ADV3219-EVALZ [ADI]

800 MHz, 2:1 Analog Multiplexers; 800兆赫, 2 : 1模拟多路复用器
ADV3219-EVALZ
型号: ADV3219-EVALZ
厂家: ADI    ADI
描述:

800 MHz, 2:1 Analog Multiplexers
800兆赫, 2 : 1模拟多路复用器

复用器
文件: 总20页 (文件大小:1465K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
800 MHz, 2:1 Analog Multiplexers  
ADV3219/ADV3220  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
ADV3219  
(ADV3220)  
Excellent ac performance  
−3 dB bandwidth  
800 MHz (200 mV p-p)  
730 MHz (2 V p-p)  
Slew rate: 2800 V/μs  
Low power: 75 mW, VS = 5 V  
Excellent video performance  
>100 MHz, 0.1 dB gain flatness  
0.02% differential gain/0.02° differential phase error  
(RL = 150 Ω)  
IN0 1  
GND 2  
IN1 3  
V+ 4  
8 SELECT  
7 EN  
G = +1  
6 OUT  
5 V–  
(G = +2)  
Figure 1.  
Gain = +1 (ADV3219) or gain = +2 (ADV3220)  
Low crosstalk of −82 dB @ 5 MHz and −60 dB @ 100 MHz  
High impedance output disable allows connection of  
multiple devices without loading the output bus  
8-lead LFCSP  
APPLICATIONS  
Routing of high speed signals including  
Video (NTSC, PAL, S, SECAM, YUV, and RGB)  
Compressed video (MPEG, wavelet)  
3-level digital video (HDB3)  
Data communications  
Telecommunications  
GENERAL DESCRIPTION  
The ADV3219/ADV3220 include an output buffer that can be  
placed into a high impedance state to allow multiple outputs to  
be connected together for cascading stages without the off channels  
loading the output bus. The ADV3219 has a gain of +1, and the  
ADV3220 has a gain of +2; they both operate on 5 V supplies  
while consuming less than 7.5 mA of idle current.  
The ADV3219 and ADV3220 are high speed, high slew rate,  
buffered, 2:1 analog multiplexers. They offer a −3 dB signal  
bandwidth greater than 800 MHz and channel switch times of  
less than 20 ns with 1% settling. With −60 dB of crosstalk and  
−82 dB isolation (at 100 MHz), the ADV3219 and ADV3220 are  
useful in many high speed applications. The differential gain of  
less than 0.02% and the differential phase of less than 0.02°,  
together with 0.1 dB flatness beyond 100 MHz while driving a  
75 Ω back terminated load, make the ADV3219 and ADV3220  
ideal for all types of signal switching.  
The ADV3219/ADV3220 are available in the 8-lead LFCSP  
package over the extended industrial temperature range of  
−40°C to +85°C.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks are theproperty of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
ADV3219/ADV3220  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics..............................................7  
Circuit Diagrams ............................................................................ 15  
Theory of Operation ...................................................................... 16  
Applications Information.............................................................. 17  
Circuit Layout............................................................................. 17  
Termination................................................................................. 17  
Capacitive Load .......................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
Power Dissipation......................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
REVISION HISTORY  
4/10—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADV3219/ADV3220  
SPECIFICATIONS  
VS = 5 V, TA = 25°C, RL = 150 Ω, CL = 4 pF, ADV3219 at G = +1, ADV3220 at G = +2, unless otherwise noted.  
Table 1.  
ADV3219  
ADV3220  
Min Typ  
Parameter  
Conditions  
Min Typ  
Max  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
200 mV p-p  
2 V p-p  
0.1 dB, 200 mV p-p  
0.1 dB, 2 V p-p  
2 V p-p  
840  
600  
100  
100  
700  
5
800  
730  
100  
100  
650  
5
MHz  
MHz  
MHz  
MHz  
ps  
Gain Flatness  
Propagation Delay  
Settling Time  
Slew Rate  
1%, 2 V step  
2 V step, peak  
ns  
V/μs  
2200  
2800  
NOISE/DISTORTION PERFORMANCE  
Differential Gain Error  
Differential Phase Error  
Crosstalk  
NTSC or PAL  
NTSC or PAL  
f = 100 MHz  
f = 5 MHz  
f = 100 MHz, one channel  
f = 70 MHz, ADV3220, RL = 100 Ω  
f = 70 MHz, ADV3220, RL = 100 Ω  
f = 70 MHz, ADV3220, RL = 100 Ω  
10 MHz to 100 MHz  
0.02  
0.02  
−70  
−90  
−83  
0.02  
0.02  
−60  
−82  
−82  
47  
34  
20  
17  
%
Degrees  
dB  
dB  
dB  
dBm  
dBm  
dBm  
nV/√Hz  
Off Isolation, Input-Output  
Input Second-Order Intercept  
Input Third-Order Intercept  
Output 1 dB Compression Point  
Input Voltage Noise  
16  
DC PERFORMANCE  
Gain Error  
No load  
RL = 150 Ω  
Channel-to-channel, no load  
1
1.1  
1
1.1  
%
%
%
0.75  
1
0.75  
1
Gain Matching  
OUTPUT CHARACTERISTICS  
Output Impedance  
DC, enabled  
Disabled  
Disabled  
Disabled  
No load  
0.02  
0.04  
Ω
1
1
MΩ  
pF  
μA  
V
Output Disable Capacitance  
Output Leakage Current  
Output Voltage Range  
1.0  
2
3
3
1.2  
2
3
2.9  
2.8  
2.9  
2.75  
Load  
3
V
Short-circuit current  
50  
50  
mA  
INPUT CHARACTERISTICS  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Voltage Range  
Worst case (all configurations)  
5
10  
21  
12  
5
10  
1.5  
1.5  
0.6  
10  
6
21  
12  
mV  
μV/°C  
V
V
pF  
No load  
RL = 150 Ω  
Any switch configuration  
Output enabled  
Output enabled  
3
3
0.6  
10  
5
Input Capacitance  
Input Resistance  
Input Bias Current  
1
1
MΩ  
μA  
SWITCHING CHARACTERISTICS  
Enable On Time  
Switching Time, 2 V Step  
Switching Transient (Glitch)  
15  
20  
70  
15  
20  
100  
ns  
ns  
mV p-p  
50% SELECT to 1% settling  
IN0 to IN1 switching  
Rev. 0 | Page 3 of 20  
 
ADV3219/ADV3220  
ADV3219  
ADV3220  
Min Typ Max Unit  
Parameter  
Conditions  
Min Typ  
Max  
POWER SUPPLIES  
Supply Current  
V+, output enabled, no load  
V+, output disabled ( high)  
EN  
7
1.6  
7
8
2.0  
8
2.0  
5.5  
7.5  
1.8  
7.5  
1.8  
9
2.2  
9
mA  
mA  
mA  
mA  
V
V−, output enabled, no load  
V−, output disabled ( high)  
EN  
1.6  
2.2  
Supply Voltage Range  
PSR  
4.5  
4.5  
5.5  
f = 100 kHz  
f = 1 MHz  
−72  
−62  
−69  
−60  
dB  
dB  
TEMPERATURE  
Operating Temperature Range  
Operating Junction-to-Ambient  
Thermal Impedance, θJA  
Still air  
Still air  
−40  
+85  
−40  
+85  
°C  
°C/W  
85  
85  
Table 2. Logic Levels  
VIH  
SELECT,  
VIL  
SELECT,  
IIH  
SELECT,  
IIL  
SELECT,  
EN  
EN  
EN  
2 μA maximum  
EN  
+2.0 V minimum  
+0.8 V maximum  
2 μA maximum  
Rev. 0 | Page 4 of 20  
ADV3219/ADV3220  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
POWER DISSIPATION  
The ADV3219/ADV3220 are operated with 5 V supplies and  
can drive loads down to 150 ꢀ, resulting in a wide range of  
possible power dissipations. For this reason, extra care must  
be taken derating the operating conditions based on ambient  
temperature.  
Parameter  
Rating  
12 V  
V− to V+  
0 to V+  
Supply Voltage (V+ − V−)  
Analog Input Voltage  
Digital Input Voltage  
Output Voltage (Disabled Output)  
Output Short-Circuit  
Duration  
Current  
Temperature  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature  
(V+ − 1 V) to (V− + 1 V)  
Packaged in an 8-lead LFCSP, the ADV3219 and ADV3220  
junction-to-ambient thermal impedance (θJA) is 85°C/W. For long-  
term reliability, the maximum allowed junction temperature of the  
die, TJ, should not exceed 125°C. Temporarily exceeding this  
limit can cause a shift in parametric performance due to a change  
in stresses exerted on the die by the package. Figure 2 shows the  
range of the allowed internal die power dissipations that meet  
these conditions over the −40°C to +85°C ambient temperature  
range. When using Figure 2, do not include the external load  
power in the maximum power calculation, but do include the  
load current through the die output transistors.  
Momentary  
50 mA  
−65°C to +150°C  
−40°C to +85°C  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
1.5  
T
= 125°C  
J
1.2  
0.9  
0.6  
0.3  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 4. Thermal Resistance  
Package Type  
8-Lead LFCSP  
θJA  
85  
θJC  
23  
Unit  
°C/W  
15  
25  
35  
45  
55  
65  
75  
85  
AMBIENT TEMPERATURE (°C)  
Figure 2. Maximum Die Power Dissipation vs. Ambient Temperature  
ESD CAUTION  
Rev. 0 | Page 5 of 20  
 
 
ADV3219/ADV3220  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
IN0  
GND  
IN1  
1
2
3
4
8
7
6
5
SELECT  
ADV3219/  
ADV3220  
TOP VIEW  
(Not to Scale)  
EN  
OUT  
V–  
V+  
NOTES  
1. CONNECT THE EXPOSED  
PAD TO GROUND.  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Descriptions  
1
IN0  
Analog Input.  
2
3
GND  
IN1  
Ground.  
Analog Input.  
4
5
6
7
V+  
V−  
OUT  
EN  
Positive Power Supply.  
Negative Power Supply.  
Analog Output.  
Output Enable (Low True).  
Logic Input for Analog Input Selection.  
Exposed Pad. Connect the exposed pad to ground.  
8
N/A1  
SELECT  
EP  
1 N/A means not applicable.  
Table 6. Truth Table  
EN  
SELECT  
OUT  
IN0  
IN1  
High-Z  
High-Z  
0
1
0
1
0
0
1
1
Rev. 0 | Page 6 of 20  
 
ADV3219/ADV3220  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 5 V, TA = 25°C, RL = 150 Ω, CL = 4 pF, ADV3219 at G = +1, ADV3220 at G = +2, unless otherwise noted.  
4
3
4
3
2
2
1
1
4pF  
0
0
0pF  
2pF  
4pF  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
–11  
–12  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
–11  
–12  
2pF  
0pF  
10pF  
10pF  
1
10  
100  
FREQUENCY (MHz)  
1k  
10k  
1
10  
100  
FREQUENCY (MHz)  
1k  
10k  
10k  
20  
Figure 4. ADV3219 Small Signal Frequency Response with Capacitive Loads,  
200 mV p-p Output  
Figure 7. ADV3220 Small Signal Frequency Response with  
Capacitive Loads, 200 mV p-p Output  
4
3
2
4
3
2
1
2pF  
4pF  
1
0
–1  
0
4pF  
–1  
–2  
–2  
–3  
2pF  
0pF  
–3  
–4  
–4  
–5  
–5  
–6  
–6  
–7  
–7  
–8  
–8  
0pF  
–9  
–9  
–10  
–11  
–12  
10pF  
–10  
–11  
–12  
10pF  
1
10  
100  
FREQUENCY (MHz)  
1k  
10k  
1
10  
100  
FREQUENCY (MHz)  
1k  
Figure 5. ADV3219 Large Signal Frequency Response with  
Capacitive Loads, 2 V p-p Output  
Figure 8. ADV3220 Large Signal Frequency Response with  
Capacitive Loads, 2 V p-p Output  
0.2  
0.2  
0pF  
2pF  
4pF  
10pF  
0pF  
2pF  
4pF  
10pF  
0.1  
0
0.1  
0
–0.1  
–0.2  
–0.1  
–0.2  
0
5
10  
15  
20  
0
5
10  
15  
TIME (ns)  
TIME (ns)  
Figure 6. ADV3219 Small Signal Pulse Response vs. Capacitive Load,  
200 mV p-p Output  
Figure 9. ADV3220 Small Signal Pulse Response vs. Capacitive Load,  
200 mV p-p Output  
Rev. 0 | Page 7 of 20  
 
 
ADV3219/ADV3220  
2
2
1
0pF  
2pF  
4pF  
10pF  
0pF  
2pF  
4pF  
10pF  
1
0
0
–1  
–2  
–1  
–2  
0
5
10  
15  
20  
0
5
10  
15  
20  
TIME (ns)  
TIME (ns)  
Figure 10. ADV3219 Large Signal Pulse Response vs. Capacitive Load,  
2 V p-p Output  
Figure 13. ADV3220 Large Signal Pulse Response vs. Capacitive Load,  
2 V p-p Output  
3000  
2000  
1000  
0
1.5  
1.0  
0.5  
0
4000  
3000  
2000  
1000  
0
1.5  
1.0  
0.5  
0
dv/dt  
dv/dt  
–1000  
–2000  
–3000  
–4000  
–1000  
–2000  
–3000  
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
V
OUT  
V
OUT  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
TIME (ns)  
TIME (ns)  
Figure 11. ADV3219 Large Signal Rising Slew Rate with 4 pF Load,  
2 V p-p Output  
Figure 14. ADV3220 Large Signal Rising Slew Rate with 4 pF Load,  
2 V p-p Output  
3000  
1.5  
1.0  
0.5  
0
4000  
1.5  
1.0  
0.5  
0
V
3000  
2000  
1000  
0
OUT  
2000  
1000  
0
V
OUT  
dv/dt  
dv/dt  
–1000  
–2000  
–3000  
–4000  
–1000  
–2000  
–3000  
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
TIME (ns)  
TIME (ns)  
Figure 12. ADV3219 Large Signal Falling Slew Rate with 4 pF Load,  
2 V p-p Output  
Figure 15. ADV3220 Large Signal Falling Slew Rate with 4 pF Load,  
2 V p-p Output  
Rev. 0 | Page 8 of 20  
 
ADV3219/ADV3220  
1.5  
1.0  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
1.5  
1.0  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
FALLING EDGE  
FALLING EDGE  
0.5  
0.5  
SELECT  
SELECT  
0
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
RISING EDGE  
RISING EDGE  
0
0
0
10  
20  
30  
0
0
0
10  
20  
30  
TIME (ns)  
TIME (ns)  
Figure 16. ADV3219 Switching Time  
Figure 19. ADV3220 Switching Time  
0.5  
0.4  
6
0.5  
0.4  
6
5
5
EN  
EN  
0.3  
0.3  
4
4
0.2  
0.2  
0.1  
0.1  
3
3
OUTPUT  
OUTPUT  
0
0
2
2
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
1
1
0
0
–1  
50  
–1  
50  
10  
20  
30  
40  
10  
20  
30  
40  
TIME (ns)  
TIME (ns)  
Figure 17. ADV3219 Enable Glitch  
Figure 20. ADV3220 Enable Glitch  
3
2
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
3
2
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
EN  
EN  
INPUT +1V  
INPUT +0.5V  
1
1
0
0
INPUT –1V  
INPUT –0.5V  
–1  
–2  
–3  
–1  
–2  
–3  
10  
20  
30  
10  
20  
30  
TIME (ns)  
TIME (ns)  
Figure 18. ADV3219 Enable On Timing  
Figure 21. ADV3220 Enable On Timing  
Rev. 0 | Page 9 of 20  
ADV3219/ADV3220  
1.5  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
1.5  
1.0  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
INPUT +1V  
1.0  
INPUT +0.5V  
0.5  
0.5  
EN  
EN  
0
0
–0.5  
–0.5  
–1.0  
–1.5  
INPUT –1V  
–1.0  
INPUT –0.5V  
–1.5  
0
0
0
10  
20  
30  
40  
0
0
0
10  
20  
30  
40  
TIME (ns)  
TIME (ns)  
Figure 22. ADV3219 Disable Timing  
Figure 25. ADV3220 Disable Timing  
100  
80  
6
100  
80  
6
5
5
60  
60  
4
4
40  
40  
20  
20  
3
3
OUTPUT  
SELECT  
OUTPUT  
SELECT  
0
0
2
2
–20  
–40  
–60  
–80  
–100  
–20  
–40  
–60  
–80  
–100  
1
1
0
0
–1  
50  
–1  
50  
10  
20  
30  
40  
10  
20  
30  
40  
TIME (ns)  
TIME (ns)  
Figure 23. ADV3219 Switching Glitch Rising Edge  
Figure 26. ADV3220 Switching Glitch Rising Edge  
100  
80  
6
100  
80  
6
SELECT  
SELECT  
5
5
60  
60  
4
4
40  
40  
20  
20  
3
3
OUTPUT  
OUTPUT  
0
0
2
2
–20  
–40  
–60  
–80  
–100  
–20  
–40  
–60  
–80  
–100  
1
1
0
0
–1  
50  
–1  
50  
10  
20  
30  
40  
10  
20  
30  
40  
TIME (ns)  
TIME (ns)  
Figure 24. ADV3219 Switching Glitch Falling Edge  
Figure 27. ADV3220 Switching Glitch Falling Edge  
Rev. 0 | Page 10 of 20  
ADV3219/ADV3220  
5
4
1.25  
5
4
1.25  
0.75  
0.25  
INPUT  
INPUT  
3
0.75  
3
2
2
1
0.25  
1
ERROR  
ERROR  
0
0
–1  
–2  
–3  
–4  
–5  
–0.25  
–0.75  
–1.25  
–1  
–2  
–3  
–4  
–5  
–0.25  
–0.75  
–1.25  
OUTPUT  
OUTPUT  
3
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
4
5
6
7
8
9
10  
TIME (ns)  
TIME (ns)  
Figure 28. ADV3219 Settling Time 2 V Output Step  
Figure 31. ADV3220 Settling Time 2 V Output Step  
10  
0
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
PSR (V–)  
PSR (V–)  
PSR (V+)  
PSR (V+)  
0.1  
1
10  
100  
1k  
10k  
0.1  
1
10  
100  
1k  
10k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 29. ADV3219 PSR  
Figure 32. ADV3220 PSR  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 30. ADV3219 Noise vs. Frequency  
Figure 33. ADV3220 Noise vs. Frequency  
Rev. 0 | Page 11 of 20  
ADV3219/ADV3220  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–100  
–110  
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 34. ADV3219 Crosstalk vs. Frequency  
Figure 37. ADV3220 Crosstalk vs. Frequency  
–20  
–30  
–20  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–100  
–110  
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 35. ADV3219 Off Isolation vs. Frequency  
Figure 38. ADV3220 Off Isolation vs. Frequency  
1M  
1M  
100k  
10k  
1k  
100k  
10k  
1k  
100  
10  
100  
10  
1
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 36. ADV3219 Disabled Output Impedance vs. Frequency  
Figure 39. ADV3219/ADV3220 Input Impedance vs. Frequency  
Rev. 0 | Page 12 of 20  
ADV3219/ADV3220  
10k  
1k  
10k  
1k  
100  
10  
100  
10  
1
1
0.1  
0.01  
0.1  
0.01  
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 40. ADV3219 Enabled Output Impedance vs. Frequency  
Figure 43. ADV3220 Enabled Output Impedance vs. Frequency  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
5
4
5
INPUT  
4
3
3
2
2
OUTPUT  
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
1
10  
100  
1k  
0
20  
40  
60  
80  
100  
FREQUENCY (MHz)  
TIME (ns)  
Figure 41. ADV3219/ADV3220, S11 (Measured on Evaluation Board)  
Figure 44. ADV3219 Overdrive Recovery  
1M  
100k  
10k  
1k  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
100  
10  
HD2 0dBm  
HD3 0dBm  
HD2 10dBm  
HD3 10dBm  
1
1
10  
100  
1k  
10  
100  
1k  
FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
Figure 42. ADV3220 Disabled Output Impedance vs. Frequency  
Figure 45. ADV3220 Harmonic Distortion, RL = 100 Ω, CL = 4 pF  
Rev. 0 | Page 13 of 20  
ADV3219/ADV3220  
40  
35  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
0
10  
100  
INPUT FREQUENCY (MHz)  
1k  
10  
100  
1k  
INPUT FREQUENCY (MHz)  
Figure 46. ADV3220 Input Third-Order Intercept, RL = 100 Ω,  
CL = 4 pF, 0 dBm Input  
Figure 48. ADV3220 Input Second-Order Intercept, RL = 100 Ω,  
CL = 4 pF, 0 dBm Input  
5
4
2.5  
24  
22  
20  
18  
16  
14  
12  
10  
8
INPUT  
2.0  
3
1.5  
2
1.0  
OUTPUT  
1
0.5  
0
0
–1  
–2  
–3  
–4  
–5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
6
4
2
0
0
20  
40  
60  
80  
100  
10  
100  
1k  
TIME (ns)  
INPUT FREQUENCY (MHz)  
Figure 47. ADV3220 Overdrive Recovery  
Figure 49. ADV3220 Output P1dB Gain Compression, RL = 100 Ω, CL = 4 pF  
Rev. 0 | Page 14 of 20  
ADV3219/ADV3220  
CIRCUIT DIAGRAMS  
V+  
IN  
OUT  
0.6pF  
1.0pF (ADV3219)  
1.2pF (ADV3220)  
V–  
Figure 50. ADV3219/ADV3220 Analog Input  
Figure 53. ADV3219/ADV3220 Disabled Output  
V+  
OUT  
1k  
SELECT, EN  
V–  
Figure 54. ADV3219/ADV3220 Logic Input  
Figure 51. ADV3219 Enabled Analog Output  
V+  
OUT  
SELECT,  
EN  
1k  
INx, OUT  
1kΩ  
GND  
V–  
GND  
Figure 55. ADV3219/ADV3220 ESD Schematic  
Figure 52. ADV3220 Enabled Analog Output  
Rev. 0 | Page 15 of 20  
 
ADV3219/ADV3220  
THEORY OF OPERATION  
The ADV3219/ADV3220 are dual-supply, high performance 2:1  
analog multiplexers, optimized for switching between multiple  
video sources. High peak slew rates enable wide bandwidth oper-  
ation for large input signals. Internal compensation provides for  
high phase margin, allowing low overshoot and fast settling for  
pulsed inputs. Low enabled and disabled power consumption make  
the ADV3219 and ADV3220 ideal for constructing larger arrays.  
When not in use, place the OUT pin in a low power, high  
EN  
provides a wideband high impedance on the OUT pin that is  
useful when paralleling multiple ADV3219/ADV3220 devices  
in a system to create larger switching arrays.  
impedance disabled mode via the  
logic input. This mode  
Switching between the inputs is controlled with the SELECT  
logic input, with IN0 selected when the SELECT line is a logical  
low and IN1 selected when the select line is a logical high. When  
The multiplexer is organized as two input transconductance  
stages tied in parallel with a single output transimpedance stage  
followed by a unity-gain buffer. Internal voltage feedback sets  
the gain. The ADV3219 is configured as a gain of 1, whereas the  
ADV3220 uses a resistive feedback network and ground buffer to  
realize gain-of-2 operation (see Figure 56). The ground reference  
for the ADV3220 is taken from the exposed pad of the package.  
To minimize spurious signals on the output, tie the exposed pad  
to a low inductance, quiet ground plane.  
EN  
is a logical low, the output is enabled and connected to one  
of the two inputs depending on the state of the SELECT pin.  
EN  
When  
is a logical high, the output is placed in a high  
impedance mode.  
When not in use, the output can be placed in a low power, high  
EN  
impedance disabled mode via the  
logic input.  
V+  
IN0  
×1  
OUT  
V–  
V+  
IN1  
1k  
V–  
V+  
1kΩ  
GND  
V–  
Figure 56. Conceptual Diagram of ADV3220  
Rev. 0 | Page 16 of 20  
 
 
ADV3219/ADV3220  
APPLICATIONS INFORMATION  
The ADV3219 and ADV3220 are very high speed muxes that  
can be used to switch video or RF signals. The low output imped-  
ance of the ADV3219/ADV3220 allows the output environment  
to be optimized for use in 75 Ω or 50 Ω systems by choosing the  
appropriate series termination resistor. For composite video  
applications, the ADV3220 (gain of +2) is typically used to  
provide compensation for the loss of the output termination.  
TERMINATION  
For a controlled impedance situation, termination resistors are  
required at the inputs and output of the device. The input ter-  
mination should be a shunt resistor to ground with a value  
matching the characteristic impedance of the input trace. To  
reduce reflections, place the input termination resistor as close  
to the device input pin as possible. To minimize the input-to-  
input crosstalk, it is important to use a low inductance shield  
between input traces to isolate each input. Consideration of  
ground current paths must be taken to minimize loop currents  
in the shields to prevent them from providing a coupling medium  
for crosstalk.  
CIRCUIT LAYOUT  
Use of proper high speed design techniques is important to  
ensure optimum performance. Use a low inductance ground  
plane for power supply bypassing and to provide high quality  
return paths for the input and output signals. For best performance,  
it is recommended that power supplies be bypassed with 0.1 μF  
ceramic capacitors placed as close to the body of the device as  
possible. To provide stored energy for lower frequency, high  
current output driving, place 10 μF tantalum capacitors farther  
from the device.  
For proper matching, the output series termination resistor  
should be the same value as the characteristic impedance of the  
output trace and placed as close to the output of the device as  
possible. This placement reduces the high frequency effect of  
series parasitic inductance, which can affect gain flatness and  
−3 dB bandwidth.  
The input and output signal paths should be stripline or micro-  
strip controlled impedance. Video systems typically use a 75 Ω  
characteristic impedance, whereas RF systems typically use 50 Ω.  
Various calculators are available to calculate the trace geometry  
that is required to produce the proper characteristic impedance.  
CAPACITIVE LOAD  
A high frequency output generally has difficulty when driving a  
capacitive load. The usual response is some peaking in the fre-  
quency domain or some overshoot in the time domain. If these  
effects become too large, oscillation can result.  
The response of the device under various capacitive loads is  
shown in Figure 4 to Figure 10 and in Figure 13. If a condition  
arises wherein excessive load capacitance is encountered and  
the overshoot is too great or the part oscillates, use a small series  
resistor of a few tens of ohms to improve the performance.  
Rev. 0 | Page 17 of 20  
 
ADV3219/ADV3220  
OUTLINE DIMENSIONS  
2.54  
2.44  
2.34  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
8
5
PIN 1 INDEX  
EXPOSED  
PAD  
1.80  
1.70  
1.60  
AREA  
0.50  
0.40  
0.30  
4
1
PIN 1  
INDICATOR  
(R 0.15)  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-229-WEED  
Figure 57. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-8-11)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADV3219ACPZ  
ADV3219ACPZ-RL  
ADV3219ACPZ-R7  
ADV3220ACPZ  
ADV3220ACPZ-RL  
ADV3220ACPZ-R7  
ADV3219-EVALZ  
ADV3220-EVALZ  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
8-Lead LFCSP_WD  
Package Option  
CP-8-11  
CP-8-11  
Branding Code  
F0H  
F0H  
F0H  
F0J  
F0J  
F0J  
8-Lead LFCSP_WD, 13”Tape and Reel  
8-Lead LFCSP_WD, 7”Tape and Reel  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD, 13”Tape and Reel  
8-Lead LFCSP_WD, 7”Tape and Reel  
Evaluation Board  
CP-8-11  
CP-8-11  
CP-8-11  
CP-8-11  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 18 of 20  
 
 
ADV3219/ADV3220  
NOTES  
Rev. 0 | Page 19 of 20  
ADV3219/ADV3220  
NOTES  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08649-0-4/10(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADV3219ACPZ

800 MHz, 2:1 Analog Multiplexers
ADI

ADV3219ACPZ-R7

800 MHz, 2:1 Analog Multiplexers
ADI

ADV3219ACPZ-RL

800 MHz, 2:1 Analog Multiplexers
ADI

ADV3220

800 MHz, 2:1 Analog Multiplexers
ADI

ADV3220-EVALZ

800 MHz, 2:1 Analog Multiplexers
ADI

ADV3220ACPZ

800 MHz, 2:1 Analog Multiplexers
ADI

ADV3220ACPZ-R7

800 MHz, 2:1 Analog Multiplexers
ADI

ADV3220ACPZ-RL

800 MHz, 2:1 Analog Multiplexers
ADI

ADV3221

800 MHz, 4:1 Analog Multiplexer
ADI

ADV3221-EVALZ

800 MHz, 4:1 Analog Multiplexer
ADI

ADV3221ARZ

800 MHz, 4:1 Analog Multiplexer
ADI

ADV3221ARZ-R7

800 MHz, 4:1 Analog Multiplexer
ADI