ADUM6421ABRNZ3-RL [ADI]

Quad-Channel Isolators with Integrated DC-to-DC Converter;
ADUM6421ABRNZ3-RL
型号: ADUM6421ABRNZ3-RL
厂家: ADI    ADI
描述:

Quad-Channel Isolators with Integrated DC-to-DC Converter

文件: 总26页 (文件大小:533K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad-Channel Isolators with  
Integrated DC-to-DC Converter  
Data Sheet  
ADuM6420A/ADuM6421A/ADuM6422A  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
isoPower integrated, isolated dc-to-dc converter  
100 mA output supply  
Meets CISPR 32/EN55032 Class B emission limits up to  
5 Mbps at a full load on a 2-layer PCB  
Quad dc to 100 Mbps signal isolation channels  
28-lead, fine pitch, SOIC with 8.3 mm minimum creepage  
High temperature operation: 125°C maximum  
High common-mode transient immunity: 100 kV/μs  
Safety and regulatory approvals (pending)  
UL recognition (pending)  
1
2
3
28  
27  
26  
V
V
DD2  
DD1  
GND  
GND  
V
GND  
GND  
1
1
2
2
4
5
25  
24  
23  
22  
21  
20  
V
4-CHANNEL iCoupler CORE  
LOW POWER ON-OFF KEYING  
IA  
IB  
OA  
V
V
OB  
ADuM6420A/  
ADuM6421A/  
ADuM6422A  
V
V
/V  
V
V
/V  
6
IC OC  
OC IC  
/V  
7
/V  
ID OD  
OD ID  
LOW RADIATED EMISSIONS DC TO DC  
PCS  
GND  
1
8
GND  
2
PDIS  
9
V
SEL  
5000 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice 5A (pending)  
VDE V 0884-11 certificate of conformity (pending)  
GND  
1
10  
11  
12  
13  
14  
19 GND  
ISO  
V
OSC  
18  
RECT REG  
V
DDP  
ISO  
V
IORM = 566 V peak  
17 GND  
GND  
1
ISO  
16  
15  
NIC  
NIC  
APPLICATIONS  
GND  
1
GND  
ISO  
RS-232 transceivers  
Power supply start-up bias and gate drives  
Isolated sensor interfaces  
Industrial programmable logic controllers (PLCs)  
NIC = NO INTERNAL CONNECTION. LEAVE THIS PIN FLOATING.  
Figure 1.  
GENERAL DESCRIPTION  
The ADuM6420A/ADuM6421A/ADuM6422A1 are quad-channel  
digital isolators with an isoPower®, integrated, isolated dc-to-dc  
converter. Based on the Analog Devices, Inc., iCoupler®  
technology, the dc-to-dc converter provides regulated, isolated  
power that meets CISPR 32/EN 55032 Class B limits at a full  
load on a 2-layer printed circuit board (PCB) with ferrites.  
Popular voltage combinations and the associated output  
current levels are listed in Table 1.  
The ADuM6420A/ADuM6421A/ADuM6422A isolators  
provide four independent isolation channels (see the Pin  
Configurations and Function Descriptions for additional  
information).  
Table 1. ADuM6420A/ADuM6421A/ADuM6422A Output  
Current Levels  
ISO Current, IISO (mA)  
VDDP (V)  
VISO (V)  
5
3.3  
85°C  
100  
100  
60  
105°C  
65  
65  
125°C  
30  
30  
The ADuM6420A/ADuM6421A/ADuM6422A eliminate the  
need for a separate, isolated dc-to-dc converter in 500 mW,  
isolated designs. The iCoupler chip scale transformer technology  
is used for isolated logic signals and for the magnetic components  
of the dc-to-dc converter. The result is a small form factor, total  
isolation solution.  
5
5
3.3  
3.3  
60  
20  
1 Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329. Other patents are pending.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2019–2020 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADuM6420A/ADuM6421A/ADuM6422A  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Insulation and Safety Related Specifications.......................... 11  
DIN V VDE V 0884-11 Insulation Characteristics............... 12  
Recommended Operating Conditions.................................... 12  
Absolute Maximum Ratings......................................................... 13  
ESD Caution ............................................................................... 13  
Pin Configurations and Function Descriptions......................... 14  
Truth Table ................................................................................. 17  
Typical Performance Characteristics .......................................... 18  
Terminology.................................................................................... 21  
Theory of Operation ...................................................................... 22  
Applications Information ............................................................. 23  
PCB Layout ................................................................................. 23  
Thermal Analysis ....................................................................... 24  
Propagation Delay Related Parameters................................... 24  
EMI Considerations................................................................... 24  
Power Consumption.................................................................. 24  
Insulation Lifetime..................................................................... 24  
Outline Dimensions....................................................................... 26  
Ordering Guide .......................................................................... 26  
Applications ...................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Electrical Characteristics—5 V Primary Input Supply/5 V  
Secondary Isolated Supply .......................................................... 3  
Electrical Characteristics—5 V Primary Input Supply/3.3 V  
Secondary Isolated Supply .......................................................... 3  
Electrical Characteristics—3.3 V Primary Input Supply/3.3 V  
Secondary Isolated Supply .......................................................... 4  
Electrical Characteristics—5.0 V Operation Digital Isolator  
Channels Only .............................................................................. 4  
Electrical Characteristics—3.3 V Operation Digital Isolator  
Channels Only .............................................................................. 6  
Electrical Characteristics—2.5 V Operation Digital Isolator  
Channels Only .............................................................................. 8  
Electrical Characteristics—1.8 V Operation Digital Isolator  
Channels Only .............................................................................. 9  
Package Characteristics ............................................................. 11  
Regulatory Approvals ................................................................ 11  
REVISION HISTORY  
12/2020—Rev. 0 to Rev. A  
Changes to Table 11 and Table 13 ..................................................8  
Changes to Table 14..........................................................................9  
Changes to Table 21....................................................................... 12  
Changes to Table 23....................................................................... 13  
Change to Table 24 ........................................................................ 14  
Change to Table 25 ........................................................................ 15  
Change to Table 26 ........................................................................ 16  
Changes to Table 28....................................................................... 17  
Changes to Figure 6, Figure 7, and Figure 8............................... 18  
Changes to PCB Layout Section, Figure 22, and Figure 23...... 23  
Change to Thermal Analysis Section .......................................... 24  
Changes to Ordering Guide.......................................................... 26  
Changes to Table 1 ........................................................................... 1  
Changes to Electrical Characteristics—5 V Primary Input  
Supply/5 V Secondary Isolated Supply Section............................ 3  
Moved Electrical Characteristics—5 V Primary Input  
Supply/3.3 V Secondary Isolated Supply Section and Table 6;  
Renumbered Sequentially ............................................................... 3  
Added Electrical Characteristics—3.3 V Primary Input  
Supply/3.3 V Secondary Isolated Supply Section, Table 4,  
Electrical Characteristics5.0 V Operation Digital Isolator  
Channels Only Section, and Table 5.............................................. 4  
Changes to Table 7 ........................................................................... 5  
Removed Table 7 and Table 8......................................................... 6  
Changes to Table 8 ........................................................................... 6  
Removed Table 9 .............................................................................. 7  
Changes to Table 10......................................................................... 7  
12/2019—Revision 0: Initial Version  
Rev. A | Page 2 of 26  
 
Data Sheet  
ADuM6420A/ADuM6421A/ADuM6422A  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/5 V SECONDARY ISOLATED SUPPLY  
All typical specifications are at TA = 25°C, VDDP = VISO = 5 V. Minimum and maximum specifications apply over the entire recommended  
operation range, which is 4.5 V ≤ (VDDP, VISO) ≤ 5.5 V and −40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Table 2. DC-to-DC Converters Static Specifications  
Parameter  
Symbol  
Min Typ Max  
Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTERS SUPPLY  
Setpoint  
Line Regulation  
Load Regulation  
Output Ripple  
VISO  
4.75 5.0  
5.25  
5
V
ISO current (IISO) = 10 mA  
IISO = 50 mA, VDD1 = 4.5 V to 5.5 V  
IISO = 10 mA to 90 mA  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
20  
1
75  
mV/V  
%
mV p-p 20 MHz bandwidth, bulk output capacitance  
(CBO) = 0.1 μF||10 μF, IISO = 90 mA  
Output Noise  
VISO (NOISE)  
fOSC  
fPWM  
200  
180  
625  
mV p-p CBO = 0.1 μF||10 μF, IISO = 90 mA  
MHz  
kHz  
Switching Frequency  
Pulse-Width Modulation (PWM) Frequency  
Output Supply1  
IISO (MAX)  
100  
50  
mA  
mA  
%
4.5 V < VISO < 5.25 V  
4.75 V < VISO < 5.25 V  
IISO = 100 mA, TA = 25°C  
1
Efficiency at IISO (MAX)  
34  
VDD1 Supply Current  
No VISO Load  
Full VISO Load  
IDDP (Q)  
IDDP (MAX)  
14  
310  
25  
mA  
mA  
Thermal Shutdown  
Shutdown Temperature  
Thermal Hysteresis  
154  
10  
°C  
°C  
1 Maximum VISO output current is derated by 1.75 mA/°C for TA > 85°C.  
ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY  
All typical specifications are at TA = 25°C, VDDP = 5.0 V, VISO = 3.3 V. Minimum and maximum specifications apply over the entire  
recommended operation range, which is 4.5 V ≤ VDDP ≤ 5.5 V, 3.0 V ≤ VISO ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Table 3. DC-to-DC Converters Static Specifications  
Parameter  
Symbol Min  
Typ Max  
Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTERS SUPPLY  
Setpoint  
VISO  
3.135 3.3  
3.465  
V
IISO = 10 mA  
Line Regulation  
Load Regulation  
Output Ripple  
Output Noise  
Switching Frequency  
Pulse-Width Modulation Frequency  
Output Supply1  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
VISO (NOISE)  
fOSC  
20  
1
50  
130  
180  
625  
mV/V  
%
IISO = 50 mA, VDD1 = 3.0 V to 3.6 V  
IISO = 10 mA to 90 mA  
5
mV p-p 20 MHz bandwidth, CBO = 0.1 μF||10 μF, IISO = 90 mA  
mV p-p CBO = 0.1 μF||10 μF, IISO = 90 mA  
MHz  
kHz  
mA  
mA  
%
fPWM  
IISO (MAX)  
100  
50  
3.0 V < VISO < 3.4 V  
3.135 V < VISO < 3.465 V  
IISO = 100 mA  
1
Efficiency at IISO (MAX)  
34  
VDDP Supply Current  
No VISO Load  
Full VISO Load  
IDDP (Q)  
IDDP (MAX)  
14  
250  
20  
mA  
mA  
Thermal Shutdown  
Shutdown Temperature  
Thermal Hysteresis  
154  
10  
°C  
°C  
1 Maximum VISO output current is derated by 1.75 mA/°C for TA > 85ºC.  
Rev. A | Page 3 of 26  
 
 
 
ADuM6420A/ADuM6421A/ADuM6422A  
Data Sheet  
ELECTRICAL CHARACTERISTICS—3.3 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY  
All typical specifications are at TA = 25°C, VDDP = VISO = 3.3 V. Minimum and maximum specifications apply over the entire  
recommended operation range, which is 3.0 V ≤ VDDP, VISO ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Table 4. DC-to-DC Converters Static Specifications  
Parameter  
Symbol Min  
Typ Max  
Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTERS SUPPLY  
Setpoint  
Line Regulation  
Load Regulation  
Output Ripple  
VISO  
3.135  
3.3  
20  
1
3.465  
5
V
IISO = 10 mA  
IISO = 30 mA, VDD1 = 3.0 V to 3.6 V  
IISO = 6 mA to54 mA  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
VISO (NOISE)  
fOSC  
mV/V  
%
50  
mV p-p 20 MHz bandwidth, CBO = 0.1 μF||10 μF, IISO = 60 mA  
mV p-p CBO = 0.1 μF||10 μF, IISO = 60 mA  
Output Noise  
130  
180  
625  
Switching Frequency  
Pulse-Width Modulation Frequency  
Output Supply1  
MHz  
kHz  
mA  
mA  
%
fPWM  
IISO (MAX)  
60  
30  
3.0 V < VISO < 3.465 V  
3.135 V < VISO < 3.465 V  
IISO = 60 mA  
1
Efficiency at IISO (MAX)  
34  
VDDP Supply Current  
No VISO Load  
Full VISO Load  
IDDP (Q)  
IDDP (MAX)  
14  
190  
20  
mA  
mA  
Thermal Shutdown  
Shutdown Temperature  
Thermal Hysteresis  
154  
10  
°C  
°C  
1 Maximum VISO output current is derated by 2.0 mA/°C for TA > 105ºC.  
ELECTRICAL CHARACTERISTICS5.0 V OPERATION DIGITAL ISOLATOR CHANNELS ONLY  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 5.0 V. Minimum and maximum specifications apply over the entire recommended  
operation range: 4.5 V ≤ VDD1 , VDD2 ≤ 5.5 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications are tested with  
CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.  
Table 5. Data Channel Supply Current Specifications  
1 Mbps  
10 Mbps  
100 Mbps  
Parameter  
Symbol  
Min Typ Max Min Typ Max Min Typ Max Unit Test Conditions/Comments  
SUPPLY CURRENT  
ADuM6420AXRNZ5  
CL = 0 pF  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
4.9  
1.5  
4.9  
1.5  
4.2  
2.3  
4.2  
2.3  
3.3  
3.0  
3.3  
3.0  
8.7  
2.5  
8.7  
2.5  
8.4  
4.5  
8.4  
4.5  
6.0  
6.0  
6.0  
6.0  
5.5  
2.3  
5.5  
2.3  
4.5  
2.8  
4.5  
2.8  
3.9  
4.0  
3.9  
4.0  
9.5  
3.6  
9.5  
3.6  
8.5  
5.7  
8.5  
5.7  
6.2  
6.5  
6.2  
6.5  
8.0  
8.0  
8.0  
9.3  
8.0  
8.8  
8.0  
9.4  
8.3  
9.5  
8.3  
9.5  
12.2 mA  
11.0 mA  
12.2 mA  
15.0 mA  
12.0 mA  
12.0 mA  
12.0 mA  
15.0 mA  
12.0 mA  
13.5 mA  
12.0 mA  
14.0 mA  
ADuM6420AXRNZ3  
ADuM6421AXRNZ5  
ADuM6421AXRNZ3  
ADuM6422AXRNZ5  
ADuM6422AXRNZ3  
Rev. A | Page 4 of 26  
 
 
Data Sheet  
ADuM6420A/ADuM6421A/ADuM6422A  
Table 6. Switching Specifications  
Parameter  
Symbol Min Typ Max Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Pulse Width  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
PW  
10  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
Within pulse width distortion (PWD) limit  
Within PWD limit  
50% input to 50% output  
100  
15  
5
tPHL, tPLH  
PWD  
7.0  
10  
1
1.5  
|tPLH − tPHL|  
tPSK  
8.0  
Between any two units at the same temperature, voltage, and  
load  
Channel Matching  
Codirectional  
Opposing Direction  
Jitter  
tPSKCD  
tPSKOD  
1
1
816  
5.0  
5.0  
ns  
ns  
ps p-p  
Table 7. Input and Output Characteristics  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Input Threshold  
Logic High  
VIH  
VIL  
0.7 × VDDx  
V
V
Logic Low  
0.3 × VDDx  
Output Voltage  
Logic High  
2
VOH  
VOL  
VDDx − 0.2  
VDDx − 0.5  
VDDx  
VDDx − 0.2  
0.0  
V
V
V
V
IOx1 = −20 μA, VIx = VIxH  
IOx1 = −3.2 mA, VIx = VIxH  
2
3
Logic Low  
0.1  
0.4  
IOx1 = 20 μA, VIx = VIxL  
3
0.0  
IOx1 = 3.2 mA, VIx = VIxL  
Undervoltage Lockout  
Positive Going Threshold  
Negative Going Threshold  
Hysteresis  
Input Currents per Channel  
Quiescent Supply Current  
ADuM6420A  
UVLO  
VUV+  
VUV−  
VUVH  
II  
VDD1, VDD2, and VDDP supply  
1.6  
1.5  
0.1  
+0.01  
V
V
V
μA  
−10  
+10  
0 V ≤ VIx ≤ VDDx  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
0.37  
1.2  
9.5  
1.2  
1.9  
16  
mA  
mA  
mA  
mA  
VIx = Logic 0  
VIx = Logic 0  
VIx = Logic 1  
VIx = Logic 1  
1.5  
2.5  
ADuM6421A  
ADuM6422A  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
0.5  
0.9  
7.5  
3.3  
1.4  
1.5  
14  
mA  
mA  
mA  
mA  
VIx = Logic 0  
VIx = Logic 0  
VIx = Logic 1  
VIx = Logic 1  
6.2  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
0.7  
0.72  
5.4  
1.2  
1.3  
9.5  
9.7  
mA  
mA  
mA  
mA  
VIx = Logic 0  
VIx = Logic 0  
VIx = Logic 1  
VIx = Logic 1  
5.3  
Dynamic Supply Current  
Input  
Output  
IDDI (D)  
IDDO (D)  
0.01  
0.02  
mA/Mbps Inputs switching, 50% duty cycle  
mA/Mbps Inputs switching, 50% duty cycle  
Rev. A | Page 5 of 26  
ADuM6420A/ADuM6421A/ADuM6422A  
Data Sheet  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
AC SPECIFICATIONS  
Output Rise Time/Fall Time  
tR/tF  
2.5  
ns  
10% to 90%  
Common-Mode Transient  
Immunity4  
|CMH|  
75  
75  
100  
kV/μs  
VIx = VDD1 or VISO, common-mode  
voltage (VCM) = 1000 V, transient  
magnitude = 800 V  
VIx = 0 V, VCM = 1000 V, transient  
magnitude = 800 V  
|CML|  
100  
kV/μs  
1 IOX is the Channel x output current, where x is A, B, C, or D.  
2 VIXH is the input side logic high.  
3 VIXL is the input side logic low.  
4 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-mode voltage  
slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both the rising and falling common-mode voltage edges.  
ELECTRICAL CHARACTERISTICS—3.3 V OPERATION DIGITAL ISOLATOR CHANNELS ONLY  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.3 V. Minimum and maximum specifications apply over the entire recommended  
operation range: 3.0 V ≤ VDD1 ≤ 3.6 V, 3.0 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.  
Table 8. Data Channel Supply Current Specifications  
1 Mbps  
10 Mbps  
100 Mbps  
Parameter  
Symbol Min Typ Max Min Typ Max Min Typ Max Unit Test Conditions/Comments  
SUPPLY CURRENT  
CL = 0 pF  
ADuM6420AXRNZ5 IDD1  
4.8  
1.4  
4.8  
1.4  
4.0  
2.1  
4.0  
2.1  
3.1  
3.0  
3.1  
3.0  
8.5  
2.5  
8.5  
2.5  
8.3  
4.4  
8.3  
4.4  
6.0  
6.0  
6.0  
6.0  
4.9  
2.1  
4.9  
2.1  
4.3  
2.7  
4.3  
2.7  
3.6  
3.7  
3.6  
3.7  
9.0  
3.4  
9.0  
3.4  
8.4  
5.6  
8.4  
5.6  
6.2  
6.2  
6.0  
6.2  
7.0  
7.5  
7.0  
7.5  
7.1  
8.0  
7.1  
8.0  
7.4  
8.5  
7.4  
8.5  
11.0 mA  
11 mA  
IDD2  
ADuM6420AXRNZ3 IDD1  
11.0 mA  
12.0 mA  
11.6 mA  
11.6 mA  
11.6 mA  
12.0 mA  
11.0 mA  
12.0 mA  
11.0 mA  
13.0 mA  
IDD2  
ADuM6421AXRNZ5 IDD1  
IDD2  
ADuM6421AXRNZ3 IDD1  
IDD2  
ADuM6422AXRNZ5 IDD1  
IDD2  
ADuM6422AXRNZ3 IDD1  
IDD2  
Table 9. Switching Specifications  
Parameter  
Symbol Min Typ Max Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Pulse Width  
PW  
10  
ns  
Within PWD limit  
Data Rate  
100  
16  
5.0  
Mbps  
ns  
ns  
ps/°C  
ns  
Within PWD limit  
50% input to 50% output  
|tPLH − tPHL|  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
tPHL, tPLH  
PWD  
7.0  
10  
1.0  
1.5  
tPSK  
8.0  
Between any two units at the same temperature, voltage, and  
load  
Channel Matching  
Codirectional  
Opposing Direction  
Jitter  
tPSKCD  
tPSKOD  
1.0  
1.0  
816  
5.0  
5.0  
ns  
ns  
ps p-p  
Rev. A | Page 6 of 26  
 
Data Sheet  
ADuM6420A/ADuM6421A/ADuM6422A  
Table 10. Input and Output Characteristics  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Input Threshold  
Logic High  
VIH  
VIL  
0.7 × VDDx  
V
V
Logic Low  
0.3 × VDDx  
Output Voltage  
Logic High  
2
VOH  
VOL  
VDDx − 0.2  
VDDx − 0.5  
VDDx  
VDDx1 – 0.2  
0.0  
V
V
V
V
IOx1 = −20 μA, VIx = VIxH  
IOx1 = −3.2 mA, VIx = VIxH  
2
3
Logic Low  
0.1  
0.4  
IOx1 = 20 μA, VIx = VIxL  
3
0.0  
IOx1 = 3.2 mA, VIx = VIxL  
Undervoltage Lockout  
Positive Going Threshold  
UVLO  
VUV+  
VDD1, VDD2, and VDDP supply  
1.6  
V
Negative Going Threshold VUV−  
1.5  
V
Hysteresis  
VUVH  
II  
0.1  
+0.01  
V
μA  
Input Currents per Channel  
Quiescent Supply Current  
ADuM6420A  
−10  
+10  
0 V ≤ VIx ≤ VDDx  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
0.34  
1.1  
9.5  
1.2  
1.8  
16  
mA  
mA  
mA  
mA  
VIx = Logic 0  
VIx = Logic 0  
VIx = Logic 1  
VIx = Logic 1  
1.5  
2.4  
ADuM6421A  
ADuM6422A  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
0.48  
0.8  
7.4  
1.1  
1.5  
13.5  
6.2  
mA  
mA  
mA  
mA  
VIx = Logic 0  
VIx = Logic 0  
VIx = Logic 1  
VIx = Logic 1  
3.2  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
0.65  
0.7  
5.3  
1.2  
1.2  
9.5  
9.6  
mA  
mA  
mA  
mA  
VIx = Logic 0  
VIx = Logic 0  
VIx = Logic 1  
VIx = Logic 1  
5.4  
Dynamic Supply Current  
Dynamic Input  
Dynamic Output  
IDDI (D)  
IDDO (D)  
0.01  
0.01  
mA/Mbps  
mA/Mbps  
Inputs switching, 50% duty cycle  
Inputs switching, 50% duty cycle  
AC SPECIFICATIONS  
Output Rise/Fall Time  
tR/tF  
2.5  
ns  
10% to 90%  
Common-Mode Transient  
Immunity4  
|CMH|  
75  
75  
100  
kV/μs  
VIx = VDD1 or VISO, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
|CML|  
100  
kV/μs  
transient magnitude = 800 V  
1 IOX is the Channel x output current, where x is A, B, C, or D.  
2 VIXH is the input side logic high.  
3 VIXL is the input side logic low.  
4 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-mode voltage  
slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both the rising and falling common-mode voltage edges.  
Rev. A | Page 7 of 26  
ADuM6420A/ADuM6421A/ADuM6422A  
Data Sheet  
ELECTRICAL CHARACTERISTICS—2.5 V OPERATION DIGITAL ISOLATOR CHANNELS ONLY  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 2.5 V. Minimum and maximum specifications apply over the entire recommended  
operation range: 2.25 V ≤ VDD1 ≤ 2.75 V, 2.25 V ≤ VDD2 ≤ 2.75 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications are  
tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.  
Table 11. Data Channel Supply Current Specifications  
1 Mbps  
10 Mbps  
100 Mbps  
Parameter  
Symbol Min Typ Max Min Typ Max Min Typ Max Unit Test Conditions/Comments  
SUPPLY CURRENT  
CL = 0 pF  
ADuM6420AXRNZ5/ IDD1  
4.8  
1.4  
4.2  
2.3  
3.0  
3.0  
8.5  
2.3  
8.0  
4.4  
6.0  
6.0  
4.8  
2.0  
4.4  
2.4  
3.4  
3.4  
9.0  
3.3  
8.2  
5.4  
6.1  
6.1  
6.4  
6.5  
6.7  
6.5  
6.4  
6.4  
11.0 mA  
9.5 mA  
11.5 mA  
10.0 mA  
ADuM6420AXRNZ3  
IDD2  
ADuM6421AXRNZ5/ IDD1  
ADuM6421AXRNZ53  
IDD2  
ADuM6422AXRNZ5/ IDD1  
ADuM6422AXRNZ3  
9.5  
9.5  
mA  
mA  
IDD2  
Table 12. Switching Specifications  
Parameter  
Symbol Min Typ Max Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Pulse Width  
PW  
10  
ns  
Within PWD limit  
Data Rate  
100  
16  
5.0  
Mbps  
ns  
ns  
ps/°C  
ns  
Within PWD limit  
50% input to 50% output  
|tPLH − tPHL|  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
tPHL, tPLH  
PWD  
8.0  
11  
1.0  
1.5  
tPSK  
8.0  
Between any two units at the same temperature, voltage, and  
load  
Channel Matching  
Codirectional  
Opposing Direction  
Jitter  
tPSKCD  
tPSKOD  
1.0  
1.0  
816  
5.0  
5.0  
ns  
ns  
ps p-p  
Table 13. Input and Output Characteristics  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Input Threshold  
Logic High  
VIH  
VIL  
0.7 × VDDx  
V
V
Logic Low  
0.3 × VDDx  
Output Voltage  
Logic High  
2
VOH  
VOL  
VDDx − 0.2  
VDDx − 0.5  
VDDx  
VDDx − 0.2  
0.0  
V
V
V
V
IOx1 = −20 μA, VIx = VIxH  
IOx1 = −3.2 mA, VIx = VIxH  
2
3
Logic Low  
0.1  
0.4  
IOx1 = 20 μA, VIx = VIxL  
3
0.0  
IOx1 = 3.2 mA, VIx = VIxL  
Undervoltage Lockout  
Positive Going Threshold  
UVLO  
VUV+  
VDD1, VDD2, and VDDP supply  
1.6  
V
Negative Going Threshold VUV−  
1.5  
V
Hysteresis  
VUVH  
II  
0.1  
+0.01  
V
μA  
Input Currents per Channel  
Quiescent Supply Current  
ADuM6420A  
−10  
+10  
0 V ≤ VIx ≤ VDDx  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
0.33  
1.1  
1.5  
1.0  
1.7  
2.2  
16  
mA  
mA  
mA  
mA  
VIx = Logic 0  
VIx = Logic 0  
VIx = Logic 1  
VIx = Logic 1  
9.5  
Rev. A | Page 8 of 26  
 
Data Sheet  
ADuM6420A/ADuM6421A/ADuM6422A  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
ADuM6421A  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
0.5  
0.9  
7.4  
3.2  
1.0  
1.5  
13.5  
6.2  
mA  
mA  
mA  
mA  
VIx = Logic 0  
VIx = Logic 0  
VIx = Logic 1  
VIx = Logic 1  
ADuM6422A  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
0.55  
0.55  
5.3  
1.2  
1.2  
9.5  
9.5  
mA  
mA  
mA  
mA  
VIx = Logic 0  
VIx = Logic 0  
VIx = Logic 1  
VIx = Logic 1  
5.3  
Dynamic Supply Current  
Dynamic Input  
Dynamic Output  
IDDI (D)  
IDDO (D)  
0.01  
0.01  
mA/Mbps  
mA/Mbps  
Inputs switching, 50% duty cycle  
Inputs switching, 50% duty cycle  
AC SPECIFICATIONS  
Output Rise/Fall Time  
tR/tF  
2.5  
ns  
10% to 90%  
Common-Mode Transient  
Immunity4  
|CMH|  
75  
75  
100  
kV/μs  
VIx = VDD1 or VISO, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
|CML|  
100  
kV/μs  
transient magnitude = 800 V  
1 IOx is the Channel x output current, where x means A, B, C, or D.  
2 VIxH is the input side logic high.  
3 VIxL is the input side logic low.  
4 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-mode voltage  
slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both the rising and falling common-mode voltage edges.  
ELECTRICAL CHARACTERISTICS—1.8 V OPERATION DIGITAL ISOLATOR CHANNELS ONLY  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 1.8 V. Minimum and maximum specifications apply over the entire recommended  
operation range: 1.7 V ≤ VDD1 ≤ 1.9 V, 1.7 V ≤ VDD2 ≤ 1.9 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.  
Table 14. Data Channel Supply Current Specifications  
1 Mbps  
10 Mbps  
100 Mbps  
Parameter  
Symbol Min Typ Max Min Typ Max Min Typ Max Unit Test Conditions/Comments  
SUPPLY CURRENT  
CL = 0 pF  
ADuM6420AXRNZ5/ IDD1  
ADuM6420AXRNZ3  
4.3  
1.3  
4.1  
2.3  
3.0  
3.0  
8.5  
2.3  
8.0  
4.4  
6.0  
6.0  
4.9  
1.4  
4.4  
2.6  
3.4  
3.4  
8.5  
2.5  
8.0  
5.3  
6.2  
6.2  
6.4  
6.4  
6.7  
6.5  
6.2  
6.0  
10.6 mA  
9.0 mA  
11.5 mA  
IDD2  
ADuM6421AXRNZ5/ IDD1  
ADuM6421AXRNZ3  
IDD2  
9.5  
9.0  
9.0  
mA  
mA  
mA  
ADuM6422AXRNZ5/ IDD1  
ADuM6422AXRNZ3  
IDD2  
Table 15. Switching Specifications  
Parameter  
Symbol Min Typ Max Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Pulse Width  
PW  
10  
ns  
Within PWD limit  
Data Rate  
100  
17  
5.0  
Mbps  
ns  
ns  
ps/°C  
ns  
Within PWD limit  
50% input to 50% output  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
Channel Matching  
Codirectional  
tPHL, tPLH  
PWD  
8.0  
12  
1.0  
1.5  
|tPLH − tPHL  
|
tPSK  
8.0  
Between any two units at the same temperature, voltage, and load  
tPSKCD  
tPSKOD  
1.0  
1.0  
816  
5.0  
5.0  
ns  
ns  
ps p-p  
Opposing Direction  
Jitter  
Rev. A | Page 9 of 26  
 
ADuM6420A/ADuM6421A/ADuM6422A  
Data Sheet  
Table 16. Input and Output Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Input Threshold  
Logic High  
VIH  
VIL  
0.7 × VDDx  
V
V
Logic Low  
0.3 × VDDx  
Output Voltages  
Logic High  
2
VOH  
VOL  
VDDx − 0.1  
VDDx − 0.4  
VDDx  
VDDx − 0.2  
0.0  
V
V
V
V
IOx1 = −20 μA, VIx = VIxH  
IOx1 = −3.2 mA, VIx = VIxH  
2
3
Logic Low  
0.1  
0.4  
IOx1 = 20 μA, VIx = VIxL  
3
0.2  
IOx1 = 3.2 mA, VIx = VIxL  
Undervoltage Lockout  
Positive Going Threshold  
Negative Going Threshold  
Hysteresis  
Input Currents per Channel  
Quiescent Supply Current  
ADuM6420A  
UVLO  
VUV+  
VUV−  
VUVH  
II  
VDD1, VDD2, and VDDP supply  
1.6  
1.5  
0.1  
+0.01  
V
V
V
μA  
−10  
+10  
0 V ≤ VIx ≤ VDDx  
IDD1 (Q)  
IDD2 (Q  
IDD1 (Q)  
IDD2 (Q)  
0.35  
1.0  
9.4  
1.0  
1.7  
16  
mA  
mA  
mA  
mA  
VIx = Logic 0  
VIx = Logic 0  
VIx = Logic 1  
VIx = Logic 1  
1.4  
2.2  
ADuM6421A  
ADuM6422A  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
0.5  
0.9  
7.5  
3.2  
1.0  
1.4  
13.5  
6.2  
mA  
mA  
mA  
mA  
VIx = Logic 0  
VIx = Logic 0  
VIx = Logic 1  
VIx = Logic 1  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
0.6  
0.65  
5.3  
1.2  
1.2  
9.5  
9.5  
mA  
mA  
mA  
mA  
VIx = Logic 0  
VIx = Logic 0  
VIx = Logic 1  
VIx = Logic 1  
5.3  
Dynamic Supply Current  
Input  
Output  
IDDI (D)  
IDDO (D)  
0.01  
0.01  
mA/Mbps  
mA/Mbps  
Inputs switching, 50% duty cycle  
Inputs switching, 50% duty cycle  
AC SPECIFICATIONS  
Output Rise/Fall Time  
tR/tF  
2.5  
ns  
10% to 90%  
Common-Mode Transient  
Immunity4  
|CMH|  
75  
75  
100  
kV/μs  
VIx = VDD1 or VISO, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
|CML|  
100  
kV/μs  
transient magnitude = 800 V  
1 IOx is the Channel x output current, where x means A, B, C, or D.  
2 VIxH is the input side logic high.  
3 VIxL is the input side logic low.  
4 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-mode voltage  
slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both the rising and falling common-mode voltage edges.  
Rev. A | Page 10 of 26  
Data Sheet  
ADuM6420A/ADuM6421A/ADuM6422A  
PACKAGE CHARACTERISTICS  
Table 17. Thermal and Isolation Characteristics  
Parameter  
Symbol Min Typ Max Unit Test Conditions/Comments  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
RI-O  
CI-O  
CI  
1013  
2.2  
4.0  
45  
Ω
pF  
pF  
Frequency = 1 MHz  
IC Junction to Ambient Thermal Resistance  
θJA  
°C/W Thermocouple located at center of package underside,  
test conducted on 4-layer board with thin traces3  
1 The device is considered a 2-terminal device: Pin 1 to Pin 14 are shorted together, and Pin 15 to Pin 28 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
3 See the Thermal Analysis section for thermal model definitions.  
REGULATORY APPROVALS  
Table 18.  
UL (Pending)1  
CSA (Pending)  
VDE (Pending)2  
CQC (Pending)  
Recognized Under UL 1577  
Component Recognition  
Program1  
Approved under CSA Component  
Acceptance Notice 5A  
DIN V VDE V 0884-11 (VDE V 0884-  
11):2017-1  
Certified under  
CQC11-471543-2012  
Single Protection, 5000 V rms CSA 60950-1-07+A1+A2 and  
Reinforced insulation 566 V peak,  
GB4943.1-2011:  
Isolation Voltage  
IEC 60950-1, second edition,  
+A1+A2:  
V
IOSM = 6000 V peak  
Basic insulation at 815 V rms  
(1173 V peak)  
Basic insulation at 830 V rms  
(1173 V peak)  
Transient voltage, VIOTM  
8000 V peak  
=
Reinforced insulation at  
415 V rms (586 V peak)  
Reinforced insulation at 415 V rms  
(586 V peak)  
IEC 60601-1 Edition 3.1:  
Basic insulation (1 means of patient  
protection (1 MOPP)), 250 V rms  
CSA 61010-1-12 and IEC 61010-1  
third edition:  
Basic insulation at 300 V rms mains,  
815 V rms (1173 V peak) secondary  
Reinforced insulation at 300 V rms  
mains, 415 V rms (586 V peak)  
File E214100  
File 205078  
File (pending)  
File (pending)  
1 In accordance with UL 1577, each ADuM6420A/ADuM6421A/ADuM6422A is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 sec.  
2 In accordance with DIN V VDE V 0884-11, each ADuM6420A/ADuM6421A/ADuM6422A is proof tested by applying an insulation test voltage ≥1059 V peak for 1 sec  
(partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-11 approval.  
INSULATION AND SAFETY RELATED SPECIFICATIONS  
Table 19. Critical Safety Related Dimensions and Material Properties  
Parameter  
Symbol Value  
Unit  
Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
5000  
8.3  
V rms  
1-minute duration  
L(I01)  
L(I02)  
mm min Measured from input terminals to output terminals,  
shortest distance through air  
mm min Measured from input terminals to output terminals,  
shortest distance path along body  
Minimum External Tracking (Creepage)  
8.3  
Minimum Clearance in the Plane of the PCB  
L (PCB) 8.3  
mm min Measured from input terminals to output terminals,  
shortest distance through air, line of sight, in the PCB  
mounting plane  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
25.5  
>600  
I
ꢀm min Minimum distance through insulation  
CTI  
V
DIN IEC 112/VDE 0303, Part 1  
Material group (DIN VDE 0110, 1/89, Table 1)  
Rev. A | Page 11 of 26  
 
 
 
 
 
ADuM6420A/ADuM6421A/ADuM6422A  
Data Sheet  
DIN V VDE V 0884-11 INSULATION CHARACTERISTICS  
The ADuM6420A/ADuM6421A/ADuM6422A are suitable for reinforced electrical isolation only within the safety limit data.  
Maintenance of the safety data is ensured by the protective circuits. The asterisk (*) marking on packages denotes DIN V VDE V 0884-11  
approval.  
Table 20. VDE Characteristics  
Description  
Test Conditions/Comments  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b1  
I to IV  
I to IV  
I to IV  
40/125/21  
2
VIORM  
VPR  
566  
1059  
V peak  
V peak  
V
IORM × 1.875 = VPR, 100% production test, tm = 1 sec,  
partial discharge < 5 pC  
Input to Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
VPR  
Vpd(m)  
V
IORM × 1.5 = Vpd(m), tini = 60 sec, tm = 10 sec,  
partial discharge < 5 pC  
After Input and/or Safety Test Subgroup 2 VIORM × 1.2 = Vpd(m), tini = 60 sec, tm = 10 sec,  
849  
679  
V peak  
V peak  
Vpd(m)  
and Subgroup 3  
partial discharge < 5 pC  
Highest Allowable Overvoltage  
Withstand Isolation Voltage  
Surge Isolation Voltage Reinforced  
Transient overvoltage, tTR = 10 sec  
1-minute withstand rating  
VIOTM  
VISO  
VIOSM  
8000  
5000  
8000  
V peak  
V rms  
V peak  
V
IOSM(TEST) = 12.8 kV; 1.2 μs rise time; 50 μs, 50% fall  
time  
Safety Limiting Values  
Maximum value allowed in the event of a failure  
(see Figure 2)  
Case Temperature  
Total Power Dissipation at 25°C  
Insulation Resistance at TS  
TS  
IS1  
RS  
150  
2.78  
>109  
°C  
W
Ω
VIO = 500 V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
RECOMMENDED OPERATING CONDITIONS  
Table 21.  
Parameter  
Min  
Max  
Unit  
Operating Temperature (TA)1  
Supply Voltages2  
VDDP at VSEL = GNDISO  
VDDP at VSEL = VISO  
VDD1, VDD2  
−40  
+125  
°C  
3.0  
4.5  
1.7  
5.5  
5.5  
5.5  
V
V
V
1 Operation at >85°C requires reduction of the maximum load current.  
2 Each voltage is relative to its respective ground.  
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
Figure 2. Thermal Derating Curve, Dependence of Safety Limiting Values on  
Case Temperature, per DIN EN 60747-5-2  
Rev. A | Page 12 of 26  
 
 
 
Data Sheet  
ADuM6420A/ADuM6421A/ADuM6422A  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
Table 22.  
Parameter  
Rating  
Storage Temperature (TST)  
Ambient Operating Temperature  
Supply Voltages (VDD1, VDDP, VDD2, VISO  
VISO Supply Current2  
−55°C to +150°C  
−40°C to +125°C  
−0.5 V to +7.0 V  
100 mA  
−0.5 V to VDDI + 0.5 V  
−0.5 V to VDDO + 0.5 V  
−10 mA to +10 mA  
1
)
Input Voltage (VIA, VIB, VIC, VID, VSEL, PDIS)1, 3  
1, 3  
Output Voltage (VOA, VOB, VOC, VOD  
)
ESD CAUTION  
Average Output Current Per Data  
Output Pin4  
Common-Mode Transients5  
−200 kV/μs to  
+200 kV/μs  
1 All voltages are relative to their respective ground.  
2 The VISO pin provides current for dc and dynamic loads on the VISO input and  
output channels. This current must be included when determining the total  
V
ISO supply current. For ambient temperatures between 85°C and 125°C, the  
maximum allowed current is reduced.  
3 VDDI and VDDO refer to the supply voltages on the input and output sides of a  
given channel, respectively. See the PCB Layout section.  
4 See Figure 2 for the maximum rated current values for various temperatures.  
5 Common-mode transients refer to common-mode transients across the  
insulation barrier. Common-mode transients exceeding the absolute  
maximum ratings may cause latch-up or permanent damage.  
Table 23. Maximum Continuous Working Voltage1  
Parameter  
Rating  
Constraint  
AC Voltage  
Bipolar Waveform  
Basic Insulation  
Reinforced Insulation  
Unipolar Waveform  
Basic Insulation  
Reinforced Insulation  
DC Voltage  
636 V peak  
566 V peak  
733 V peak  
652 V peak  
Basic Insulation  
Reinforced Insulation  
1158 V peak  
579 V peak  
Lifetime limited by package creepage per IEC 60664-1  
Lifetime limited by package creepage per IEC 60664-1  
1 Maximum continuous working voltage refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more  
information.  
Rev. A | Page 13 of 26  
 
 
 
 
ADuM6420A/ADuM6421A/ADuM6422A  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
V
DD2  
DD1  
GND  
GND  
GND  
2
2
1
3
GND  
1
4
V
V
V
V
V
V
V
V
IA  
IB  
IC  
OA  
OB  
OC  
OD  
5
6
ADuM6420A  
TOP VIEW  
(Not to Scale)  
7
ID  
8
GND  
GND  
V
1
2
9
PDIS  
SEL  
10  
11  
12  
13  
14  
GND  
GND  
1
ISO  
ISO  
ISO  
V
V
ISO  
DDP  
GND  
GND  
NIC  
1
NIC  
GND  
GND  
1
NOTES  
1. NIC = NOT INTERNALLY CONNECTED. THESE PINS ARE NOT CONNECTED INTERNALLY.  
Figure 3. ADuM6420A Pin Configuration  
Table 24. ADuM6420A Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
VDD1  
Power Supply for the Side 1 Logic Circuits of the Device. VDD1 requires a 100 nF bypass capacitor. VDD1 is  
independent of VDDP and can operate with power supply voltages between 1.7 V and 5.5 V.  
2, 3, 8, 10, 12, 14 GND1  
Ground 1. Ground references for the primary isolator. Pin 2, Pin 3, Pin 8, Pin 10, Pin 12, and Pin 14 are  
internally connected, and it is recommended to connect the GND1 pins to a common ground.  
4
5
6
7
9
VIA  
VIB  
VIC  
VID  
Logic Input A.  
Logic Input B.  
Logic Input C.  
Logic Input D.  
PDIS  
Power Disable. When PDIS is tied to GND1, the power converter is active. When a logic high voltage is  
applied to PDIS, the power supply enters low power standby mode.  
11  
13, 16  
15, 17, 19  
VDDP  
NIC  
GNDISO  
Primary Supply Voltage, 3.0 V to 5.5 V. VDDP requires 100 nF and 10 μF bypass capacitors to GND1.  
Not Internally Connected. These pins are not connected internally.  
Ground References for VISO on Side 2. It is recommended to connect the GNDISO pins together. The GNDISO  
pins are internally isolated from GND2.  
18  
20  
21, 26, 27  
VISO  
VSEL  
GND2  
Secondary Supply Voltage Output for External Loads. Connect to VDD2 to power the isolator channels.  
Output Voltage Select Input. Connect VSEL to VISO for a 5 V output or to GNDISO for a 3.3 V output.  
Ground References for VDD2 on Side 2. It is recommended that the GND2 pins be connected together. The  
GND2 pins are internally isolated from GNDISO  
.
22  
23  
24  
25  
28  
VOD  
VOC  
VOB  
VOA  
VDD2  
Logic Output D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Power Supply for the Side 2 Logic Circuits of the Device. VDD2 requires a 100 nF bypass capacitor. VDD2 is  
independent of VISO and can operate with power supply voltages between 1.7 V and 5.5 V.  
Rev. A | Page 14 of 26  
 
Data Sheet  
ADuM6420A/ADuM6421A/ADuM6422A  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
V
DD2  
DD1  
GND  
GND  
GND  
2
2
1
3
GND  
1
4
V
V
V
V
V
V
V
IA  
IB  
IC  
OA  
OB  
OC  
ID  
5
6
ADuM6421A  
TOP VIEW  
(Not to Scale)  
7
V
OD  
8
GND  
GND  
V
1
2
9
PDIS  
SEL  
10  
11  
12  
13  
14  
GND  
GND  
1
ISO  
ISO  
ISO  
V
V
ISO  
DDP  
GND  
GND  
NIC  
1
NIC  
GND  
GND  
1
NOTES  
1. NIC = NOT INTERNALLY CONNECTED. THESE PINS ARE NOT CONNECTED INTERNALLY.  
Figure 4. ADuM6421A Pin Configuration  
Table 25. ADuM6421A Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
VDD1  
Power Supply for the Side 1 Logic Circuits of the Device. VDD1 requires a 0.10 μF bypass capacitor to GND1.  
VDD1 is independent of VDDP and can operate with power supply voltages between 1.7 V and 5.5 V.  
2, 3, 8, 10, 12, 14 GND1  
Ground 1. Ground references for the primary isolator. Pin 2, Pin 3, Pin 8, Pin 10, Pin 12, and Pin14 are  
internally connected, and it is recommended to connect the GND1 pins to a common ground.  
4
5
6
7
9
VIA  
VIB  
VIC  
VOD  
PDIS  
Logic Input A.  
Logic Input B.  
Logic Input C.  
Logic Output D.  
Power Disable. When PDIS is tied to GND1, the power converter is active. When a logic high voltage is  
applied to PDIS, the power supply enters low power standby mode.  
11  
13, 16  
15, 17, 19  
VDDP  
NIC  
GNDISO  
DC-to-DC Converter Supply Voltage, 3.0 V to 5.5 V. VDDP requires 0.10 μF and 10 μF bypass capacitors to GND1.  
Not Internally Connected. These pins are not connected internally.  
Grounds for the Isolated DC-to-DC Converter. Connect the GNDISO pins together through one ferrite bead to  
PCB ground. The GNDISO pins are internally isolated from GND2.  
18  
VISO  
Secondary Supply Voltage Output for External Loads. VISO requires 0.10 μF and 10 μF capacitors to GNDISO  
.
Connect VISO through a ferrite bead to external loads.  
20  
21, 26, 27  
VSEL  
GND2  
Output Voltage Select Input. Connect VSEL to VISO for a 5 V output or to GNDISO for a 3.3 V output.  
Ground References for VDD2 on Side 2. It is recommended that the GND2 pins be connected together. The  
GND2 pins are internally isolated from GNDISO  
.
22  
23  
24  
25  
28  
VID  
Logic Input D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
VOC  
VOB  
VOA  
VDD2  
Power Supply for the Side 2 Logic Circuits of the Device. VDD2 requires a 100 nF bypass capacitor. VDD2 is  
independent of VISO and can operate with power supply voltages between 1.7 V and 5.5 V.  
Rev. A | Page 15 of 26  
ADuM6420A/ADuM6421A/ADuM6422A  
Data Sheet  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
V
DD2  
DD1  
2
3
GND  
GND  
GND  
2
2
1
1
GND  
4
V
V
V
V
V
V
IA  
OA  
OB  
IC  
5
IB  
6
V
V
OC  
OD  
ADuM6422A  
TOP VIEW  
(Not to Scale)  
7
ID  
8
GND  
GND  
V
1
2
9
PDIS  
SEL  
10  
11  
12  
13  
14  
GND  
GND  
1
ISO  
ISO  
ISO  
V
V
ISO  
DDP  
GND  
GND  
NIC  
1
NIC  
GND  
GND  
1
NOTES  
1. NIC = NOT INTERNALLY CONNECTED. THESE PINS ARE NOT CONNECTED INTERNALLY.  
Figure 5. ADuM6422A Pin Configuration  
Table 26. ADuM6422A Pin Function Descriptions  
Pin No.  
Mnemonic Description  
VDD1  
Power Supply for the Side 1 Logic Circuits of the Device. VDD1 requires a 0.10 μF bypass capacitor to GND1.  
DD1 is independent of VDDP and can operate with power supply voltages between 1.7 V and 5.5 V.  
1
V
2, 3, 8, 10, 12, 14 GND1  
Ground 1. Ground references for the primary isolator. Pin 2, Pin 3, Pin 8, Pin 10, Pin 12, and Pin 14 are  
internally connected, and it is recommended to connect the GND1 pins to a common ground.  
4
5
6
7
9
VIA  
VIB  
VOC  
VOD  
PDIS  
Logic Input A.  
Logic Input B.  
Logic Output C.  
Logic Output D.  
Power Disable. When PDIS is tied to GND1, the power converter is active. When a logic high voltage is  
applied to PDIS, the power supply enters a low power standby mode.  
11  
13, 16  
15, 17, 19  
VDDP  
NIC  
GNDISO  
DC-to-DC Converter Supply Voltage, 3.0 V to 5.5 V. VDDP requires 0.10 μF and 10 μF bypass capacitors to GND1.  
Not Internally Connected. These pins are not connected internally.  
Grounds for the Isolated DC-to-DC Converter. Connect the GNDISO pins together through one ferrite bead to  
PCB ground. The GNDISO pins are internally isolated from GND2.  
18  
VISO  
Secondary Supply Voltage Output for External Loads. VISO requires 0.10 μF and 10 μF capacitors to GNDISO  
.
Connect VISO through a ferrite bead to external loads.  
20  
21, 26, 27  
VSEL  
GND2  
Output Voltage Select Input. Connect VSEL to VISO for a 5 V output or to GNDISO for a 3.3 V output.  
Ground Reference for VDD2 on Side 2. It is recommended that the GND2 pins be connected together. The  
GND2 pins are internally isolated from GNDISO  
.
22  
23  
24  
25  
28  
VID  
VIC  
VOB  
VOA  
VDD2  
Logic Input D.  
Logic Input C.  
Logic Output B.  
Logic Output A.  
Power Supply for the Side 2 Logic Circuits of the Device. VDD2 requires a 100 nF bypass capacitor. VDD2 is  
independent of VISO and can operate with power supply voltages between 1.7 V and 5.5 V.  
Rev. A | Page 16 of 26  
Data Sheet  
ADuM6420A/ADuM6421A/ADuM6422A  
TRUTH TABLE  
Table 27. Data Section Truth Table (Positive Logic)  
VDDI State1  
Powered  
Powered  
Don’t care  
VIx Input1 VDDO State1  
VOx Output1  
High  
Low  
High-Z  
Notes  
High  
Low  
Powered  
Powered  
Normal operation, data is high.  
Normal operation, data is low.  
Output is off.  
Don’t care Unpowered  
Unpowered Low  
Unpowered High  
Powered  
Powered  
Low  
Indeterminate  
Output default low.  
If a high level is applied to an input when no supply is present, the  
input can parasitically power the input side, causing unpredictable  
operation.  
1 VDDI and VDDO refer to the supply voltages on the input and output sides of the given channel, respectively. VIx and VOx refer to the input and output signals of a given  
channel (Channel A, Channel B, Channel C, or Channel D).  
Table 28. Power Section Truth Table (Positive Logic)  
VDDP (V)  
VSEL Input  
PDIS Input  
Low  
VISO (V)  
5
High  
5
5
5
Don’t care  
Low  
High  
Low  
0
3.3  
3.3  
3.3  
3.3  
Low  
High  
Don’t care  
Low  
Low  
High  
3.3  
Condition not supported  
0
Rev. A | Page 17 of 26  
 
 
ADuM6420A/ADuM6421A/ADuM6422A  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
35  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
POWER DISSIPATION  
DDP  
I
30  
25  
20  
15  
10  
3.3V IN/3.3V OUT  
5V IN/5V OUT  
5V IN/3.3V OUT  
5
0
0
0.02  
0.04  
0.06  
0.08  
0.10  
3.5  
4.0  
4.5  
5.0  
5.5  
I
OUTPUT CURRENT (A)  
V
(V)  
ISO  
DDP  
Figure 6. Power Supply Efficiency in Supported Power Configurations  
Figure 9. Short-Circuit Input Current (IDDP) and Power Dissipation vs. VDDP  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
1000  
V
AT 5V (mV)  
ISO  
PERCENT LOAD  
500  
0
–500  
–1000  
100  
50  
0
0.02  
3.3V IN/3.3V OUT  
5V IN/5V OUT  
5V IN/3.3V OUT  
0.01  
0
0
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
1
2
3
4
5
6
INPUT CURRENT (A)  
TIME (ms)  
Figure 7. IISO Output Current vs. Input Current in Supported Power  
Configurations  
Figure 10. VISO Transient Load Response, 5 V Output,  
10% to 90% Load Step  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
1000  
500  
V
AT 3.3V (mV)  
ISO  
PERCENT LOAD  
0
–500  
–1000  
100  
50  
0
0.2  
3.3V IN/3.3V OUT  
5V IN/5V OUT  
5V IN/3.3V OUT  
0.1  
0
0
0.02  
0.04  
0.06  
0.08  
0.10  
–1  
0
1
2
3
4
I
OUTPUT CURRENT (A)  
ISO  
TIME (ms)  
Figure 11. VISO Transient Load Response, 5 V Input, 3.3 V Output,  
10% to 90% Load Step  
Figure 8. Total Power Dissipation vs. IISO Output Current in Supported Power  
Configurations  
Rev. A | Page 18 of 26  
 
 
 
Data Sheet  
ADuM6420A/ADuM6421A/ADuM6422A  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
3.18  
5.10  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
–50  
–25  
0
25  
50  
75  
100  
125  
0
0.02  
0.04  
0.06  
0.08  
0.10  
TEMPERATURE (°C)  
I
OUTPUT CURRENT (A)  
ISO  
Figure 15. VISO vs. Temperature, Input = 3.3 V, VISO = 3.3 V  
Figure 12. VISO vs. IISO Output Current, Input = 5 V, VISO = 5 V  
15  
10  
5
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
0
–5  
–10  
–15  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
0.02  
0.04  
0.06  
0.08  
0.10  
TIME (µs)  
I
OUTPUT CURRENT (A)  
ISO  
Figure 16. Output Voltage Ripple at 90% Load, VISO = 5 V  
Figure 13. VISO vs. IISO Output Current, Input = 5 V, VISO = 3.3 V  
15  
10  
5
5.10  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
0
–5  
–10  
–15  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
–50  
–25  
0
25  
50  
75  
100  
125  
TIME (µs)  
TEMPERATURE (°C)  
Figure 17. Output Voltage Ripple at 90% Load, VISO = 3.3 V  
Figure 14. VISO vs. Temperature, Input = 5 V, VISO = 5 V  
Rev. A | Page 19 of 26  
ADuM6420A/ADuM6421A/ADuM6422A  
Data Sheet  
5
4
7
V
V
AT 10% LOAD (V)  
AT 90% LOAD (V)  
V
V
AT 10% LOAD (V)  
AT 90% LOAD (V)  
ISO  
ISO  
ISO  
ISO  
6
5
3
4
2
3
2
1
1
0
0
–1  
–1  
0
1
2
3
4
0
1
2
3
4
TIME (ms)  
TIME (ms)  
Figure 19. 5 V Input to 3.3 V Output VISO Start-Up Transient at  
10% and 90% Load  
Figure 18. 5 V Input to 5 V Output VISO Start-Up Transient at  
10% and 90% Load  
Rev. A | Page 20 of 26  
Data Sheet  
ADuM6420A/ADuM6421A/ADuM6422A  
TERMINOLOGY  
Propagation Delay Skew, tPSK  
IDD1  
tPSK is the magnitude of the worst-case difference in tPHL and/or tPLH  
I
DD1 is the supply current required for the primary side of the  
that is measured between units at the same operating temperature,  
supply voltages, and output load within the recommended  
operating conditions.  
digital isolator.  
IDD2  
I
DD2 is the supply current required for the secondary side of the  
Channel to Channel Matching, tPSKCD/tPSKOD  
digital isolator.  
tPSKCD is the absolute value of the difference in propagation  
delays between two codirectional channels when operated with  
identical loads. tPSKOD is the absolute value of the difference in  
propagation delays between two channels transmitting in  
opposing directions.  
IDDP  
I
DDP is the supply current required for the primary side of the  
isolated dc-to-dc converter.  
IISO  
I
ISO is the available isolated current supply available to an  
Minimum Pulse Width  
The minimum pulse width is the shortest pulse width at which  
external load.  
Propagation Delay, tPHL  
the specified pulse width distortion is guaranteed.  
tPHL is measured from the 50% level of the falling edge of the VIx  
signal to the 50% level of the falling edge of the VOx signal.  
Maximum Data Rate  
The maximum data rate is the fastest data rate at which the  
specified pulse width distortion is guaranteed.  
Propagation Delay, tPLH  
tPLH is measured from the 50% level of the rising edge of the VIx  
signal to the 50% level of the rising edge of the VOx signal.  
Rev. A | Page 21 of 26  
 
ADuM6420A/ADuM6421A/ADuM6422A  
Data Sheet  
THEORY OF OPERATION  
The dc-to-dc converter section of the ADuM6420A/ADuM6421A/  
ADuM6422A works on principles that are common to most  
modern power supplies. The ADuM6420A/ADuM6421A/  
ADuM6422A have a split controller architecture with isolated  
PWM feedback. VDDP power is supplied to an oscillating circuit  
that switches current into a chip scale, air core transformer.  
Power transferred to the secondary side is rectified and regulated  
to a value of 3.3 V or 5 V, depending on the setting of the VSEL pin.  
The secondary (VISO) side controller regulates the output by  
creating a PWM control signal that is sent to the primary  
(VDDP) side by a dedicated iCoupler data channel. The PWM  
modulates the oscillator circuit to control the power being sent  
to the secondary side. Feedback allows for significantly higher  
power and efficiency.  
The digital isolator channels use a high frequency carrier to  
transmit data across the isolation barrier using iCoupler chip  
scale transformer coils separated by layers of polyimide isolation.  
Using an on/off keying technique and the differential architecture  
shown in Figure 20, the digital isolator channels have low  
propagation delay and high speed. Internal regulators and  
input and output design techniques allow logic and supply  
voltages over a wide range from 1.7 V to 5.5 V, offering voltage  
translation of 1.8 V, 2.5 V, 3.3 V, and 5 V logic. The architecture is  
designed for high common-mode transient immunity and high  
immunity to electrical noise and magnetic interference. Radiated  
emissions are minimized with a spread spectrum on/off keying  
carrier and other techniques.  
Figure 20 shows the waveforms of the digital isolator channels  
that have the condition of the fail-safe output state equal to low,  
where the carrier waveform is off when the input state is low. If  
the input side is off or not operating, the low fail-safe output  
state sets the output to low.  
The ADuM6420A/ADuM6421A/ADuM6422A implement  
undervoltage lockout (UVLO) with hysteresis on the primary  
and the secondary side input and output pins as well as the  
V
DDP power input. This feature ensures that the converter does  
not enter oscillation due to noisy input power or slow power-  
on ramp rates.  
REGULATOR  
REGULATOR  
RECEIVER  
TRANSMITTER  
V
V
OUT  
IN  
GND  
GND  
2
1
Figure 20. Operational Block Diagram of a Single Channel with a Low Fail-Safe Output State, VIN Is the Input Voltage and VOUT Is the Output Voltage  
Rev. A | Page 22 of 26  
 
 
Data Sheet  
ADuM6420A/ADuM6421A/ADuM6422A  
APPLICATIONS INFORMATION  
and 10 μF for VDD1. The smaller capacitor must have a low ESR.  
For example, use of a ceramic capacitor is advised. The total  
lead length between the ends of the low ESR capacitor and the  
input power supply pin must not exceed 2 mm.  
PCB LAYOUT  
The ADuM6420A/ADuM6421A/ADuM6422A digital isolators  
with an isoPower integrated dc-to-dc converter require no external  
interface circuitry for the logic interfaces. Power supply  
bypassing is required at the input and output supply pins (see  
Figure 21, Figure 22, and Figure 23). For proper data channel  
operation, low equivalent series resistance (ESR) bypass  
capacitors of 0.01 μF to 0.1 μF are required between the VDD1  
pin and GND1 pin as close to the chip pads as possible. Low  
ESR bypass capacitors of 0.1 μF or 0.22 μF are required between  
the VISO pin and GNDISO pin as close to the chip pads as possible  
(see the CISO notes in Figure 22 and Figure 23). Installing the  
bypass capacitor with traces more than 2 mm in length may  
result in data corruption. The isoPower inputs require several  
passive components to bypass the power effectively, as well as  
set the output voltage.  
To reduce the level of electromagnetic radiation, the impedance  
to high frequency currents between the VISO and the GNDISO pins  
and the PCB trace connections can be increased. Using this  
method of electromagnetic interference (EMI) suppression  
controls the radiating signal at the signal source by placing  
surface-mount ferrite beads in series with the VISO and GNDISO  
pins, as seen in Figure 23. The impedance of the ferrite bead  
must be approximately 1.8 kΩ between the 100 MHz and  
1 GHz frequency range to reduce the emissions at the 180 MHz  
primary switching frequency and the 360 MHz secondary side,  
rectifying frequency and harmonics. See Table 29 for examples  
of appropriate surface-mount ferrite beads.  
Table 29. Surface-Mount Ferrite Beads Example  
Manufacturer  
Part No.  
Taiyo Yuden  
Murata Electronics  
BKH1005LM182-T  
BLM15HD182SN1  
ADuM6420A  
ADuM6421A  
ADuM6422A  
BYPASS <2mm  
0.1µF  
0.1µF  
V
V
DD2  
DD1  
GND  
GND  
V
GND  
GND  
2
2
1
1
V
OA  
OB  
IA  
V
V
IB  
V
V
/V  
V
V
/V  
OC IC  
IC OC  
Figure 21. VDD1 and VDDP Bias and Bypass Components  
/V  
/V  
OD ID  
ID OD  
GND  
2
V
GND  
DD2  
1
28  
V
SEL  
PDIS  
GND  
0.1µF  
GND  
2
27  
GND  
V
ISO  
ISO  
ISO  
1
V
DDP  
V
SEL  
GND  
20  
19  
18  
17  
GND  
1
1
10µF 0.1µF  
0.1µF  
FERRITES 10µF  
GND  
NIC  
ISO  
GND  
GND  
ISO  
FB1  
V
ISO  
V
OUT  
ISO  
C
C
= 0.1µF FOR V  
= 5V  
= 3.3V  
GND  
ISO  
ISO  
ISO  
ISO  
0.1µF  
10µF  
FB2  
= 0.22µF FOR V  
ISO  
ISO GND  
Figure 23. Recommended PCB Layout  
In applications involving high common-mode transients, ensure  
that board coupling across the isolation barrier is minimized.  
Furthermore, design the board layout such that any coupling  
that does occur equally affects all pins on a given component  
side. Failure to ensure these steps can cause voltage differentials  
between pins, exceeding the absolute maximum ratings specified  
in Table 22, thereby leading to latch-up and/or permanent  
damage.  
C
C
= 0.1µF FOR V  
= 0.22µF FOR V  
= 5V  
ISO  
ISO  
ISO  
= 3.3V  
ISO  
Figure 22. VDD2 and VISO Bias and Bypass Components  
The power supply section of the ADuM6420A/ADuM6421A/  
ADuM6422A use a 180 MHz oscillator frequency to efficiently  
pass power through the chip scale transformers. Bypass capacitors  
are required for several operating frequencies. Noise suppression  
requires a low inductance, high frequency capacitor. Ripple  
suppression and proper regulation require a large value capacitor.  
These capacitors are connected between the VDDP pin and  
GND1 pin and between the VISO pin and GNDISO pin. To suppress  
noise and reduce ripple, a parallel combination of at least two  
capacitors is required. The required capacitor values are 0.1 μF  
Rev. A | Page 23 of 26  
 
 
 
 
 
 
ADuM6420A/ADuM6421A/ADuM6422A  
Data Sheet  
THERMAL ANALYSIS  
EMI CONSIDERATIONS  
The ADuM6420A/ADuM6421A/ADuM6422A consist of five  
internal die attached to a split lead frame with two die attach  
pads. For the purposes of thermal analysis, the die is treated as  
a thermal unit, with the highest junction temperature reflected  
in the θJA value from Table 17. The value of θJA is based on  
measurements taken with the devices mounted on a JEDEC  
standard, 4-layer board with fine width traces and still air.  
Under normal operating conditions, the ADuM6420A/  
ADuM6421A/ADuM6422A can operate at full load. However,  
at temperatures above 85°C, derating the output current may be  
needed, as shown in Figure 2.  
The dc-to-dc converter section of the ADuM6420A/ADuM6421A/  
ADuM6422A components must, of necessity, operate at a high  
frequency to allow efficient power transfer through the small  
transformers, which creates high frequency currents that can  
propagate in circuit board ground and power planes, requiring  
proper power supply bypassing at the input and output supply pins  
(see Figure 23). Using proper layout and bypassing techniques,  
the dc-to-dc converter is designed to provide regulated, isolated  
power that is below CISPR 32/EN 55032 Class B limits up to 5  
Mbps at full load on a 2-layer PCB with ferrites.  
POWER CONSUMPTION  
PROPAGATION DELAY RELATED PARAMETERS  
The VDDP power supply input only provides power to the  
converter. Power for the data channels is provided through  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component (see Figure 24).  
The propagation delay to a logic low output may differ from the  
propagation delay to a logic high.  
VDD1 and VDD2. These power supplies can be connected to VDDP  
and VISO if desired, or the supplies can receive power from an  
independent source. Treat the converter as a standalone supply  
to be utilized at the discretion of the designer.  
INPUT (V  
)
50%  
Ix  
The VDD1 or VDD2 supply current at a given channel of the  
ADuM6420A/ADuM6421A/ADuM6422A isolators is a  
function of the supply voltage, the data rate of the channel,  
and the output load of the channel.  
tPLH  
tPHL  
OUTPUT (V  
)
50%  
Ox  
Figure 24. Propagation Delay Parameters  
The VDD1 and VDD2 supply current and the total supply currents  
as a function of data rate for each model of the ADuM6420A/  
ADuM6421A/ADuM6422A for an unloaded output condition  
are shown under typical supply and room temperature conditions  
in the figures in the Typical Performance Characteristics section.  
The total IISO output current as a function of input current for  
the ADuM6420A/ADuM6421A/ADuM6422A is shown in  
Figure 7. In addition, the total power dissipation as a function  
of output current is shown in Figure 8.  
Pulse width distortion is the maximum difference between  
these two propagation delay values and is an indication of how  
accurately the input signal timing is preserved.  
Channel to channel matching refers to the maximum amount  
the propagation delay differs between channels within a single  
ADuM6420A/ADuM6421A/ADuM6422A component.  
Propagation delay skew refers to the maximum amount the  
propagation delay differs between multiple ADuM6420A/  
ADuM6421A/ADuM6422A components operating under the  
same conditions.  
INSULATION LIFETIME  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of  
insulation degradation is dependent on the characteristics of  
the voltage waveform applied across the insulation as well as  
on the materials and material interfaces.  
The two types of insulation degradation of primary interest  
are breakdown along surfaces exposed to the air and insulation  
wear out. Surface breakdown is the phenomenon of surface  
tracking and the primary determinant of surface creepage  
requirements in system level standards. Insulation wear out  
is the phenomenon where charge injection or displacement  
currents inside the insulation material cause long-term  
insulation degradation.  
Rev. A | Page 24 of 26  
 
 
 
 
 
 
Data Sheet  
ADuM6420A/ADuM6421A/ADuM6422A  
Surface Tracking  
Calculation and Use of Parameters Example  
Surface tracking is addressed in electrical safety standards by  
setting a minimum surface creepage based on the working  
voltage, the environmental conditions, and the properties of the  
insulation material. Safety agencies perform characterization  
testing on the surface insulation of components that allows  
the components to be categorized in different material groups.  
Lower material group ratings are more resistant to surface  
tracking and, therefore, can provide adequate lifetime with  
smaller creepage. The minimum creepage for a given working  
voltage and material group is in each system level standard and  
is based on the total rms voltage across the isolation, pollution  
degree, and material group. The material group and creepage  
for the digital isolator channels are presented in Table 19.  
The following example frequently arises in power conversion  
applications. Assume that the line voltage on one side of the  
isolation is 240 V ac rms and a 400 V dc bus voltage is present  
on the other side of the isolation barrier. The isolator material  
is polyimide. To establish the critical voltages in determining  
the creepage, clearance and lifetime of a device, see Figure 25  
and the following equations.  
V
AC RMS  
V
V
V
DC  
PEAK  
RMS  
Insulation Wear Out  
The lifetime of insulation caused by wear out is determined by  
its thickness, material properties, and the voltage stress applied.  
It is important to verify that the product lifetime is adequate at  
the application working voltage. The working voltage supported  
by an isolator for wear out may not be the same as the working  
voltage supported for tracking. The working voltage applicable  
to tracking is specified in most standards.  
TIME  
Figure 25. Critical Voltage Example  
The working voltage across the barrier from Equation 1 is  
2
VRMS = VAC RMS2 +VDC  
Testing and modeling show that the primary driver of long-  
term degradation is displacement current in the polyimide  
insulation causing incremental damage. The stress on the  
insulation can be broken down into broad categories, such as  
dc stress, which causes little wear out because there is no  
displacement current, and an ac component time varying  
voltage stress, which causes wear out.  
VRMS = 2402 + 4002  
VRMS = 466 V  
This VRMS value is the working voltage used together with the  
material group and pollution degree when looking up the  
creepage required by a system standard.  
The ratings in certification documents are usually based on  
60 Hz sinusoidal stress because this reflects isolation from line  
voltage. However, many practical applications have combinations  
of 60 Hz ac and dc across the barrier as shown in Equation 1.  
Because only the ac portion of the stress causes wear out, the  
equation can be rearranged to solve for the ac rms voltage, as  
shown in Equation 2. For insulation wear out with the polyimide  
materials used in these products, the ac rms voltage determines  
the product lifetime.  
To determine if the lifetime is adequate, obtain the time varying  
portion of the working voltage. To obtain the ac rms voltage,  
use Equation 2.  
2
VAC RMS = VRMS2 VDC  
VAC RMS  
AC RMS = 240 V rms  
=
4662 4002  
V
In this case, the ac rms voltage is simply the line voltage of  
240 V rms. This calculation is more relevant when the waveform  
is not sinusoidal. The value is compared to the limits for working  
voltage in Table 23 for the expected lifetime, which is less than  
a 60 Hz sine wave, and it is well within the limit for a 50-year  
service life.  
2
VRMS = VAC RMS2 +VDC  
(1)  
or  
2
VAC RMS = VRMS2 VDC  
(2)  
where:  
Note that the dc working voltage limit is set by the creepage of  
the package as specified in IEC 60664-1. This value can differ  
for specific system level standards.  
V
V
V
RMS is the total rms working voltage.  
AC RMS is the time varying portion of the working voltage.  
DC is the dc offset of the working voltage.  
Rev. A | Page 25 of 26  
 
ADuM6420A/ADuM6421A/ADuM6422A  
OUTLINE DIMENSIONS  
Data Sheet  
10.45  
10.15  
28  
15  
7.60  
7.40  
10.55  
10.05  
14  
1
PIN 1  
INDICATOR  
TOP VIEW  
0.65 BSC  
0.40  
0.25  
0.75  
0.25  
× 45°  
2.40  
2.25  
2.65  
2.35  
END VIEW  
SIDE VIEW  
0.32  
0.23  
8°  
0°  
0.25  
0.10  
0.25 BSC  
SEATING  
PLANE  
(GAUGE PLANE)  
1.40  
REF  
1.27  
0.40  
COPLANARITY  
0.10  
Figure 26. 28-Lead Standard Small Outline, Wide Body, with Finer Pitch [SOIC_W_FP]  
(RN-28-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Number  
Number  
of Inputs, of Inputs, Standard or  
Typical VDDP Temperature  
Package  
Package Description Option  
Model1, 2, 3  
VDD1 Side  
VISO Side  
SPI Isolator  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Voltage (V)  
Range (°C)  
ADuM6420ABRNZ5  
ADuM6420ABRNZ5-RL  
ADuM6421ABRNZ5  
ADuM6421ABRNZ5-RL  
ADuM6422ABRNZ5  
ADuM6422ABRNZ5-RL  
ADuM6420ABRNZ3  
ADuM6420ABRNZ3-RL  
ADuM6421ABRNZ3  
ADuM6421ABRNZ3-RL  
ADuM6422ABRNZ3  
ADuM6422ABRNZ3-RL  
EVAL-ADuM6421ARNZ  
EVAL-ADuM6421AURNZ  
4
4
3
3
2
2
4
4
3
3
2
2
0
0
1
1
2
2
0
0
1
1
2
2
5.0  
5.0  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
28-Lead SOIC_W_FP  
28-Lead SOIC_W_FP  
28-Lead SOIC_W_FP  
28-Lead SOIC_W_FP  
28-Lead SOIC_W_FP  
28-Lead SOIC_W_FP  
28-Lead SOIC_W_FP  
28-Lead SOIC_W_FP  
28-Lead SOIC_W_FP  
28-Lead SOIC_W_FP  
28-Lead SOIC_W_FP  
28-Lead SOIC_W_FP  
Evaluation Board2  
RN-28-1  
RN-28-1  
RN-28-1  
RN-28-1  
RN-28-1  
RN-28-1  
RN-28-1  
RN-28-1  
RN-28-1  
RN-28-1  
RN-28-1  
RN-28-1  
5.0  
5.0  
5.0  
5.0  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
Evaluation Board3  
1 Z = RoHS Compliant Part.  
2 The EVAL-ADuM6421ARNZ is packaged with the ADuM6421ABRNZ5 installed.  
3 The EVAL-ADuM6421AURNZ is packaged without a device installed. The ADuM6420A, ADuM6421A, or ADuM6422A must be ordered separately and installed.  
©2019–2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D21365-12/20(A)  
Rev. A | Page 26 of 26  
 
 

相关型号:

ADUM6421ABRNZ5

Quad-Channel Isolators with Integrated DC-to-DC Converter
ADI

ADUM6421ABRNZ5-RL

Quad-Channel Isolators with Integrated DC-to-DC Converter
ADI

ADUM6422A

Quad-Channel Isolators with Integrated DC-to-DC Converter
ADI

ADUM6422ABRNZ3

Quad-Channel Isolators with Integrated DC-to-DC Converter
ADI

ADUM6422ABRNZ3-RL

Quad-Channel Isolators with Integrated DC-to-DC Converter
ADI

ADUM6422ABRNZ5

Quad-Channel Isolators with Integrated DC-to-DC Converter
ADI

ADUM6422ABRNZ5-RL

Quad-Channel Isolators with Integrated DC-to-DC Converter
ADI

ADUM6423A

集成DC/DC转换器的四通道隔离器(1:3方向性)
ADI

ADUM6424A

具有集成直流/直流转换器的四通道隔离器(4:4 定向性)
ADI

ADUM7223

High-side or low-side relative to input
ADI

ADuM7223ACCZ

High-side or low-side relative to input
ADI

ADuM7223ACCZ-RL7

High-side or low-side relative to input
ADI