
22  
tPSKCD  
tPSKOD  
50  
50  
3.5  
6
ns  
ns  
Opposing-Direction  
Table 5.  
1 Mbps—WA, WB Grades  
10 Mbps—WB Grade  
Parameter  
Symbol Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Test Conditions  
SUPPLY CURRENT  
ADuM3400W  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
1.6  
0.7  
1.4  
0.9  
1.2  
1.2  
2.2  
1.4  
2.0  
1.6  
1.8  
1.8  
4.8  
1.8  
0.1  
2.5  
3.3  
3.3  
7.1  
2.6  
5.6  
3.3  
4.4  
4.4  
mA  
mA  
mA  
mA  
mA  
mA  
ADuM3401W  
ADuM3402W  
Table 6. For All Models  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltage  
VIH  
VIL  
VOH  
1.6  
V
V
V
V
0.4  
VDDx  
VDDx − 0.1  
VDDx − 0.4  
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
0 V ≤ VI x ≤ VDDx  
VDDx− 0.2  
Logic Low Output Voltage  
VOL  
0.0  
0.04  
0.2  
+0.01  
−3  
+0.01  
0.1  
0.1  
0.4  
+10  
V
V
V
µA  
µA  
µA  
Input Leakage per Channel  
VEx Input Pull-Up Current  
II  
IPU  
IOZ  
−10  
−10  
−10  
VEx = 0 V  
Tristate Leakage Current per Channel  
Supply Current per Channel  
Quiescent Input Supply Current  
Quiescent Output Supply Current  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
AC SPECIFICATIONS  
+10  
IDDI(Q)  
IDDO(Q)  
IDDI(D)  
IDDO(D)  
0.31  
0.19  
0.10  
0.03  
0.49  
0.27  
mA  
mA  
mA/Mbps  
mA/Mbps  
All inputs at logic low  
All inputs at logic low  
Output Rise/Fall Time  
tR/tF  
3
ns  
10% to 90%  
Common-Mode Transient Immunity1  
Output Disable Propagation Delay  
Output Enable Propagation Delay  
Refresh Rate  
|CM|  
tPHZ, tPLH  
tPZH, tPZL  
fr  
25  
35  
6
6
kV/µs  
ns  
ns  
VIx = VDDx  
High/low-to-high impedance  
High impedance-to-high/low  
8
8
1.0  
Mbps  
1 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VOx > 0.8 VDD. The common-mode voltage slew rates apply to both  
rising and falling common-mode voltage edges. VCM = 1000 V, transient magnitude = 800 V.  
Rev. B | Page 4 of 20  
 
Data Sheet  
ADuM3400W/ADuM3401W/ADuM3402W  
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3.3 V, OPERATION  
All typical specifications are at TA = 25°C, VDD1 = 5 V, VDD2 = 3.3 V. Minimum/maximum specifications apply over the entire recommended  
operation range: 4.5 V ≤ VDD1 ≤ 5.5 V, 3.135 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 7.  
WA Grade  
Typ  
WB Grade  
Typ  
Parameter  
Symbol  
Min  
50  
Max  
Min  
20  
Max  
Unit  
Test Conditions  
SWITCHING SPECIFICATIONS  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Pulse Width  
Propagation Delay Skew  
Channel Matching  
Codirectional  
1
100  
40  
10  
42  
3.5  
Mbps  
ns  
ns  
Within PWD limit  
50% input to 50% output  
|tPLH − tPHL|  
tPHL, tPLH  
PWD  
70  
11  
30  
5
ps/°C  
ns  
PW  
tPSK  
1000  
100  
Within PWD limit  
50  
22  
ns  
Between any two units  
tPSKCD  
tPSKOD  
50  
50  
3.5  
6
ns  
ns  
Opposing-Direction  
Table 8.  
1 Mbps—WA, WB Grades  
10 Mbps—WB Grade  
Parameter  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Test Conditions  
SUPPLY CURRENT  
ADuM3400W  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
2.9  
0.7  
2.5  
0.9  
2.0  
1.2  
3.5  
1.4  
3.2  
1.6  
2.8  
1.8  
9.0  
1.8  
7.4  
2.5  
6.0  
3.3  
11.6  
2.6  
10.6  
3.3  
7.5  
4.4  
mA  
mA  
mA  
mA  
mA  
mA  
ADuM3401W  
ADuM3402W  
Table 9. For All Models  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
5 V Logic High Input Threshold  
3.3 V Logic High Input Threshold  
5 V Logic Low Input Threshold  
3.3 V Logic Low Input Threshold  
Logic High Output Voltage  
VIH  
VIH  
VIL  
2.0  
1.6  
V
V
0.8  
0.4  
V
VIL  
V
VOH  
VDDx − 0.1  
VDDx − 0.4  
VDDx  
VDDx− 0.2  
0.0  
0.04  
0.2  
+0.01  
−3  
+0.01  
V
V
V
V
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
0 V ≤ VI x ≤ VDDx  
Logic Low Output Voltage  
VOL  
0.1  
0.1  
0.4  
+10  
V
Input Leakage per Channel  
VEx Input Pull-Up Current  
II  
IPU  
IOZ  
−10  
−10  
−10  
µA  
µA  
µA  
VEx = 0 V  
Tristate Leakage Current per Channel  
Supply Current per Channel  
Quiescent Input Supply Current  
Quiescent Output Supply Current  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
AC SPECIFICATIONS  
+10  
IDDI(Q)  
IDDO(Q)  
IDDI(D)  
IDDO(D)  
0.57  
0.29  
0.20  
0.03  
0.83  
0.27  
mA  
mA  
mA/Mbps  
mA/Mbps  
All inputs at logic low  
All inputs at logic low  
Output Rise/Fall Time  
tR/tF  
3
ns  
10% to 90%  
Common-Mode Transient Immunity1  
Output Disable Propagation Delay  
Output Enable Propagation Delay  
Refresh Rate  
|CM|  
25  
35  
6
6
kV/µs  
ns  
ns  
VIx = VDDx  
High/low-to-high impedance  
High impedance-to-high/low  
tPHZ, tPLH  
tPZH, tPZL  
fr  
8
8
1.0  
Mbps  
1 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VOx > 0.8 VDD. The common-mode voltage slew rates apply to both  
rising and falling common-mode voltage edges. VCM = 1000 V, transient magnitude = 800 V.  
Rev. B | Page 5 of 20  
 
ADuM3400W/ADuM3401W/ADuM3402W  
Data Sheet  
ELECTRICAL CHARACTERISTICS—MIXED 3.3 V/5 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = 3.3 V, VDD2 = 5 V. Minimum/maximum specifications apply over the entire recommended  
operation range: 3.135 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V; and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 10.  
WA Grade  
Typ  
WB Grade  
Typ  
Parameter  
Symbol  
Min  
50  
Max  
Min  
20  
Max  
Unit  
Test Conditions  
SWITCHING SPECIFICATIONS  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Pulse Width  
Propagation Delay Skew  
Channel Matching  
Codirectional  
1
100  
40  
10  
42  
3.5  
Mbps  
ns  
ns  
Within PWD limit  
50% input to 50% output  
|tPLH − tPHL|  
tPHL, tPLH  
PWD  
70  
11  
30  
5
ps/°C  
ns  
PW  
tPSK  
1000  
100  
Within PWD limit  
50  
22  
ns  
Between any two units  
tPSKCD  
tPSKOD  
50  
50  
3.5  
6
ns  
ns  
Opposing-Direction  
Table 11.  
1 Mbps—WA, WB Grades  
10 Mbps—WB Grade  
Parameter  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit Test Conditions  
SUPPLY CURRENT  
ADuM3400W  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
1.6  
1.2  
1.4  
1.6  
1.2  
2.0  
2.2  
2.0  
2.0  
2.4  
1.8  
2.8  
4.8  
3.0  
4.1  
4.4  
3.3  
6.0  
7.1  
5.5  
5.6  
6.5  
4.4  
7.5  
mA  
mA  
mA  
mA  
mA  
mA  
ADuM3401W  
ADuM3402W  
Table 12. For All Models  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
5 V Logic High Input Threshold  
3.3 V Logic High Input Threshold  
5 V Logic Low Input Threshold  
VIH  
VIH  
VIL  
2.0  
1.6  
V
V
V
0.8  
0.4  
3.3 V Logic Low Input Threshold  
Logic High Output Voltage  
VIL  
V
VOH  
VDDx − 0.1  
VDDx − 0.4  
VDDx  
VDDx− 0.2  
0.0  
V
V
V
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
0 V ≤ VI x ≤ VDDx  
Logic Low Output Voltage  
VOL  
0.1  
0.1  
0.4  
+10  
0.04  
0.2  
+0.01  
−3  
V
V
µA  
µA  
µA  
Input Leakage per Channel  
VEx Input Pull-Up Current  
II  
IPU  
IOZ  
−10  
−10  
−10  
VEx = 0 V  
Tristate Leakage Current per Channel  
Supply Current per Channel  
Quiescent Input Supply Current  
Quiescent Output Supply Current  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
AC SPECIFICATIONS  
+0.01  
+10  
IDDI(Q)  
IDDO(Q)  
IDDI(D)  
IDDO(D)  
0.31  
0.19  
0.10  
0.05  
0.49  
0.35  
mA  
mA  
mA/Mbps  
mA/Mbps  
All inputs at logic low  
All inputs at logic low  
Output Rise/Fall Time  
tR/tF  
2.5  
35  
6
6
1.0  
ns  
10% to 90%  
Common-Mode Transient Immunity1  
Output Disable Propagation Delay  
Output Enable Propagation Delay  
Refresh Rate  
|CM|  
25  
kV/µs  
ns  
ns  
VIx = VDDx  
High/low-to-high impedance  
High impedance-to-high/low  
tPHZ, tPLH  
tPZH, tPZL  
fr  
8
8
Mbps  
1 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VOx > 0.8 VDD. The common-mode voltage slew rates apply to both  
rising and falling common-mode voltage edges. VCM = 1000 V, transient magnitude = 800 V.  
Rev. B | Page 6 of 20  
 
Data Sheet  
ADuM3400W/ADuM3401W/ADuM3402W  
PACKAGE CHARACTERISTICS  
Table 13.  
Parameter  
Symbol  
RI-O  
CI-O  
CI  
θJCI  
Min  
Typ  
1012  
2.2  
4.0  
33  
Max  
Unit  
pF  
pF  
°C/W  
°C/W  
Test Conditions  
Resistance (Input-to-Output)1  
Capacitance (Input-to-Output)1  
Input Capacitance2  
f = 1 MHz  
IC Junction-to-Case Thermal Resistance, Side 1  
IC Junction-to-Case Thermal Resistance, Side 2  
Thermocouple located at  
center of package underside  
θJCO  
28  
1 Device considered a 2-terminal device; Pin 1 to Pin 8 are shorted together and Pin 9 to Pin 16 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
REGULATORY INFORMATION  
The ADuM3400W/ADuM3401W/ADuM3402W is approved by the organizations listed in Table 14. Refer to Table 19 and the Insulation  
Lifetime section for details regarding recommended maximum working voltages for specific crossisolation waveforms and insulation  
levels.  
Table 14.  
UL  
CSA  
VDE  
Recognized under  
Approved under  
CSA Component Acceptance Notice #5A  
Certified according to DIN V VDE V 0884-10  
(VDE V 0884-10): 2006-122  
1577 component recognition program1  
Single protection,  
2500 V rms isolation voltage  
Basic insulation per CSA 60950-1-03 and  
IEC 60950-1, 800 V rms (1131 V peak)  
maximum working voltage  
Reinforced insulation, 560 V peak  
Reinforced insulation per CSA 60950-1-03  
and IEC 60950-1, 400 V rms (566 V peak)  
maximum working voltage  
File E214100  
File 205078  
File 2471900-4880-0001  
1 In accordance with UL 1577, each ADuM3400W/ADuM3401W/ADuM3402W is proof tested by applying an insulation test voltage ≥3000 V rms for 1 sec (current  
leakage detection limit = 5 µA).  
2 In accordance with DIN V VDE V 0884-10, each ADuM3400W/ADuM3401W/ADuM3402W is proof tested by applying an insulation test voltage ≥1050 V peak for 1 sec  
(partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 15.  
Parameter  
Symbol Value  
Unit Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
2500  
7.7 min  
V rms 1-minute duration  
L(I01)  
L(I02)  
mm  
Measured from input terminals to output terminals,  
shortest distance through air  
Minimum External Tracking (Creepage)  
8.1 min  
mm  
Measured from input terminals to output terminals,  
shortest distance path along body  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017 min mm  
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
>175  
IIIa  
V
Rev. B | Page 7 of 20  
 
 
 
 
ADuM3400W/ADuM3401W/ADuM3402W  
Data Sheet  
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS  
These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by  
protective circuits. The * marking on packages denotes DIN V VDE V 0884-10 approval.  
Table 16.  
Description  
Conditions  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method B1  
I to IV  
I to III  
I to II  
40/105/21  
2
VIORM  
VPR  
560  
1050  
V peak  
V peak  
VIORM × 1.875 = VPR, 100% production test,  
tm = 1 sec, partial discharge < 5 pC  
Input-to-Output Test Voltage, Method A  
VIORM × 1.6 = VPR, tm = 60 sec,  
partial discharge < 5 pC  
VPR  
After Environmental Tests Subgroup 1  
After Input and/or Safety Test Subgroup 2 and Subgroup 3  
896  
672  
V peak  
V peak  
VIORM × 1.2 = VPR, tm = 60 sec,  
partial discharge < 5 pC  
Highest Allowable Overvoltage  
Safety-Limiting Values  
Transient overvoltage, tTR = 10 seconds  
Maximum value allowed in the  
event of a failure (see Figure 4)  
VTR  
4000  
V peak  
Case Temperature  
Side 1 Current  
Side 2 Current  
TS  
IS1  
IS2  
RS  
150  
265  
335  
>109  
°C  
mA  
mA  
Insulation Resistance at TS  
VIO = 500 V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
RECOMMENDED OPERATING CONDITIONS  
Table 17.  
Parameter  
Rating  
Operating Temperature Range (TA)  
−40°C to +125°C  
3.135 V to 5.5 V  
1.0 ms  
1
Supply Voltages (VDD1, VDD2  
)
Input Signal Rise and Fall Times  
1 All voltages are relative to their respective ground. See the DC Correctness  
and Magnetic Field Immunity section for information on immunity to external  
magnetic fields.  
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
Figure 4. Thermal Derating Curve, Dependence of Safety-Limiting Values  
with Ambient Temperature per DIN V VDE V 0884-10  
Rev. B | Page 8 of 20  
 
 
 
Data Sheet  
ADuM3400W/ADuM3401W/ADuM3402W  
ABSOLUTE MAXIMUM RATINGS  
Ambient temperature = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 18.  
Parameter  
Rating  
Storage Temperature Range (TST)  
−65°C to +150°C  
Ambient Operating Temperature Range (TA) −40°C to +125°C  
1
Supply Voltages (VDD1, VDD2  
)
−0.5 V to +7.0 V  
Input Voltage (VIA, VIB, VIC, VID, VE1,VE2)1, 2  
Output Voltage (VOA, VOB,VOC, VOD)1, 2  
Average Output Current per Pin3  
Side 1 (IO1)  
Side 2 (IO2)  
Common-Mode Transients (CMH, CML)4  
−0.5 V to VDD1 + 0.5 V  
−0.5 V to VDDO + 0.5 V  
ESD CAUTION  
−18 mA to +18 mA  
−22 mA to + 22 mA  
−100 kV/µs to  
+100 kV/µs  
1 All voltages are relative to their respective ground.  
2 VDDI and VDDO refer to the supply voltages on the input and output sides of a  
given channel, respectively. See the PC Board Layout section.  
3 See Figure 4 for maximum rated current values for various temperatures.  
4 Refers to common-mode transients across the insulation barrier. Common-  
mode transients exceeding the Absolute Maximum Ratings can cause latch-  
up or permanent damage.  
Table 19. Maximum Continuous Working Voltage1  
Parameter  
Max  
Unit  
Constraint  
AC Voltage, Bipolar Waveform  
AC Voltage, Unipolar Waveform  
Basic Insulation  
Reinforced Insulation  
DC Voltage  
565  
V peak  
50-year minimum lifetime  
1131  
560  
V peak  
V peak  
Maximum approved working voltage per IEC 60950-1  
Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10  
Basic Insulation  
Reinforced Insulation  
1131  
560  
V peak  
V peak  
Maximum approved working voltage per IEC 60950-1  
Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10  
1 Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.  
Table 20. Truth Table (Positive Logic)  
VIx Input1 VEx Input2 VDDI State1 VDDO State1 VOX Output1  
Notes  
H
L
x
x
x
x
H or NC  
H or NC  
L
H or NC  
L
x
Powered  
Powered  
Powered  
Unpowered Powered  
Unpowered Powered  
Powered  
Powered  
Powered  
H
L
Z
H
Z
Outputs return to the input state within 1 µs of VDDI power restoration.  
Powered  
Unpowered Indeterminate Outputs return to the input state within 1 µs of VDDO power restoration  
if VEx state is H or NC. Outputs return to high impedance state within  
8 ns of VDDO power restoration if VEx state is L.  
1 VIx and VOx refer to the input and output signals of a given channel (A, B, C, or D). VEx refers to the output enable signal on the same side as the VOx outputs. VDDI and  
VDDO refer to the supply voltages on the input and output sides of the given channel, respectively.  
2 In noisy environments, connecting VEx to an external logic high or low is recommended.  
Rev. B | Page 9 of 20  
 
 
 
 
ADuM3400W/ADuM3401W/ADuM3402W  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
*GND  
15 GND *  
1
IA  
IB  
IC  
ID  
2
V
V
V
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
OA  
OB  
OC  
OD  
E2  
ADuM3400W  
TOP VIEW  
(Not to Scale)  
NC  
*GND  
GND *  
1
2
NC = NO CONNECT  
*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED AND CONNECTING  
BOTH TO GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY  
1
CONNECTED AND CONNECTING BOTH TO GND IS RECOMMENDED.  
2
IN NOISY ENVIRONMENTS, CONNECTING OUTPUT ENABLES (PIN 7 FOR  
ADuM3401W/ADuM3402W AND PIN 10 FOR ALL MODELS) TO AN EXTERNAL  
LOGIC HIGH OR LOW IS RECOMMENDED.  
Figure 5. ADuM3400W Pin Configuration  
Table 21. ADuM3400W Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2, 8  
3
VDD1  
GND1  
VIA  
Supply Voltage for Isolator Side 1, 3.135 V to 5.5 V.  
Ground 1. Ground reference for Isolator Side 1.  
Logic Input A.  
4
VIB  
Logic Input B.  
5
VIC  
Logic Input C.  
6
VID  
Logic Input D.  
7
9, 15  
10  
NC  
GND2  
VE2  
This pin is not Connected Internally (see Figure 5).  
Ground 2. Ground reference for Isolator Side 2.  
Output Enable 2. Active high logic input. VOA, VOB, VOC, and VOD outputs are enabled when VE2 is high or disconnected.  
VOA, VOB, VOC, and VOD outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic  
high or low is recommended.  
11  
12  
13  
14  
16  
VOD  
VOC  
VOB  
VOA  
VDD2  
Logic Output D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Supply Voltage for Isolator Side 2, 3.135 V to 5.5 V.  
Rev. B | Page 10 of 20  
 
 
Data Sheet  
ADuM3400W/ADuM3401W/ADuM3402W  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
*GND  
15 GND *  
1
IA  
IB  
IC  
2
V
V
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
OA  
OB  
OC  
ID  
ADuM3401W  
TOP VIEW  
(Not to Scale)  
V
OD  
V
E1  
E2  
*GND  
GND *  
2
1
*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED AND CONNECTING  
BOTH TO GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY  
1
CONNECTED AND CONNECTING BOTH TO GND IS RECOMMENDED. IN NOISY  
2
ENVIRONMENTS, CONNECTING OUTPUT ENABLES (PIN 7 FOR ADuM3401W/  
ADuM3402W AND PIN 10 FOR ALL MODELS) TO AN EXTERNAL LOGIC HIGH  
OR LOW IS RECOMMENDED.  
Figure 6. ADuM3401W Pin Configuration  
Table 22. ADuM3401W Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2, 8  
3
VDD1  
GND1  
VIA  
Supply Voltage for Isolator Side 1, 3.135 V to 5.5 V.  
Ground 1. Ground reference for Isolator Side 1.  
Logic Input A.  
4
VIB  
Logic Input B.  
5
VIC  
Logic Input C.  
6
7
VOD  
VE1  
Logic Output D.  
Output Enable 1. Active high logic input. VOD output is enabled when VE1 is high or disconnected. VOD is disabled when  
VE1 is low. In noisy environments, connecting VE1 to an external logic high or low is recommended.  
9, 15  
10  
GND2  
VE2  
Ground 2. Ground reference for Isolator Side 2.  
Output Enable 2. Active high logic input. VOA, VOB, and VOC outputs are enabled when VE2 ishigh or disconnected.  
VOA, VOB, and VOC outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic high  
or low is recommended.  
11  
12  
13  
14  
16  
VID  
Logic Input D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
VOC  
VOB  
VOA  
VDD2  
Supply Voltage for Isolator Side 1, 3.135 V to 5.5 V.  
Rev. B | Page 11 of 20  
ADuM3400W/ADuM3401W/ADuM3402W  
Data Sheet  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
*GND  
15 GND *  
1
IA  
IB  
2
V
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
OA  
OB  
IC  
ADuM3402W  
TOP VIEW  
(Not to Scale)  
V
V
OC  
OD  
ID  
V
E1  
E2  
*GND  
GND *  
1
2
*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED AND CONNECTING  
BOTH TO GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY  
1
CONNECTED AND CONNECTING BOTH TO GND IS RECOMMENDED.  
2
IN NOISY ENVIRONMENTS, CONNECTING OUTPUT ENABLES (PIN 7 FOR  
ADuM3401W/ADuM3402W AND PIN 10 FOR ALL MODELS) TO AN EXTERNAL  
LOGIC HIGH OR LOW IS RECOMMENDED.  
Figure 7. ADuM3402W Pin Configuration  
Table 23. ADuM3402W Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2, 8  
3
VDD1  
GND1  
VIA  
Supply Voltage for Isolator Side 1, 3.135 V to 5.5 V.  
Ground 1. Ground reference for Isolator Side 1.  
Logic Input A.  
4
VIB  
Logic Input B.  
5
6
7
VOC  
VOD  
VE1  
Logic Output C.  
Logic Output D.  
Output Enable 1. Active high logic input. VOC and VOD outputs are enabled when VE1 is high or disconnected.  
VOC and VOD outputs are disabled when VE1 is low. In noisy environments, connecting VE1 to an external logic high or  
low is recommended.  
9, 15  
10  
GND2  
VE2  
Ground 2. Ground reference for Isolator Side 2.  
Output Enable 2. Active high logic input. VOA and VOB outputs are enabled when VE2 ishigh or disconnected.  
V
OA and VOB outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic high or  
low is recommended.  
11  
12  
13  
14  
16  
VID  
VIC  
VOB  
VOA  
VDD2  
Logic Input D.  
Logic Input C.  
Logic Output B.  
Logic Output A.  
Supply Voltage for Isolator Side 2, 3.135 V to 5.5 V.  
Rev. B | Page 12 of 20  
Data Sheet  
ADuM3400W/ADuM3401W/ADuM3402W  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.5  
10  
8
2.0  
1.5  
6
5V  
1.0  
5V  
3V  
4
3V  
0.5  
0
2
0
0
2
4
6
8
10  
0
2
4
6
8
10  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 11. Typical ADuM3400W VDD1 Supply Current vs.  
Data Rate for 5 V and 3.3 V Operation  
Figure 8. Typical Input Supply Current per Channel vs. Data Rate (No Load)  
4
1.00  
3
2
1
0
0.75  
0.50  
5V  
5V  
0.25  
3V  
3V  
0
0
2
4
6
8
10  
0
2
4
6
8
10  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 12. Typical ADuM3400W VDD2 Supply Current vs.  
Data Rate for 5 V and 3.3 V Operation  
Figure 9. Typical Output Supply Current per Channel vs. Data Rate (No Load)  
10  
8
1.5  
1.0  
6
5V  
3V  
5V  
4
0.5  
3V  
2
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 13. Typical ADuM3401W VDD1 Supply Current vs.  
Data Rate for 5 V and 3.3 V Operation  
Figure 10. Typical Output Supply Current per Channel vs.  
Data Rate (15 pF Output Load)  
Rev. B | Page 13 of 20  
 
 
 
 
 
ADuM3400W/ADuM3401W/ADuM3402W  
Data Sheet  
4
45  
40  
35  
30  
25  
3
3V  
5V  
5V  
2
3V  
1
0
0
2
4
6
8
10  
–50  
–25  
0
25  
50  
75  
100  
125  
DATA RATE (Mbps)  
TEMPERATURE (°C)  
Figure 16. Propagation Delay vs. Temperature, WB Grade  
Figure 14. Typical ADuM3401W VDD2 Supply Current vs.  
Data Rate for 5 V and 3.3 V Operation  
10  
8
6
5V  
3V  
4
2
0
0
2
4
6
8
10  
DATA RATE (Mbps)  
Figure 15. Typical ADuM3402W VDD1 or VDD2 Supply Current vs.  
Data Rate for 5 V and 3.3 V Operation  
Rev. B | Page 14 of 20  
 
Data Sheet  
ADuM3400W/ADuM3401W/ADuM3402W  
APPLICATION INFORMATION  
While the ADuM3400W/ADuM3401W/ADuM3402W  
improve system-level ESD reliability, they are no substitute for a  
robust system-level design. See the AN-793 Application Note,  
ESD/Latch-Up Considerations with iCoupler Isolation Products  
for detailed recommendations on board layout and system-level  
design.  
PC BOARD LAYOUT  
The ADuM3400W/ADuM3401W/ADuM3402W digital  
isolator requires no external interface circuitry for the logic  
interfaces. Power supply bypassing is strongly recommended at  
the input and output supply pins (see Figure 17). Bypass  
capacitors are most conveniently connected between Pin 1 and  
Pin 2 for VDD1 and between Pin 15 and Pin 16 for VDD2. The  
capacitor value should be between 0.01 μF and 0.1 μF. The total  
lead length between both ends of the capacitor and the input  
power supply pin should not exceed 20 mm. Bypassing between  
Pin 1 and Pin 8 and between Pin 9 and Pin 16 should also be  
considered unless the ground pair on each package side is  
connected close to the package.  
PROPAGATION DELAY-RELATED PARAMETERS  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component. The propagation  
delay to a logic low output can differ from the propagation  
delay to a logic high.  
INPUT (V  
)
50%  
Ix  
V
GND  
V
DD2  
DD1  
tPLH  
tPHL  
GND  
1
IA  
IB  
2
V
V
V
V
V
V
V
OA  
OB  
OUTPUT (V  
)
50%  
Ox  
V
V
IC/OC  
ID/OD  
OC/IC  
OD/ID  
E2  
Figure 18. Propagation Delay Parameters  
V
E1  
GND  
GND  
2
1
Pulse width distortion is the maximum difference between  
these two propagation delay values and is an indication of how  
accurately the input signals timing is preserved.  
Figure 17. Recommended Printed Circuit Board Layout  
In applications involving high common-mode transients, care  
should be taken to ensure that board coupling across the isolation  
barrier is minimized. Furthermore, the board layout should be  
designed such that any coupling that does occur equally affects  
all pins on a given component side. Failure to ensure this could  
cause voltage differentials between pins exceeding the Absolute  
Maximum Ratings of the device, thereby leading to latch-up or  
permanent damage.  
Channel-to-channel matching refers to the maximum amount  
the propagation delay differs between channels within a single  
ADuM3400W/ADuM3401W/ADuM3402W component.  
Propagation delay skew refers to the maximum amount the  
propagation delay differs between multiple ADuM3400W/  
ADuM3401W/ADuM3402W components operating under the  
same conditions.  
SYSTEM-LEVEL ESD CONSIDERATIONS AND  
ENHANCEMENTS  
DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY  
Positive and negative logic transitions at the isolator input cause  
narrow (~1 ns) pulses to be sent to the decoder via the transformer.  
The decoder is bistable and is, therefore, either set or reset by  
the pulses, indicating input logic transitions. In the absence of  
logic transitions at the input for more than ~1 μs, a periodic set  
of refresh pulses indicative of the correct input state are sent to  
ensure dc correctness at the output. If the decoder receives no  
internal pulses of more than about 5 μs, the input side is  
assumed to be unpowered or nonfunctional, in which case the  
isolator output is forced to a default state (see Table 20) by the  
watchdog timer circuit.  
System-level ESD reliability (for example, per IEC 61000-4-x) is  
highly dependent on system design, which varies widely by  
application. The ADuM3400W/ADuM3401W/ADuM3402W  
incorporate many enhancements to make ESD reliability less  
dependent on system design. The enhancements include:  
ESD protection cells added to all input/output interfaces.  
Key metal trace resistances reduced using wider geometry  
and paralleling of lines with vias.  
The SCR effect inherent in CMOS devices minimized by  
use of guarding and isolation technique between PMOS  
and NMOS devices.  
The limitation on the magnetic field immunity of the  
ADuM3400W/ADuM3401W/ADuM3402W is set by the  
condition in which induced voltage in the receiving coil of the  
transformer is sufficiently large to either falsely set or reset the  
decoder. The following analysis defines the conditions under  
which this can occur. The 3.3 V operating condition of the  
ADuM3400W/ADuM3401W/ADuM3402W is examined  
because it represents the most susceptible mode of operation.  
Areas of high electric field concentration eliminated using  
45° corners on metal traces.  
Supply pin overvoltage prevented with larger ESD clamps  
between each supply pin and its respective ground.  
Rev. B | Page 15 of 20  
 
 
 
 
 
 
ADuM3400W/ADuM3401W/ADuM3402W  
Data Sheet  
1000  
100  
The pulses at the transformer output have an amplitude greater  
than 1.0 V. The decoder has a sensing threshold at about 0.5 V, thus  
establishing a 0.5 V margin in which induced voltages can be  
tolerated. The voltage induced across the receiving coil is given by  
DISTANCE = 1m  
2
10  
1
V = (−dβ/dt)∑∏rn ; N = 1, 2, … , N  
DISTANCE = 100mm  
where:  
β is magnetic flux density (gauss).  
N is the number of turns in the receiving coil.  
rn is the radius of the nth turn in the receiving coil (cm).  
DISTANCE = 5mm  
0.1  
Given the geometry of the receiving coil in the ADuM3400W/  
ADuM3401W/ADuM3402W and an imposed requirement that  
the induced voltage be at most 50% of the 0.5 V margin at the  
decoder, a maximum allowable magnetic field is calculated as  
shown in Figure 19.  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 20. Maximum Allowable Current for Various Current-to-  
ADuM3400W/ADuM3401W/ADuM3402W Spacings  
100  
Note that at combinations of strong magnetic field and high  
frequency, any loops formed by printed circuit board traces  
could induce error voltages sufficiently large enough to trigger  
the thresholds of succeeding circuitry. Care should be taken in  
the layout of such traces to avoid this possibility.  
10  
1
POWER CONSUMPTION  
0.1  
The supply current at a given channel of the ADuM3400W/  
ADuM3401W/ADuM3402W isolator is a function of the supply  
voltage, the channels data rate, and the channels output load.  
0.01  
0.001  
For each input channel, the supply current is given by  
1k  
10k  
100k  
1M  
10M  
100M  
I
DDI = IDDI (Q)  
f ≤ 0.5 fr  
f > 0.5 fr  
MAGNETIC FIELD FREQUENCY (Hz)  
IDDI = IDDI (D) × (2f fr) + IDDI (Q)  
Figure 19. Maximum Allowable External Magnetic Flux Density  
For each output channel, the supply current is given by  
IDDO = IDDO (Q) f ≤ 0.5 fr  
DDO = (IDDO (D) + (0.5 × 10−3) × CL × VDDO) × (2f − fr) + IDDO (Q)  
f > 0.5 fr  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 kgauss induces a  
voltage of 0.25 V at the receiving coil, which is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
Similarly, if such an event were to occur during a transmitted  
pulse (and was of the worst-case polarity), it would reduce the  
received pulse from >1.0 V to 0.75 V—still well above the 0.5 V  
sensing threshold of the decoder.  
I
where:  
DDI (D), IDDO (D) are the input and output dynamic supply currents  
I
per channel (mA/Mbps).  
CL is the output load capacitance (pF).  
The preceding magnetic flux density values correspond to  
specific current magnitudes at given distances from the  
ADuM3400W/ADuM3401W/ADuM3402W transformers.  
Figure 20 expresses these allowable current magnitudes as a  
function of frequency for selected distances. As shown, the  
ADuM3400W/ADuM3401W/ADuM3402W is extremely  
immune and can be affected only by extremely large currents  
operated at high frequency very close to the component. For  
the 1 MHz example noted, one would have to place a 0.5 kA  
current 5 mm away from the ADuM3400W/ADuM3401W/  
ADuM3402W to affect the operation of the component.  
V
DDO is the output supply voltage (V).  
f is the input logic signal frequency (MHz); it is half of the input  
data rate expressed in units of Mbps.  
fr is the input stage refresh rate (Mbps).  
I
DDI (Q), IDDO (Q) are the specified input and output quiescent  
supply currents (mA).  
Rev. B | Page 16 of 20  
 
 
 
Data Sheet  
ADuM3400W/ADuM3401W/ADuM3402W  
To calculate the total IDD1 and IDD2 supply current, the supply  
currents for each input and output channel corresponding to  
In the case of unipolar ac or dc voltage, the stress on the  
insulation is significantly lower, which allows operation at  
higher working voltages while still achieving a 50-year service  
life. The working voltages listed in Table 19 can be applied while  
maintaining the 50-year minimum lifetime provided the voltage  
conforms to either the unipolar ac or dc voltage cases. Any cross  
insulation voltage waveform that does not conform to Figure 22  
or Figure 23 should be treated as a bipolar ac waveform and its  
peak voltage should be limited to the 50-year lifetime voltage  
value listed in Table 19.  
VDD1 and VDD2 are calculated and totaled. Figure 8 provides the  
per-channel input supply current as a function of the data rate.  
Figure 9 and Figure 10 provide the per-channel supply output  
current as a function of the data rate for an unloaded output  
condition and for a 15 pF output condition, respectively. Figure 11  
through Figure 15 provide the total VDD1 and VDD2 supply  
current as a function of the data rate for ADuM3400W/  
ADuM3401W/ADuM3402W channel configurations.  
Note that the voltage presented in Figure 22 is shown as sinusoi-  
dal for illustration purposes only. It is meant to represent any  
voltage waveform varying between 0 V and some limiting value.  
The limiting value can be positive or negative, but the voltage  
cannot cross 0 V.  
INSULATION LIFETIME  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of  
insulation degradation is dependent on the characteristics of  
the voltage waveform applied across the insulation. In addition  
to the testing performed by the regulatory agencies, Analog  
Devices carries out an extensive set of evaluations to determine  
the lifetime of the insulation structure within the ADuM3400W/  
ADuM3401W/ADuM3402W.  
RATED PEAK VOLTAGE  
0V  
Figure 21. Bipolar AC Waveform  
Analog Devices performs accelerated life testing using voltage  
levels higher than the rated continuous working voltage.  
Acceleration factors for several operating conditions are  
determined. These factors allow calculation of the time to  
failure at the actual working voltage. The values shown in  
Figure 21 summarize the peak voltage for 50 years of service life  
for a bipolar ac operating condition, and the maximum  
CSA/VDE approved working voltages. In many cases, the  
approved working voltage is higher than the 50-year service life  
voltage. Operation at these high working voltages can lead to  
shortened insulation life in some cases.  
RATED PEAK VOLTAGE  
0V  
Figure 22. Unipolar AC Waveform  
RATED PEAK VOLTAGE  
0V  
The insulation lifetime of the ADuM3400W/ADuM3401W/  
ADuM3402W depends on the voltage waveform type imposed  
across the isolation barrier. The iCoupler insulation structure  
degrades at different rates depending on whether the waveform  
is bipolar ac, unipolar ac, or dc. Figure 21, Figure 22, and  
Figure 23 illustrate these different isolation voltage waveforms.  
Figure 23. DC Waveform  
Bipolar ac voltage is the most stringent environment. The goal  
of a 50-year operating lifetime under the ac bipolar condition  
determines the recommended maximum working voltage of  
Analog Devices.  
Rev. B | Page 17 of 20  
 
 
 
 
ADuM3400W/ADuM3401W/ADuM3402W  
OUTLINE DIMENSIONS  
Data Sheet  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.00  
98)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 24. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (RW-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Number Number  
of  
of  
Maximum Maximum  
Maximum  
Inputs,  
Inputs,  
Data Rate Propagation Pulse Width  
Temperature  
Package  
Description  
Package  
Model1, 2, 3  
V
4
4
3
3
2
2
DD1 Side VDD2 Side (Mbps)  
Delay, 5 V (ns) Distortion (ns) Range  
Option  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
ADuM3400WARWZ  
ADuM3400WBRWZ  
ADuM3401WARWZ  
ADuM3401WBRWZ  
ADuM3402WARWZ  
ADuM3402WBRWZ  
0
0
1
1
2
2
1
10  
1
10  
1
10  
100  
36  
40  
3.5  
40  
3.5  
40  
−40°C to +125°C 16-Lead SOIC_W  
−40°C to +125°C 16-Lead SOIC_W  
−40°C to +125°C 16-Lead SOIC_W  
−40°C to +125°C 16-Lead SOIC_W  
−40°C to +125°C 16-Lead SOIC_W  
−40°C to +125°C 16-Lead SOIC_W  
100  
36  
100  
36  
3.5  
1 Z = RoHS Compliant Part.  
2 Tape and reel are available. The addition of an -RL suffix designates a 13” (1,000 units) tape-and-reel option.  
3 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The ADuM3400W/ADuM3401W/ADuM3402W models are available with controlled manufacturing to support the quality and  
reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the  
commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade  
products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific  
product ordering information and to obtain the specific Automotive Reliability reports for these models.  
Rev. B | Page 18 of 20  
 
 
 
Data Sheet  
NOTES  
ADuM3400W/ADuM3401W/ADuM3402W  
Rev. B | Page 19 of 20  
ADuM3400W/ADuM3401W/ADuM3402W  
NOTES  
Data Sheet  
©2012–2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11000-0-11/14(B)  
Rev. B | Page 20 of 20  

相关型号:

ADUM3402_15

Quad-Channel, Digital Isolators, Enhanced System-Level ESD Reliability
ADI

ADUM340X

Digital Isolator Product Selection and Resource Guide
ADI

ADUM3440

Quad Channel, High Speed Digital Isolators
ADI

ADUM3440CRWZ

Quad Channel, High Speed Digital Isolators
ADI

ADUM3440CRWZ-RL

Quad Channel, High Speed Digital Isolators
ADI

ADUM3440_15

Quad Channel, High Speed Digital Isolators
ADI

ADUM3441CRWZ

Quad Channel, High Speed Digital Isolators
ADI

ADUM3441CRWZ-RL

Quad Channel, High Speed Digital Isolators
ADI

ADUM3441_15

Quad Channel, High Speed Digital Isolators
ADI

ADUM3442

Quad Channel, High Speed Digital Isolators
ADI

ADUM3442CRWZ

Quad Channel, High Speed Digital Isolators
ADI

ADUM3442_15

Quad Channel, High Speed Digital Isolators
ADI