ADUM4190ARIZ-RL [ADI]

High Stability Isolated Error Amplifier;
ADUM4190ARIZ-RL
型号: ADUM4190ARIZ-RL
厂家: ADI    ADI
描述:

High Stability Isolated Error Amplifier

光电二极管
文件: 总21页 (文件大小:512K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Stability Isolated Error Amplifier  
Data Sheet  
ADuM4190  
FEATURES  
GENERAL DESCRIPTION  
Stable over time and temperature  
0.5% initial accuracy  
1% accuracy over the full temperature range  
The ADuM41901 is an isolated error amplifier based on Analog  
Devices, Inc., iCoupler® technology. The ADuM4190 is ideal for  
linear feedback power supplies. The primary side controllers of  
Compatible with Type II or Type III compensation networks  
Reference voltage: 1.225 V  
Compatible with DOSA  
the ADuM4190 enable improvements in transient response, power  
density, and stability as compared to commonly used optocoupler  
and shunt regulator solutions.  
Low power operation: <7 mA total  
Wide voltage supply range  
Unlike optocoupler-based solutions, which have an uncertain  
current transfer ratio over lifetime and at high temperatures, the  
ADuM4190 transfer function does not change over its lifetime  
and is stable over a wide temperature range of −40°C to +125°C.  
V
V
DD1: 3 V to 20 V  
DD2: 3 V to 20 V  
Bandwidth: 400 kHz  
Included in the ADuM4190 is a wideband operational amplifier  
for a variety of commonly used power supply loop compensation  
techniques. The ADuM4190 is fast enough to allow a feedback loop  
to react to fast transient conditions and overcurrent conditions.  
Also included is a high accuracy 1.225 V reference to compare  
with the supply output setpoint.  
Isolation voltage: 5 kV rms reinforced  
Safety and regulatory approvals (pending)  
UL recognition: 5000 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice #5A  
VDE certificate of conformity  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
V
IORM = 849 V peak  
The ADuM4190 is packaged in a wide body, 16-lead SOIC package  
for a reinforced 5 kV rms isolation voltage rating.  
Wide temperature range  
−40°C to +125°C ambient operation  
150°C maximum junction temperature  
APPLICATIONS  
Linear feedback power supplies  
Inverters  
Uninterruptible power supplies (UPS)  
DOSA-compatible modules  
Voltage monitors  
FUNCTIONAL BLOCK DIAGRAM  
V
V
DD2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
DD1  
GND  
1
GND  
V
2
V
REG UVLO  
UVLO  
REG  
REG1  
REG2  
REF  
REF  
REF  
REF  
OUT1  
OUT  
NC  
+IN  
–IN  
Tx  
EA  
OUT2  
Rx  
EA  
OUT  
COMP  
GND  
2
GND  
1
ADuM4190  
Figure 1.  
1 Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329. Other patents pending.  
Rev. 0 Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADUM4190* PRODUCT PAGE QUICK LINKS  
Last Content Update: 07/21/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
ADUM4190 Material Declaration  
PCN-PDN Information  
EVALUATION KITS  
Quality And Reliability  
ADUM3190 Evaluation Board  
Symbols and Footprints  
DOCUMENTATION  
Data Sheet  
DISCUSSIONS  
View all ADUM4190 EngineerZone Discussions.  
ADuM4190-DSCC: Military Data Sheet  
ADUM4190-EP: Enhanced Product Data Sheet  
SAMPLE AND BUY  
ADuM4190: High Stability Isolated Error Amplifier Data  
Visit the product page to see pricing options.  
Sheet  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
TOOLS AND SIMULATIONS  
ADuM3190/ADuM4190 Spice Macro Model  
REFERENCE DESIGNS  
DOCUMENT FEEDBACK  
CN0342  
Submit feedback for this data sheet.  
REFERENCE MATERIALS  
Press  
Analog Devices Achieves Major Milestone by Shipping 1  
Billionth Channel of iCoupler Digital Isolation  
Isolated Error Amplifiers Outperform Optocouplers and  
Shunt Regulators in Power Supply Applications  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADuM4190  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Pin Configuration and Function Descriptions..............................7  
Typical Performance Characteristics ..............................................8  
Test Circuits..................................................................................... 12  
Applications Information .............................................................. 13  
Accuracy Circuit Operation...................................................... 13  
Isolated Amplifier Circuit Operation ...................................... 14  
Application Block Diagram ...................................................... 14  
Setting the Output Voltage........................................................ 15  
DOSA Module Application....................................................... 15  
DC Correctness and Magnetic Field Immunity..................... 15  
Insulation Lifetime..................................................................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Package Characteristics ............................................................... 4  
Regulatory Information............................................................... 4  
Insulation and Safety Related Specifications ............................ 4  
Recommended Operating Conditions ...................................... 5  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
Insulation Characteristics............................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
REVISION HISTORY  
7/13—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
Data Sheet  
ADuM4190  
SPECIFICATIONS  
VDD1 = VDD2 = 3 V to 20 V for TA = TMIN to TMAX. All typical specifications are at TA = 25°C and VDD1 = VDD2 = 5 V, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
(1.225 V − EAOUT)/1.225 V × 100%; see Figure 27  
TA = 25°C  
Min  
Typ  
Max  
Unit  
ACCURACY  
Initial Error  
Total Error  
0.25  
0.5  
0.5  
1
%
%
TA = TMIN to TMAX  
OP AMP  
Offset Error  
−5  
66  
0.35  
2.5  
80  
+5  
mV  
dB  
V
MHz  
dB  
pF  
V
Open-Loop Gain  
Input Common-Mode Range  
Gain Bandwidth Product  
Common-Mode Rejection  
Input Capacitance  
Output Voltage Range  
Input Bias Current  
REFERENCE  
1.5  
10  
72  
2
COMP pin  
0.2  
2.7  
0.01  
µA  
Output Voltage  
0 mA to 1 mA load, CREFOUT = 15 pF  
TA = 25°C  
1.215  
1.213  
2.0  
1.225  
1.225  
1.235  
1.237  
V
V
mA  
TA = TMIN to TMAX  
CREFOUT = 15 pF  
Output Current  
UVLO  
Positive Going Threshold  
Negative Going Threshold  
EAOUT Impedance  
OUTPUT CHARACTERISTICS  
Output Gain1  
2.8  
2.6  
High-Z  
2.96  
V
V
2.4  
VDD2 or VDD1 < UVLO threshold  
See Figure 29  
From COMP to EAOUT, 0.3 V to 2.4 V, 3 mA  
From EAOUT to EAOUT2, 0.4 V to 5.0 V, 1 mA,  
VDD1 = 20 V  
0.83  
2.5  
1.0  
2.6  
1.17  
2.7  
V/V  
V/V  
Output Offset Voltage  
Output Linearity2  
From COMP to EAOUT, 0.3 V to 2.4 V, 3 mA  
From EAOUT to EAOUT2, 0.4 V to 5.0 V, 1 mA,  
−0.4  
−0.1  
+0.05  
+0.01  
+0.4  
+0.1  
V
V
V
DD1 = 20 V  
From COMP to EAOUT, 0.3 V to 2.4 V, 3 mA  
From EAOUT to EAOUT2, 0.4 V to 5.0 V, 1 mA,  
−1.0  
−1.0  
+0.15  
+0.1  
+1.0  
+1.0  
%
%
V
DD1 = 20 V  
Output −3 dB Bandwidth  
From COMP to EAOUT, 0.3 V to 2.4 V, 3 mA,  
and from COMP to EAOUT2, 0.4 V to 5.0 V,  
1 mA, VDD1 = 20 V  
A and S Grades  
B and T Grades  
Output Voltage, EAOUT  
Low Voltage  
100  
250  
200  
400  
kHz  
kHz  
3 mA output  
0.4  
V
V
High Voltage  
2.4  
2.5  
Output Voltage, EAOUT2  
Low Voltage  
1 mA output  
VDD1 = 4.5 V to 5.5 V  
VDD1 = 10 V to 20 V  
VDD1 = 4.5 V to 5.5 V  
VDD1 = 10 V to 20 V  
See Figure 15  
0.3  
0.3  
4.9  
5.4  
1.7  
4.8  
0.6  
0.6  
V
V
V
V
High Voltage  
4.8  
5.0  
Noise, EAOUT  
Noise, EAOUT2  
mV rms  
mV rms  
See Figure 15  
POWER SUPPLY  
Operating Range, Side 1  
Operating Range, Side 2  
VDD1  
VDD2  
3.0  
3.0  
20  
20  
V
V
Rev. 0 | Page 3 of 20  
 
 
ADuM4190  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
Power Supply Rejection  
DC, VDD1 = VDD2 = 3 V to 20 V  
60  
dB  
Supply Current  
IDD1  
IDD2  
See Figure 4  
See Figure 5  
1.4  
2.9  
2.0  
5.0  
mA  
mA  
1 Output gain is defined as the slope of the best-fit line of the output voltage vs. the input voltage over the specified input range, with the offset error adjusted out.  
2 Output linearity is defined as the peak-to-peak output deviation from the best-fit line of the output gain, expressed as a percentage of the full-scale output voltage.  
PACKAGE CHARACTERISTICS  
Table 2.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
RESISTANCE  
Input-to-Output1  
CAPACITANCE  
Input-to-Output1  
Input Capacitance2  
RI-O  
1013  
CI-O  
CI  
2.2  
4.0  
45  
pF  
f = 1 MHz  
pF  
IC JUNCTION-TO-AMBIENT THERMAL  
RESISTANCE  
θJA  
°C/W  
Thermocouple located at center of package  
underside  
1 The device is considered a 2-terminal device; Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together.  
2 Input capacitance is from any input pin to ground.  
REGULATORY INFORMATION  
The ADuM4190 is pending approval by the organizations listed in Table 3. See Table 8 and the Insulation Lifetime section for recommended  
maximum working voltages for specific cross-isolation waveforms and insulation levels.  
Table 3.  
UL (Pending)  
CSA (Pending)  
VDE (Pending)  
Recognized under UL 1577 component  
recognition program1  
Approved under CSA Component Acceptance  
Notice #5A  
Certified according to DIN V VDE V 0884-10  
(VDE V 0884-10):2006-122  
Single protection, 5000 V rms isolation  
voltage, 16-lead SOIC  
Reinforced insulation per CSA 60950-1-03 and  
IEC 60950-1, 400 V rms (565 V peak) maximum  
working voltage  
Reinforced insulation, 849 V peak  
Basic insulation per CSA 60950-1-03 and IEC  
60950-1, 800 V rms (1131 V peak) maximum  
working voltage  
File E214100  
File 205078  
File 2471900-4880-0001  
1 In accordance with UL 1577, each ADuM4190 is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 sec (current leakage detection limit = 10 µA).  
2 In accordance with DIN V VDE V 0884-10 (VDE V 0884-10):2006-12, each ADuM4190 is proof tested by applying an insulation test voltage ≥ 1590 V peak for 1 sec  
(partial discharge detection limit = 5 pC). The asterisk (*) marking branded on the component designates DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 approval.  
INSULATION AND SAFETY RELATED SPECIFICATIONS  
Table 4.  
Parameter  
Symbol  
Value  
5000  
8.0 min  
Unit  
V rms  
mm  
Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
1-minute duration  
L(I01)  
Measured from input terminals to output  
terminals, shortest distance through air  
along the PCB mounting plane, as an aid  
to PCB layout  
Minimum External Tracking (Creepage)  
L(I02)  
CTI  
8.3 min  
mm  
Measured from input terminals to output  
terminals, shortest distance path along body  
Insulation distance through insulation  
DIN IEC 112/VDE 0303, Part 1  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017 min mm  
>400  
II  
V
Material Group DIN VDE 0110, 1/89, Table 1  
Rev. 0 | Page 4 of 20  
 
 
 
 
Data Sheet  
ADuM4190  
RECOMMENDED OPERATING CONDITIONS  
Table 5.  
Parameter  
Symbol  
Min  
Max  
Unit  
OPERATING TEMPERATURE  
ADuM4190A/ADuM4190B  
ADuM4190S/ADuM4190T  
SUPPLY VOLTAGES1  
TA  
−40  
−40  
3.0  
+85  
+125  
20  
°C  
°C  
V
VDD1, VDD2  
tR, tF  
INPUT SIGNAL RISE AND FALL TIMES  
1.0  
ms  
1 All voltages are relative to their respective grounds.  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 INSULATION CHARACTERISTICS  
This isolator is suitable for reinforced isolation only within the safety limit data. Maintenance of the safety data is ensured by protective  
circuits. The asterisk (*) marking branded on the component designates DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 approval for  
an 849 V peak working voltage.  
Table 6.  
Description  
Test Conditions/Comments  
Symbol  
Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method B1  
I to IV  
I to III  
I to II  
40/105/21  
2
VIORM  
Vpd(m)  
849  
1592  
V peak  
V peak  
VIORM × 1.875 = Vpd(m), 100% production test,  
tini = 60 sec, tm = 10 sec, partial discharge < 5 pC  
Input-to-Output Test Voltage, Method A  
After Environmental Tests Subgroup 1  
VIORM × 1.5 = Vpd(m), tini = 60 sec, tm = 10 sec, partial  
discharge < 5 pC  
Vpd(m)  
Vpd(m)  
VIOTM  
1273  
1018  
V peak  
V peak  
After Input and/or Safety Tests Subgroup 2 VIORM × 1.2 = Vpd(m), tini = 60 sec, tm = 10 sec, partial  
and Subgroup 3  
Highest Allowable Overvoltage  
Surge Isolation Voltage  
Safety Limiting Values  
discharge < 5 pC  
6000  
6000  
V peak  
V peak  
V peak = 10 kV; 1.2 µs rise time; 50 µs, 50% fall time VIOSM  
Maximum value allowed in the event of a failure  
(see Figure 2)  
Maximum Junction Temperature  
Safety Total Dissipated Power  
Insulation Resistance at TS  
TS  
PS  
RS  
150  
2.78  
>109  
°C  
W
VIO = 500 V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
Figure 2. Thermal Derating Curve, Dependence of Safety Limiting Values  
on Case Temperature, per DIN V VDE V 0884-10  
Rev. 0 | Page 5 of 20  
 
 
 
ADuM4190  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 7.  
Parameter  
Rating  
Storage Temperature (TST) Range  
Ambient Operating Temperature  
(TA) Range  
−65°C to +150°C  
−40°C to +125°C  
Junction Temperature Range  
Supply Voltages1  
−40°C to +150°C  
ESD CAUTION  
VDD1, VDD2  
VREG1, VREG2  
Input Voltages (+IN, −IN)  
Output Voltages  
−0.5 V to +24 V  
−0.5 V to +3.6 V  
−0.5 V to +3.6 V  
REFOUT, REFOUT1, CO M P, EAOUT  
EAOUT2  
−0.5 V to +3.6 V  
−0.5 V to +5.5 V  
Output Current per Output Pin  
Common-Mode Transients2  
−11 mA to +11 mA  
−100 kV/µs to +100 kV/µs  
1 All voltages are relative to their respective grounds.  
2 Refers to common-mode transients across the insulation barrier. Common-  
mode transients exceeding the absolute maximum ratings may cause latch-up  
or permanent damage.  
Table 8. Maximum Continuous Working Voltage1  
Parameter  
Max  
Unit  
Constraint  
AC Voltage, Bipolar Waveform  
AC Voltage, Unipolar Waveform  
DC Voltage  
560  
1131  
1131  
V peak  
V peak  
V peak  
50-year minimum lifetime  
50-year minimum lifetime  
50-year minimum lifetime  
1 Refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more information.  
Rev. 0 | Page 6 of 20  
 
 
 
 
Data Sheet  
ADuM4190  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
V
DD2  
DD1  
GND  
GND  
1
2
V
V
REG2  
REG1  
OUT1  
NC  
REF  
REF  
ADuM4190  
TOP VIEW  
(Not to Scale)  
OUT  
12 +IN  
EA  
–IN  
11  
10  
9
OUT2  
COMP  
EA  
OUT  
GND  
2
GND  
1
NC = NO CONNECTION. CONNECT PIN 5 TO GND ;  
1
DO NOT LEAVE THIS PIN FLOATING.  
Figure 3. Pin Configuration  
Table 9. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2, 8  
3
VDD1  
GND1  
VREG1  
Supply Voltage for Side 1 (3 V to 20 V). Connect a 1 µF capacitor between VDD1 and GND1.  
Ground Reference for Side 1.  
Internal Supply Voltage for Side 1. Connect a 1 µF capacitor between VREG1 and GND1.  
4
5
REFOUT1  
NC  
Reference Output Voltage for Side 1. The maximum recommended capacitance for this pin (CREFOUT1) is 15 pF.  
No Connection. Connect Pin 5 to GND1; do not leave this pin floating.  
6
EAOUT2  
Isolated Output Voltage 2, Open-Drain Output. Connect a pull-up resistor between EAOUT2 and VDD1 for current  
up to 1 mA.  
7
EAOUT  
GND2  
COMP  
−IN  
Isolated Output Voltage.  
Ground Reference for Side 2.  
9, 15  
10  
11  
12  
13  
14  
16  
Output of the Op Amp. A loop compensation network can be connected between the COMP pin and the −IN pin.  
Inverting Op Amp Input. Pin 11 is the connection for the power supply setpoint and compensation network.  
Noninverting Op Amp Input. Pin 12 can be used as a reference input.  
Reference Output Voltage for Side 2. The maximum recommended capacitance for this pin (CREFOUT) is 15 pF.  
Internal Supply Voltage for Side 2. Connect a 1 µF capacitor between VREG2 and GND2.  
Supply Voltage for Side 2 (3 V to 20 V). Connect a 1 µF capacitor between VDD2 and GND2.  
+IN  
REFOUT  
VREG2  
VDD2  
Rev. 0 | Page 7 of 20  
 
ADuM4190  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
3
1.228  
1.227  
1.226  
1.225  
1.224  
1.223  
1.222  
V
V
= 20V  
= 5V  
DDx  
DDx  
2
1
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
140  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. REFOUT Accuracy vs. Temperature  
Figure 4. Typical IDD1 Supply Current vs. Temperature  
1.0  
0.5  
5
4
3
2
1
0
V
V
= 20V  
= 5V  
DDx  
DDx  
0
–0.5  
–1.0  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 5. Typical IDD2 Supply Current vs. Temperature  
Figure 8. EAOUT Accuracy vs. Temperature  
12  
10  
8
3
2
1
6
0
4
–1  
–2  
–3  
2
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 6. +IN, −IN Input Bias Current vs. Temperature  
Figure 9. Op Amp Offset Voltage vs. Temperature  
Rev. 0 | Page 8 of 20  
 
 
 
Data Sheet  
ADuM4190  
100  
90  
80  
70  
60  
50  
0
–20  
–40  
–60  
–80  
–100  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
140  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. EAOUT Offset Voltage vs. Temperature  
Figure 10. Op Amp Open-Loop Gain vs. Temperature  
1.05  
100  
50  
1.04  
1.03  
1.02  
1.01  
1.00  
0
–50  
–100  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. EAOUT Gain vs. Temperature  
Figure 14. EAOUT2 Offset Voltage vs. Temperature  
2.66  
2.64  
2.62  
2.60  
2.58  
2.56  
1
2
CH1 10mV CH2 10mV Ω  
M4.0µs  
102.4ns  
A CH1  
1.18V  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
T
TEMPERATURE (°C)  
Figure 12. EAOUT2 Gain vs. Temperature  
Figure 15. Output Noise with Test Circuit 1 (10 mV/DIV),  
Channel 1 = EAOUT, Channel 2 = EAOUT2  
Rev. 0 | Page 9 of 20  
 
ADuM4190  
Data Sheet  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
0.90  
0.95  
1.00  
1.05  
GAIN (V/V)  
1.10  
1.10  
1.10  
–0.4  
–0.2  
0
0.2  
OFFSET VOLTAGE (V)  
OUT  
0.4  
COMP TO EA  
COMP TO EA  
OUT  
Figure 16. EAOUT Gain Distribution at 25°C  
Figure 19. EAOUT Offset Voltage Distribution at 25°C  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0.90  
0
–0.4  
0.95  
1.00  
1.05  
GAIN (V/V)  
–0.2  
0
0.2  
OFFSET VOLTAGE (V)  
OUT  
0.4  
COMP TO EA  
COMP TO EA  
OUT  
Figure 17. EAOUT Gain Distribution at 125°C  
Figure 20. EAOUT Offset Voltage Distribution at 125°C  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0.90  
0
–0.4  
0.95  
1.00  
1.05  
GAIN (V/V)  
–0.2  
0
0.2  
OFFSET VOLTAGE (V)  
OUT  
0.4  
COMP TO EA  
COMP TO EA  
OUT  
Figure 18. EAOUT Gain Distribution at −40°C  
Figure 21. EAOUT Offset Voltage Distribution at −40°C  
Rev. 0 | Page 10 of 20  
Data Sheet  
ADuM4190  
30  
25  
20  
15  
10  
5
1
2
3
0
CH1 100mV CH2 100mV M2µs  
A CH1  
434mV  
1.215  
1.220  
1.225  
1.230  
1.235  
1.235  
1.235  
CH3 200mV  
T
0s  
EA  
ACCURACY (V)  
OUT  
Figure 22. EAOUT Accuracy Voltage Distribution at 25°C  
Figure 25. Output 100 kHz Signal with Test Circuit 3, Channel 1 = +IN,  
Channel 2 = EAOUT, Channel 3 = EAOUT2  
30  
25  
20  
15  
10  
5
2
1
3
0
CH1 20mV  
CH3 20mV  
CH2 50mV Ω  
M2µs  
T
A CH1  
399mV  
1.215  
1.220  
1.225  
1.230  
5.92µs  
EA  
ACCURACY (V)  
OUT  
Figure 23. EAOUT Accuracy Voltage Distribution at 125°C  
Figure 26. Output Square Wave Response with Test Circuit 3,  
Channel 1 = +IN, Channel 2 = EAOUT, Channel 3 = EAOUT2  
30  
25  
20  
15  
10  
5
0
1.215  
1.220  
1.225  
1.230  
EA  
ACCURACY (V)  
OUT  
Figure 24. EAOUT Accuracy Voltage Distribution at −40°C  
Rev. 0 | Page 11 of 20  
ADuM4190  
Data Sheet  
TEST CIRCUITS  
V
V
DD2  
DD1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1µF  
1µF  
1µF  
1µF  
GND  
GND  
V
1
2
V
REG2  
REG1  
REG  
UVLO  
Rx  
UVLO  
REG  
REF  
REF  
+IN  
REF  
REF  
OUT1  
NC  
OUT  
Tx  
680  
–IN  
EA  
OUT2  
2.2nF  
EA  
COMP  
GND  
OUT  
GND  
1
2
ADuM4190  
Figure 27. Test Circuit 1: Accuracy Circuit Using EAOUT  
V
V
DD2  
DD1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1µF  
1µF  
1µF  
1µF  
GND  
GND  
1
2
V
V
REG2  
REG1  
OUT1  
REG  
UVLO  
Rx  
UVLO  
REG  
REF  
REF  
+IN  
REF  
REF  
OUT  
R
OD  
NC  
680  
Tx  
EA  
OUT2  
–IN  
2.2nF  
EA  
COMP  
OUT  
GND  
GND  
1
2
ADuM4190  
Figure 28. Test Circuit 2: Accuracy Circuit Using EAOUT2  
V
V
DD2  
DD1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1µF  
1µF  
1µF  
1µF  
GND  
GND  
1
2
V
V
REG2  
REG1  
OUT1  
REG  
UVLO  
Rx  
UVLO  
REG  
REF  
REF  
REF  
REF  
+IN  
OUT  
R
OD  
NC  
Tx  
EA  
OUT2  
–IN  
EA  
COMP  
GND  
OUT  
FILTERED  
EA  
OUT  
680Ω  
GND  
1
2
ADuM4190  
470pF  
Figure 29. Test Circuit 3: Isolated Amplifier Circuit  
Rev. 0 | Page 12 of 20  
 
 
 
 
Data Sheet  
ADuM4190  
APPLICATIONS INFORMATION  
In the test circuits of the ADuM4190 (see Figure 27 through  
Figure 29), external supply voltages from 3 V to 20 V are provided  
to the VDD1 and VDD2 pins, and internal regulators provide 3.0 V  
to operate the internal circuits of each side of the ADuM4190. An  
internal precision 1.225 V reference provides the reference for  
the 1% accuracy of the isolated error amplifier. UVLO circuits  
monitor the VDDx supplies to turn on the internal circuits when  
the 2.8 V rising threshold is met and to turn off the error amplifier  
outputs to a high impedance state when VDDx falls below 2.6 V.  
Figure 30 also shows the linear isolator alone (the blocks from  
the op amp output to the ADuM4190 output, labeled as the linear  
isolator), which introduces a pole at approximately 400 kHz. This  
total Bode plot of the op amp and linear isolator shows that the  
phase shift is approximately −180° from the −IN pin to the EAOUT  
pin before the crossover frequency. Because a −180° phase shift  
can make the system unstable, adding an integrator configuration,  
consisting of a 2.2 nF capacitor and a 680 Ω resistor, helps to  
make the system stable (see Figure 27 and Figure 28).  
AMPLITUDE (dB)  
The op amp on the right side of the ADuM4190 has a nonin-  
verting +IN pin and an inverting −IN pin available for connecting  
a feedback voltage in an isolated dc-to-dc converter output, usually  
through a voltage divider. The COMP pin is the op amp output,  
which can be used to attach resistor and capacitor components in  
a compensation network. The COMP pin internally drives the  
Tx transmitter block, which converts the op amp output voltage  
into an encoded output that is used to drive the digital isolator  
transformer.  
100  
OP AMP AND  
LINEAR ISOLATOR  
OP AMP  
ALONE  
LINEAR ISOLATOR  
POLE AT 400kHz  
FREQUENCY  
(Hz)  
100  
1k  
10k  
100k  
1M  
10M  
LINEAR  
ISOLATOR  
PHASE (°)  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY  
(Hz)  
–90  
On the left side of the ADuM4190, the Rx block decodes the  
PWM signal that is output by the transformer and converts the  
signal into a voltage that drives an amplifier block; the amplifier  
block produces the error amplifier output available at the EAOUT  
pin. The EAOUT pin can deliver 3 mA and has a voltage level  
from 0.4 V to 2.4 V, which is typically used to drive the input  
of a PWM controller in a dc-to-dc circuit.  
–180  
Figure 30. Bode Plot 1: Op Amp and Linear Isolator  
In Figure 31, Bode Plot 2, with an integrator configuration added,  
the system crosses over 0 dB at approximately 100 kHz, but the  
circuit is more stable with a phase shift of approximately −120°,  
which yields a stable 60° phase margin. This circuit is used for  
accuracy tests only, not for real-world applications, because it has  
a 680 Ω resistor across the isolation barrier to close the loop for  
the error amplifier; this resistor causes leakage current to flow  
across the isolation barrier. For this test circuit only, GND1 must  
be connected to GND2 to create a return for the leakage current  
that is created by the 680 Ω resistor connection.  
For an application that requires more output voltage to drive  
its controller, the EAOUT2 pin can be used (see Figure 28). The  
E
AOUT2 pin delivers up to 1 mA with an output voltage of 0.6 V  
to 4.8 V for an output that has a pull-up resistor to a 5 V supply.  
If the EAOUT2 pull-up resistor is connected to a 10 V to 20 V supply,  
the output is specified to a minimum of 5.0 V to allow use with a  
PWM controller that requires a minimum input operation of 5 V.  
ACCURACY CIRCUIT OPERATION  
AMPLITUDE (dB)  
See Figure 27 and Figure 28 for accuracy circuit operation. The  
op amp on the right side of the ADuM4190, from the −IN pin to  
the COMP pin, has a unity-gain bandwidth (UGBW) of 10 MHz.  
Figure 30, Bode Plot 1, shows a dashed line for the op amp alone  
and its 10 MHz pole.  
OP AMP AND  
100  
LINEAR ISOLATOR  
LINEAR ISOLATOR  
POLE AT 400kHz  
OP AMP  
ALONE  
INTEGRATOR  
CONFIGURATION  
FREQUENCY  
(Hz)  
100  
1k  
10k  
10k  
100k  
100k  
1M  
1M  
10M  
10M  
PHASE (°)  
100  
1k  
FREQUENCY  
(Hz)  
–90  
–180  
Figure 31. Bode Plot 2: Op Amp and Linear Isolator  
with Integrator Configuration  
Rev. 0 | Page 13 of 20  
 
 
 
 
ADuM4190  
Data Sheet  
The COMP output of the op amp is encoded and then decoded  
by the digital isolator transformer block to a signal that drives the  
output of the ADuM4190 high. The output of the ADuM4190  
drives the COMP pin of the PWM controller, which is designed  
to reset the PWM latch output to low only when its COMP pin is  
low. A high at the COMP pin of the PWM controller causes the  
latching PWM comparator to produce a PWM duty cycle output.  
This PWM duty cycle output drives the power stage to increase  
the VOUT voltage until it returns to regulation.  
ISOLATED AMPLIFIER CIRCUIT OPERATION  
Figure 29 shows an isolated amplifier circuit. In this circuit, the  
input side amplifier is set as a unity-gain buffer so that the EAOUT  
output follows the +IN input. The EAOUT2 output follows the  
EAOUT output, but with a voltage gain of 2.6.  
This circuit has an open-drain output, which should be pulled  
up to a supply voltage from 3 V to 20 V using a resistor value set  
for an output current of up to 1 mA. The EAOUT2 output can be  
used to drive up to 1 mA to the input of a device that requires  
a minimum input operation of 5 V. The EAOUT2 circuit has an  
internal diode clamp to protect the internal circuits from voltages  
greater than 5 V.  
The power stage output is filtered by output capacitance and, in  
some applications, by an inductor. Various elements contribute to  
the gain and phase of the control loop and the resulting stability.  
The output filter components (LO and CO) create a double pole;  
the op amp has a pole at 10 MHz (see Figure 30), and the linear  
isolator has a pole at 400 kHz (see Figure 30 and Figure 31).  
The gain, offset, and linearity of EAOUT and EAOUT2 are specified  
in Table 1 using this test circuit. When designing applications  
for voltage monitoring using an isolated amplifier, review these  
specifications, noting that the 1% accuracy specifications for the  
isolated error amplifier do not apply. In addition, the EAOUT circuit  
in Figure 29 is shown with an optional external RC low-pass filter  
with a corner frequency of 500 kHz, which can reduce the 3 MHz  
output noise from the internal voltage to the PWM converter.  
The output capacitor and its ESR can add a zero at a frequency  
that is dependent on the component type and values. With the  
ADuM4190 providing the error amplifier, a compensation network  
is provided from the −IN pin to the COMP pin to compensate  
the control loop for stability. The compensation network values  
depend on both the application and the components that are  
selected; information about the component network values is  
provided in the data sheet of the selected PWM controller.  
APPLICATION BLOCK DIAGRAM  
Figure 32 shows a typical application for the ADuM4190: an  
isolated error amplifier in primary side control.  
PWM CONTROLLER  
The ADuM4190 has two different error amplifier outputs:  
EAOUT and EAOUT2. The EAOUT output, which can drive 3 mA,  
has a guaranteed maximum high output voltage of at least 2.4 V,  
which may not be sufficient to drive the COMP pin of some  
PWM controllers. The EAOUT2 pin can drive 1 mA and has an  
output range that guarantees 5.0 V for a VDD1 voltage range of  
10 V to 20 V, which works well with the COMP pin of many  
PWM controllers.  
V
IN  
OSC  
V
REF  
L
O
ERROR  
AMP  
V
DCR  
OUT  
LATCHING  
PWM  
POWER  
STAGE  
+
C
O
CURRENT  
SENSE  
ESR  
COMP  
FB  
COMPENSATION  
NETWORK  
C
1
C
2
R
2
COMP  
EA  
OUT2  
Figure 32 shows how to use the ADuM4190 to provide isolated  
feedback in the control loop of an isolated dc-to-dc converter. In  
this application block diagram, the loop is closed at approxi-  
mately the 1.225 V reference voltage, providing 1% accuracy  
over temperature. The ADuM4190 op amp has a high gain band-  
width of 10 MHz to allow the dc-to-dc converter to operate at  
high switching speeds, enabling smaller values for the output  
filter components (LO and CO).  
OP AMP  
–IN  
+IN  
1.225V  
ADuM4190  
REF  
OUT  
Figure 32. Application Block Diagram  
The op amp of the ADuM4190 is used as the error amplifier for  
the feedback of the output voltage, VOUT, using a resistor divider  
to the −IN pin of the op amp. is configuration inverts the  
output signal at the COMP pin when compared to the +IN pin,  
which is connected to the internal 1.225 V reference.  
The 400 kHz bandwidth of the ADuM4190 error amplifier output  
offers faster loop response for better transient response than the  
typical shunt regulator and optocoupler solutions, which typically  
have bandwidths of only 25 kHz to 50 kHz maximum.  
For example, when the output voltage, VOUT, falls due to a load  
step, the divider voltage at the −IN pin falls below the +IN ref-  
erence voltage, causing the COMP pin output signal to go high.  
Rev. 0 | Page 14 of 20  
 
 
 
Data Sheet  
ADuM4190  
SETTING THE OUTPUT VOLTAGE  
DC CORRECTNESS AND MAGNETIC FIELD  
IMMUNITY  
The output voltage in the application circuit shown in Figure 32  
can be set with two resistors in a voltage divider (see Figure 33).  
Positive and negative logic transitions at the isolator input cause  
narrow (~1 ns) pulses to be sent to the decoder via the transformer.  
The decoder is bistable and is, therefore, either set or reset by the  
pulses, indicating input logic transitions. If the decoder receives  
no internal pulses for more than approximately 3 μs, the input side  
is assumed to be unpowered or nonfunctional, and the isolator  
output is forced to a default high impedance state by the watch-  
dog timer circuit. In addition, the outputs are in a default high  
impedance state while the power is increasing before the UVLO  
threshold is crossed.  
V
OUT  
ISOLATED DC-TO-DC SUPPLY  
R
R
1
–IN  
V
= 0.35V TO 1.5V  
IN  
+IN  
2
ERROR  
AMPLIFIER  
V
REF  
1.225V  
REF  
OUT  
ADuM4190  
Figure 33. Setting the Output Voltage  
The ADuM4190 is immune to external magnetic fields. The  
limitation on the magnetic field immunity of the ADuM4190 is  
set by the condition in which the induced voltage in the receiving  
coil of the transformer is sufficiently large to either falsely set or  
reset the decoder. The following analysis defines the conditions  
under which this can occur. The 3 V operating condition of the  
ADuM4190 is examined because the internal regulators provide  
3 V to operate the internal circuits of each side of the device.  
The output voltage is determined by the following equation:  
OUT = VREF × (R1 + R2)/R2  
V
where VREF = 1.225 V.  
DOSA MODULE APPLICATION  
Figure 34 is a block diagram of a Distributed-power Open  
Standards Alliance (DOSA) circuit using the ADuM4190. The  
block diagram shows how to use the 1.225 V reference and the  
error amplifier of the ADuM4190 in a DOSA standard power  
supply module circuit to produce output voltage settings using  
a combination of resistors.  
The pulses at the transformer output have an amplitude greater  
than 1.0 V. The decoder has a sensing threshold at approximately  
0.5 V, thus establishing a 0.5 V margin within which induced  
voltages are tolerated. The voltage induced across the receiving  
coil is given by  
The 1.225 V reference of the ADuM4190 is specified for 1ꢀ  
over the −40°C to +125°C temperature range. To set the output  
voltage of the module, use Table 10 to select the resistor values.  
2
V = (−dβ/dt) ∑ πrn , n = 1, 2, … , N  
where:  
Two different ranges of VOUT can be implemented, VOUT > 1.5 V  
or VOUT < 1.5 V, depending on the required module. Table 10 shows  
two sets of resistor values for the VOUT > 1.5 V and VOUT < 1.5 V  
ranges; the second set of resistor values (where 5.11 kΩ resistors  
are used) consumes less current than the first set.  
β is the magnetic flux density (gauss).  
rn is the radius of the nth turn in the receiving coil (cm).  
N is the number of turns in the receiving coil.  
Given the geometry of the receiving coil in the ADuM4190 and  
an imposed requirement that the induced voltage be, at most,  
50ꢀ of the 0.5 V margin at the decoder, a maximum allowable  
magnetic field is calculated as shown in Figure 35.  
100  
V
OUT  
DOSA MODULE  
R
R
1
2
R
TRIM-UP  
V
= 0.35V TO 1.5V  
IN  
OPTIONAL TRIM-UP  
OR TRIM-DOWN  
RESISTOR FOR ±10%  
OF NOMINAL VALUE  
ACCORDING TO DOSA  
ERROR  
AMPLIFIER  
10  
1
R
3
R
R
4
6
R
5
V
R
REF  
TRIM-DOWN  
1.225V  
ADuM4190  
0.1  
Figure 34. DOSA Module  
0.01  
0.001  
Table 10. Resistor Values for DOSA Module  
Module  
Nominal Output R3  
R4  
R5  
R6  
1k  
10k  
100k  
1M  
10M  
100M  
VOUT > 1.5 V  
VOUT < 1.5 V  
VOUT > 1.5 V  
VOUT < 1.5 V  
1 kΩ  
1 kΩ  
5.11 kΩ  
5.11 kΩ  
1 kΩ  
0 Ω  
5.11 kΩ  
0 Ω  
0 Ω  
2.05 kΩ  
0 Ω  
Open  
1.96 kΩ  
Open  
10.0 kΩ  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 35. Maximum Allowable External Magnetic Flux Density  
10.5 kΩ  
Rev. 0 | Page 15 of 20  
 
 
 
 
 
 
ADuM4190  
Data Sheet  
For example, at a magnetic field frequency of 1 MHz, the maxi-  
mum allowable magnetic field of 0.2 kgauss induces a voltage of  
0.25 V at the receiving coil. This voltage is approximately 50% of  
the sensing threshold and does not cause a faulty output transi-  
tion. Similarly, if such an event occurs during a transmitted pulse  
(and is of the worst-case polarity), the received pulse is reduced  
from >1.0 V to 0.75 V—still well above the 0.5 V sensing threshold  
of the decoder.  
The values shown in Table 8 summarize the peak voltage for  
50 years of service life for a bipolar ac operating condition. In  
many cases, the approved working voltage is higher than the  
50-year service life voltage. Operation at these high working  
voltages can lead to shortened insulation life in some cases.  
The insulation lifetime of the ADuM4190 depends on the voltage  
waveform type imposed across the isolation barrier. The iCoupler  
insulation structure degrades at different rates depending on  
whether the waveform is bipolar ac, unipolar ac, or dc. Figure 37,  
Figure 38, and Figure 39 illustrate these different isolation voltage  
waveforms.  
The preceding magnetic flux density values correspond to specific  
current magnitudes at given distances from the ADuM4190 trans-  
formers. Figure 36 shows these allowable current magnitudes  
as a function of frequency for selected distances. As shown in  
Figure 36, the ADuM4190 is immune and can be affected only by  
extremely large currents operating at a high frequency very close  
to the component. For the 1 MHz example, a 0.7 kA current must  
be placed 5 mm away from the ADuM4190 to affect the operation  
of the device.  
A bipolar ac voltage environment is the worst case for the iCoupler  
products yet meets the 50-year operating lifetime recommended  
by Analog Devices for maximum working voltage. In the case of  
unipolar ac or dc voltage, the stress on the insulation is significantly  
lower. This allows operation at higher working voltages while still  
achieving a 50-year service life. Treat any cross-insulation voltage  
waveform that does not conform to Figure 38 or Figure 39 as a  
bipolar ac waveform, and limit its peak voltage to the 50-year  
lifetime voltage value listed in Table 8.  
1000  
DISTANCE = 1m  
100  
Note that the voltage presented in Figure 38 is shown as sinu-  
soidal for illustration purposes only. It is meant to represent any  
voltage waveform varying between 0 V and some limiting value.  
The limiting value can be positive or negative, but the voltage  
cannot cross 0 V.  
10  
DISTANCE = 100mm  
1
DISTANCE = 5mm  
0.1  
RATED PEAK VOLTAGE  
0V  
0.01  
Figure 37. Bipolar AC Waveform  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 36. Maximum Allowable Current for Various  
Current-to-ADuM4190 Spacings  
RATED PEAK VOLTAGE  
INSULATION LIFETIME  
0V  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of insu-  
lation degradation is dependent on the characteristics of the voltage  
waveform applied across the insulation. In addition to the testing  
performed by the regulatory agencies, Analog Devices carries  
out an extensive set of evaluations to determine the lifetime of  
the insulation structure within the ADuM4190.  
Figure 38. Unipolar AC Waveform  
RATED PEAK VOLTAGE  
0V  
Figure 39. DC Waveform  
Analog Devices performs accelerated life testing using voltage  
levels higher than the rated continuous working voltage. Accel-  
eration factors for several operating conditions are determined.  
These factors allow calculation of the time to failure at the actual  
working voltage.  
Rev. 0 | Page 16 of 20  
 
 
 
 
 
Data Sheet  
ADuM4190  
OUTLINE DIMENSIONS  
12.85  
12.75  
12.65  
1.93 REF  
16  
9
8
7.60  
7.50  
7.40  
10.51  
10.31  
10.11  
1
PIN 1  
MARK  
0.71  
0.50 45°  
0.31  
0.25 BSC  
2.64  
2.54  
2.44  
2.44  
2.24  
GAGE  
0.32  
0.23  
PLANE  
0.30  
0.20  
0.10  
SEATING  
PLANE  
8°  
0°  
1.27 BSC  
1.01  
0.76  
0.51  
0.46  
0.36  
COPLANARITY  
0.1  
COMPLIANT TO JEDEC STANDARDS MS-013-AC  
Figure 40. 16-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]  
Wide Body  
(RI-16-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Bandwidth (Typical)  
200 kHz  
200 kHz  
400 kHz  
400 kHz  
200 kHz  
200 kHz  
400 kHz  
400 kHz  
Package Description  
16-Lead SOIC_IC  
16-Lead SOIC_IC  
16-Lead SOIC_IC  
16-Lead SOIC_IC  
16-Lead SOIC_IC  
16-Lead SOIC_IC  
16-Lead SOIC_IC  
16-Lead SOIC_IC  
Evaluation Board  
Package Option  
RI-16-2  
RI-16-2  
RI-16-2  
RI-16-2  
RI-16-2  
RI-16-2  
RI-16-2  
RI-16-2  
ADuM4190ARIZ  
ADuM4190ARIZ-RL  
ADuM4190BRIZ  
ADuM4190BRIZ-RL  
ADuM4190SRIZ  
ADuM4190SRIZ-RL  
ADuM4190TRIZ  
ADuM4190TRIZ-RL  
EVAL-ADuM3190EBZ  
1 Z = RoHS Compliant Part.  
2 The EVAL-ADuM3190EBZ can be used to evaluate the ADuM3190 and the ADuM4190.  
Rev. 0 | Page 17 of 20  
 
 
ADuM4190  
NOTES  
Data Sheet  
Rev. 0 | Page 18 of 20  
Data Sheet  
NOTES  
ADuM4190  
Rev. 0 | Page 19 of 20  
ADuM4190  
NOTES  
Data Sheet  
©2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11336-0-7/13(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADuM4190BRIZ

High-stability Isolated Error Amplifier
ADI

ADUM4190BRIZ-RL

High Stability Isolated Error Amplifier
ADI

ADuM4190SRIZ

High-stability Isolated Error Amplifier
ADI

ADUM4190SRIZ-RL

暂无描述
ADI

ADuM4190TRIZ

High-stability Isolated Error Amplifier
ADI

ADUM4190TRIZ-EP

暂无描述
ADI

ADUM4190TRIZ-EP-RL

High Stability Isolated Error Amplifier
ADI

ADUM4190TRIZ-RL

High Stability Isolated Error Amplifier
ADI

ADUM4221

Isolated, Half Bridge Gate Driver with Adjustable Dead Time, 4 A Output
ADI

ADUM4221-1

隔离式半桥栅极驱动器,具备可调的死区时间、单个输入、4 A输出
ADI

ADUM4221-2

输出为 4 A 的双输入、隔离式半桥式栅极驱动器
ADI

ADUM4221ARIZ

Isolated, Half Bridge Gate Driver with Adjustable Dead Time, 4 A Output
ADI