ADUM4402WARWZ [ADI]

5 kV RMS Quad-Channel Digital Isolators;
ADUM4402WARWZ
型号: ADUM4402WARWZ
厂家: ADI    ADI
描述:

5 kV RMS Quad-Channel Digital Isolators

接口集成电路
文件: 总20页 (文件大小:382K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5 kV RMS Quad-Channel Digital Isolators  
Automotive Products  
ADuM4400W/ADuM4401W/ADuM4402W  
FEATURES  
GENERAL DESCRIPTION  
The ADuM4400W/ADuM4401W/ADuM4402W1 are 4-  
channel digital isolators based on the Analog Devices, Inc.,  
iCoupler® technology. Combining high speed CMOS and  
monolithic air core transformer technology, these isolation  
components provide outstanding performance characteristics  
that are superior to the alternatives, such as optocoupler devices  
and other integrated couplers.  
Enhanced system-level ESD performance per IEC 61000-4-x  
Safety and regulatory approvals  
UL recognition: 5000 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice #5A  
IEC 60950-1: 380 V rms (reinforced)  
VDE Certificate of Conformity  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
VIORM = 849 V peak  
The ADuM4400W/ADuM4401W/ADuM4402W isolators  
provide four independent isolation channels in a variety of  
channel configurations and data rates (see the Ordering Guide).  
All models operate with the supply voltage on either side  
ranging from 3.135 V to 5.5 V, providing compatibility with  
lower voltage systems as well as enabling a voltage translation  
functionality across the isolation barrier. The ADuM4400W/  
ADuM4401W/ADuM4402W isolators have a patented refresh  
feature that ensures dc correctness in the absence of input logic  
transitions and during power-up/power-down conditions.  
Low power operation  
5 V operation  
1.4 mA per channel maximum @ 0 Mbps to 1 Mbps  
4.3 mA per channel maximum @ 10 Mbps  
3.3 V operation  
0.9 mA per channel maximum @ 0 Mbps to 1 Mbps  
2.4 mA per channel maximum @ 10 Mbps  
Bidirectional communication  
3.3 V/5 V level translation  
High temperature operation: 125°C  
High data rate: dc to 10 Mbps (NRZ)  
Precise timing characteristics  
3.5 ns maximum pulse width distortion  
3.5 ns maximum channel-to-CHANNEL matching  
High common-mode transient immunity: >25 kV/μs  
Output enable function  
This family of isolators, like many Analog Devices isolators,  
offers very low power consumption, consuming one-tenth to  
one-sixth the power of comparable isolators at comparable data  
rates up to 10 Mbps. All models of the ADuM4400W/  
ADuM4401W/ADuM4402W provide low pulse width  
distortion (<3.5 ns for WB grade). In addition, every model has  
an input glitch filter to protect against extraneous noise  
disturbances.  
16-lead SOIC wide body package (RW-16)  
Qualified for automotive applications  
The ADuM4400W/ADuM4401W/ADuM4402W contain circuit  
and layout enhancements to help achieve system-level IEC 61000-  
4-x compliance (ESD/burst/ surge). The precise capability in these  
tests for the ADuM4400W/ADuM4401W/ADuM4402W are  
strongly determined by the design and layout of the users board or  
module. For more information, see the AN-793 Application  
Note, ESD/Latch-Up Considerations with iCoupler Isolation  
Products.  
APPLICATIONS  
Hybrid electric vehicles  
Battery monitor  
Motor drive  
1 Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329.  
FUNCTIONAL BLOCK DIAGRAMS  
ADuM4402W  
1
2
3
ADuM4401W 16  
V
DD2  
1
2
3
16  
15  
14  
1
2
3
16  
15  
14  
V
V
V
V
V
DD2  
ADuM4400W  
DD1  
DD1  
DD1  
DD2  
15  
GND  
GND  
GND  
V
GND  
2
GND  
V
GND  
1
2
1
1
2
14  
V
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
V
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
ENCODE  
V
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
V
IA  
IB  
OA  
IA  
IB  
OA  
IA  
IB  
OA  
V
V
V
4
5
13  
4
5
13  
12  
4
5
13  
12  
DECODE  
V
V
V
OB  
OB  
OB  
12  
V
DECODE  
ENCODE  
V
V
V
V
V
V
V
IC  
OC  
OC  
OD  
IC  
IC  
ID  
OC  
6
7
8
11  
10  
9
6
7
8
11  
10  
9
6
7
8
11  
10  
9
V
V
V
V
OD  
ID  
ID  
OD  
V
V
V
V
NC  
GND  
V
E1  
E2  
E1  
E2  
E2  
GND  
GND  
GND  
GND  
2
GND  
1
2
1
1
2
Figure 1. ADuM4400W  
Figure 2. ADuM4401W  
Document Feedback  
Figure 3. ADuM4402W  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2012–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADuM4400W/ADuM4401W/ADuM4402W  
Automotive Products  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ............................................................9  
ESD Caution...................................................................................9  
Pin Configurations and Function Descriptions......................... 10  
Typical Performance Characteristics ........................................... 13  
Applications Information .............................................................. 15  
PC Board Layout ........................................................................ 15  
System-Level ESD Considerations and Enhancements ........ 15  
Propagation Delay-Related Parameters................................... 15  
DC Correctness and Magnetic Field Immunity..................... 15  
Power Consumption .................................................................. 16  
Insulation Lifetime..................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Automotive Products................................................................. 18  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 V Operation................................ 3  
Electrical Characteristics—3.3 V Operation ............................ 4  
Electrical Characteristics—Mixed 5 V/3.3 V Operation ........ 5  
Electrical Characteristics—Mixed 3.3 V/5 V Operation ........ 6  
Package Characteristics ............................................................... 7  
Regulatory Information............................................................... 7  
Insulation and Safety-Related Specifications............................ 7  
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation  
Characteristics .............................................................................. 8  
Recommended Operating Conditions ...................................... 8  
REVISION HISTORY  
3/15—Rev.0 to Rev. A  
Change to Minimum Supply Voltage Parameter (Throughout).. 1  
11/12—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
Automotive Products  
ADuM4400W/ADuM4401W/ADuM4402W  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. Minimum/maximum specifications apply over the entire recommended  
operation range of 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V, and −40°C ≤ TA ≤ 125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 1.  
WA Grade  
Typ  
WB Grade  
Typ  
Parameter  
Symbol  
Min  
50  
Max  
Min  
18  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Pulse Width  
Propagation Delay Skew  
Channel Matching  
Codirectional  
1
100  
40  
10  
36  
3.5  
Mbps  
ns  
ns  
ps/°C  
ns  
ns  
Within PWD limit  
50% input to 50% output  
|tPLH − tPHL|  
tPHL, tPLH  
PWD  
65  
11  
32  
5
PW  
tPSK  
1000  
100  
Within PWD limit  
Between any two units  
50  
15  
tPSKCD  
tPSKOD  
50  
50  
3.5  
6
ns  
ns  
Opposing-Direction  
Table 2.  
1 Mbps—WA, WB Grades  
10 Mbps—WB Grade  
Parameter  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SUPPLY CURRENT  
ADuM4400W  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
2.9  
1.2  
2.5  
1.6  
2.0  
2.0  
3.5  
2.0  
3.2  
2.4  
2.8  
2.8  
9.0  
3.0  
7.4  
4.4  
6.0  
6.0  
11.6  
5.5  
10.6  
6.5  
7.5  
7.5  
mA  
mA  
mA  
mA  
mA  
mA  
ADuM4401W  
ADuM4402W  
Table 3. For All Models  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltage  
VIH  
VIL  
VOH  
2.0  
V
V
V
V
V
V
V
µA  
µA  
µA  
0.8  
VDDx − 0.1  
VDDx − 0.4  
5.0  
4.8  
0.0  
0.04  
0.2  
+0.01  
−3  
+0.01  
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
0 V ≤ VIx ≤ VDDx  
Logic Low Output Voltage  
VOL  
0.1  
0.1  
0.4  
+10  
Input Current per Channel  
VEx Input Pull-up Current  
II  
IPU  
IOZ  
−10  
−10  
−10  
VEx = 0 V  
Tristate Leakage Current per Channel  
Supply Current per Channel  
Quiescent Input Supply Current  
Quiescent Output Supply Current  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
AC SPECIFICATIONS  
+10  
IDDI(Q)  
IDDO(Q)  
IDDI(D)  
IDDO(D)  
0.57  
0.23  
0.20  
0.05  
0.83  
0.35  
mA  
mA  
All data inputs at logic low  
All data inputs at logic low  
mA/Mbps  
mA/Mbps  
Output Rise/Fall Time  
Common-Mode Transient Immunity1  
tR/tF  
|CM|  
2.5  
35  
ns  
kV/µs  
10% to 90%  
VIx = VDDx, VCM = 1000 V,  
25  
transient magnitude = 800 V  
Output Disable Propagation Delay  
Output Enable Propagation Delay  
Refresh Rate  
tPHZ, tPLH  
tPZH, tPZL  
fr  
6
8
8
ns  
High/low-to-high impedance  
High impedance-to-high/low  
6
1.0  
ns  
Mbps  
1 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VOx > 0.8 VDD. The common-mode voltage slew rates apply to both  
rising and falling common-mode voltage edges.  
Rev. A | Page 3 of 20  
 
 
ADuM4400W/ADuM4401W/ADuM4402W  
Automotive Products  
ELECTRICAL CHARACTERISTICS—3.3 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.3 V. Minimum/maximum specifications apply over the entire recommended  
operation range: 3.135 V ≤ VDD1 ≤ 3.6 V, 3.135 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ 125°C, unless otherwise noted. Switching  
specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 4.  
WA Grade  
Typ  
WB Grade  
Typ  
Parameter  
Symbol  
Min  
50  
Max  
Min  
20  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Pulse Width  
Propagation Delay Skew  
Channel Matching  
Codirectional  
1
100  
40  
10  
45  
3.5  
Mbps  
ns  
ns  
ps/°C  
ns  
ns  
Within PWD limit  
50% input to 50% output  
|tPLH − tPHL|  
tPHL, tPLH  
PWD  
75  
11  
38  
5
PW  
tPSK  
1000  
100  
Within PWD limit  
Between any two units  
50  
22  
tPSKCD  
tPSKOD  
50  
50  
3.5  
6
ns  
ns  
Opposing-Direction  
Table 5.  
1 Mbps—WA, WB Grades  
10 Mbps—WB Grade  
Parameter  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SUPPLY CURRENT  
ADuM4400W  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
1.6  
0.7  
1.4  
0.9  
1.2  
1.2  
2.2  
1.4  
2.0  
1.6  
1.8  
1.8  
4.8  
1.8  
0.1  
2.5  
3.3  
3.3  
7.1  
2.6  
5.6  
3.3  
4.4  
4.4  
mA  
mA  
mA  
mA  
mA  
mA  
ADuM4401W  
ADuM4402W  
Table 6. For All Models  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltage  
VIH  
VIL  
VOH  
1.6  
V
V
V
V
V
V
V
µA  
µA  
µA  
0.4  
VDDx − 0.1  
VDDx − 0.4  
3.0  
2.8  
0.0  
0.04  
0.2  
+0.01  
−3  
+0.01  
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
0 V ≤ VIx ≤ VDDx  
Logic Low Output Voltage  
VOL  
0.1  
0.1  
0.4  
+10  
Input Current per Channel  
VEx Input Pull-up Current  
II  
IPU  
IOZ  
−10  
−10  
−10  
VEx = 0 V  
Tristate Leakage Current per Channel  
Supply Current per Channel  
Quiescent Input Supply Current  
Quiescent Output Supply Current  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
AC SPECIFICATIONS  
+10  
IDDI(Q)  
IDDO(Q)  
IDDI(D)  
IDDO(D)  
0.31  
0.19  
0.10  
0.03  
0.49  
0.27  
mA  
mA  
All data inputs at logic low  
All data inputs at logic low  
mA/Mbps  
mA/Mbps  
Output Rise/Fall Time  
tR/tF  
3
ns  
10% to 90%  
Common-Mode Transient Immunity1  
|CM|  
25  
35  
kV/µs  
VIx = VDDx, VCM = 1000 V,  
transient magnitude = 800 V  
Output Disable Propagation Delay  
Output Enable Propagation Delay  
Refresh Rate  
tPHZ, tPLH  
tPZH, tPZL  
fr  
6
8
8
ns  
High/low-to-high impedance  
High impedance-to-high/low  
6
1.0  
ns  
Mbps  
1 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VOx > 0.8 VDD. The common-mode voltage slew rates apply to both  
rising and falling common-mode voltage edges.  
Rev. A | Page 4 of 20  
 
Automotive Products  
ADuM4400W/ADuM4401W/ADuM4402W  
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3.3 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = 5 V, V DD2 = 3.3 V. Minimum/maximum specifications apply over the entire recommended  
operation range: 4.5 V ≤ VDD1 ≤ 5.5 V, 3.135 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ 125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 7.  
WA Grade  
Typ  
WB Grade  
Typ  
Parameter  
Symbol  
Min  
50  
Max  
Min  
20  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Pulse Width  
Propagation Delay Skew  
Channel Matching  
Codirectional  
1
100  
40  
10  
42  
3.5  
Mbps  
ns  
ns  
Within PWD limit  
50% input to 50% output  
|tPLH − tPHL|  
tPHL, tPLH  
PWD  
70  
11  
30  
5
ps/°C  
ns  
PW  
tPSK  
1000  
100  
Within PWD limit  
50  
22  
ns  
Between any two units  
tPSKCD  
tPSKOD  
50  
50  
3.5  
6
ns  
ns  
Opposing-Direction  
Table 8.  
1 Mbps—WA, WB Grades  
10 Mbps—WB Grade  
Parameter  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SUPPLY CURRENT  
ADuM4400W  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
2.9  
0.7  
2.5  
0.9  
2.0  
1.2  
3.5  
1.4  
3.2  
1.6  
2.8  
1.8  
9.0  
1.8  
7.4  
2.5  
6.0  
3.3  
11.6  
2.6  
10.6  
3.3  
7.5  
4.4  
mA  
mA  
mA  
mA  
mA  
mA  
ADuM4401W  
ADuM4402W  
Table 9. For All Models  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
5 V Logic High Input Threshold  
3.3 V Logic High Input Threshold  
5 V Logic Low Input Threshold  
3.3 V Logic Low Input Threshold  
Logic High Output Voltage  
VIH  
VIH  
VIL  
VIL  
VOH  
2.0  
1.6  
V
V
V
V
V
V
V
V
0.8  
0.4  
VDDx − 0.1  
VDDx − 0.4  
3.0  
2.8  
0.0  
0.04  
0.2  
+0.01  
−3  
+0.01  
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
0 V ≤ VIx ≤ VDDx  
Logic Low Output Voltage  
VOL  
0.1  
0.1  
0.4  
+10  
V
Input Current per Channel  
VEx Input Pull-up Current  
II  
IPU  
IOZ  
−10  
−10  
−10  
µA  
µA  
µA  
VEx = 0 V  
Tristate Leakage Current per Channel  
Supply Current per Channel  
Quiescent Input Supply Current  
Quiescent Output Supply Current  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
AC SPECIFICATIONS  
+10  
IDDI(Q)  
IDDO(Q)  
IDDI(D)  
IDDO(D)  
0.57  
0.29  
0.20  
0.03  
0.83  
0.27  
mA  
mA  
mA/Mbps  
mA/Mbps  
All data inputs at logic low  
All data inputs at logic low  
Output Rise/Fall Time  
tR/tF  
3
ns  
10% to 90%  
Common-Mode Transient Immunity1  
|CM|  
25  
35  
kV/µs  
VIx = VDDx, VCM = 1000 V,  
transient magnitude = 800 V  
Output Disable Propagation Delay  
Output Enable Propagation Delay  
Refresh Rate  
tPHZ, tPLH  
tPZH, tPZL  
fr  
6
6
1.0  
8
8
ns  
ns  
Mbps  
High/low-to-high impedance  
High impedance-to-high/low  
1 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VOx > 0.8 VDD. The common-mode voltage slew rates apply to both  
rising and falling common-mode voltage edges.  
Rev. A | Page 5 of 20  
 
ADuM4400W/ADuM4401W/ADuM4402W  
Automotive Products  
ELECTRICAL CHARACTERISTICS—MIXED 3.3 V/5 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = 3.3 V, V DD2 = 5 V. Minimum/maximum specifications apply over the entire recommended  
operation range: 3.135 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 10.  
WA Grade  
Typ  
WB Grade  
Typ  
Parameter  
Symbol  
Min  
50  
Max  
Min  
20  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Pulse Width  
Propagation Delay Skew  
Channel Matching  
Codirectional  
1
100  
40  
10  
42  
3.5  
Mbps Within PWD limit  
tPHL, tPLH  
PWD  
70  
11  
30  
5
ns  
50% input to 50% output  
|tPLH − tPHL  
ns  
|
ps/°C  
ns  
PW  
tPSK  
1000  
100  
Within PWD limit  
50  
22  
ns  
Between any two units  
tPSKCD  
tPSKOD  
50  
50  
3.5  
6
ns  
ns  
Opposing-Direction  
Table 11.  
1 Mbps—WA,W B Grades  
10 Mbps—WB Grade  
Parameter  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SUPPLY CURRENT  
ADuM4400W  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
1.6  
1.2  
1.4  
1.6  
1.2  
2.0  
2.2  
2.0  
2.0  
2.4  
1.8  
2.8  
4.8  
3.0  
4.1  
4.4  
3.3  
6.0  
7.1  
5.5  
5.6  
6.5  
4.4  
7.5  
mA  
mA  
mA  
mA  
mA  
mA  
ADuM4401W  
ADuM4402W  
Table 12. For All Models  
Parameter  
Symbol  
VIH  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
5 V Logic High Input Threshold  
3.3 V Logic High Input Threshold  
5 V Logic Low Input Threshold  
3.3 V Logic Low Input Threshold  
Logic High Output Voltage  
2.0  
1.6  
V
V
V
VIL  
0.8  
0.4  
VOH  
VDDx − 0.1  
VDDx − 0.4  
5.0  
4.8  
0.0  
0.04  
0.2  
V
V
V
V
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
0 V ≤ VIx ≤ VDDx  
Logic Low Output Voltage  
VOL  
0.1  
0.1  
0.4  
+10  
V
Input Current per Channel  
VEx Input Pull-up Current  
II  
IPU  
IOZ  
−10  
−10  
−10  
+0.01  
−3  
+0.01  
µA  
µA  
µA  
VEx = 0 V  
Tristate Leakage Current per Channel  
Supply Current per Channel  
Quiescent Input Supply Current  
Quiescent Output Supply Current  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
AC SPECIFICATIONS  
+10  
IDDI(Q)  
IDDO(Q)  
IDDI(D)  
IDDO(D)  
0.31  
0.19  
0.10  
0.05  
0.49  
0.35  
mA  
mA  
mA/Mbps  
mA/Mbps  
All data inputs at logic low  
All data inputs at logic low  
Output Rise/Fall Time  
Common-Mode Transient Immunity1  
tR/tF  
|CM|  
2.5  
35  
ns  
kV/µs  
10% to 90%  
VIx = VDDx, VCM = 1000 V,  
25  
transient magnitude = 800 V  
Output Disable Propagation Delay  
Output Enable Propagation Delay  
Refresh Rate  
tPHZ, tPLH  
tPZH, tPZL  
fr  
6
6
1.0  
8
8
ns  
ns  
Mbps  
High/low-to-high impedance  
High impedance-to-high/low  
1 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VOx > 0.8 VDD. The common-mode voltage slew rates apply to both  
rising and falling common-mode voltage edges.  
Rev. A | Page 6 of 20  
 
Automotive Products  
ADuM4400W/ADuM4401W/ADuM4402W  
PACKAGE CHARACTERISTICS  
Table 13.  
Parameter  
Symbol  
RI-O  
CI-O  
CI  
θJA  
Min  
Typ  
1012  
2.2  
4.0  
45  
Max  
Unit  
Ω
pF  
pF  
°C/W  
Test Conditions/Comments  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
f = 1 MHz  
IC Junction-to- Ambient Thermal Resistance  
1 Device considered a 2-terminal device: Pin 1 to Pin 8 shorted together and Pin 9 to Pin 16 shorted together.  
2 Input capacitance is from any input data pin to ground.  
REGULATORY INFORMATION  
The ADuM4400W/ADuM4401W/ADuM4402W are approved by the organizations listed in Table 14. Refer to Table 19 and the  
Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross-isolation waveforms and  
insulation levels.  
Table 14.  
UL  
CSA  
VDE  
Recognized under 1577 Component  
Recognition Program1  
Approved under CSA Component  
Acceptance Notice #5A  
Certified according to DIN V VDE V 0884-10 (VDE V  
0884-10): 2006-122  
Single Protection  
5000 V rms Isolation Voltage  
Basic insulation per CSA 60950-1-07 and IEC Reinforced insulation, 849 V peak  
60950-1, 600 V rms (848 V peak) maximum  
working voltage  
Reinforced insulation per CSA 60950-1-07  
and IEC 60950-1, 380 V rms (537 V peak)  
maximum working voltage; reinforced  
insulation per IEC 60601-1 125 V rms (176 V  
peak) maximum working voltage  
File E214100  
File 205078  
File 2471900-4880-0001  
1 In accordance with UL1577, each ADuM4400W/ADuM4401W/ADuM4402W is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 second (current  
leakage detection limit = 10 µA).  
2 In accordance with DIN V VDE V 0884-10, each ADuM4400W/ADuM4401W/ADuM4402W is proof tested by applying an insulation test voltage ≥1592 V peak for 1 sec  
(partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 15.  
Parameter  
Symbol Value  
Unit  
Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
5000  
8.0 min  
V rms 1-minute duration  
L(I01)  
L(I02)  
mm  
mm  
Distance measured from input terminals to output  
terminals, shortest distance through air along the PCB  
mounting plane, as an aid to PC board layout  
Measured from input terminals to output terminals,  
shortest distance path along body  
Minimum External Tracking (Creepage)  
7.7 min  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017 min mm  
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
>400  
II  
V
Rev. A | Page 7 of 20  
 
 
 
 
ADuM4400W/ADuM4401W/ADuM4402W  
Automotive Products  
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS  
These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by  
means of protective circuits.  
Note that the * marking on packages denotes DIN V VDE V 0884-10 approval for 846 V peak working voltage.  
Table 16.  
Description  
Test Conditions/Comments  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree (DIN VDE 0110, Table 1)  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method b1  
I to IV  
I to IV  
I to III  
40/125/21  
2
VIORM  
Vpd(m)  
849  
1592  
V peak  
V peak  
VIORM × 1.875 = VPR, 100% production test, tm = 1 sec,  
partial discharge < 5 pC  
Input-to-Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
After Input and/or Safety Test Subgroup 2 VIORM × 1.2 = VPR, tm = 60 sec, partial discharge < 5 pC  
and Subgroup 3  
Vpd(m)  
VIORM × 1.5 = VPR, tm = 60 sec, partial discharge < 5 pC  
1273  
1018  
V peak  
V peak  
Highest Allowable Overvoltage  
Surge Isolation Voltage  
Transient overvoltage, tTR = 10 seconds  
VPEAK = 10 kV, 1.2 µs rise time, 50 µs, 50% fall time  
VIOTM  
VIOSM  
6000  
6000  
V peak  
V peak  
Safety-Limiting Values  
Maximum value allowed in the event of a failure;  
see Figure 4  
Maximum Junction Temperature  
Safety Total Dissipated Power  
Insulation Resistance at TS  
TS  
PS  
RS  
150  
0.56  
>109  
°C  
W
Ω
VIO = 500 V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
RECOMMENDED OPERATING CONDITIONS  
Table 17.  
Parameter  
Symbol Min Max Unit  
TA −40 +125 °C  
VDD1, VDD2 3.135 5.5  
1.0  
Operating Temperature  
Supply Voltages1  
Input Signal Rise and Fall Times  
V
ms  
1 All voltages are relative to their respective ground.  
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
Figure 4. Thermal Derating Curve, Dependence of Safety Limiting  
Values with Ambient Temperature per DIN V VDE V 0884-10  
Rev. A | Page 8 of 20  
 
 
 
Automotive Products  
ADuM4400W/ADuM4401W/ADuM4402W  
ABSOLUTE MAXIMUM RATINGS  
Table 18.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
Storage Temperature (TST)  
−65°C to +150°C  
Ambient Operating Temperature (TA) −40°C to +125°C  
1
Supply Voltages (VDD1, VDD2  
)
−0.5 V to +7.0 V  
−0.5 V to VDDI + 0.5 V  
−0.5 V to VDDO + 0.5 V  
Input Voltage (VIA, VIB, VIC, VID, VE1, VE2)1, 2  
Output Voltage (VOA, VOB, VOC, VOD  
Average Output Current Per Pin3  
1, 2  
)
Side 1 (IO1  
Side 2 (IO2  
)
)
−18 mA to +18 mA  
−22 mA to +22 mA  
−100 kV/µs to +100 kV/µs  
ESD CAUTION  
Common-Mode Transients4  
1 All voltages are relative to their respective ground.  
2 VDDI and VDDO refer to the supply voltages on the input and output sides of a  
given channel, respectively. See the PC Board Layout section.  
3 See Figure 4 for maximum rated current values for various temperatures.  
4 Refers to common-mode transients across the insulation barrier. Common-  
mode transients exceeding the Absolute Maximum Rating can cause  
latch-up or permanent damage.  
Table 19. Maximum Continuous Working Voltage1  
Parameter  
Max  
Unit  
Constraint  
AC Voltage, Bipolar Waveform  
AC Voltage, Unipolar Waveform  
Reinforced Insulation  
DC Voltage  
565  
V peak  
50 year minimum lifetime  
846  
846  
V peak  
V peak  
Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10  
Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10  
Reinforced Insulation  
1 Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.  
Table 20. Truth Table (Positive Logic)  
VIx Input1  
VEx Input  
VDDI State1 VDDO State1  
VOx Output1 Notes  
H
L
X
X
X
X
H or NC  
H or NC  
L
H or NC  
L
X
Powered  
Powered  
Powered  
Unpowered Powered  
Unpowered Powered  
Powered  
Powered  
Powered  
H
L
Z
H
Z
Outputs return to input state within 1 µs of VDDI power restoration.  
Powered  
Unpowered Indeterminate Outputs return to input state within 1 µs of VDDO power restoration if  
VEx state is H or NC. Outputs return to high impedance state within  
8 ns of VDDO power restoration if VEx state is L.  
1 VIx and VOx refer to the input and output signals of a given channel (A, B, C, or D). VEx refers to the output enable signal on the same side as the VOx outputs. VDDI and  
DDO refer to the supply voltages on the input and output sides of the given channel, respectively.  
V
Rev. A | Page 9 of 20  
 
 
 
 
 
 
ADuM4400W/ADuM4401W/ADuM4402W  
Automotive Products  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
16  
V
DD1  
DD2  
2
GND  
15 GND  
1
IA  
IB  
IC  
ID  
V
V
V
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
OA  
OB  
OC  
OD  
E2  
ADuM4400W  
TOP VIEW  
(Not to Scale)  
NC  
GND  
GND  
1
2
NOTES  
1. PINS LABELED NC CAN BE ALLOWED TO FLOAT, BUT  
IT IS BETTER TO CONNECT THESE PINS TO GROUND.  
AVOID ROUTING HIGH SPEED SIGNALS THROUGH  
THESE PINS BECAUSE NOISE COUPLING MAY RESULT.  
2. PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED,  
AND CONNECTING BOTH TO GND IS RECOMMENDED.  
1
3. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED,  
AND CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 5. ADuM4400W Pin Configuration  
Table 21. ADuM4400W Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
5
6
7
8
9
10  
VDD1  
GND1  
VIA  
VIB  
VIC  
VID  
NC  
GND1  
GND2  
VE2  
Supply Voltage for Isolator Side 1, 3.135 V to 5.5 V.  
Ground 1. Ground reference for isolator Side 1.  
Logic Input A.  
Logic Input B.  
Logic Input C.  
Logic Input D.  
This pin is not Connected Internally (see Figure 5).  
Ground 1. Ground reference for isolator Side 1.  
Ground 2. Ground reference for isolator Side 2.  
Output Enable 2. Active high logic input. VOx outputs on Side 2 are enabled when VE2 is high or disconnected.  
Ox Side 2 outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic high  
V
or low is recommended.  
11  
12  
13  
14  
15  
16  
VOD  
VOC  
VOB  
VOA  
GND2  
VDD2  
Logic Output D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Ground 2. Ground reference for isolator Side 2.  
Supply Voltage for Isolator Side 2, 3.135 V to 5.5 V.  
Rev. A | Page 10 of 20  
 
 
Automotive Products  
ADuM4400W/ADuM4401W/ADuM4402W  
V
1
2
3
4
5
6
7
8
16  
V
DD1  
DD2  
GND  
15 GND  
1
2
V
V
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
IA  
IB  
IC  
OA  
OB  
OC  
ID  
ADuM4401W  
TOP VIEW  
(Not to Scale)  
V
OD  
V
E1  
E2  
GND  
GND  
2
1
NOTES  
1. PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED,  
AND CONNECTING BOTHTO GND IS RECOMMENDED.  
1
2. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED,  
AND CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 6. ADuM4401W Pin Configuration  
Table 22. ADuM4401W Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
5
6
7
VDD1  
GND1  
VIA  
VIB  
VIC  
Supply Voltage for Isolator Side 1, 3.135 V to 5.5 V.  
Ground 1. Ground reference for isolator Side 1.  
Logic Input A.  
Logic Input B.  
Logic Input C.  
VOD  
VE1  
Logic Output D.  
Output Enable. Active high logic input. VOx Side 1 outputs are enabled when VE1 is high or disconnected. VOX Side 1  
outputs are disabled when VE1 is low. In noisy environments, connecting VE1 to an external logic high or low is  
recommended.  
8
9
10  
GND1  
GND2  
VE2  
Ground 1. Ground reference for isolator Side 1.  
Ground 2. Ground reference for isolator Side 2.  
Output Enable 2. Active high logic input. VOx outputs on Side 2 are enabled when VE2 is high or disconnected.  
V
Ox Side 2 outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic high  
or low is recommended.  
11  
12  
13  
14  
15  
16  
VID  
VOC  
VOB  
VOA  
GND2  
VDD2  
Logic Input D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Ground 2. Ground reference for isolator Side 2.  
Supply Voltage for Isolator Side 2, 3.135 V to 5.5 V.  
Rev. A | Page 11 of 20  
ADuM4400W/ADuM4401W/ADuM4402W  
Automotive Products  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
*GND  
15 GND *  
1
IA  
IB  
2
V
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
OA  
OB  
IC  
ADuM4402W  
TOP VIEW  
(Not to Scale)  
V
V
OC  
OD  
ID  
V
E1  
E2  
*GND  
GND *  
1
2
NOTES  
1. PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED,  
AND CONNECTING BOTH TO GND IS RECOMMENDED.  
1
2. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED,  
AND CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 7. ADuM4402W Pin Configuration  
Table 23. ADuM4402W Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
5
6
7
VDD1  
GND1  
VIA  
Supply Voltage for Isolator Side 1, 3.135 V to 5.5 V.  
Ground 1. Ground reference for isolator Side 1.  
Logic Input A.  
Logic Input B.  
Logic Output C.  
VIB  
VOC  
VOD  
VE1  
Logic Output D.  
Output Enable 1. Active high logic input. VOx Side 1 outputs are enabled when VE1 is high or disconnected. VOX  
Side 1 outputs are disabled when VE1 is low. In noisy environments, connecting VE1 to an external logic high or  
low is recommended.  
8
9
10  
GND1  
GND2  
VE2  
Ground 1. Ground reference for isolator Side 1.  
Ground 2. Ground reference for isolator Side 2.  
Output Enable 2. Active high logic input. VOx outputs on Side 2 are enabled when VE2 is high or disconnected.  
VOx Side 2 outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic high  
or low is recommended.  
11  
12  
13  
14  
15  
16  
VID  
VIC  
VOB  
VOA  
GND2  
VDD2  
Logic Input D.  
Logic Input C.  
Logic Output B.  
Logic Output A.  
Ground 2. Ground reference for isolator Side 2.  
Supply Voltage for Isolator Side 2, 3.135 V to 5.5 V.  
Rev. A | Page 12 of 20  
Automotive Products  
ADuM4400W/ADuM4401W/ADuM4402W  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.5  
10  
8
2.0  
1.5  
6
5V  
1.0  
5V  
3V  
4
3V  
0.5  
0
2
0
0
2
4
6
8
10  
0
2
4
6
8
10  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 8. Typical Input Supply Current per Channel vs. Data Rate (No Load)  
Figure 11. Typical ADuM4400W VDD1 Supply Current vs. Data Rate  
for 5 V and 3.3 V Operation  
4
1.00  
3
0.75  
2
0.50  
5V  
5V  
1
0.25  
3V  
3V  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 9. Typical Output Supply Current per Channel vs. Data Rate (No Load)  
Figure 12. Typical ADuM4400W VDD2 Supply Current vs. Data Rate  
for 5 V and 3.3 V Operation  
1.5  
10  
8
1.0  
6
5V  
5V  
4
0.5  
3V  
3V  
2
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 10. Typical Output Supply Current per Channel vs. Data Rate  
(15 pF Output Load)  
Figure 13. Typical ADuM4401W VDD1 Supply Current vs. Data Rate  
for 5 V and 3.3 V Operation  
Rev. A | Page 13 of 20  
 
 
 
 
 
ADuM4400W/ADuM4401W/ADuM4402W  
Automotive Products  
4
40  
35  
30  
25  
3
3V  
5V  
2
3V  
1
5V  
0
0
2
4
6
8
10  
–50  
–25  
0
25  
50  
75  
100  
DATA RATE (Mbps)  
TEMPERATURE (°C)  
Figure 14. Typical ADuM4401W VDD2 Supply Current vs. Data Rate  
for 5 V and 3.3 V Operation  
Figure 16. Propagation Delay vs. Temperature, WB Grade  
10  
8
6
5V  
4
3V  
2
0
0
2
4
6
8
10  
DATA RATE (Mbps)  
Figure 15. Typical ADuM4402W VDD1 or VDD2 Supply Current vs. Data Rate  
for 5 V and 3.3 V Operation  
Rev. A | Page 14 of 20  
 
Automotive Products  
ADuM4400W/ADuM4401W/ADuM4402W  
APPLICATIONS INFORMATION  
While the ADuM4400W/ADuM4401W/ADuM4402W  
improve system-level ESD reliability, they are no substitute for a  
robust system-level design. See the AN-793 Application Note,  
ESD/Latch-Up Considerations with iCoupler Isolation Products,  
for detailed recommendations on board layout and system-level  
design.  
PC BOARD LAYOUT  
The ADuM4400W/ADuM4401W/ADuM4402W digital  
isolators require no external interface circuitry for the logic  
interfaces. Power supply bypassing is strongly recommended  
at the input and output supply pins (see Figure 17). Bypass  
capacitors are most conveniently connected between Pin 1 and  
Pin 2 for VDD1 and between Pin 15 and Pin 16 for VDD2. The  
capacitor value should be between 0.01 μF and 0.1 μF. The total  
lead length between both ends of the capacitor and the input  
power supply pin should not exceed 20 mm. Bypassing between  
Pin 1 and Pin 8 and between Pin 9 and Pin 16 should also be  
considered unless the ground pair on each package side is  
connected close to the package.  
PROPAGATION DELAY-RELATED PARAMETERS  
Propagation delay is a parameter that describes the length of  
time for a logic signal to propagate through a component. The  
propagation delay to a logic low output can differ from the  
propagation delay to logic high.  
INPUT (V  
)
50%  
Ix  
V
GND  
V
DD2  
DD1  
tPLH  
tPHL  
GND  
1
IA  
IB  
2
V
V
V
V
V
V
V
OA  
OB  
OUTPUT (V  
)
50%  
Ox  
V
V
IC/OC  
ID/OD  
OC/IC  
OD/ID  
E2  
Figure 18. Propagation Delay Parameters  
V
E1  
Pulse width distortion is the maximum difference between  
these two propagation delay values and is an indication of  
how accurately the input signal’s timing is preserved.  
GND  
GND  
2
1
Figure 17. Recommended Printed Circuit Board Layout  
In applications involving high common-mode transients,  
ensure that board coupling across the isolation barrier is  
minimized. Furthermore, the board layout should be designed  
such that any coupling that does occur equally affects all pins  
on a given component side. Failure to ensure this could cause  
voltage differentials between pins exceeding the Absolute  
Maximum Ratings of the device, thereby leading to latch-up  
or permanent damage.  
Channel-to-channel matching refers to the maximum amount  
the propagation delay differs among channels within a single  
ADuM4400W/ADuM4401W/ADuM4402W component.  
Propagation delay skew refers to the maximum amount  
the propagation delay differs among multiple ADuM4400W/  
ADuM4401W/ADuM4402W components operated under the  
same conditions.  
See the AN-1109 Application Note for board layout guidelines.  
DC CORRECTNESS AND MAGNETIC FIELD  
IMMUNITY  
SYSTEM-LEVEL ESD CONSIDERATIONS AND  
ENHANCEMENTS  
Positive and negative logic transitions at the isolator input  
cause narrow (~1 ns) pulses to be sent via the transformer to  
the decoder. The decoder is bistable and is therefore either set  
or reset by the pulses, indicating input logic transitions. In the  
absence of logic transitions at the input for more than ~1 μs, a  
periodic set of refresh pulses indicative of the correct input state  
are sent to ensure dc correctness at the output. If the decoder  
receives no internal pulses for more than approximately 5 μs,  
the input side is assumed to be without power or nonfunctional;  
in which case, the isolator output is forced to a default state (see  
Table 20) by the watchdog timer circuit.  
System-level ESD reliability (for example, per IEC 61000-4-x)  
is highly dependent on system design, which varies widely by  
application. The ADuM4400W/ADuM4401W/ADuM4402W  
incorporate many enhancements to make ESD reliability less  
dependent on system design. The enhancements include:  
ESD protection cells added to all input/output interfaces.  
Key metal trace resistances reduced using wider geometry  
and paralleling of lines with vias.  
The SCR effect, inherent in CMOS devices, minimized by  
using guarding and isolation techniques between PMOS  
and NMOS devices.  
The limitation on the ADuM4400W/ADuM4401W/  
ADuM4402W magnetic field immunity is set by the condition  
in which induced voltage in the trans-formers receiving coil is  
large enough to either falsely set or reset the decoder. The  
following analysis defines the conditions under which this can  
occur. The 3.3 V operating condition of the ADuM4400W/  
ADuM4401W/ADuM4402W is examined because it represents  
the most susceptible mode of operation.  
Areas of high electric field concentration eliminated using  
45° corners on metal traces.  
Supply pin overvoltage prevented with larger ESD clamps  
between each supply pin and its respective ground.  
Rev. A | Page 15 of 20  
 
 
 
 
 
 
ADuM4400W/ADuM4401W/ADuM4402W  
Automotive Products  
1000  
100  
The pulses at the transformer output have an amplitude greater  
than 1.0 V. The decoder has a sensing threshold at about 0.5 V,  
thereby establishing a 0.5 V margin in which induced voltages  
can be tolerated. The voltage induced across the receiving coil  
is given by  
DISTANCE = 1m  
10  
1
2
V = (−/dt)Σ∏rn ; n = 1, 2,…, N  
DISTANCE = 100mm  
where:  
β is the magnetic flux density (gauss).  
N is the number of turns in the receiving coil.  
rn is the radius of the nth turn in the receiving coil (cm).  
DISTANCE = 5mm  
0.1  
Given the geometry of the receiving coil in the ADuM4400W/  
ADuM4401W/ADuM4402W and an imposed requirement that  
the induced voltage be at most 50% of the 0.5 V margin at the  
decoder, a maximum allowable magnetic field is calculated as  
shown in Figure 19.  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 20. Maximum Allowable Current for Various Current-to-  
ADuM4400W/ADuM4401W/ADuM4402W Spacings  
100  
Note that at combinations of strong magnetic field and high  
frequency, any loops formed by printed circuit board traces may  
induce sufficiently large error voltages to trigger the thresholds  
of succeeding circuitry. Care should be taken in the layout of  
such traces to avoid this possibility.  
10  
1
POWER CONSUMPTION  
The supply current at a given channel of the ADuM4400W/  
ADuM4401W/ADuM4402W isolator is a function of the supply  
voltage, the channels data rate, and the channels output load.  
0.1  
0.01  
0.001  
For each input channel, the supply current is given by  
I
DDI = IDDI (Q)  
f ≤ 0.5fr  
f > 0.5fr  
1k  
10k  
100k  
1M  
10M  
100M  
IDDI = IDDI (D) × (2f − fr) + IDDI (Q)  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 19. Maximum Allowable External Magnetic Flux Density  
For each output channel, the supply current is given by:  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 kgauss induces a  
voltage of 0.25 V at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
Similarly, if such an event were to occur during a transmitted  
pulse (and was of the worst-case polarity), it would reduce the  
received pulse from >1.0 V to 0.75 V—still well above the 0.5 V  
sensing threshold of the decoder.  
I
DDO = IDDO (Q)  
f ≤ 0.5fr  
I
DDO = (IDDO (D) + (0.5 × 10−3) × CLVDDO) × (2f fr) + IDDO (Q)  
f > 0.5fr  
where:  
DDI (D), IDDO (D) are the input and output dynamic supply currents  
per channel (mA/Mbps).  
I
C
L is the output load capacitance (pF).  
V
DDO is the output supply voltage (V).  
The preceding magnetic flux density values correspond to  
specific current magnitudes at given distances away from the  
ADuM4400W/ADuM4401W/ADuM4402W transformers.  
Figure 20 expresses these allowable current magnitudes as a  
function of frequency for selected distances. As can be seen, the  
ADuM4400W/ADuM4401W/ADuM4402W are immune and  
can be affected only by extremely large currents operated at  
high frequency and very close to the component. For the 1 MHz  
example noted, one would have to place a 0.5 kA current 5 mm  
away from the ADuM4400W/ADuM4401W/ADuM4402W to  
affect the component’s operation.  
f is the input logic signal frequency (MHz, half of the input data  
rate, NRZ signaling).  
fr is the input stage refresh rate (Mbps).  
I
DDI (Q), IDDO (Q) are the specified input and output quiescent  
supply currents (mA).  
Rev. A | Page 16 of 20  
 
 
 
Automotive Products  
ADuM4400W/ADuM4401W/ADuM4402W  
To calculate the total IDD1 and IDD2, the supply currents for  
each input and output channel corresponding to IDD1 and IDD2  
are calculated and totaled. Figure 8 and Figure 9 provide per  
channel supply currents as a function of data rate for an  
unloaded output condition. Figure 10 provides per channel  
supply current as a function of data rate for a 15 pF output  
condition. Figure 11 through Figure 15 provide total IDD1 and  
Bipolar ac voltage is the most stringent environment. The goal  
of a 50-year operating lifetime under the ac bipolar condition  
determines Analog Devices recommended maximum working  
voltage.  
In the case of unipolar ac or dc voltage, the stress on the insu-  
lation is significantly lower. This allows operation at higher  
working voltages while still achieving a 50-year service life.  
The working voltages listed in Table 19 can be applied while  
maintaining the 50-year minimum lifetime, provided the  
voltage conforms to either the unipolar ac or dc voltage cases.  
Any cross-insulation voltage waveform that does not conform  
to Figure 22 or Figure 23 should be treated as a bipolar ac wave-  
form, and its peak voltage should be limited to the 50-year  
lifetime voltage value listed in Table 19.  
I
DD2 as a function of data rate for ADuM4400W/ADuM4401W/  
ADuM4402W channel configurations.  
INSULATION LIFETIME  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of  
insulation degradation is dependent on the characteristics of  
the voltage waveform applied across the insulation. In addition  
to the testing performed by the regulatory agencies, Analog  
Devices carries out an extensive set of evaluations to determine  
the lifetime of the insulation structure within the ADuM4400W/  
ADuM4401W/ADuM4402W.  
Note that the voltage presented in Figure 22 is shown as sinus-  
oidal for illustration purposes only. It is meant to represent any  
voltage waveform varying between 0 V and some limiting value.  
The limiting value can be positive or negative, but the voltage  
cannot cross 0 V.  
Analog Devices performs accelerated life testing using voltage  
levels higher than the rated continuous working voltage. Accelera-  
tion factors for several operating conditions are determined. These  
factors allow calculation of the time to failure at the actual working  
voltage. The values shown in Table 19 summarize the peak voltage  
for 50 years of service life for a bipolar ac operating condition and  
the maximum CSA/VDE approved working voltages. In many  
cases, the approved working voltage is higher than the 50-year  
service life voltage. Operation at these high working voltages  
can lead to shortened insulation life in some cases.  
RATED PEAK VOLTAGE  
0V  
Figure 21. Bipolar AC Waveform  
RATED PEAK VOLTAGE  
0V  
Figure 22. Unipolar AC Waveform  
The insulation lifetime of the ADuM4400W/ADuM4401W/  
ADuM4402W depends on the voltage waveform type imposed  
across the isolation barrier. The iCoupler insulation structure  
degrades at different rates, depending on whether the waveform  
is bipolar ac, unipolar ac, or dc. Figure 21, Figure 22, and  
Figure 23 illustrate these different isolation voltage waveforms.  
RATED PEAK VOLTAGE  
0V  
Figure 23. DC Waveform  
Rev. A | Page 17 of 20  
 
 
 
 
ADuM4400W/ADuM4401W/ADuM4402W  
OUTLINE DIMENSIONS  
Automotive Products  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.00  
98)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 24. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (RW-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Number  
Number Maximum Maximum  
Maximum  
of Inputs, of Inputs, Data Rate Propagation  
Pulse Width  
Temperature  
Package  
Package Description Option  
Model1, 2, 3  
V
4
4
3
3
2
2
DD1 Side  
V
0
0
1
1
2
2
DD2 Side (Mbps)  
Delay, 5 V (ns) Distortion (ns) Range  
ADuM4400WARWZ  
ADuM4400WBRWZ  
ADuM4401WARWZ  
ADuM4401WBRWZ  
ADuM4402WARWZ  
ADuM4402WBRWZ  
1
10  
1
10  
1
10  
100  
36  
40  
3.5  
40  
3.5  
40  
3.5  
−40°C to +125°C 16-Lead SOIC_W  
−40°C to +125°C 16-Lead SOIC_W  
−40°C to +125°C 16-Lead SOIC_W  
−40°C to +125°C 16-Lead SOIC_W  
−40°C to +125°C 16-Lead SOIC_W  
−40°C to +125°C 16-Lead SOIC_W  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
100  
36  
100  
36  
1 Tape and reel is available. The addition of an -RL suffix designates a 13” (1,000 units) tape and reel option.  
2 Z = RoHS Compliant Part.  
3 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The ADuM4400W/ADuM4401W/ADuM4402W models are available with controlled manufacturing to support the quality and  
reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the  
commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade  
products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific  
product ordering information and to obtain the specific Automotive Reliability reports for these models.  
Rev. A | Page 18 of 20  
 
 
 
Automotive Products  
NOTES  
ADuM4400W/ADuM4401W/ADuM4402W  
Rev. A | Page 19 of 20  
ADuM4400W/ADuM4401W/ADuM4402W  
NOTES  
Automotive Products  
©2012–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11031-0-3/15(A)  
Rev. A | Page 20 of 20  

相关型号:

ADUM4402WARWZ-RL

5 kV RMS Quad-Channel Digital Isolators
ADI

ADUM4402WBRWZ

5 kV RMS Quad-Channel Digital Isolators
ADI

ADUM4402WBRWZ-RL

5 kV RMS Quad-Channel Digital Isolators
ADI

ADUM440X

Digital Isolator Product Selection and Resource Guide
ADI

ADUM4470

Isolated Switching Regulator with Quad-Channel Isolators
ADI

ADuM4470ARIZ

Isolated Switching Regulator with Quad-Channel Isolators
ADI

ADuM4470ARIZ-RL

Isolated Switching Regulator with Quad-Channel Isolators
ADI

ADuM4470CRIZ

Isolated Switching Regulator with Quad-Channel Isolators
ADI

ADuM4470CRIZ-RL

Isolated Switching Regulator with Quad-Channel Isolators
ADI

ADuM4471

Isolated Switching Regulator with Quad-Channel Isolators
ADI

ADuM4471ARIZ

Isolated Switching Regulator with Quad-Channel Isolators
ADI

ADuM4471ARIZ-RL

Isolated Switching Regulator with Quad-Channel Isolators
ADI