ADV7127JRUZ240

更新时间:2024-09-18 14:20:44
品牌:ADI
描述:CMOS, 240 MHz, 10-Bit, High Speed Video DAC

ADV7127JRUZ240 概述

CMOS, 240 MHz, 10-Bit, High Speed Video DAC

ADV7127JRUZ240 数据手册

通过下载ADV7127JRUZ240数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
CMOS, 240 MHz,  
10-Bit, High Speed Video DAC  
Data Sheet  
ADV7127  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
AA  
240 MSPS throughput rate  
10-bit digital-to-analog converter (DAC)  
RS-343A-/RS-170-compatible output  
Complementary outputs  
10  
I
OUT  
DATA  
REGISTER  
10  
D9 TO D0  
DAC  
I
OUT  
DAC output current range: 2 mA to 18.5 mA  
TTL-compatible inputs  
Internal voltage reference  
Single supply 5 V or 3.3 V operation  
24-lead thin shrink small outline package (TSSOP) package  
Low power dissipation  
PDOWN  
PSAVE  
CLOCK  
VOLTAGE  
REFERENCE  
CIRCUIT  
V
POWER-DOWN  
MODE  
REF  
ADV7127  
GND  
R
SET  
COMP  
Low power standby mode  
Power-down mode  
Figure 1.  
Industrial temperature range (−40°C to +85°C)  
APPLICATIONS  
Digital video systems (1600 × 1200 at 100 Hz)  
High resolution color graphics  
Digital radio modulation  
Image processing  
Instrumentation  
Video signal reconstruction  
Direct digital synthesis (DDS)  
Wireless local area networks (LANs)  
GENERAL DESCRIPTION  
The ADV7127 is a high speed, DAC on a single monolithic  
chip. It consists of a 10-bit, video DAC with an on-board voltage  
reference, complementary outputs, a standard TTL input  
interface, and high impedance analog output current sources.  
PRODUCT HIGHLIGHTS  
1. 240 MSPS throughput.  
2. Guaranteed monotonic to 10 bits.  
3. Compatible with a wide variety of high resolution color  
The ADV7127 has a 10-bit wide input port. A single 5 V or  
3.3 V power supply and clock are all that are required to make  
the device functional.  
graphics systems including RS-343A and RS-170.  
The ADV7127 is fabricated in a complementary metal-oxide  
semiconductor (CMOS) process. Its monolithic CMOS  
construction ensures greater functionality with low power  
dissipation. The ADV7127 is available in a 24-lead TSSOP  
package which includes a power-down mode and an on-board  
voltage reference circuit.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©1998–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADV7127* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
ADV7127 Material Declaration  
PCN-PDN Information  
DOCUMENTATION  
Application Notes  
Quality And Reliability  
Symbols and Footprints  
AN-205: Video Formats and Required Load Terminations  
DISCUSSIONS  
View all ADV7127 EngineerZone Discussions.  
AN-213: Low Cost, Two-Chip, Voltage -Controlled  
Amplifier and Video Switch  
Data Sheet  
ADV7127: CMOS, 240 MHz, 10-Bit, High Speed Video DAC  
Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
REFERENCE MATERIALS  
Solutions Bulletins & Brochures  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
Digital to Analog Converters ICs Solutions Bulletin  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADV7127  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 14  
Digital Inputs .............................................................................. 14  
Clock Input.................................................................................. 14  
Reference Input........................................................................... 14  
Digital-to-Analog Converter .................................................... 14  
Analog Output............................................................................ 15  
Gray Scale Operation................................................................. 15  
Video Output Buffer .................................................................. 15  
PCB Layout Considerations...................................................... 16  
Ground Planes ............................................................................ 16  
Power Planes ............................................................................... 16  
Supply Decoupling ..................................................................... 16  
Digital Signal Interconnect ....................................................... 16  
Analog Signal Interconnect....................................................... 16  
Outline Dimensions ....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
5 V Electrical Characteristics...................................................... 3  
3.3 V Electrical Characteristics................................................... 4  
5 V Timing Specifications ........................................................... 5  
3.3 V Timing Specifications........................................................ 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ............................................. 9  
5 V .................................................................................................. 9  
3.3 V ............................................................................................. 11  
Terminology .................................................................................... 13  
REVISION HISTORY  
1/2017—Rev. 0 to Rev. A  
Changes to Figure 10 to Figure 12................................................ 10  
Changes to Figure 18 Caption ...................................................... 11  
Deleted Power Management Section and Table II..................... 12  
Changes to Figure 19 to Figure 21................................................ 12  
Changed Circuit Description and Operation Section to Theory  
of Operation Section ...................................................................... 14  
Changes to Video Output Buffer Section.................................... 15  
Changes to Supply Decoupling Section and Analog Signal  
Interconnect Section ...................................................................... 16  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide.......................................................... 18  
Updated Format..................................................................Universal  
Deleted SOIC_W Package.................................................Universal  
Change RS-170A to RS-170 ......................................... Throughout  
Changes to Features Section............................................................ 1  
Deleted 5 V SOIC Specifications Table.......................................... 2  
Changes to Table 1............................................................................ 3  
Deleted 3.3 V SOIC Specifications Table....................................... 4  
Changes to Table 2............................................................................ 4  
Changes to Table 3............................................................................ 5  
Deleted 5 V/3.3 V Dynamic Specifications Table ........................ 6  
Changes to Table 4............................................................................ 6  
Changes to Table 6............................................................................ 8  
Changes to Figure 9 Caption........................................................... 9  
4/1998—Revision 0: Initial Version  
Rev. A | Page 2 of 18  
 
Data Sheet  
ADV7127  
SPECIFICATIONS  
5 V ELECTRICAL CHARACTERISTICS  
VAA = 5 V 5%, VREF = 1.235 V, RSET = 560 Ω, CL = 10 pF. All specifications TMIN to TMAX,1 unless otherwise noted. TJ MAX = 110°C.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
STATIC PERFORMANCE  
Resolution (Each DAC)  
Integral Nonlinearity (INL)  
Differential Nonlinearity  
DIGITAL AND CONTROL INPUTS  
Input Voltage  
10  
–1  
–1  
Bits  
LSB  
LSB  
+0.4  
+0.25  
+1  
+1  
Guaranteed monotonic  
High  
Low  
VIH  
VIL  
2
V
V
0.8  
+1  
PDOWN Input Voltage  
High  
Low  
3
1
V
V
µA  
Input Current  
IIN  
–1  
VIN = 0.0 V or VAA  
Pull-Up Current  
PSAVE  
20  
20  
10  
µA  
µA  
pF  
PDOWN  
Input Capacitance  
ANALOG OUTPUTS  
Output Current  
Output Compliance Range  
Output Impedance  
Output Capacitance  
Offset Error  
CIN  
2.0  
0
18.5  
1.4  
mA  
V
kΩ  
pF  
VOC  
ROUT  
COUT  
100  
10  
IOUT = 0 mA  
–0.025  
–5.0  
+0.025  
+5.0  
% FSR Tested with DAC output = 0 V  
% FSR FSR = 17.62 mA  
Gain Error2  
VOLTAGE REFERENCE (EXTERNAL  
AND INTERNAL)3  
Reference Range  
POWER DISSIPATION  
Supply Current  
Digital  
VREF  
1.12  
1.235  
1.35  
V
1.5  
4
6.5  
23  
5
3
6
10  
27  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
%/%  
fCLK = 50 MHz  
fCLK = 140 MHz  
fCLK = 240 MHz  
RSET = 560 Ω  
RSET = 4933 Ω  
PSAVE = low, digital and control inputs at VAA  
Analog  
Standby4  
3.8  
1
6
PDOWN  
Power Supply Rejection Ratio  
PSRR  
0.1  
0.5  
1 Temperature range TMIN to TMAX: −40°C to +85°C at 50 MHz and 140 MHz, and 0°C to 70°C at 240 MHz.  
2 Gain error = ((Measured (FSC)/Ideal (FSC) − 1) × 100), where Ideal = VREF/RSET × K × (0x3FF) and K = 7.9896.  
3 The digital supply is measured with a continuous clock, with data input corresponding to a ramp pattern, and with an input level at 0 V and VDD  
4 These typical/maximum specifications are guaranteed by characterization to be over the 4.75 V to 5.25 V range.  
.
Rev. A | Page 3 of 18  
 
 
ADV7127  
Data Sheet  
3.3 V ELECTRICAL CHARACTERISTICS  
VAA = 3.0 V to 3.6 V, VREF = 1.235 V, RSET = 560 Ω, CL = 10 pF. All specifications TMIN to TMAX,1 unless otherwise noted. TJ MAX = 110°C.  
Table 2.  
Parameter2  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
STATIC PERFORMANCE  
Resolution (Each DAC)  
Integral Nonlinearity (INL)  
Differential Nonlinearity  
DIGITAL AND CONTROL INPUTS  
Input Voltage  
RSET = 680 Ω  
10  
+1  
+1  
Bits  
LSB  
LSB  
–1  
–1  
+0.5  
+0.25  
High  
Low  
VIH  
VIL  
2.0  
–1  
V
V
0.8  
PDOWN Input Voltage  
High  
Low  
2.1  
0.6  
V
V
μA  
μA  
pF  
Input Current  
IIN  
+1  
VIN = 0.0 V or VDD  
PSAVE Pull-Up Current  
Input Capacitance  
ANALOG OUTPUTS  
Output Current  
20  
10  
CIN  
2.0  
0
18.5  
1.4  
mA  
V
kΩ  
pF  
% FSR  
% FSR  
Output Compliance Range  
Output Impedance  
Output Capacitance  
Offset Error  
VOC  
ROUT  
COUT  
70  
10  
0
0
Tested with DAC output = 0 V  
FSR = 17.62 mA  
Gain Error3  
0
VOLTAGE REFERENCE (EXTERNAL)  
Reference Range  
VOLTAGE REFERENCE (INTERNAL)  
Reference Range  
POWER DISSIPATION  
Supply Current  
VREF  
VREF  
1.12  
1.235  
1.235  
1.35  
V
V
Digital4  
1
2
mA  
mA  
mA  
mA  
mA  
mA  
μA  
fCLK = 50 MHz  
fCLK = 140 MHz  
fCLK = 240 MHz  
RSET = 560 Ω  
RSET = 4933 Ω  
PSAVE = low, digital and control inputs at VDD  
2.5  
4
22  
5
2.6  
20  
0.1  
4.5  
6
25  
Analog  
Standby  
3
PDOWN  
Power Supply Rejection Ratio  
PSRR  
0.5  
%/%  
1 Temperature range TMIN to TMAX: −40°C to +85°C at 50 MHz and 140 MHz and 0°C to 70°C at 240 MHz.  
2 These maximum/minimum specifications are guaranteed by characterization to be over 3.0 V to 3.6 V range.  
3 Gain error = ((Measured (FSC)/Ideal (FSC) − 1) × 100), where Ideal = VREF/RSET × K × (0x3FF) and K = 7.9896.  
4 The digital supply is measured with a continuous clock, with data input corresponding to a ramp pattern, and with an input level at 0 V and VDD  
.
Rev. A | Page 4 of 18  
 
Data Sheet  
ADV7127  
5 V TIMING SPECIFICATIONS  
VAA = 5 V 5%,1 VREF = 1.235 V, RSET = 560 Ω, CL = 10 pF. All specifications TMIN to TMAX,2 unless otherwise noted. TJ MAX = 110°C.  
Table 3.  
Parameter3  
ANALOG OUTPUTS  
Delay  
Rise/Fall Time4  
Transition Time5  
Skew6  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
t6  
t7  
t8  
t9  
5.5  
1.0  
15  
1
ns  
ns  
ns  
ns  
2
Not shown in Figure 2  
CLOCK CONTROL7  
fCLK  
0.5  
0.5  
0.5  
50  
140  
240  
MHz  
MHz  
MHz  
50 MHz grade  
140 MHz grade  
240 MHz grade  
Data and Control  
Setup  
Hold  
t1  
t2  
1.5  
2.5  
ns  
ns  
Clock Pulse Width  
High  
t4  
1.875 1.1  
2.85  
8.0  
1.875 1.25  
2.85  
8.0  
ns  
ns  
ns  
ns  
ns  
ns  
fMAX = 240 MHz  
fMAX = 140 MHz  
fMAX = 50 MHz  
fMAX = 240 MHz  
fMAX = 140 MHz  
fMAX = 50 MHz  
Low  
t5  
Pipeline Delay6  
Up Time  
tPD  
1.0  
1.0  
1.0  
10  
Clock cycles Not shown in Figure 2  
PSAVE6  
t10  
t11  
2
ns  
ns  
Not shown in Figure 2  
Not shown in Figure 2  
PDOWN  
320  
1 Maximum and minimum specifications are guaranteed over this range in Table 3.  
2 Temperature range: TMIN to TMAX: −40°C to +85°C at 50 MHz and 140 MHz, and 0°C to 70°C at 240 MHz.  
3 Timing specifications are measured with input levels of 3.0 V (VIH) and 0 V (VIL) for both 5 V and 3.3 V supplies.  
4 Rise time was measured from the 10% to 90% point of zero to full-scale transition, and fall time from the 90% to 10% point of a full-scale transition.  
5 Measured from 50% point of full-scale transition to 2% of final value.  
6 Guaranteed by characterization.  
7 fCLK maximum specification production tested at 125 MHz and 5 V. Limits specified in Table 3 are guaranteed by characterization.  
Rev. A | Page 5 of 18  
 
 
ADV7127  
Data Sheet  
3.3 V TIMING SPECIFICATIONS  
VAA = 3.0 V to 3.6 V,1 VREF = 1.235 V, RSET = 560 Ω. All specifications TMIN to TMAX,2 unless otherwise noted. TJ MAX = 110°C.  
Table 4.  
Parameter3  
ANALOG OUTPUTS  
Delay  
Rise/Fall Time4  
Transition Time5  
Skew6  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
t6  
t7  
t8  
t9  
7.5  
1.0  
15  
1
ns  
ns  
ns  
ns  
2
Not shown in Figure 2  
CLOCK CONTROL7  
fCLK  
50  
140  
240  
MHz  
MHz  
MHz  
50 MHz grade  
140 MHz grade  
240 MHz grade  
Data and Control  
Setup6  
t1  
t2  
t3  
1.5  
2.5  
ns  
ns  
ns  
Hold6  
Clock Period6  
Clock Pulse Width  
High  
2.5  
1.1  
fMAX = 240 MHz  
t4  
t4  
t4  
t5  
t5  
t5  
ns  
ns  
ns  
ns  
ns  
ns  
fMAX = 240 MHz  
fMAX = 140 MHz  
fMAX = 50 MHz  
fMAX = 240 MHz  
fMAX = 140 MHz  
fMAX = 50 MHz  
6
6
2.85  
8.0  
Low6  
1.4  
1.0  
2.85  
8.0  
1.0  
Pipeline Delay6  
Up Time  
PSAVE6  
tPD  
1.0  
10  
Clock cycles  
Not shown in Figure 2  
t10  
t11  
4
ns  
ns  
Not shown in Figure 2  
Not shown in Figure 2  
PDOWN  
320  
1 The values stated in Table 4 were obtained using VAA in the range of 3.0 V to 3.6 V.  
2 Temperature range: TMIN to TMAX: −40°C to +85°C at 50 MHz and 140 MHz, and 0°C to 70°C at 240 MHz.  
3 Timing specifications are measured with input levels of 3.0 V (VIH) and 0 V (VIL) for both 5 V and 3.3 V supplies.  
4 Rise time was measured from the 10% to 90% point of zero to full-scale transition, and fall time from the 90% to 10% point of a full-scale transition.  
5 Measured from 50% point of full-scale transition to 2% of final value.  
6 Guaranteed by characterization.  
7 fCLK maximum specification production tested at 125 MHz and 3.3 V. Limits specified in Table 4 are guaranteed by characterization.  
t3  
t4  
t5  
CLOCK  
t2  
DIGITAL INPUTS  
DATA  
D9 TO D0  
t1  
t8  
t6  
ANALOG OUTPUTS  
I
, I  
OUT OUT  
t7  
NOTES  
1. OUTPUT DELAY (t6) MEASURED FROM THE 50% POINT OF THE RISING  
EDGE OF CLOCK TO THE 50% POINT OF FULL-SCALE TRANSITION.  
2. OUTPUT RISE/FALL TIME (t7) MEASURED BETWEEN THE 10% AND  
90% POINTS OF FULL-SCALE TRANSITION.  
3. TRANSITION TIME (t8) MEASURED FROM THE 50% POINT OF FULL-SCALE  
TRANSITION TO WITHIN 2% OF THE FINAL OUTPUT VALUE.  
Figure 2. Timing Diagram  
Rev. A | Page 6 of 18  
 
 
 
Data Sheet  
ADV7127  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
VAA to GND  
Voltage on Any Digital Pin  
Ambient Operating Temperature Range −40°C to +85°C  
(TA)  
Storage Temperature Range(TS)  
Junction Temperature (TJ)  
Lead Temperature (Soldering, 10 sec)  
Vapor Phase Soldering (1 Minute)  
IOUT to GND1  
7 V  
GND − 0.5 V to VAA + 0.5 V  
−65°C to +150°C  
150°C  
300°C  
220°C  
0 V to VAA  
ESD CAUTION  
1 Analog output short circuit to any power supply or common can be of an  
indefinite duration.  
Rev. A | Page 7 of 18  
 
 
ADV7127  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D0  
2
PSAVE  
3
R
SET  
4
V
REF  
5
COMP  
I
6
OUT  
ADV7127  
TOP VIEW  
7
I
(Not to Scale)  
OUT  
8
V
AA  
9
GND  
10  
V
GND  
AA  
PDOWN  
DNC  
11  
12  
CLOCK  
DNC  
DNC = DO NOT CONNECT  
Figure 3. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No. Mnemonic Description  
1 to 9,  
24  
D0 to D9  
Data Inputs (TTL-Compatible). Data is latched on the rising edge of CLOCK. D0 is the least significant data bit.  
Unused data inputs are connected to either the regular printed circuit board (PCB) power or ground plane. Data  
inputs are red, green, or blue pixel inputs.  
10, 17  
11  
VAA  
PDOWN  
Analog Power Supply (5 V 5ꢀ). All VAA pins on the ADV7127 must be connected.  
Power-Down Control Pin. The ADV7127 completely powers down, including the voltage reference circuit, when  
PDOWN is low.  
12, 13  
14  
DNC  
CLOCK  
Do Not Connect. Do not connect to these pins.  
Clock Input (TTL-Compatible). The rising edge of CLOCK latches D0 to D9 where D0 to D9 can be red, green, or  
blue pixel data inputs (TTL-compatible). CLOCK is typically the pixel clock rate of the video system. CLOCK is driven  
by a dedicated TTL buffer.  
15, 16  
18  
GND  
IOUT  
Ground. All GND pins must be connected.  
Differential Current Output. This pin is capable of directly driving a doubly terminated 75 Ω load. If not required,  
this output is tied to ground.  
19  
20  
21  
IOUT  
Current Output. This high impedance current source is capable of directly driving a doubly terminated 75 Ω coaxial  
cable.  
Compensation Pin. COMP is a compensation pin for the internal reference amplifier. A 0.1 μF ceramic capacitor  
must be connected between COMP and VAA.  
Voltage Reference Input. An external 1.23 V voltage reference must be connected to this pin. The use of an external  
resistor divider network is not recommended. A 0.1 μF decoupling ceramic capacitor is connected between VREF  
and VAA.  
COMP  
VREF  
22  
23  
RSET  
Full-Scale Adjust Control. A resistor (RSET) connected between this pin and GND controls the magnitude of the full-  
scale video signal. Note that the IRE relationships are maintained, regardless of the full-scale output current. The  
relationship between RSET and the full-scale output current on IOUT is given by IOUT (mA) = 7968 × VREF (V)/RSET (Ω).  
Power Save Control Pin. The device is put into standby mode when PSAVE is low. The internal voltage reference  
circuit is still active.  
PSAVE  
Rev. A | Page 8 of 18  
 
Data Sheet  
ADV7127  
TYPICAL PERFORMANCE CHARACTERISTICS  
5 V  
VAA = 5 V, VREF = 1.235 V, IOUT = 17.62 µA, 50 Ω doubly terminated load, differential output loading, TA = 25°C, unless otherwise noted.  
70  
60  
50  
40  
30  
20  
10  
0
76  
74  
72  
70  
68  
66  
64  
62  
60  
58  
SECOND HARMONIC  
SFDR (DIFFERENTIAL)  
THIRD HARMONIC  
FOURTH HARMONIC  
SFDR (SINGLE-ENDED)  
0.10  
1.00  
2.51  
5.04  
20.20  
40.40  
100.00  
0
50  
100  
fCLOCK (MHz)  
140  
160  
OUTPUT FREQUENCY (MHz)  
Figure 4. SFDR vs. Output Frequency (fOUT) at fCLOCK = 140 MHz (Single-Ended  
and Differential)  
Figure 7. THD vs. fCLOCK at fOUT = 2 MHz (Second, Third, and Fourth Harmonics)  
80  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
SFDR (DIFFERENTIAL)  
70  
60  
50  
40  
30  
20  
10  
0
SFDR (SINGLE-ENDED)  
0
2.00  
17.62  
20.00  
0.10  
1.00  
2.51  
5.04  
20.20  
40.40  
100.00  
OUTPUT FREQUENCY (MHz)  
I
(mA)  
OUT  
Figure 5. SFDR vs. Output Frequency (fOUT) at fCLOCK = 50 MHz (Single-Ended  
and Differential)  
Figure 8. Linearity vs. IOUT  
72.2  
72.0  
71.8  
71.6  
71.4  
71.2  
71.0  
70.8  
70.6  
70.4  
1.0  
0.5  
0.75  
0
1023  
–0.16  
–0.5  
–1.0  
CODE (INL)  
TEMPERATURE (°C)  
Figure 6. SFDR vs. Temperature at fCLOCK = 50 MHz (fOUT = 1 MHz)  
Figure 9. Error vs. Code  
Rev. A | Page 9 of 18  
 
 
ADV7127  
Data Sheet  
–5  
–5  
–45  
–85  
2
V
= 5V  
AA  
V
= 5V  
AA  
–45  
1
1
–85  
0kHz  
START  
35.0MHz  
70.0MHz  
STOP  
0kHz  
START  
35.0MHz  
70.0MHz  
STOP  
Figure 12. Dual Tone SFDR at fCLOCK = 140 MHz  
(fOUT1 = 13.5 MHz, fOUT2 = 14.5 MHz)  
Figure 10. Single Tone SFDR at fCLOCK = 140 MHz (fOUT1 = 2 MHz)  
–5  
V
= 5V  
2
AA  
–45  
1
–85  
0kHz  
START  
35.0MHz  
70.0MHz  
STOP  
Figure 11. Single Tone SFDR at fCLOCK = 140 MHz (fOUT1 = 20 MHz)  
Rev. A | Page 10 of 18  
Data Sheet  
ADV7127  
3.3 V  
VAA = 3 V, VREF = 1.235 V, IOUT = 17.62 µA, 50 Ω doubly terminated load, differential output loading, TA = 25°C, unless otherwise noted.  
70  
60  
50  
40  
30  
20  
10  
0
76  
74  
72  
70  
68  
66  
64  
62  
60  
58  
56  
SECOND HARMONIC  
FOURTH HARMONIC  
SFDR (DIFFERENTIAL)  
SFDR (SINGLE-ENDED)  
THIRD HARMONIC  
0.10  
2.51  
5.04  
20.20  
40.40  
100.00  
0
50  
100  
140  
160  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
Figure 13. SFDR vs. Output Frequency (fOUT) at fCLOCK = 140 MHz (Single-Ended  
and Differential)  
Figure 16. THD vs. fCLOCK at Output Frequency  
OUT = 2 MHz (Second, Third, and Fourth Harmonics)  
f
80  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
SFDR (DIFFERENTIAL)  
70  
SFDR (SINGLE-ENDED)  
60  
50  
40  
30  
20  
10  
0
0.1  
0.10  
2.51  
5.04  
20.20  
40.40  
100.00  
0
2.00  
17.62  
20.00  
OUTPUT FREQUENCY (MHz)  
I
(mA)  
OUT  
Figure 17. Linearity vs. IOUT  
Figure 14. SFDR vs. Output Frequency (fOUT) at fCLOCK = 50 MHz (Single-Ended  
and Differential)  
72.0  
71.8  
71.6  
71.4  
71.2  
71.0  
70.8  
70.6  
70.4  
1.0  
0.5  
0.75  
0
1023  
–0.42  
–0.5  
–1.0  
0
20  
85  
145  
165  
CODE (INL)  
TEMPERATURE (°C)  
Figure 15. SFDR vs. Temperature at fCLOCK = 50 MHz, (fOUT = 1 MHz)  
Figure 18. Error vs. Code  
Rev. A | Page 11 of 18  
 
ADV7127  
Data Sheet  
–5  
–45  
–85  
–5  
2
2
V
= 3.3V  
V
= 3.3V  
AA  
AA  
–45  
1
1
–85  
0kHz  
START  
35.0MHz  
70.0MHz  
STOP  
0kHz  
START  
35.0MHz  
70.0MHz  
STOP  
Figure 21. Dual Tone SFDR at fCLOCK = 140 MHz  
(fOUT1 = 13.5 MHz, fOUT2 = 14.5 MHz)  
Figure 19. Single Tone SFDR at fCLOCK = 140 MHz (fOUT1 = 2 MHz)  
–5  
2
V
= 3.3V  
AA  
–45  
1
–85  
0kHz  
START  
35.0MHz  
70.0MHz  
STOP  
Figure 20. Single Tone SFDR at fCLOCK = 140 MHz (fOUT1 = 20 MHz)  
Rev. A | Page 12 of 18  
Data Sheet  
ADV7127  
TERMINOLOGY  
Color Video (RGB)  
Reference Black Level  
Color video (RGB) usually refers to the technique of combining  
the three primary colors of red, green, and blue to produce color  
pictures within the usual spectrum. In RGB monitors, three DACs  
are required, one for each color.  
Reference black level is the maximum negative polarity  
amplitude of the video signal.  
Reference White Level  
Reference white level is the maximum positive polarity  
amplitude of the video signal.  
Gray Scale  
Gray scale is the discrete levels of video signal between the  
reference black and reference white levels. A 10-bit DAC  
contains 1024 different levels, whereas an 8-bit DAC contains 256.  
Video Signal  
Video signal is the portion of the composite video signal that varies  
in gray scale levels between reference white and reference black.  
It is also referred to as the picture signal, which is the portion  
that can be visually observed.  
Raster Scan  
Raster scan is the most basic method of sweeping a CRT one  
line at a time to generate and display images.  
Rev. A | Page 13 of 18  
 
ADV7127  
Data Sheet  
THEORY OF OPERATION  
I
OUT  
The ADV7127 contains one 10-bit DAC, with one input  
channel containing a 10-bit register. A reference amplifier is  
also integrated on board the device.  
mA  
V
WHITE  
LEVEL  
17.61 0.66  
DIGITAL INPUTS  
Ten bits of data (color information), D0 to D9, are latched into  
the device on the rising edge of each clock cycle. This data is  
presented to the 10-bit DAC and is then converted to an analog  
output waveform (see Figure 22).  
100 IRE  
BLACK  
LEVEL  
0
0
CLOCK  
Figure 23. IOUT RS-343A Video Output Waveform  
Table 7. Video Output Truth Table (RSET = 560 Ω, RLOAD  
37.5 Ω)  
=
DIGITAL INPUTS  
DATA  
D0 TO D9  
(Ω)  
IOUT  
Description Data  
White Level  
Video  
IOUT (Ω)  
17.62  
Video  
0
DAC Input  
0x3FF  
Data  
0
ANALOG OUTPUTS  
I
, I  
17.62 − Video  
17.62  
OUT OUT  
Black Level  
0x000  
Figure 22. Video Data Input/Output  
All of these digital inputs are specified to accept TTL logic levels.  
REFERENCE INPUT  
The ADV7127 has an on-board voltage reference. The VREF pin  
is normally terminated to VAA through a 0.1 µF capacitor.  
Alternatively, the device can, if required, be overdriven by an  
external 1.23 V reference (AD1580).  
CLOCK INPUT  
The CLOCK input of the ADV7127 is typically the pixel clock  
rate of the system. It is also known as the dot rate. The dot rate,  
and therefore the required CLOCK frequency, is determined by  
the onscreen resolution, according to the following equation:  
A resistance RSET connected between the RSET pin and the GND  
pin determines the amplitude of the output video level according to  
the following equation:  
Dot Rate = (Horizontal Resolution × Vertical Resolution ×  
Refresh Rate)/Retrace Factor  
IOUT (mA) = (7968 × VREF (V))/RSET (Ω)  
where:  
Using a variable value of RSET allows accurate adjustment of the  
analog output video levels. Use of a fixed 560 Ω RSET resistor  
yields the analog output levels quoted in Specifications section.  
These values typically correspond to the RS-343A video  
waveform values shown in Figure 23.  
Horizontal Resolution is the number of pixels per line.  
Vertical Resolution is the number of lines per frame.  
Refresh Rate is the horizontal scan rate at which the screen must  
be refreshed, typically 60 Hz for a noninterlaced system or  
30 Hz for an interlaced system.  
Retrace Factor is the total blank time factor, which takes into  
account that the display is blanked for a certain fraction of the  
total duration of each frame (for example, 0.8).  
DIGITAL-TO-ANALOG CONVERTER  
The ADV7127 contains a 10-bit DAC. The DAC is designed using  
an advanced, high speed, segmented architecture. The bit currents  
corresponding to each digital input are routed to either the analog  
output (bit = 1) or GND (bit = 0) by a sophisticated decoding  
scheme. The use of identical current sources in a monolithic design  
guarantees monotonicity and low glitch. The on-board operational  
amplifier stabilizes the full-scale output current against temperature  
and power supply variations.  
If there is a graphics system with a 1024 × 1024 resolution, a  
noninterlaced 60 Hz refresh rate, and a retrace factor of 0.8, then  
Dot Rate = (1024 × 1024 × 60)/0.8 = 78.6 MHz  
The required CLOCK frequency is 78.6 MHz.  
All video data and control inputs are latched into the ADV7127 on  
the rising edge of CLOCK, as previously described in the Digital  
Inputs section. It is recommended that the CLOCK input to the  
ADV7127 be driven by a TTL buffer (for example, 74F244).  
Rev. A | Page 14 of 18  
 
 
 
 
 
 
 
Data Sheet  
ADV7127  
More detailed information regarding load terminations for  
ANALOG OUTPUT  
various output configurations, including RS-343A and RS-170,  
is available in the AN-205 Application Note, Video Formats and  
Required Load Terminations.  
The analog output of the ADV7127 is a high impedance current  
source. The current output is capable of directly driving a 37.5 Ω  
load, such as a doubly terminated 75 Ω coaxial cable. Figure 24  
shows the required configuration for the output connected into  
a doubly terminated 75 Ω load. This arrangement develops  
RS-343A video output voltage levels across a 75 Ω monitor.  
Figure 23 shows the video waveforms associated with the  
current output driving the doubly terminated 75 Ω load of  
Figure 24.  
I
OUT  
GRAY SCALE OPERATION  
Z
= 75  
O
DAC  
The ADV7127 can be used for standalone, gray scale (mono-  
chrome), or composite video applications (that is, only one  
channel used for video information).  
(CABLE)  
Z
= 75Ω  
S
Z
= 75Ω  
L
(SOURCE  
TERMINATION)  
(MONITOR)  
VIDEO OUTPUT BUFFER  
The ADV7127 is specified to drive transmission line loads, which is  
what most monitors are rated as. The analog output configurations  
to drive such loads are shown in Figure 26. However, in some  
applications, it may be required to drive long transmission line  
cable lengths. Cable lengths greater than 10 meters can attenuate  
and distort high frequency analog output pulses. The inclusion of  
the output buffers compensates for some cable distortion. Buffers  
with large full power bandwidths and gains between two and four  
are required. These buffers need to be able to supply sufficient  
current over the complete output voltage swing. Analog Devices,  
Inc., produces a range of suitable op amps for such applications.  
These include the AD843/AD844/AD847 series of monolithic op  
amps. In very high frequency applications (80 MHz), the AD8061  
is recommended. More information on line driver buffering  
circuits is given in the relevant op amp data sheets.  
Figure 24. Analog Output Termination for RS-343A  
A suggested method of driving RS-170 video levels into a 75 Ω  
monitor is shown in Figure 25. The output current level of the  
DAC remains unchanged, but the source termination resistance,  
ZS, on the DAC is increased from 75 Ω to 150 Ω.  
I
OUT  
Z
= 75  
O
DAC  
(CABLE)  
Z
= 150Ω  
S
Z
= 75Ω  
L
(SOURCE  
(MONITOR)  
TERMINATION)  
Figure 25. Analog Output Termination for RS-170  
Use of buffer amplifiers also allows implementation of other video  
standards besides RS-343A and RS-170. Altering the gain  
components of the buffer circuit results in any desired video level.  
Z
Z
1
2
+V  
0.1µF  
S
Z
= 75  
O
I
75Ω  
OUT  
AD848  
Z
= 75Ω  
(CABLE)  
DAC  
L
0.1µF  
(MONITOR)  
Z
= 75Ω  
S
–V  
S
(SOURCE  
Z
Z
1
2
GAIN (G) = 1 +  
TERMINATION)  
Figure 26. AD848 As an Output Buffer  
Rev. A | Page 15 of 18  
 
 
 
 
 
 
ADV7127  
Data Sheet  
PCB LAYOUT CONSIDERATIONS  
SUPPLY DECOUPLING  
The ADV7127 is optimally designed for lowest noise perfor-  
mance, both radiated and conducted noise. To complement the  
excellent noise performance of the ADV7127, it is imperative  
that great care be given to the PCB layout. Figure 27 shows a  
recommended connection diagram for the ADV7127.  
Noise on the analog power plane can be further reduced by the  
use of multiple decoupling capacitors (see Figure 27).  
Optimum performance is achieved by the use of 0.1 µF ceramic  
capacitors. Each of the two groups of VAA is individually  
decoupled to ground. The VAA pins (Pin 10 and Pin 17) must be  
decoupled with capacitors to GND. Decouple the pins by  
placing the capacitors as close as possible to the device with the  
capacitor leads as short as possible between the VAA and GND  
pins, thus minimizing lead inductance.  
The PCB layout is optimized for lowest noise on the ADV7127  
power and ground lines. Radiated and conducted noise can be  
achieved by shielding the digital inputs and providing good  
decoupling. The lead length between groups of VAA and GND  
pins is minimized to inductive ringing.  
It is important to note that while the ADV7127 contains  
circuitry to reject power supply noise, this rejection decreases  
with frequency. If a high frequency switching power supply is  
used, the designer must pay close attention to reducing power  
supply noise. A dc power supply filter (Murata BNX002)  
provides an electromagnetic interface (EMI) suppression  
between the switching power supply and the main PCB.  
Alternatively, consider using a 3-terminal voltage regulator.  
GROUND PLANES  
The ADV7127 and associated analog circuitry have a separate  
ground plane referred to as the analog ground plane. This  
ground plane connects to the regular PCB ground plane at a  
single point through a ferrite bead, as illustrated in Figure 27.  
The ferrite bead is located as close as possible (within 3 inches)  
to the ADV7127.  
DIGITAL SIGNAL INTERCONNECT  
The analog ground plane encompasses all ADV7127 ground  
pins, voltage reference circuitry, power supply bypass circuitry,  
the analog output traces, and any output amplifiers. The regular  
PCB ground plane area encompasses all the digital signal traces,  
excluding the ground pins, leading up to the ADV7127.  
The digital signal lines to the ADV7127 must be isolated as  
much as possible from the analog outputs and other analog  
circuitry. Digital signal lines must not overlay the analog power  
plane.  
Due to the high clock rates used, long clock lines to the  
ADV7127 must be avoided to minimize noise pickup.  
POWER PLANES  
The PCB layout has two distinct power planes: one for analog  
circuitry and one for digital circuitry. The analog power plane  
encompasses the ADV7127 (VAA) and all associated analog  
circuitry. This power plane is connected to the regular PCB  
power plane (VCC) at a single point through a ferrite bead, as  
illustrated in Figure 27. This bead is located within 3 inches of  
the ADV7127.  
Any active pull-up termination resistors for the digital inputs  
are connected to the regular PCB power plane (VCC) and not the  
analog power plane.  
ANALOG SIGNAL INTERCONNECT  
The ADV7127 is located as close as possible to the output  
connectors, which minimizes noise pickup and reflections due  
to impedance mismatch.  
The PCB power plane provides power to all digital logic on the  
PCB, and the analog power plane provides power to all  
ADV7127 power pins, voltage reference circuitry, and any  
output amplifiers. The PCB power and ground planes do not  
overlay portions of the analog power plane. Keeping the PCB  
power and ground planes from overlaying the analog power  
plane contributes to a reduction in plane to plane noise  
coupling.  
The video output signals overlay the ground plane and not the  
analog power plane, thereby maximizing the high frequency  
power supply rejection.  
For optimum performance, the analog outputs each have a  
source termination resistance to ground of 75 Ω (doubly  
terminated 75 Ω configuration). This termination resistance  
must be as close as possible to the ADV7127 to minimize  
reflections.  
Additional information on PCB design is available in the  
AN-333 Application Note, Design and Layout of a Video  
Graphics System for Reduced EMI.  
Rev. A | Page 16 of 18  
 
 
 
 
 
 
Data Sheet  
ADV7127  
COMP  
C6  
0.1µF  
ANALOG POWER PLANE  
V
AA  
ADV7127  
C3  
0.1µF  
C4  
0.1µF  
C5  
0.1µF  
L1 (FERRITE BEAD)  
+5V (V  
)
CC  
V
REF  
VIDEO  
DATA  
INPUTS  
C2  
10µF  
C1  
33µF  
D0  
D9  
ANALOG GROUND PLANE  
GND  
GROUND  
L2 (FERRITE BEAD)  
R
SET  
560  
R1  
75Ω  
PDOWN  
PSAVE  
CLOCK  
R
SET  
VIDEO  
OUTPUT  
I
OUT  
COMPONENT  
DESCRIPTION  
VENDOR PART NUMBER  
C1  
33µF TANTALUM CAPACITOR  
10µF TANTALUM  
C2  
C3, C4, C5, C6  
L1, L2  
0.1µF CERAMIC CAPACITOR  
FERRITE BEAD  
FAIR-RITE 274300111 OR MURATA BL01/02/03  
DALE CMF-55C  
R1  
751% METAL FILM RESISTOR  
R
5601% METAL FILM RESISTOR DALE CMF-55C  
SET  
Figure 27. Typical Connection Diagram and Component List  
Rev. A | Page 17 of 18  
 
ADV7127  
Data Sheet  
OUTLINE DIMENSIONS  
7.90  
7.80  
7.70  
24  
13  
12  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20  
MAX  
0.15  
0.05  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.20  
0.09  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-153-AD  
Figure 28. 24-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-24)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Speed  
Model1  
Options  
240 MHz  
50 MHz  
50 MHz  
140 MHz  
50 MHz  
50 MHz  
140 MHz  
Temperature Range Package Description  
Package Option  
RU-24  
ADV7127JRUZ240  
ADV7127KRUZ50  
ADV7127KRUZ50-REEL  
ADV7127KRUZ140  
ADV7127KRU50  
ADV7127KRU50-REEL  
ADV7127KRU140  
0°C to 70°C  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
RU-24  
RU-24  
RU-24  
RU-24  
RU-24  
RU-24  
1 Z = RoHS Compliant Part.  
©1998–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14959-0-1/17(A)  
Rev. A | Page 18 of 18  
 
 

ADV7127JRUZ240 CAD模型

  • 引脚图

  • 封装焊盘图

  • ADV7127JRUZ240 相关器件

    型号 制造商 描述 价格 文档
    ADV7127JRZ240 ROCHESTER PARALLEL, WORD INPUT LOADING, 10-BIT DAC, PDSO28, SOIC-28 获取价格
    ADV7127JRZ240 ADI IC PARALLEL, WORD INPUT LOADING, 10-BIT DAC, PDSO28, SOIC-28, Digital to Analog Converter 获取价格
    ADV7127KR140 ADI CMOS, 240 MHz 10-Bit High Speed Video DAC 获取价格
    ADV7127KR140 ROCHESTER PARALLEL, WORD INPUT LOADING, 10-BIT DAC, PDSO28, SOIC-28 获取价格
    ADV7127KR140-REEL ROCHESTER PARALLEL, WORD INPUT LOADING, 10-BIT DAC, PDSO28, SOIC-28 获取价格
    ADV7127KR50 ADI CMOS, 240 MHz 10-Bit High Speed Video DAC 获取价格
    ADV7127KR50 ROCHESTER 暂无描述 获取价格
    ADV7127KR50-REEL ROCHESTER PARALLEL, WORD INPUT LOADING, 10-BIT DAC, PDSO28, SOIC-28 获取价格
    ADV7127KR50-REEL ADI IC PARALLEL, WORD INPUT LOADING, 10-BIT DAC, PDSO28, SOIC-28, Digital to Analog Converter 获取价格
    ADV7127KRU140 ADI CMOS, 240 MHz 10-Bit High Speed Video DAC 获取价格

    ADV7127JRUZ240 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    5
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    8
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6