ADV7183KST [ADI]

Advanced Video Decoder with 10-Bit ADC and Component Input Support; 先进的视频解码器, 10位ADC和分量输入支持
ADV7183KST
型号: ADV7183KST
厂家: ADI    ADI
描述:

Advanced Video Decoder with 10-Bit ADC and Component Input Support
先进的视频解码器, 10位ADC和分量输入支持

解码器
文件: 总41页 (文件大小:486K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Advanced Video Decoder with 10-Bit ADC  
and Component Input Support  
a
ADV7183  
FEATURES  
Digital Output Formats 16-Bit Wide Bus):  
Analog Video to Digital YCrCb Video Decoder:  
NTSC-(M/N), PAL-(B/D/G/H/I/M/N)  
ADV®7183 Integrates Two 10-Bit Accurate ADCs  
Clocked from a Single 27 MHz Crystal  
Dual Video Clocking Schemes:  
YCrCb (4:2:2 or 4:1:1)  
CCIR601/CCIR656 8-Bit or 16-Bit  
0.5 V to 2.0 V p-p Input Range  
Differential Gain, 0.4% Typ  
Differential Phase, 0.6o Typ  
Line-Locked Clock Compatible (LLC)  
Adaptive Digital Line Length Tracking (ADLLT™)  
Three-Line Chroma Comb Filter  
Programmable Video Controls:  
Peak White/Hue/Brightness/Saturation/Contrast  
Real-Time Clock and Status Information Output  
Integrated AGC (Automatic Gain Control) and Clamping  
Multiple Programmable Analog Input Formats:  
CVBS (Composite Video)  
APPLICATIONS  
Security Systems  
Projectors  
Digital Televisions  
DVD-RAM Recorders and Players  
PDP Displays  
SVHS (Y/C)  
YCrCb Component (VESA, MII, SMPTE, and BetaCom)  
6 Analog Input Video Channels  
Video Decoders  
Automatic NTSC/PAL Identification  
Differential Mode Video Input  
Hybrid Analog/Digital Set-Top Boxes  
(continued on page 9)  
FUNCTIONAL BLOCK DIAGRAM  
P15–P0  
PIXEL  
O/P PORT  
ADV7183  
RESAMPLING  
AND  
HORIZONTAL  
SCALING  
SHAPING  
LUMA  
DELAY  
BLOCK  
PEAKING  
HPF/LPF  
AFF  
AND  
ISO  
REFOUT  
AIN1  
NOTCH LPF  
HFF/QCLK  
AEF  
FIFO CONTROL  
BLOCK  
LUMA  
ANTIALIAS  
LPF  
10-BIT  
ADC  
SYNC  
DETECTION  
AND  
2H LINE  
MEMORY  
PIXEL  
OUTPUT  
FORMATTER  
DV  
ANALOG I/P  
MULTIPLEXING  
AIN2  
RD  
AUTOMATIC  
GAIN  
CONTROL  
(AGC)  
AIN3  
SUB-  
CARRIER  
RECOVERY  
DTO  
RESAMPLING  
AND  
HORIZONTAL  
SCALING  
CHROMA  
COMB  
FILTER  
27MHz  
OE  
AIN4  
GL/CLKIN  
LLC1  
CLAMP AND  
DC RESTORE  
AIN5  
CHROMA  
ANTIALIAS  
LPF  
SHAPING  
LPF  
10-BIT  
ADC  
LLC  
SWITCH  
AIN6  
SYNTHESIS  
WITH LINE-  
LOCKED  
OUTPUT  
CLOCK  
LLC2  
LLCREF  
27MHz XTAL  
OSCILLATOR  
BLOCK  
2
VIDEOTIMING AND  
CONTROL BLOCK  
I C-COMPATIBLE  
INTERFACE PORT  
ELPF  
HSYNC FIELD VSYNC HREF VREF  
ALSB  
PWRDN  
SDATA SCLOCK  
CLOCK  
CLOCK RESET  
ADLLT is a trademark and ADV is a registered trademark of Analog Devices, Inc.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
2
(VAA = 4.75 V to 5.25 V, V = 3.2 V to 3.5 V, VDDIO = 3.15 V to 3.5 V, TMIN to TMAX  
,
ADV7183–SPECIFICATIONS1 unless otherwise noted.)DD  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
STATIC PERFORMANCE  
Resolution (each ADC)  
Accuracy (each ADC)  
Integral Nonlinearity3  
10  
Bits  
0.25  
0.08  
0.5  
0.17  
LSB  
LSB  
BSL, 2 V Input Range to ADC  
2 V Input Range to ADC  
Differential Nonlinearity3  
DIGITAL INPUTS3  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IIN  
2
V
V
µA  
pF  
0.8  
+10  
10  
–10  
Input Capacitance, CIN  
DIGITAL OUTPUTS3  
Output High Voltage, VOH  
Output Low Voltage, VOL  
High Impedance Leakage Current  
Output Capacitance  
2.4  
V
V
µA  
pF  
ISOURCE = 3.2 mA  
ISINK = 0.4 mA  
0.4  
10  
30  
VOLTAGE REFERENCE3  
Reference Range, VREFOUT  
2.15  
2.2  
2.25  
V
IVREFOUT = 0 µA  
POWER REQUIREMENTS  
Digital Power Supply, VDD  
Digital IO Power Supply, VDDIO  
Analog Power Supply, VAA  
Digital Supply Current, IDD  
Digital IO Supply Current, IDDIO  
3.2  
3.15  
4.75  
3.3  
3.3  
5.0  
125  
7
3.5  
3.5  
5.25  
165  
V
V
V
mA  
mA  
mA  
Field  
4
Analog Supply Current, IAA  
Power-Up Time  
150  
1
180  
Sleep Mode until Powered Up  
NOTES  
1The max/min specifications are guaranteed over this range. The max/min values are typical over VAA = 4.75 V to 5.25 V, VDD = 3.2 to 3.5 V, and VDDIO = 3.15 V to  
3.5 V range.  
2Temperature range TMIN to TMAX = 0°C to 70°C  
3Guaranteed by characterization.  
4IAA is total analog current taken by AVDD supply pins.  
Specifications subject to change without notice.  
–2–  
REV. 0  
ADV7183  
(VAA = 4.75 V to 5.25 V, VDD = 3.2 V to 3.5 V, VDDIO = 3.15 V to 3.5 V,  
VIDEO PERFORMANCE SPECIFICATIONS1, 2 TMIN to TMAX3, unless otherwise noted.)  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
NONLINEAR SPECIFICATIONS2  
Differential Phase  
Differential Gain  
0.6  
0.7  
1.0  
Degree  
%
%
CVBS, Comb/No Comb  
CVBS, Comb/No Comb  
Luma Nonlinearity  
NOISE SPECIFICATIONS2  
SNR (Ramp)  
Analog Front End Channel Crosstalk  
61  
54  
63  
63  
dB  
dB  
dB  
CVBS  
S-Video/YUV, Single-Ended  
S-Video/YUV, Differential-Ended  
Analog Front End Channel Crosstalk  
LOCK TIME AND JITTER  
SPECIFICATIONS2  
Horizontal Lock Time  
Horizontal Recovery Time  
Horizontal Lock Range  
50  
50  
5
Lines  
Lines  
%
TV/VCR mode  
Line Length Variation Over Field  
Line Length Variation Over Field  
HLock Lost Declared  
1
1
%
%
HSync  
HSync  
VCR Mode/Surveillance Mode  
TV Mode  
TV Mode, Number of Missing HSyncs  
VCR/Surveillance Mode, Number of  
Missing HSyncs  
10  
HLock Lost Declared  
20  
Vertical Lock Time  
VLock Lost Declared  
FSC Subcarrier Lock Range  
Color Lock Time  
LLC Clock Jitter (Short Time Jitter)  
2
1
VSync  
VSync  
Hz  
Lines  
ns  
First Lock into Video Signal  
All Modes, Number of Missing VSyncs  
NTSC/PAL  
HLock to Color Lock Time  
RMS Clock Jitter  
400  
50  
1
LLC Clock Jitter (Frame Jitter)  
37  
ns  
RMS Clock Jitter  
CHROMA-SPECIFIC  
SPECIFICATIONS2  
Hue Accuracy  
1.0  
1.0  
Degree  
%
Color Saturation Accuracy  
Color Gain Control Range  
–6  
+18  
dB  
S-Video, YUV, Overall CGC Range  
(Analog and Digital)  
Analog Color Gain Range  
Digital Color Gain Range  
Chroma Amplitude Error  
Chroma Phase Error  
–6  
0
+6  
12  
dB  
dB  
%
Degree  
S-Video, YUV  
CVBS, S-Video, YUV  
0.1  
0
0.1  
Chroma Luma Intermodulation  
%
LUMA-SPECIFIC SPECIFICATIONS2  
Luma Brightness Accuracy  
Luma Contrast Accuracy  
1.0  
1.0  
%
%
Video Input Range = 1.0 V p-p  
Video Input Range = 1.0 V p-p  
NOTES  
1The max/min specifications are guaranteed over this range. The max/min values are typical over VAA = 4.75 V to 5.25 V, VDD = 3.2 to 3.5 V, and VDDIO = 3.15 V to  
3.5 V range.  
2Guaranteed by characterization.  
3Temperature range TMIN to TMAX = 0°C to 70°C  
Specifications subject to change without notice.  
REV. 0  
–3–  
ADV7183  
2
(VAA = 4.75 V to 5.25 V, VDD = 3.2 V to 3.5 V, VDDIO = 3.15 V to 3.5 V, TMIN to TMAX  
,
TIMING SPECIFICATIONS1 unless otherwise noted.)  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
SYSTEM CLOCK AND CRYSTAL  
Nominal Frequency  
27  
MHz  
I2C PORT2  
SCL Clock Frequency  
0
400  
kHz  
µs  
SCL Min Pulsewidth High, t1  
SCL Min Pulsewidth Low, t2  
Hold Time (Start Condition), t3  
Setup Time (Start Condition), t4  
Data Setup Time, t5  
SCL/SDA Rise Time, t6  
SCL/SDA Fall Time, t7  
Setup Time (Stop Condition), t8  
0.6  
1.3  
0.6  
0.6  
100  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
300  
300  
0.6  
RESET FEATURE  
Reset Pulse Input Width  
74  
ns  
CLOCK OUTPUTS3  
LLC1 Cycle Time, t9  
LLC1 Cycle Time, t9  
LLC1 Cycle Time, t9  
LLC1 Min Low Period, t10  
LLC1 Min High Period, t11  
LLC1 Falling to LLCREF Falling, t12  
LLC1 Falling to LLCREF Rising, t13  
LLC1 Rising to LLC2 Rising, t14  
LLC1 Rising to LLC2 Falling, t15  
CLKIN Cycle Time, t18  
37  
33.9  
40.8  
18  
18  
4
6
3
1
37  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CCIR601 Mode 27 MHz  
PAL Square Pixel Mode 29.5 MHz  
NTSC Square Pixel Mode 24.5 MHz  
CCIR601 Mode 27 MHz  
CCIR601 Mode 27 MHz  
5
3
SCAPI and CAPI Modes  
DATA AND CONTROL OUTPUT  
Data Output Hold Time, t17  
Data Output Access Time, t16  
Data Output Access Time, t19  
Data Output Hold Time, t20  
Propagation Delay to High Z, t21  
Max Output Enable Access Time, t22  
Min Output Enable Access Time, t23  
26  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LLC Mode  
LLC Mode  
SCAPI and CAPI Modes  
SCAPI and CAPI Modes  
30  
20  
11  
5
8
5
33  
25  
8
11  
2
NOTES  
1The max/min specifications are guaranteed over this range. The max/min values are typical over VAA = 4.75 V to 5.25 V, VDD = 3.2 to 3.5 V, and VDDIO = 3.15 V to  
3.5 V range.  
2Temperature Range TMIN to TMAX = 0°C to 70°C  
3Guaranteed by characterization.  
Specifications subject to change without notice.  
2
(VAA = 4.75 V to 5.25 V, VDD = 3.2 V to 3.5 V, VDDIO = 3.15 V to 3.5 V, TMIN to TMAX  
,
ANALOG FRONT END SPECIFICATIONS1 unless otherwise noted.)  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
CLAMP CIRCUITRY  
External Clamp Capacitor  
Input Impedance  
Voltage Clamp Level  
Clamp Source Current  
Sink Current  
0.1  
10  
1.4  
3
–3  
µF  
MΩ  
V
Clamp Switched Off  
µA  
µA  
mA  
mA  
Signal Already Clamped (Fine Clamping)  
Signal Already Clamped (Fine Clamping)  
Acquire Mode (Fast Clamping)  
Source Current  
Clamp Sink Current  
0.9  
–0.9  
Acquire Mode (Fast Clamping)  
NOTES  
1The max/min specifications are guaranteed over this range. The max/min values are typical over VAA = 4.75 V to 5.25 V, VDD = 3.2 to 3.5 V, and VDDIO = 3.15 V to  
3.5 V range.  
2Temperature range TMIN to TMAX = 0°C to 70°C  
Specifications subject to change without notice.  
–4–  
REV. 0  
ADV7183  
t3  
SDATA  
t6  
t3  
t5  
t8  
t1  
SCLOCK  
t4  
t7  
t2  
Figure 1. MPU Port Timing Diagram  
t9  
t10  
LLC1  
t11  
t12  
t13  
LLCREF  
LLC2  
t14  
t15  
t17  
OUTPUTS P0P19, HREF, VREF,  
VSYNC, HSYNC, FIELD, DV  
t16  
Figure 2. LLC Clock, Pixel Port, and Control Outputs Timing Diagram  
t18  
CLKIN  
t20  
OUTPUTS P0P15, HREF, VREF,  
VSYNC, HSYNC, FIELD, DV  
t19  
Figure 3. Pixel Port and Control Outputs in CAPI and SCAPI Mode Timing Diagram  
OE  
t21  
t23  
OUTPUTS P0P15, HS,  
VS, VREF, HREF, FIELD, DV  
t22  
Figure 4. OE Timing Diagram  
REV. 0  
–5–  
ADV7183  
ABSOLUTE MAXIMUM RATINGS1  
VAA to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
ORDERING GUIDE  
Temperature Range  
Model  
Package  
V
DD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 V  
ADV7183KST  
0°C to 70°C  
80-LQFP  
VDDIO to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 V  
Voltage on Digital Input Pins . . GND – 0.5 V to VAA + 0.5 V  
Storage Temperature (TS) . . . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature (TJ) . . . . . . . . . . . . . . . . . . . . . . 150°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . . 260°C  
Analog Outputs to GND2 . . . . . . . . . . . . GND – 0.5 V to VAA  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect device reliability.  
2Analog output short circuit to any power supply or common can be of an indefinite  
duration.  
PIN CONFIGURATION  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
1
2
VS/ACTIVE  
HS/ACTIVE  
DVSSIO  
DVDDIO  
P11  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
AIN5  
PIN 1  
IDENTIFIER  
AVSS5  
AIN4  
3
4
AVSS4  
AVSS  
5
6
P10  
CAPC2  
CAPC1  
AVSS  
7
P9  
8
P8  
9
DVSS2  
DVDD2  
AFF  
CML  
AD7183  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
REFOUT  
AVDD  
CAPY2  
CAPY1  
AVSS  
TOP VIEW  
(Not to Scale)  
HFF/QCLK/GL  
AEF  
DVSSIO  
DVDDIO  
CLKIN  
GPO3  
AIN3  
AVSS3  
AIN2  
GPO2  
AVSS2  
AIN1  
P7  
P6  
AVSS1  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
ADV7183 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–6–  
REV. 0  
ADV7183  
PIN FUNCTION DESCRIPTIONS  
Input/Output Function  
Pin  
Mnemonic  
1
VS/VACTIVE  
O
VS or Vertical Sync. A dual-function pin, (OM_SEL[1:0] = 0, 0) is an  
output signal that indicates a vertical sync with respect to the YUV pixel  
data. The active period of this signal is six lines of video long. The polarity  
of the VS signal is controlled by the PVS bit. VACTIVE (OM_SEL[1:0] =  
1, 0 or 0, 1) is an output signal that is active during the active/viewable  
period of a video field. The polarity of VACTIVE is controlled by PVS bit.  
2
HS/HACTIVE  
O
HS or Horizontal Sync. A dual-function pin, (OM_SEL[1:0] = 0, 0) is a  
programmable horizontal sync output signal. The rising and falling edges  
can be controlled by HSB[9:0] and HSE[9:0] in steps of 2 LLC1. The polarity  
of the HS signal is controlled by the PHS bit. HACTIVE (OM_SEL[1:0] =  
1, 0 or 0, 1) is an output signal that is active during the active/viewable  
period of a video line. The active portion of a video line is programmable on  
the ADV7183. The polarity of HACTIVE is controlled by PHS bit.  
3, 14  
4, 15  
DVSSIO  
DVDDIO  
P15–P0  
G
P
Digital I/O Ground  
Digital I/O Supply Voltage (3.3 V)  
5–8, 19–24,  
32, 33, 73–76  
O
Video Pixel Output Port. 8-bit multiplexed YCrCb pixel port (P15–P8),  
16-bit YCrCb pixel port (P15–P8 = Y and P7–P0 = Cb,Cr).  
9, 31, 71  
10, 30, 72  
11  
DVSS1–3  
DVDD1–3  
AFF  
G
P
Ground for Digital Supply  
Digital Supply Voltage (3.3 V)  
O
Almost Full Flag. A FIFO control signal indicating when the FIFO has  
reached the almost full margin set by the user (use FFM[4:0]). The polarity  
of this signal is controlled by the PFF bit.  
12  
HFF/QCLK/GL  
I/O  
Half Full Flag. A multifunction pin, (OM_SEL[1:0] = 1, 0) is a FIFO  
control signal that indicates when the FIFO is half full. The QCLK  
(OM_SEL[1:0] = 0, 1) pin function is a qualified pixel output clock when  
using FIFO SCAPI mode. The GL (OM_SEL[1:0] = 0, 0) function  
(Genlock output) is a signal that contains a serial stream of data that contains  
information for locking the subcarrier frequency. The polarity of HFF signal  
is controlled by PFF bit.  
13  
16  
AEF  
O
I
Almost Empty Flag. A FIFO control signal, it indicates when the FIFO  
has reached the almost empty margin set by the user (use FFM[4:0]). The  
polarity of this signal is controlled by PFF bit.  
CLKIN  
Asynchronous FIFO Clock. This asynchronous clock is used to output  
data onto the P19-P0 bus and other control signals.  
17, 18, 34, 35  
25  
GPO[3:0]  
LLCREF  
O
O
General-Purpose Outputs controlled via I2C  
Clock Reference Output. This is a clock qualifier distributed by the inter-  
nal CGC for a data rate of LLC2. The polarity of LLCREF is controlled  
by the PLLCREF bit.  
26  
27  
LLC2  
O
O
Line-Locked Clock System Output Clock/2 (13.5 MHz)  
LLC1/PCLK  
Line-Locked Clock System Output Clock. A dual-function pin (27 MHz 5%)  
or a FIFO output clock ranging from 20 MHz to 35 MHz.  
28  
29  
XTAL1  
XTAL  
O
I
Second terminal for crystal oscillator; not connected if external clock  
source is used.  
Input terminal for 27 MHz crystal oscillator or connection for external  
oscillator with CMOS-compatible square wave clock signal  
36  
37  
38  
39  
PWRDN  
ELPF  
I
Power-Down Enable. A logical low will place part in a power-down status.  
This pin is used for the External Loop Filter that is required for the LLC PLL.  
I
PVDD  
PVSS  
P
G
REV. 0  
–7–  
ADV7183  
PIN FUNCTION DESCRIPTIONS (continued)  
Pin  
Mnemonic  
Input/Output  
Function  
40, 47, 53, 56,  
63  
AVSS  
G
Ground for Analog Supply  
41, 43, 45, 57,  
59, 61  
AVSS1–6  
AIN1–6  
G
I
Analog Input Channels. Ground if single-ended mode is selected. These  
pins should be connected directly to REFOUT when differential mode is  
selected.  
42, 44, 46, 58,  
60, 62  
Video Analog Input Channels  
48, 49  
50  
CAPY1–2  
AVDD  
I
ADC Capacitor Network  
P
O
O
I
Analog Supply Voltage (5 V)  
Internal Voltage Reference Output  
Common-Mode Level for ADC  
ADC Capacitor Network  
51  
REFOUT  
CML  
52  
54, 55  
64  
CAPC1–2  
RESET  
ISO  
I/O  
I
System Reset Input. Active Low.  
65  
Input Switch Over. A low to high transition on this input indicates to the  
decoder core that the input video source has been changed externally and  
configures the decoder to reacquire the new timing information of the new  
source. This is useful in applications where external video muxes are used.  
This input gives the advantage of faster locking to the external muxed  
video sources. A low to high transition triggers this input.  
66  
ALSB  
I
TTL Address Input. Selects the MPU address:  
MPU address = 88h ALSB = 0, disables I2C filter  
MPU address = 8Ah ALSB = 1, enables I2C filter  
67  
68  
69  
SDATA  
I/O  
I
MPU Port Serial Data Input/Output  
MPU Port Serial Interface Clock Input  
SCLK  
VREF/VRESET  
O
VREF or Vertical Reference Output Signal. Indicates start of next field.  
VRESET or Vertical Reset Output is a signal that indicates the beginning  
of a new field. In SCAPI/CAPI mode this signal is one clock wide and  
active low relative to CLKIN. It immediately follows the HRESET pixel,  
and indicates that the next active pixel is the first active pixel of the next  
field.  
70  
HREF/HRESET  
O
HREF or Horizontal Reference Output Signal. A dual-function pin  
(enabled when Line-Locked Interface is selected, OM_SEL[1:0] = 0,0),  
this signal is used to indicate data on the YUV output. The positive slope  
indicates the beginning of a new active line; HREF is always 720 Y samples  
long. HRESET or Horizontal Reset Output (enabled when SCAPI or  
CAPI is selected, OM_SEL[1:0] = 0, 1 or 1, 0) is a signal that indicates the  
beginning of a new line of video. In SCAPI/CAPI this signal is one clock  
cycle wide and is output relative to CLKIN. It immediately follows the last  
active pixel of a line. The polarity is controlled via PHVR.  
77  
78  
RD  
DV  
I
Asynchronous FIFO Read Enable Signal. A logical high on this pin enables  
a read from the output of the FIFO.  
O
DV or Data Valid Output Signal. In SCAPI/CAPI mode, DV performs two  
functions, depending on whether SCAPI or CAPI is selected. It toggles  
high when the FIFO has reached the AFF margin set by the user, and  
remains high until the FIFO is empty. The alternative mode is where it can  
be used to control FIFO reads for bursting information out of the FIFO. In  
API mode DV indicates valid data in the FIFO, which includes both pixel  
information and control codes. The polarity of this pin is controlled via PDV.  
79  
80  
OE  
I
Output Enable Controls Pixel Port Outputs. A logic high will three-state  
P19–P0.  
FIELD  
O
ODD/EVEN Field Output Signal. An active state indicates that an even  
field is being digitized. The polarity of this signal is controlled by the PF bit.  
–8–  
REV. 0  
ADV7183  
(FEATURES continued from page 1)  
CCIR/Square Pixel Operation  
Integrated On-Chip Video Timing Generator  
Synchronous or Asynchronous Output Timing  
Line-Locked Clock Output  
ANALOG INPUT PROCESSING  
The ADV7183 has six analog video input channels. These six  
channels can be arranged in a variety of configurations to support  
up to six CVBS input signals, three S-video input signals, and two  
YCrCb component analog video input signals. The INSEL[3:0]  
bits control the input type and channel selected. The analog  
front end includes three clamp circuits for DC restore. There are  
three sample-and-hold amplifiers prior to the ADC which are  
used to enable simultaneous sampling of up to three channels in  
a YCrCb input mode. Two 10-bit ADCs are used for sampling.  
The entire analog front end is fully differential which ensures that  
the video is captured to the highest quality possible. This is very  
important in highly integrated systems such as video decoders.  
Figure 5 shows the analog front end section of the ADV7183.  
Closed Captioning Passthrough Operation  
Vertical Blanking Interval Support  
Power-Down Mode  
2-Wire Serial MPU Interface (I2C-Compatible)  
5 V Analog 3.3 V Digital Supply Operation  
80-Lead LQFP Package  
GENERAL DESCRIPTION  
The ADV7183 is an integrated video decoder that automatically  
detects and converts a standard analog baseband television sig-  
nal compatible with worldwide standards NTSC or PAL into  
4:2:2 or 4:1:1 component video data compatible with 16-/8-bit  
CCIR601/CCIR656.  
MUX 6CVBS 3YC 2YUV  
The advanced and highly flexible digital output interface  
enables performance video decoding and conversion in both  
frame-buffer-based and line-locked clock-based systems. This  
makes the device ideally suited for a broad range of applica-  
tions with diverse analog video characteristics, including  
tape-based sources, broadcast sources, security/surveillance  
cameras, and professional systems.  
1
1
1
CLAMP V  
CLAMP U  
CLAMP Y  
SHA  
؋
 2  
SHA  
؋
 2  
SHA  
؋
 2  
Fully integrated line stores enable real-time horizontal and  
vertical scaling of captured video down to icon size. The 10-bit  
accurate A/D conversion provides professional quality SNR  
performance. This allows true 8-bit resolution in the 8-bit out-  
put mode.  
10  
10  
2
2
MUX  
Y ADC  
C ADC  
The six analog input channels accept standard composite,  
S-video, and component YCrCb video signals in an extensive  
number of combinations. AGC and clamp restore circuitry  
allow an input video signal peak-to-peak range of 0.5 V up to  
2 V. Alternatively, these can be bypassed for manual settings.  
NOTES  
ANALOG SIGNAL PATH KEPT FULLY DIFFERENTIAL  
ADCs: 10-BIT ACCURATE; 12dB GAIN RANGE  
1
CLAMP BLOCKS CONTAIN A SET OF CURRENT SOURCES FOR DC  
RESTORATION; U ANDV HAVE ONLY HALF BANDWIDTH (SAMPLED  
SIMULTANEOUSLY, CONVERTED SEQUENTIALLY)  
2
PIPELINED  
The fixed 27 MHz clocking of the ADCs and data path for all  
modes allows very precise and accurate sampling and digital  
filtering. The line-locked clock output allows the output data  
rate, timing signals, and output clock signals to be synchronous,  
asynchronous, or line-locked even with 5% line length varia-  
tion. The output control signals allow glueless interface  
connection in almost any application.  
Figure 5. Analog Front End Block Diagram  
CLAMPING  
The clamp control on the ADV7183 consists of a digitally  
controlled analog current and voltage clamp and a digitally  
controlled digital clamp circuit. The coupling capacitor on each  
channel is used to store and filter the clamping voltage. A digital  
controller controls the clamp up and down current sources that  
charge the capacitor on every line. Four current sources are  
used in the current clamp control, two large current sources are  
used for coarse clamping, and two small current sources are used  
for fine clamping. The voltage clamp, if enabled, is only used on  
startup or if a channel is switched. This clamp pulls the video  
into the midrange of the ADC, which results in faster clamping  
and faster lock-in time for the decoder. The fourth clamp con-  
troller is fully digital and clamps the ADC output data, which  
results in extremely accurate clamping. It also has the added  
advantage of being fully digital, which results in very fast clamp  
timing and makes the entire clamping process very robust in  
terms of handling large amounts of hum that can be present on  
real-world video signals.  
The ADV7183 modes are set up over a 2-wire serial bidirec-  
tional port (I2C-compatible).  
The ADV7183 is fabricated in a 5 V CMOS process. Its mono-  
lithic CMOS construction ensures greater functionality with  
lower power dissipation.  
The ADV7183 is packaged in a small 80-pin LQFP package.  
REV. 0  
–9–  
ADV7183  
In S-video mode there are two clamp controllers used to sepa-  
rately control the luminance clamping and the chrominance  
clamping. Also in YCrCb component input mode there are two  
clamp controllers used to control the luminance clamping and  
the CrCb clamping separately; there are, however, individual  
current clamps on the Cr and Cb inputs.  
5. Blank level to sync tip is used to set luminance gain; manual  
MIRE[2:0] is automatically controlled to set the maximum  
value through the luminance channel. There is override of  
this mode when white peak mode is detected. White peak  
mode is activated when the input video exceeds the maxi-  
mum luminance range for long periods; this mode is designed  
to prevent clipping of the input video signal.  
User programmability is built into the clamp controllers which  
enable the current and digital clamp controllers to be set up to  
user-defined conditions. Refer to analog clamp control register  
(14H), digital clamp control register (15H), and digital color  
clamp offset register (15H and 16H) for control settings.  
6. Based on active video peak white. PW_UPD sets the gain  
update frequency (once per field).  
7. Based on average active video. PW_RES sets what lines are used;  
only relevant if the signal conforms to PAL 625 line standard.  
8. The luminance channel gain is frozen at its present value.  
ANALOG-TO-DIGITAL CONVERTERS  
Two 10-bit ADCs are used in the ADV7183, and they run from  
a 27 MHz input clock. An integrated band gap generates the  
required reference voltages for the converters. If the decoder is  
configured in CVBS mode, the second ADC can be switched off  
to reduce power consumption, see PSC[1:0].  
MAXIMUM  
6
0
0
RANGE = 12dB  
AUTOMATIC GAIN CONTROL  
The AGC control block on the ADV7183 is a digitally based  
system. This controller ensures that the input video signal  
(CVBS, S-video, or YCrCb) is scaled to its correct value such  
that the YCrCb digital output data matches the correct gain of  
the video signal. The AGC has an analog input video range of  
0.5 V p-p to 2.0 V p-p, which gives a –6 dB to +6 dB gain range.  
Figure 6 demonstrates this range. This AGC range will compensate  
for video signals that have been incorrectly terminated or have  
been attenuated due to cable loss or other factors.  
6  
MINIMUM  
Figure 6. Analog Input Range  
The chrominance automatic gain control has four modes of  
operation:  
1. Manual AGC mode where gain for chrominance path is set  
manually using CGM[11:0].  
There are two main control blocks: one for the luminance chan-  
nel and one for the chrominance channel.  
2. Luminance gain used for chrominance channel.  
3. Chrominance automatic gain based on color burst amplitude.  
4. Chrominance gain frozen at its present setting.  
The luminance automatic gain control has eight modes of  
operation:  
1. Manual AGC mode where gain for the luminance path is set  
manually using LGM[11:0].  
Both the luminance and chrominance AGC controllers have a  
programmable time constant that allows the AGC to operate in  
four modes: slow, medium, fast, and video quality controlled.  
2. Blank level to sync tip is used to set the luminance gain;  
manual MIRE[2:0] controls the maximum value through the  
luminance channel. There is no override of this mode when  
white peak mode is detected.  
The maximum IRE (MIRE[2:0]) control can be used to set the  
maximum input video range that can be decoded. Table I shows  
the selectable range.  
3. Blank level to sync tip is used to set luminance gain; manual  
MIRE[2:0] controls the maximum value through luminance  
channel. There is override of this mode when white peak  
mode is detected. White peak mode is activated when the  
input video exceeds the maximum luminance range for long  
periods; this mode is designed to prevent clipping of the  
input video signal.  
Table I. MIRE Control  
Function  
MIRE[2:0]  
PAL (IRE)  
NTSC (IRE)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
133  
125  
120  
115  
110  
105  
100  
100  
122  
115  
110  
105  
100  
100  
100  
100  
4. Blank level to sync tip is used to set luminance gain;  
MIRE[2:0] is automatically controlled to set the maximum  
value through the luminance channel. There is no override  
of this mode when white peak mode is detected.  
–10–  
REV. 0  
ADV7183  
0
10  
20  
30  
40  
50  
60  
LUMINANCE PROCESSING  
Figure 7 shows the luminance data path. The 10-bit data from  
the Y ADC is applied to an antialiasing low pass filter that is  
designed to band-limit the input video signal such that aliasing  
does not occur. This filter dramatically reduces the design on an  
external analog antialaising filter; this filter need only remove  
components in the input video signal above 22 MHz. The data  
then passes through a shaping or notch filter.  
SVHS1  
SVHS2  
SVHS3  
SVHS4  
SVHS5  
SVHS6  
SVHS7  
SVHS8  
SVHS9  
SVHS10  
SVHS11  
SVHS12  
SVHS13  
SVHS14  
SVHS15  
SVHS16  
SVHS17  
SVHS18  
When in CVBS mode a notch filter must be used to remove the  
unwanted chrominance data that lies around the subcarrier  
frequency. A wide variety of programmable notch filters for  
both PAL and NTSC are available. The YSFM[4:0] control the  
selection of these filters; refer to Figures 8 to 16 for plots of  
these filters. If S-video or component mode is selected a notch  
filter is not required. The ADV7183 offers 18 possible shaping  
filters (SVHS1-18) with a range of low pass filter responses from  
0.5 MHz up to 5.75 MHz. The YSFM[4:0] control the selec-  
tion of these filters. Please refer to Figures 8 through 16 for  
filter plots.  
0
1
2
3
4
5
6
7
8
FREQUENCY MHz  
Figure 8. Luminance SVHS1–18 Shaping Filter  
Responses  
The next stage in the luminance processing path is a peaking  
filter; this filter offers a sharpness function on the luminance  
path. The degree of sharpness can be selected using YPM[2:0].  
If no sharpness is required, this filter can be bypassed.  
1.0  
0.8  
0.6  
0.4  
0.2  
0
The luminance data is then passed through a resampler to correct  
for line length variations in the input video. This resampler is  
designed to always output 720 pixels per line for standard PAL or  
NTSC. The resampler used on the ADV7183 is of very high  
quality as it uses 128 phases to resample the video, giving 1/128  
pixel resolution. The resampler is controlled by a sync detection  
block that calculates line length variations on the input video.  
0.2  
0.4  
0.6  
0.8  
The final stage in the luminance path, before it is applied to an  
output formatter block, is a two-line delay store that is used to  
compensate for delays in the chroma data path when chroma  
comb filter is selected.  
1.0  
0
1
2
3
4
5
6
FREQUENCY MHz  
Figure 9. Luminance SVHS1–SVHS18 Shaping  
Filter Responses (Close-Up)  
ANTI-  
ALIASING  
LPF  
SYNC  
DETECTION  
ADC DATA  
0
NTSC WN1  
SHAPING  
AND  
NOTCH  
FILTER  
NTSC WN2  
NTSC WN3  
NTSC NN1  
NTSC NN2  
NTSC NN3  
PEAKING  
FILTER  
RESAMPLE  
10  
20  
NTSC WN2  
Y
NTSC NN3  
NTSC WN1  
NTSC NN2  
NTSC NN1  
NTSC WN3  
30  
DELAY  
LINE  
STORES  
40  
50  
60  
Figure 7. Luminance Processing Path  
0
1
2
3
4
5
6
7
8
FREQUENCY MHz  
Figure 10. Luminance NTSC Narrow/Wide Notch  
Shaping Filter  
REV. 0  
–11–  
ADV7183  
1.0  
10  
8
PS1  
0.8  
0.6  
0.2  
6
PS2  
PS3  
4
0.4  
0
2
PS4  
PS5  
0
0.2  
0.4  
0.6  
NTSC WN1  
NTSC WN2  
NTSC WN3  
NTSC NN1  
NTSC NN2  
NTSC NN3  
2  
4  
6  
8  
0.8  
PS6  
1.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
1
2
3
4
5
6
7
FREQUENCY MHz  
FREQUENCY MHz  
Figure 11. Luminance NTSC Narrow/Wide Notch  
Shaping Filter (Close-Up)  
Figure 14. Luminance Peaking Filter Responses in  
S-Video (SVHS17 Selected)  
0
6
PAL NN1  
PC1  
4
PAL NN2  
PAL NN3  
PAL W1  
PAL W2  
PAL NN3  
PAL W1  
PAL W2  
PAL NN2  
10  
20  
30  
40  
50  
60  
2
PC2  
0
2  
PC3  
PC4  
PC5  
PAL NN1  
PC6  
4  
6  
8  
10  
0
0
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
FREQUENCY MHz  
FREQUENCY MHz  
Figure 12. Luminance PAL Narrow/Wide Notch  
Shaping Filter Responses  
Figure 15. Luminance Peaking Filter Responses in  
CVBS (PAL NN3 Selected)  
1.0  
0.8  
6
PC1  
4
0.6  
0.2  
2
PC2  
0.4  
0
0
2  
4  
PC3  
PC4  
PC5  
0.2  
PC6  
PAL NN1  
PAL NN2  
PAL NN3  
PAL WN1  
0.4  
0.6  
PAL WN2  
6  
8  
0.8  
1.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
1
2
3
4
5
6
FREQUENCY MHz  
FREQUENCY MHz  
Figure 13. Luminance PAL Narrow/Wide Notch  
Shaping Filter Responses (Close-Up)  
Figure 16. Luminance Peaking Filter Responses in  
CVBS (NTSC NN3 Selected)  
–12–  
REV. 0  
ADV7183  
CHROMINANCE PROCESSING  
0
10  
20  
30  
40  
50  
60  
Figure 17 shows the chrominance data path. The 10-bit data  
from the Y ADC (CVBS mode) or the C ADC (S-video) is first  
demodulated. The demodulation is achieved by multiplying by  
the locally generated quadrature subcarrier, where the sign of  
the cos subcarrier is inverted from line to line according to the  
PAL switch, and then low pass filtering is applied to removed  
components at twice the subcarrier frequency. For NTSC, the  
phase of the locally generated subcarrier during color burst is  
the same as the phase of the color burst. For PAL, the phase of  
the color burst changes from line to line, relative to the phase  
during active video, and the phase of the locally generated  
subcarrier is the average of these two values.  
SH1  
SH2 SH3 SH4 SH5  
SH6  
The chrominance data is then passed through an antialiasing  
filter which is a band-pass filter to remove the unwanted lumi-  
nance data. This antialaising filter dramatically reduces the  
external antialaising filter requirements as it has only to filter  
components above 25 MHz. In component mode the demodu-  
lation block is bypassed.  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FREQUENCY MHz  
Figure 18. Chrominance Shaping Filter Responses  
1.0  
0.8  
The next stage of processing is a shaping filter that can be used  
to limit the chrominance bandwidth to between 0.5 MHz  
and 3 MHz; the CSFM[2:0] can be used to select these  
responses. It should be noted that in CVBS mode a filter of no  
greater than 1.5 MHz should be selected, as CVBS video is  
typically band-limited to below 1.5 MHz. In S-video mode a  
filter of up to 2 MHz can be used. In component mode a filter  
of up to 3 MHz can be used as component video has higher  
bandwidth than CVBS or S-video.  
0.6  
0.2  
0.4  
0
0.2  
0.4  
SH1  
SH2SH3 SH4SH5  
SH6  
The chrominance data is then passed through a resampler to  
correct for line length variations in the input video. This  
resampler is designed to always output 720 pixels per line for  
standard PAL or NTSC. The resampler used on the ADV7183  
is of very high quality as it uses 64 phases to resample the video,  
giving 1/64 pixel resolution. The resampler is controlled by a  
sync detection block that calculates line length variations on the  
input video.  
0.6  
0.8  
1.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FREQUENCY MHz  
Figure 19. Chrominance Shaping Filter Responses  
(Close-Up)  
The final stage in the chrominance path, before it is applied to  
an output formatter block, is chroma comb filter.  
SINE  
ANTI-  
ALIASING  
LPF  
13.5MHz  
13.5MHz  
INTERLEAVE  
COSINE  
6.75MHz  
CV/C  
27MHz  
SHAPING  
LPF  
ANTI-  
ALIASING  
LPF  
SUBCARRIER  
RECOVERY  
SYNC  
DETECTION  
RESAMPLE  
U/V  
CHROMA  
COMB  
FILTERS  
Figure 17. Chrominance Processing Path  
REV. 0  
–13–  
ADV7183  
OUTPUT INTERFACE  
Mode Selection Overview  
viewable period of a video field. CAPI and SCAPI modes will  
always output data in 16-bit, so this mode of operation cannot be  
used when an 8-bit or 10-bit output interface is required. After  
power-up, the ADV7183 will default to the LLC-compatible  
8-bit CCIR656 4:2:2 @ LLC.  
The ADV7183 supports three output interfaces: LLC-compatible  
synchronous pixel interface, the CAPI interface, and the SCAPI  
interface. When the part is configured in the synchronous pixel  
interface mode, pixel and control data are output synchronous with  
LLC1 (8-bit mode) or LLC2 (16-bit mode). In this mode control  
and timing information for field, vertical blanking, and horizontal  
blanking identification may also be encoded as control codes.  
Synchronous Pixel Interface  
When the output is configured for an 8-bit pixel interface, the  
data is output on the pixel output port P[15:8]. In this mode,  
8 bits of chrominance data will precede 8 bits of luminance  
data. New pixel data is output on the pixel port after each  
rising edge of LLC1. When the output is configured for a 16-  
bit pixel interface, the luminance data is output on P[15:8]  
and the chrominance data on P[7:0]. In this mode the data is  
output with respect to LLC2. Figure 20 shows the basic timing  
relationship for this mode.  
When configured in CAPI or SCAPI mode only the active  
pixel data is output synchronous with the CLKIN (asynchronous  
FIFO clock). The pixels are output via a 512-pixel deep, 20-bit  
wide FIFO. HACTIVE and VACTIVE are output on independent  
pins. HACTIVE will be active during the active viewable period  
of a video line and VACTIVE will be active during the active  
LLC1  
LLC2  
PIXEL DATA  
P15-8[7:0]  
SAV  
SAV  
SAV  
SAV  
Y0  
Y1  
Y2  
Y3  
Y4  
XY  
00  
PIXEL DATA  
P7-0[7:0]  
Cb0  
Cr0  
Cb1  
Cr1  
Cb2  
00  
FF  
Figure 20. Synchronous Pixel Interface, 16-Bit Example  
–14–  
REV. 0  
ADV7183  
CVBS INPUT  
HREF  
DV  
VREF  
VSYNC  
FIELD  
SAV/EAV V BIT  
SAV/EAV H BIT  
SAV/EAV F BIT  
Figure 21. NTSC End Even Field (LLC Mode)  
CVBS INPUT  
HREF  
DV  
VREF  
VSYNC  
FIELD  
SAV/EAV V BIT  
SAV/EAV H BIT  
SAV/EAV F BIT  
Figure 22. NTSC End Odd Field (LLC Mode)  
REV. 0  
–15–  
ADV7183  
CVBS INPUT  
HREF  
DV  
VREF  
VSYNC  
FIELD  
SAV/EAV V BIT  
SAV/EAV H BIT  
SAV/EAV F BIT  
Figure 23. PAL End Even Field (LLC Mode)  
CVBS INPUT  
HREF  
DV  
VREF  
VSYNC  
FIELD  
SAV/EAV V BIT  
SAV/EAV H BIT  
SAV/EAV F BIT  
Figure 24. PAL End Odd Field (LLC Mode)  
–16–  
REV. 0  
ADV7183  
Control and Pixel Interface FIFO Modes  
By internally setting DV to RD the system ensures that the FIFO  
never overflows. When using this mode the status of data on the  
pixel outputs can be determined by two indicators, DV and QCLK.  
DV will go active two clock cycles (LLC1) before valid data appears  
on the bus. QCLK is a qualified clock derived from CLKIN, but  
will only be present when valid pixel data is output from the FIFO.  
DV indicates valid pixel or control code data. Using these two  
control signals, the user can differentiate between pixel information  
and invalid data. Figure 25 shows the basic timing relationship  
for this mode.  
When the ADV7183 is configured to operate in this mode, pixel  
data generated within the part is buffered by a 512-pixel deep  
FIFO. Only active video pixels and control codes are written into  
the FIFO; the others have been dropped. In this mode the output  
is operating asynchronously and a CLKIN must be provided to  
clock pixels out of the FIFO. The CLKIN must operate faster than  
the effective data transfer rate into the FIFO. This rate will be  
determined by the number of active pixels per line. If the CLKIN  
is not above this, the FIFO may overflow. The ADV7183 controls  
the FIFO when set to operate in SCAPI mode. DV (data valid) is  
internally fed back to the RD (read enable), unlike the synchronous  
pixel mode where DV will not indicate the validity of the current  
pixel and only acts as an indication of how much data is stored in  
the FIFO. DV will go high at the same time as AFF and remain  
high until the FIFO is empty.  
The operation of the ADV7183 in CAPI mode is similar to that  
of SCAPI mode with the exception that now the FIFO is con-  
trolled by the system; the system must monitor the almost full  
flag (AFF), the almost empty flag (AEF), and control the FIFO  
read enable (RD). Unlike SCAPI mode, the QCLK is not gated  
and is therefore continuous. Figure 26 shows the basic timing  
relationship of this mode.  
PIXEL DATA  
DV  
CLKIN  
QCLK  
AFF  
AEF  
NOTE  
THE POLARITY OF AFF AND AEF ARE CONTROLLED BY THE PFF BIT.  
DV POLARITY IS SET BY THE PDV BIT.  
Figure 25. SCAPI Output Mode FIFO Operation  
DATA  
RD  
CLKIN  
QCLK  
AFF  
AEF  
NOTE  
THE POLARITY OF AFF AND AEF ARE CONTROLLED BY THE PFF BIT.  
Figure 26. CAPI Output Mode FIFO Operation  
REV. 0  
–17–  
ADV7183  
Manual Clock Control  
To control the device on the bus the following protocol must be  
followed. First the master initiates a data transfer by establishing  
a start condition, defined by a high to low transition on SDATA  
while SCLOCK remains high. This indicates that an address/data  
stream will follow. All peripherals respond to the start condition  
and shift the next 8 bits (7-bit address + R/W bit). The bits are  
transferred from MSB down to LSB. The peripheral that recognizes  
the transmitted address responds by pulling the data line low  
during the ninth clock pulse. This is known as an acknowledge bit.  
All other devices withdraw from the bus at this point and maintain  
an idle condition. The idle condition is where the device monitors  
the SDATA and SCLOCK lines waiting for the start condition  
and the correct transmitted address. The R/W bit determines the  
direction of the data. A Logic “0” on the LSB of the first byte  
means that the master will write information to the peripheral.  
A Logic “1” on the LSB of the first byte means that the master  
will read information from the peripheral.  
The ADV7183 offers several output clock mode options; the  
output clock frequency can be set by the input video line length, a  
fixed 27 MHz output, or by a user-programmable value. Informa-  
tion on the clock control register at 28h can be found in the  
register access map. When Bit 6 of this register (CLKMANE) is  
set to Logic “1,” the output clock frequency will be determined  
by the user-programmable value (CLKVAL[15:0]). Using this  
mode the output clock frequency is calculated as:  
CLKVAL[17:0]  
3
16  
LLC =  
× 28 ×  
× 27 MHz  
220  
For example, a required clock frequency of 25 MHz would yield  
a CLKVAL of 2D266h (184934).  
Color Subcarrier Control  
The color subcarrier manual frequency control register  
(CSMF[27:0]) can be used to set the DDFS block to a user-  
defined frequency. This function can be useful if the color  
subcarrier frequency of the incoming video signal is outside the  
standard FSC lock range. Setting Bit 4 Reg 23h (CSM) to a  
Logic “1” enables the manual frequency control, the frequency  
of which will be determined by CSMF[27:0]. The value of  
CSMF[27:0] can be calculated as:  
The ADV7183 acts as a standard slave device on the bus. The  
data on the SDATA pin is 8 bits long, supporting the 7-bit  
addresses plus the R/W bit. The ADV7183 has 71 subaddresses  
to enable access to the internal registers. It therefore interprets  
the first byte as the device address and the second byte as the  
starting subaddress. The subaddresses autoincrement, allowing  
data to be written to or read from the starting subaddress. A  
data transfer is always terminated by a stop condition. The user  
can also access any unique subaddress register on a one-by-one  
basis, without having to update all the registers.  
228  
27 MHz  
CSMF[27:0] = FSC  
×
*Required  
MPU PORT DESCRIPTION  
Stop and start conditions can be detected at any stage during the  
data transfer. If these conditions are asserted out of sequence  
with normal read and write operations, they cause an immediate  
jump to the idle condition. During a given SCLOCK high period  
the user should only issue one start condition, one stop condition,  
or a single stop condition followed by a single start condition. If  
an invalid subaddress is issued by the user, the ADV7183 will  
not issue an acknowledge and will return to the idle condition.  
If the user exceeds the highest subaddress in autoincrement mode,  
the following action will be taken:  
The ADV7183 supports a 2-wire serial (I2C-compatible) micro-  
processor bus driving multiple peripherals. Two inputs, serial  
data (SDATA) and serial clock (SCLOCK) carry information  
between any device connected to the bus. Each slave device is  
recognized by a unique address. The ADV7183 has two possible  
slave addresses for both read and write operations. These are  
unique addresses for the device and are illustrated in Figure 27.  
The LSB sets either a read or write operation. Logic Level “1”  
corresponds to a read operation while Logic Level “0” corre-  
sponds to a write operation. A1 is set by setting the ALSB pin of  
the ADV7183 to Logic Level “0” or Logic Level “1.”  
1. In read mode, the highest subaddress register contents  
will continue to be output until the master device issues a  
no-acknowledge. This indicates the end of a read. A  
no-acknowledge condition is where the SDATA line is not  
pulled low on the ninth pulse.  
1
0
0
0
1
0
A11  
X2  
1Address Control. Set up by ALSB.  
2Read/Write Control. Write = 0; Read = 1  
2. In write mode, the data for the invalid byte will not be loaded  
into any subaddress register, a no-acknowledge will be issued  
by the ADV7183, and the part will return to the idle condition.  
Figure 27. Slave Address  
WRITE  
S
SLAVE ADDR A(S)  
SUB ADDR  
A(S)  
A(S)  
DATA  
A(S)  
DATA  
A(S)  
P
SEQUENCE  
LSB = 1  
LSB = 0  
READ  
SEQUENCE  
S
SLAVE ADDR A(S)  
SUB ADDR  
S
SLAVE ADDR A(S)  
DATA  
A(M)  
DATA  
A(M)  
P
S = START BIT  
P = STOP BIT  
A(S) = ACKNOWLEDGE BY SLAVE  
A(M) = ACKNOWLEDGE BY MASTER  
A(S) = NO-ACKNOWLEDGE BY SLAVE  
A(M) = NO-ACKNOWLEDGE BY MASTER  
Figure 28. Write and Read Sequences  
–18–  
REV. 0  
ADV7183  
SDATA  
SCLOCK  
S
P
17  
8
9
17  
8
9
17  
8
9
START ADDR R/W ACK SUB ADDR  
ACK  
DATA  
ACK  
STOP  
Figure 29. Bus Data Transfer  
Table II. Subaddress Register  
Register Name  
Addr (Hex)  
Register Name  
Addr (Hex)  
ADVANCED BLOCK  
Reserved  
BASIC BLOCK  
Input Control  
Video Selection  
Video Enhancement Control  
Output Control  
Extended Output Control  
General-Purpose Output  
Reserved  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
44  
45  
F1  
F2  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
Analog Control (Internal)  
Analog Clamp Control  
Digital Clamp Control 1  
Digital Clamp Control 2  
Shaping Filter Control  
Reserved  
Comb Filter Control  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Color Subcarrier Control 1  
Color Subcarrier Control 2  
Color Subcarrier Control 3  
Color Subcarrier Control 4  
Pixel Delay Control  
Manual Clock Control 1  
Manual Clock Control 2  
Manual Clock Control 3  
Auto Clock Control  
AGC Mode Control  
Chroma Gain Control 1  
Chroma Gain Control 2  
Luma Gain Control 1  
Luma Gain Control 2  
Manual Gain Shadow Control 1  
Manual Gain Shadow Control 2  
Misc Gain Control  
HSync Position Control 1  
HSync Position Control 2  
HSync Position Control 3  
Polarity Control  
FIFO Control  
Contrast Control  
Saturation Control  
Brightness Control  
Hue Control  
Default Value Y  
Default Value C  
Temporal Decimation  
Power Management  
Status Register  
Info Register  
REGISTER ACCESSES  
The MPU can write to or read from all of the registers of the  
ADV7183 except the subaddress register, which is a write only  
register. The subaddress register determines which register the  
next read or write operation accesses. All communications with  
the part through the bus start with an access to the subaddress  
register. Then a read/write operation is performed from/to the  
target address which then increments to the next address until a  
stop command on the bus is performed.  
REGISTER PROGRAMMING  
The following section describes each register in terms of its  
configuration.  
Subaddress Register (SR7–SR0)  
The communications register is an 8-bit write only register. After the  
part has been accessed over the bus and a read/write operation is  
selected, the subaddress is set up. The subaddress register  
determines to/from which register the operation takes place.  
Reserved  
Reserved  
Reserved  
Reserved  
Table II shows the various operations under the control of the  
subaddress register. Zero should always be written to SR7–SR6.  
Register Select (SR5–SR0)  
These bits are set up to point to the required starting address.  
REV. 0  
–19–  
ADV7183  
Table III. Basic Registers  
Addr  
(Hex) D7  
Register  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Input Control  
Video Selection  
00  
01  
VID SEL.3 VID SEL.2 VID SEL.1 VID SEL.0 INSEL.3  
INSEL.2  
SQPE  
INSEL.1  
INSEL.0  
ASE  
BETACAM 4FSC  
DIFFIN  
VID  
VID  
QUAL.1  
QUAL.0  
Video Enhancement 02  
Control  
COR.1  
COR.0  
YPM.2  
YPM.1  
YPM.0  
Output Control  
03  
04  
VBI EN  
TOD  
OF SEL.3 OF SEL.2 OF SEL.1 OF SEL.O OM SEL.1 OMEL.O  
RANGE  
Extended Output  
Control  
BT656-4  
General-Purpose  
Output  
05  
HL_EN  
BL_C_VBI GPEH  
GPEL  
GP0.3  
GP0.2  
GP0.1  
GP0.0  
Reserved  
06  
07  
08  
FIFO Control  
Contrast Control  
FFST  
AFR  
FR  
FFM.4  
CON.4  
SAT.4  
BRI.4  
FFM.3  
CON.3  
SAT.3  
BRI.3  
FFM.2  
CON.2  
SAT.2  
BRI.2  
FFM.1  
CON.1  
SAT.1  
BRI.1  
FFM.0  
CON.0  
SAT.0  
BRI.0  
CON.7  
SAT.7  
BRI.7  
CON.6  
SAT.6  
BRI.6  
CON.5  
SAT.5  
BRI.5  
Saturation Control 09  
Brightness Control 0A  
Hue Control  
0B  
0C  
HUE.7  
DEF Y.5  
HUE.6  
DEF Y.4  
HUE.5  
DEF Y.3  
HUE.4  
DEF Y.2  
HUE.3  
DEF Y.1  
HUE.2  
DEF Y.0  
HUE.1  
HUE.0  
Default Value Y  
DEF_  
DEF_  
AUTO_EN VAL_EN  
Default Value C  
0D  
0E  
DEF C.7  
DEF C.6  
TDR.3  
DEF C.5  
TDR.2  
DEF C.4  
TDR.1  
DEF C.3  
TDR.0  
DEF C.2  
TDC.1  
DEF C.1  
TDC.0  
DEF C.0  
TDE  
Temporal  
Decimation  
Power Management 0F  
RES  
TRAQ  
PWRDN  
PS CG  
PS REF  
PDBP  
PSC.1  
PSC.0  
Status Register  
Info Register  
10  
11  
STATUS.7 STATUS.6 STATUS.5 STATUS.4 STATUS.3 STATUS.2 STATUS.1 STATUS.0  
IDENT.7 IDENT.6 IDENT.5 IDENT.4 IDENT.3 IDENT.2 IDENT.1 IDENT.0  
Table IV. Advanced Registers  
Addr  
(Hex) D7  
Register  
Reserved  
Reserved  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
12  
13  
14  
TIM_OE  
FICL.1  
Analog Clamp  
Control  
VCLEN  
DCT.0  
CCLEN  
DCFE  
FACL.1  
FACL.0  
FICL.0  
Digital Clamp  
Control 1  
15  
16  
17  
18  
DCCM  
DCT.1  
DCC0.11 DCC0.10 DCC0.9  
DCC0.8  
DCC0.0  
YSFM.0  
Digital Clamp  
Control 2  
DCC0.7  
CSFM.2  
DCC0.6  
CSFM.1  
DCC0.5  
CSFM.0  
DCC0.4  
YSFM.4  
DCC0.3  
YSFM.3  
DCC0.2  
YSFM.2  
DCC0.1  
YSFM.1  
Shaping Filter  
Control  
Reserved  
Comb Filter Control 19  
CCMB_AD CCM.1  
CCM.0  
Color Subcarrier  
Control 1  
23  
CSM  
CSMF.27 CSMF.26 CSMF.25 CSMF.24  
–20–  
REV. 0  
ADV7183  
Table IV. Advanced Registers (continued)  
Addr  
(Hex) D7  
Register  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Color Subcarrier  
Control 2  
24  
25  
26  
CSMF.23 CSMF.22 CSMF.21 CSMF.20 CSMF.19 CSMF.18 CSMF.17 CSMF.16  
Color Subcarrier  
Control 3  
CSMF.15 CSMF.14 CSMF.13 CSMF.12 CSMF.11 CSMF.10 CSMF.9  
CSMF.8  
CSMF.0  
Color Subcarrier  
Control 4  
CSMF.7  
CSMF.6  
CSMF.5  
CTA.2  
CSMF.4  
CTA.1  
CSMF.3  
CTA.0  
CSMF.2  
CSMF.1  
Pixel Delay Control 27  
SWPC  
Manual Clock  
Control 1  
28  
29  
2A  
FIX27E  
CLKMANE  
CLKVAL. CLKVAL.  
17 16  
Manual Clock  
Control 2  
CLKVAL. CLKVAL. CLKVAL. CLKVAL. CLKVAL. CLKVAL. CLKVAL.9 CLKVAL.8  
15 14 13 12 11 10  
Manual Clock  
Control 3  
CLKVAL.7 CLKVAL.6 CLKVAL.5 CLKVAL.4 CLKVAL.3 CLKVAL.2 CLKVAL.1 CLKVAL.0  
Auto Clock Control 2B  
AGC Mode Control 2C  
ACKLM.2 ACKLM.1 ACKLM.0  
LAGC.2  
CAGT.0  
LAGC.1  
CMG.5  
LAGC.0  
CMG.4  
CAGC.1  
CMG.9  
CAGC.0  
CMG.8  
Chroma Gain  
Control 1  
2D  
2E  
2F  
30  
31  
32  
CAGT.1  
CMG.7  
LAGT.1  
LMG.7  
SGUE  
CMG.11  
CMG.3  
LMG.11  
LMG.3  
CMG.10  
CMG.2  
LMG.10  
LMG.2  
Chroma Gain  
Control 2  
CMG.6  
LAGT.0  
LMG.6  
CMG.1  
LMG.9  
LMG.1  
CMG.0  
Luma Gain  
Control 1  
LMG.8  
Luma Gain  
Control 2  
LMG.5  
LMG.4  
LMG.0  
Manual Gain  
Shadow Control 1  
LMGS.11 LMGS.10 LMGS.9  
LMGS.8  
LMGS.10  
PW_UPD  
Manual Gain  
LMGS.7  
LMGS.6  
LMGS.5  
LMGS.4  
LMGS.3  
MIRE.1  
LMGS.2  
MIRE.0  
LMGS.1  
AV_AL  
Shadow Control 2  
Misc Gain Control 33  
CKE  
MIRE.2  
HSE.8  
Hsync Position  
Control 1  
34  
35  
36  
37  
HSB.9  
HSB.7  
HSE.7  
PHS  
HSB.8  
HSE.9  
HSB.5  
HSE.5  
PVS  
Hsync Position  
Control 2  
HSB.6  
HSE.6  
HSB.4  
HSE.4  
PLLCR  
HSB.3  
HSE.3  
PF  
HSB.2  
HSE.2  
PDV  
HSB.1  
HSE.1  
PFF  
HSB.0  
HSE.0  
PCLK  
Hsync Position  
Control 3  
Polarity Control  
PHVR  
Resample Control 44  
FSC_INV  
Reserved  
Reserved  
F1  
F2  
REV. 0  
–21–  
ADV7183  
Table V. Input Control Register (Subaddress 00)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
INSEL[3:0]1  
CVBS In on AIN12  
CVBS In on AIN2  
CVBS In on AIN3  
CVBS In on AIN4  
CVBS In on AIN5  
CVBS In on AIN6  
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
Y on AIN1, C on AIN43  
Y on AIN2, C on AIN5  
Y on AIN3, C on AIN6  
Y on AIN1, U on AIN4,V on AIN5 4  
Y on AIN2, U on AIN3,V on AIN6  
Auto Detect PAL (BGHID), NTSC without  
Pedestal  
Auto Detect PAL (BGHID), NTSC (M) with  
Pedestal  
VID_SEL[3:0]5  
0
0
0
0
0
0
0
0
1
0
1
0
Auto Detect PAL (N), NTSC (M) without  
Pedestal  
0
0
0
0
0
1
1
1
1
1
1
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
Auto Detect PAL (N), NTSC (M) with Pedestal  
NTSC (M) without Pedestal  
NTSC (M) with Pedestal  
NTSC 4.43 without Pedestal  
NTSC 4.43 with Pedestal  
PAL BGHID without Pedestal  
PAL N with Pedestal  
PAL M without Pedestal  
PAL M with Pedestal  
PAL Combination N  
PAL Combination N with Pedestal  
NOTES  
1Allows the user to select an input channel as well as the input format.  
2Composite  
3S-Video  
4YUV  
5Allows the user to select the input video standard.  
Table VI. Video Selection Register (Subaddress 01)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
VID_QUAL[1:0]1  
0
0
1
1
0
1
0
1
Broadcast Quality  
TV Quality  
VCR Quality  
Surveillance Quality  
Standard Mode  
SQPE2  
0
1
Enable Square Pixel Mode  
Single-Ended Inputs  
Differential Inputs  
Standard Video Operation  
DIFFIN3  
FFSC4  
0
1
0
1
Select 4 FSC Mode5  
BETACAM  
0
1
Standard Video Input  
Betacam Input Enable  
Set to Zero  
INSEL change will not cause reacquire.  
INSEL change will trigger reacquire.  
RESERVED  
ASE6  
0
1
0
NOTES  
1Allows the user to influence the time constant of the system depending on the input video quality.  
2Allows the user to enable/disable the square pixel operation.  
3Allows the user to select a differential input mode for every entry in the INSEL[3:0] table.  
44 FSC Mode. Allows the selection of a special NTSC mode where the data is resampled to 4 FSC sampling rate. As a result the LLC will operate at a 4 FSC rate as well.  
Only valid for NTSC input.  
5NTSC only  
6Automatic Startup Enable. When set a change in the INSEL register will automatically be detected and lead the device to enter a video reacquire mode. May be  
disabled for genlocked video sources.  
–22–  
REV. 0  
ADV7183  
Table VII. Video Enhancement Control Register (Subaddress 02)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
YPM[2:0]1  
C = 4.5 dB, S = 9.25 dB2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
C = 4.5 dB, S = 9.25 dB3  
C = 4.5 dB, S = 5.75 dB  
C = 1.25 dB, S = 3.3 dB  
No Change; C = 0, S = 0  
C = –1.25 dB, S = –3 dB  
C = –1.75 dB, S = –8 dB  
C = –3.0 dB, S = –8 dB  
No Coring  
COR[1:0]4  
0
0
1
1
0
1
0
1
Truncate if Y < black + 8  
Truncate if Y < black + 16  
Truncate if Y < black + 32  
Set to Zero  
RESERVED  
0
0
0
NOTES  
1Y Peaking Filter Mode. Allows the user to boost/attenuate luma signals around the color subcarrier frequency. Used to enhance the picture and improve the contrast.  
2C = Composite (2.6 MHz)  
3S = S-Video (3.75 MHz)  
4Coring Selection. Controls optional coring of the Y output signal depending on its level.  
Table VIII. Output Control Register (Subaddress 03)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
OM_SEL[1:0]1  
0
0
1
1
0
1
0
1
LLC-Compatible  
SCAPI Mode  
CAPI Mode  
NotValid Setting  
OF_SEL[3:0] 2  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
16-bit @ LLC2 4:2:2 CCIR656  
8-bit @ LLC 4:2:2 CCIR656  
12-bit @ LLC2 4:1:1  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
TOD3  
0
1
Drivers Dependent on OE Pin  
DriversThree-Stated Regardless of OE Pin  
All Lines Filtered and Scaled  
ActiveVideo Region Only  
VBI_EN4  
0
1
NOTES  
1Output Mode Selection. Selects the output mode as in the timing and interface type.  
2Allows the user to choose from a set of output formats.  
3Three-State Output Drivers. Allows the user to three-state the output drivers regardless of the state of the OE pin.  
4Allows VBI data (lines 1 to 21) to be passed through with only a minimum amount of filtering performed.  
REV. 0  
–23–  
ADV7183  
Table IX. Extended Output Control Register (Subaddress 04)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
RANGE1  
0
CCIR-Compliant  
1
FillWhole Accessible Range  
RESERVED  
DDOS[2:0]2  
BT656-44  
1
1
0
No Additional Data3  
BT656-3-Compatible  
BT656-4-Compatible  
0
0
0
0
1
NOTES  
1Allows the user to select the range of output values. Can be CCIR601-compliant or fill the whole accessible number range.  
2D Data Output Selection. If the 100-pin package is used, the 12 additional pins can output additional data.  
312 Pins Three-State  
4Allows the user to select an output mode that is compatible with BT656-4 or BT656-3.  
Table X. General-Purpose Output Register (Subaddress 05)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
GPO[3:0]1  
0
0
0
0
User Programmable  
HDTest Pattern Off  
GPEL2  
0
0
GPO[1:0]Three-Stated  
GPO[1:0] Enabled  
1
1
GPEH3  
GPO[3:2]Three-Stated  
GPO[3:2] Enabled  
BL_C_VBI4  
HL_EN5  
0
1
Decode and Output Color DuringVBI  
Blank Cr and Cb Data DuringVBI  
GPO[0] Pin Function6  
0
1
GPO[0] Shows HLOCK Status6  
NOTES  
1Pixel Data Valid Off. These general-purpose output pins may be programmed by the user but are only available in selected output modes OF_SEL[3:0] and when the  
output drivers are enabled using GPEL, GPEH, and HL_Enable bits.  
2General Purpose Enable Low. Enables the output drivers for the general-purpose outputs Bits 0 and 1.  
3General Purpose Enable High. Enables the output drivers for the general-purpose outputs Bits 2 and 3.  
4Blank Chroma During VBI.  
5Hlock Enable. This bit causes the GPO[0] pin to output Hlock instead of GPO[0]. Only available in certain output modes.  
6GPO lower bits must be enabled GPEL. Disabled.  
Table XI. FIFO Control Register (Subaddress 07)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
FFM[4:0]1  
FR2  
0
0
1
0
0
User Programmable  
0
1
Normal Operation  
FIFO Reset3  
AFR4  
0
1
No Auto Reset  
Auto Reset  
Synchronous to CLKIN  
Synchronous to 27 MHz  
FFST 5  
0
1
NOTES  
1FIFO Flag Margin. Allows the user to program the location at which the FIFO flags AEF and AFF.  
2FIFO Reset. Setting this bit will cause the FIFO to reset.  
3Bit is auto cleared.  
4Automatic FIFO Reset. Setting this bit will cause the FIFO to automatically reset at the end of each field of video.  
5FIFO Flag Self Time. Sets whether the FIFO flags AEF, AFF, and HFF are output synchronous to the external CLKIN of the 27 MHz internal clock.  
Table XII. Contrast Register (Subaddress 08)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
CON[7:0]*  
1
0
0
0
0
0
0
0
*Contrast Adjust. This is the user control for contrast adjustment.  
–24–  
REV. 0  
ADV7183  
Table XIII. Saturation Adjust Register (Subaddress 09)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
SAT[7:0]*  
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
–42 dB  
0 dB  
6 dB  
*Saturation Adjust. Allows the user to adjust the saturation of color output.  
Table XIV. Brightness Adjust Register (Subaddress 0A)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
BRI[7:0]*  
0
0
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0 dB  
3 dB  
–3 dB  
*Controls the brightness of the video signal. Range = 3 dB.  
Table XV. Hue Adjust Register (Subaddress 0B)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
HUE[7:0]*  
0
0
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0°  
90°  
–90°  
*Contains the value for the color hue adjustment. Range = 90°.  
Table XVI. Default Value Y Register (Subaddress 0C)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
DEF_ VAL_ EN1  
Use Programmed Value2  
0
1
Use Default Value  
Use Programmed Value4  
Use Default Value  
DEF_ VAL_  
AUTO_EN3  
DEF_Y[5:0]5  
0
1
0
0
0
1
0
0
NOTES  
1Default Value Enable  
2Y, Cr, and Cb Values  
3Default Value Auto-Enable. In the case of lost lock enables/disables default values.  
4When lock is lost.  
5Default Value Y. Holds the Y default value.  
Table XVII. Default Value C Register (Subaddress 0D)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
DEF_C[7:0]*  
1
0
0
0
Cr[7:0] = {DEF_C[7:4], 0, 0, 0, 0}  
Cb[7:0] = {DEF_C[3:0], 0, 0, 0, 0}  
1
0
0
0
*Default Value C. Cr and Cb default values are defined in this register.  
REV. 0  
–25–  
ADV7183  
Table XVIII. Temporal Decimation Register (Subaddress 0E)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
TDE1  
0
Disabled  
1
Enabled  
TDC[1:0]2  
0
0
1
1
0
1
0
1
Suppress Frames; Start with Even Field  
Suppress Frames; Start with Odd Field  
Suppress Even Fields Only  
Suppress Odd Fields Only  
Skip None  
TDR[3:0]3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Skip 1 Field/Frame  
Skip 2 Fields/Frames  
Skip 3 Fields/Frames  
Skip 4 Fields/Frames  
Skip 5 Fields/Frames  
Skip 6 Fields/Frames  
Skip 7 Fields/Frames  
Skip 8 Fields/Frames  
Skip 9 Fields/Frames  
Skip 10 Fields/Frames  
Skip 11 Fields/Frames  
Skip 12 Fields/Frames  
Skip 13 Fields/Frames  
Skip 14 Fields/Frames  
Skip 15 Fields/Frames  
Set to Zero  
RESERVED  
0
NOTES  
1Temporal Decimation Enable. Allows the user to enable/disable the temporal function. Configured using TDC[1:0] and TDR[3:0].  
2Temporal Decimation Control. Allows the user to select the suppression of selected fields of video.  
3Temporal Decimation Rate. Specifies how many fields/frames to be skipped before a valid one is output. As specified in the TDC[1:0] register.  
Table XIX. Power Management Register (Subaddress 0F)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
PSC[1:0]1  
0
0
1
1
0
1
0
1
Full Operation  
CVBS Input Only  
Digital Only  
Power Save Mode  
Power-Down Controller by Pin  
Power-Down Controller by Bit  
Reference Functional  
Reference in Power Save Mode  
Clock Generator Functional  
CG in Power Save Mode  
System Functional  
PDBP2  
PS_REF3  
PS_CG4  
PWRDN5  
TRAQ6  
0
1
0
1
0
1
0
1
Power-Down  
Normal Operation  
Require Video Signal  
0
1
RESET7  
0
1
Resets Digital Core and I2C  
NOTES  
1Power Save Control. Allows a set of different power save modes to be selected.  
2Power Down Bit Priority. There are two ways to shut down the digital core; the Power-Down Bit sets which has higher priority.  
3Power Save Reference. Allows the user to enable/disable the internal analog reference.  
4Power Save for the LLC Clock Generator  
5Power Down. Disables the input pads and powers down the 27 MHz clock.  
6Timing Reacquire. Will cause the part to reaquire the video signal and is the software version of the ISO pin. If bit is set will clear itself on the next 27 MHz clock  
cycle.  
7Resets Digital Core and I2C self-clearing bit.  
–26–  
REV. 0  
ADV7183  
Table XX. Status Register1 (Subaddress 10)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
2
0
STATUS[7:0]  
In Lock (current)  
1
0
1
Lost Lock (since last read)  
FSC Locked (current)  
50 Hz Field Rate Auto Detected  
ADC Underflow Detected  
ADC Overflow Detected  
White Peak Active  
0
1
0
1
0
1
0
1
0
1
0
1
Color Kill Active  
NOTES  
1Read only  
2Provides information about the internal status of the decoder.  
Table XXI. Info Register1 (Subaddress 11)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
IDENT[7:0]2  
X
X
X
X
X
X
X
X
0 = v85a, 3 = v85b, 4 = v85b3, 5 = v85b3  
NOTES  
1Read only  
2Provides identification on the revision of the part.  
Table XXII. Analog Control Internal Register (Subaddress 13)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
TIM_OE*  
0
1
Dependent on  
OE andTOD  
HS,VS, F Forced Active  
RESERVED  
0
1
0
0
0
1
1
Set at DefaultValue  
*Timing Signals Output. Enables the user to force the output drivers for H-SYNC,V-SYNC, and Field into an active state regardless of the OE pin and TOD bit.  
Table XXIII. Analog Clamp Control Register (Subaddress 14)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
FICL[1:0]1  
0
0
1
1
0
1
0
1
I On for 16 Clock Cycles  
I On for 32 Clock Cycles  
I On for 64 Clock Cycles  
I On for 128 Clock Cycles  
I On for 16 Clock Cycles  
I On for 32 Clock Cycles  
I On for 64 Clock Cycles  
I On for 128 Clock Cycles  
I Sources Switched Off  
I Sources Enabled  
FACL[1:0]2  
0
0
1
1
0
1
0
1
CCLEN3  
VCLEN4  
0
1
0
1
Voltage Clamp Disabled  
Voltage Clamp Enabled  
Set to Zero  
RESERVED  
0
0
NOTES  
1Fine Clamp Length. Controls the number of clock cycles for which the slow current is on.  
2Fast Clamp Length. Controls the number of clock cycles for which the fast current is on.  
3Current Clamp Enable. Allows the user to switch off the I sources in the analog front end.  
4Voltage Clamp Enable. Allows the user to disable the voltage clamp circuitry.  
REV. 0  
–27–  
ADV7183  
Table XXIV. Digital Clamp Control 1 Register (Subaddress 15)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
DCCO[11:8] 1  
DCFE 2  
X
X
X
X
Only applicable if DCCM is set to manual offset  
mode.  
Digital Clamp Operational  
Digital Clamp Frozen  
Slow (TC = 1 second)  
Medium (TC = 0.5 second)  
Fast (TC = 0.1 second)  
Dependent onVID_QUAL  
Automatic Digital Clamp  
0
1
DCT[1:0]3  
0
0
1
1
0
1
0
1
DCCM[7:0] 4  
0
1
Manual Offset Correction5  
NOTES  
1Digital Color Clamp Offset. Holds upper 4 bits of the digital offset value which is added to the raw data from the ADC before entering the core.  
2Digital Clamp Freeze Enable. Allows the user to freeze the digital clamp loop at any point in time.  
3Digital Clamp Timing. Determines the time constant of the digital clamping circuitry.  
4Digital Color Clamp Mode. Sets the mode of operation for the digital clamp circuitry. Offset correction via DCCO for C only.  
5Offset Correction via DCCO for C only.  
Table XXV. Digital Clamp Control 2 Register (Subaddress 16)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
DCCO[7:0]*  
X
X
X
X
X
X
X
X
*Digital Color Clamp Offset. Holds the lower 8 bits of the digital offset value which is added to the raw data from the ADC before entering the core. Only applicable if  
DCCM is set to manual offset mode.  
Table XXVI. Shaping Filter Control Register (Subaddress 17)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
YSFM[4:0]1  
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Auto Wide Notch  
Auto Narrow Notch  
SVHS 1  
SVHS 17  
PAL NN1  
PAL NN2  
PAL NN3  
PAL WN 1  
PAL WN 2  
NTSC NN1  
NTSC NN2  
NTSC NN3  
NTSC WN1  
NTSC WN2  
NTSC WN3  
Not Used  
SVHS 18  
CSFM[2:0]2  
0
0
0
1
1
0
0
1
1
1
0
1
0
0
1
Auto Selection 1.5 MHz  
Auto Selection 2.17 MHz  
SH1  
SH5  
SH6  
NOTES  
1Y Shaping Filter Mode. Allows the user to select a wide range of low-pass and notch filters.  
2C Shaping Filter Mode. Allows the selection from a range of low-pass chrominance filters. Auto = filter selected based on scaling factor.  
–28–  
REV. 0  
ADV7183  
Table XXVII. Comb Filter Control Register (Subaddress 19)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
RESERVED  
0
0
0
0
0
Set to Zero  
No Comb  
1H  
2H  
NotValid, Do Not Use  
Chroma Comb Nonadaptive  
Chroma Comb Adaptive  
CCM[1:0]1  
0
0
1
1
0
1
0
1
CCMB_AD2  
0
1
NOTES  
1Chroma Comb Mode. Selects a primary mode for the filter.  
2Chroma Comb Adaptive  
Table XXVIII. Color Subcarrier Control 1 Register (Subaddress 23)  
Bit Description  
CSMF[27:24]1  
CSM2  
Register Setting  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
X
X
X
X
0
1
Manual FSC Disabled  
User Defined FSC 3  
Set to One  
RESERVED  
1
1
1
NOTES  
1Color Subcarrier Manual Frequency. Holds the value used to enable the user to support odd subcarrier frequencies.  
2Color Subcarrier Manual  
3Defined in CSFM[27:0]  
Table XXIX. Color Subcarrier Control 2 Register (Subaddress 24)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
CSMF[23:16]*  
X
X
X
X
X
X
X
X
*Color Subcarrier Manual Frequency. Holds the value used to enable the user to support odd subcarrier frequencies.  
Table XXX. Color Subcarrier Control 3 Register (Subaddress 25)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
CSMF[15:8]*  
X
X
X
X
X
X
X
X
*Color Subcarrier Manual Frequency. Holds the value used to enable the user to support odd subcarrier frequencies.  
Table XXXI. Color Subcarrier Control 4 Register (Subaddress 26)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
CSMF[7:0]*  
X
X
X
X
X
X
X
X
*Color Subcarrier Manual Frequency. Holds the value used to enable the user to support odd subcarrier frequencies.  
REV. 0  
–29–  
ADV7183  
Table XXXII. Pixel Delay Control Register (Subaddress 27)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
RESERVED  
CTA[2:0]1  
0
0
0
Set to Zero  
Not Valid  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Chroma + 2 Pixel (Early)  
Chroma + 1 Pixel (Early)  
No Delay  
Chroma – 1 Pixel (Late)  
Chroma – 2 Pixel (Late)  
Chroma – 3 Pixel (Late)  
Not Valid  
RESERVED  
SWPC2  
1
Set to One  
No Swapping  
Swap the Cr and Cb Values  
0
1
NOTES  
1Chroma Timing Adjust. Allows a specified timing difference between the luma and chroma samples.  
2Allows the Cr and Cb samples to be swapped.  
Table XXXIII. Manual Clock Control 1 Register (Subaddress 28)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
CLKVAL[17:16]1  
RESERVED  
X
X
1
1
1
1
Set to Default  
CLKMANE2  
0
1
Output Frequency Set by Video  
Frequency Set by CLKVAL[17:0]  
Output Frequency Set by Clock Generator  
Output 27 MHz Fixed  
FIX27E3  
0
1
NOTES  
1If enabled via CLKMANE, CLKVAL[17:0] determines the fixed output frequency. On the LLC, LLC2, and LLCREF pins.  
2Clock Generator Manual Enable. Allows the analog clock generator to produce a fixed clock frequency that is not dependent on the video signal.  
3Allows the o/p of fixed 27 MHz crystal clock via LLC, LLC2, and LLCREF o/p pins.  
Table XXXIV. Manual Clock Control 2 Register (Subaddress 29)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
CLKVAL[15:8]* X  
X
X
X
X
X
X
X
*If enabled via CLKMANE, CLKVAL[17:0] determines the fixed output frequency. On the LLC, LLC2, and LLCREF pins.  
Table XXXV. Manual Clock Control 3 Register (Subaddress 2A)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
CLKVAL[7:0]*  
X
X
X
X
X
X
X
X
*If enabled via CLKMANE, CLKVAL[17:0] determines the fixed output frequency. On the LLC, LLC2, and LLCREF pins.  
–30–  
REV. 0  
ADV7183  
Table XXXVI. Auto Clock Control Register (Subaddress 2B)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
RESERVED  
0
0
0
0
0
Set to Zero  
ACLKN[2:0]*  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
Color Burst Line  
Start Line 24 Color Burst Line  
Active Video  
Active Video (<304) PAL, (<264) NTSC  
Active Video (<304) PAL, (<256) NTSC  
Active Video (<319/320) PAL, (<273/274) NTSC  
1
1
1
1
0
1
Invalid  
Invalid  
*Automatic Clock Generator Mode. Influences the mode of operation for the LLC. Only when not in Manual Mode.  
Table XXXVII. AGC Mode Control Register (Subaddress 2C)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
CAGC[1:0] 1  
0
0
1
1
0
1
0
1
Manual Fixed Gain; use CMG [11:0]  
Use Luma Gain for Chroma  
Automatic Gain; Based on Color Burst  
Freeze Chroma Gain  
RESERVED  
LAGC[2:0] 2  
1
1
Set to One  
Manual Fixed Gain3  
0
0
0
0
0
1
AGC No Override throughWhite Peak; Manual IRE  
Control4  
0
0
1
1
1
0
0
1
0
AGC Auto Override throughWhite Peak; Manual  
IRE Control4  
AGC No Override throughWhite Peak; Manual IRE  
Control4  
AGC Auto Override throughWhite Peak; Manual  
IRE Control4  
1
1
1
0
1
1
1
0
1
AGC ActiveVideo withWhite Peak  
AGC ActiveVideo with AverageVideo  
Freeze Gain  
RESERVED  
1
Set to One  
NOTES  
1Chroma Automatic Gain Control. Selects the basic mode of operation for the AGC in the chroma path.  
2Luma Automatic Gain Control. Selects the mode of operation for the gain control in the luma path.  
3Use LMG[11:0].  
4Blank level to sync tip.  
Table XXXVIII. Chroma Gain Control 1 Register (Subaddress 2D)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
CMG[11:8]1  
RESERVED  
CAGT[1:0]2  
X
X
X
X
1
1
Set to One  
0
0
Slow (TC = 2 sec)  
Medium (TC = 1 sec)  
Fast (TC = 0.2 sec)  
Dependent onVID_QUAL  
0
1
1
1
0
1
NOTES  
1Chroma Manual Gain. Can be used to program a desired manual chroma gain or read back the actual used gain value. CAGC[1:0] settings will decide in which mode  
CMG[11:0] will operate.  
2Chroma Automatic Gain Timing. Allows adjustment of the Chroma AGC tracking speed. Will only have effect if CAGC[1:0] is set to auto gain (10b).  
Table XXXIX. Chroma Gain Control 2 Register (Subaddress 2E)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
CMG[7:0]*  
X
X
X
X
X
X
X
X
*Chroma Manual Gain. Lower 8 bits, see CMG [11:8] for description.  
REV. 0  
–31–  
ADV7183  
Table XL. Luma Gain Control 1 Register (Subaddress 2F)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
LMG[11:8]1  
RESERVED  
LAGT[1:0]2  
X
X
X
X
Set to One  
1
1
Slow (TC = 2 sec)  
Medium (TC = 1 sec)  
Fast (TC = 0.2 sec)  
Dependent onVID_QUAL  
0
0
1
1
0
1
0
1
NOTES  
1Luma Manual Gain. Can be used to program a desired manual chroma gain or read back the actual used gain value. LAGC[1:0] settings will decide in which mode  
LMG[11:0] will operate.  
2Luma Automatic Gain Timing. Allows adjustment of the Luma AGC tracking speed. Will only have effect if LAGC[1:0] is set to auto gain (001, 010, 001, or 100).  
Table XLI. Luma Gain Control 2 Register (Subaddress 30)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
LAGC [1:0] Settings Will Decide What  
Mode LMG [11:0] Operates In.  
LMG[7:0]*  
X
X
X
X
X
X
X
X
*Luma Manual Gain. Can be used to program a desired manual chroma gain or read back the actual used gain value.  
Table XLII. Manual Gain Shadow Control 1 Register (Subaddress 31)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
LMGS[11:8]1  
RESERVED  
SGUE2  
X
X
X
X
1
1
1
Set to One  
Disable LMGS Update  
Use LMGS Update Facility  
0
1
NOTES  
1Luma Manual Gain Store. Has dual functions; a desired manual luma gain can be programmed or a readback from the register will return the actual gain used. Gain  
value will only become active when LAGC[2:0] set to manual fixed gain. The function and readback value are dependent on LAGC[2:0] setting.  
2Surveillance Gain Update Enable. Enables surveillance mode operation (see LMGS[11:0] for details).  
Table XLIII. Manual Gain Shadow Control 2 Register (Subaddress 32)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
LMG[7:0]*  
X
X
X
X
X
X
X
X
*Chroma Manual Gain. Lower 8 bits, see LMG[11:8] for description.  
–32–  
REV. 0  
ADV7183  
Table XLIV. Miscellaneous Gain Control Register (Subaddress 33)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
PW_UPD 1  
0
1
Update Gain Once per Line  
Update Gain Once per Field  
Lines 33 to 310  
AV_AL 2  
0
1
Lines 33 to 270  
MIRE[2:0]3  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
PAL-133 NTSC-122  
PAL-125 NTSC-115  
PAL-120 NTSC-110  
PAL-115 NTSC-105  
PAL-110 NTSC-100  
PAL-105 NTSC-100  
PAL-100 NTSC-100  
PAL-100 NTSC-100  
Set to One  
RESERVED  
1
4
0
1
Color Kill Disabled  
Color Kill Enabled  
Set to One  
CKE  
RESERVED  
1
NOTES  
1Peak White Update. Determines the gain based on measurements taken from the active video; this bit determines the rate of gain change. LAGC[1:0] must be set to  
the appropriate mode to enable peak white or average video in the first case.  
2Average Brightness Active Lines. Allows the selection between two ranges of active video to determine the average brightness.  
3Max IRE. Sets the max I/p IRE level depending on the video standard.  
4Color Kill Enable. Allows the optional color kill function to be switched on or off.  
Table XLV. HSync Position Control 1 Register (Subaddress 34)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
RESERVED  
1
1
1
1
Set to One  
HSE[9:8]1  
0
0
HSync ends after HSE[9:0] pixel after falling edge  
of HSync.  
HSync starts after HSB[9:0] pixel after the falling  
edge of HSync.  
HSB[9:8]2  
0
0
NOTES  
1HSync End. Allows the positioning of the HSync output within the video line.  
2HSync Begin. Allows the positioning of HSync output within the video line.  
Table XLVI. HSync Position Control 2 Register (Subaddress 35)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
HSB[7:0]1  
0
0
0
0
0
0
0
1
1Using HSB[9:0] and HSE[9:0] the user can program the position and length of HSync output signal.  
Table XLVII. HSync Position Control 3 Register (Subaddress 36)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
HSE[7:0]1  
0
0
0
0
0
0
0
1
1Using HSB[9:0] and HSE[9:0] the user can program the position and length of HSync output signal.  
REV. 0  
–33–  
ADV7183  
Table XLVIII. Polarity Register (Subaddress 37)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
PCLK1  
0
1
Active High  
Active Low  
Active High  
Active Low  
Active High  
Active Low  
Active High  
Active Low  
Active High  
Active Low  
Active High  
Active Low  
Active High  
Active Low  
Active High  
Active Low  
PFF2  
0
1
PDV3  
PF4  
0
1
0
1
PLLCR5  
PVS6  
0
1
0
1
PHVR7  
PHS8  
0
1
0
1
NOTES  
1Sets the polarity of LLC, LLC2, and QClk.  
2Sets the polarity of HFF, AEF, and AFF.  
3Sets the polarity for Data Field.  
4Sets the field sync polarity.  
5Sets the LLCREF polarity.  
6Sets the VSync polarity.  
7Sets the HREF and VREF sync polarities.  
8Sets HSync Polarity.  
–34–  
REV. 0  
ADV7183  
Table XLIX. Resample Control Register (Subaddress 44)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
RESERVED  
0
0
0
0
0
1
Set to Default  
FSC_INV*  
X
0
NB No DefaultValue < v85c  
Compatible with ADV7190, ADV7191, and  
ADV7194  
1
Compatible with ADV717x  
Set to Zero  
RESERVED  
0
*Color Subcarrier RTCO Inversion. Allows the inversion of the GL bit.  
Table L. Reserved (Subaddress 45)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
Reserved  
Functions  
0
1
0
0
1
1
X
1
X
1
0
0
1
1
1
1
Default Values  
Set to These Values  
Table LI. Reserved (Subaddress F1)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
Reserved  
Functions  
1
1
1
1
1
1
1
0
0
1
1
1
1
1
X
1
Default Values  
Set to These Values  
Table LII. Reserved (Subaddress F2)  
Bit Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
Reserved  
Functions  
1
1
0
0
0
0
1
0
1
0
1
0
0
0
X
0
Default Values  
Set to These Values  
REV. 0  
–35–  
ADV7183  
Table LIII. Power-On Reset Values for MPU Registers  
Addr  
(Hex)  
Default  
(Hex)  
Addr  
(Hex)  
Default  
(Hex)  
Register  
Register  
BASIC BLOCK  
Input Control  
Video Selection  
Video Enhancement Control  
Output Control  
Extended Output Control  
General-Purpose Output  
Reserved  
ADVANCED BLOCK  
Reserved  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
00  
80  
04  
0C  
0C  
40  
XX  
04  
80  
80  
0
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
XX  
45  
18  
6X  
XX  
01  
XX  
10  
Analog Control (Internal)  
Analog Clamp Control  
Digital Clamp Control 1  
Digital Clamp Control 2  
Shaping Filter Control  
Reserved  
Comb Filter Control  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
FIFO Control  
Contrast Control  
Saturation Control  
Brightness Control  
Hue Control  
Default Value Y  
Default Value C  
Temporal Decimation  
Power Management  
Status Register  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
EX  
XX  
XX  
XX  
58  
XX  
XX  
XX  
A0  
CE  
FX  
XX  
FX  
XX  
7X  
XX  
E3  
0
10  
88  
00  
00  
Reserved  
Reserved  
Reserved  
Info Register  
Color Subcarrier Control 1  
Color Subcarrier Control 2  
Color Subcarrier Control 3  
Color Subcarrier Control 4  
Pixel Delay Control  
Manual Clock Control 1  
Manual Clock Control 2  
Manual Clock Control 3  
Auto Clock Control .  
AGC Mode Control  
Chroma Gain Control 1  
Chroma Gain Control 2  
Luma Gain Control 1  
Luma Gain Control 2  
Manual Gain Shadow Control 1 31  
Manual Gain Shadow Control 2 32  
Miscellaneous Gain Control  
Hsync Position Control 1  
Hsync Position Control 2  
Hsync Position Control 3  
Polarity Control  
Reserved  
Reserved  
Reserved  
Reserved  
33  
34  
35  
36  
37  
44  
45  
F1  
F2  
0F  
01  
00  
00  
X1  
XX  
FX  
9X  
–36–  
REV. 0  
ADV7183  
Appendix  
BOARD DESIGN AND LAYOUT CONSIDERATIONS  
The ADV7183 is a highly integrated circuit containing both preci-  
sion analog and high-speed digital circuitry. It has been designed to  
minimize interference effects on the integrity of the analog circuitry  
by the high-speed digital circuitry. It is imperative that these same  
design and layout techniques be applied to the system level design  
such that high speed and accurate performance are achieved. Figure  
30 shows the recommended analog circuit layout.  
Supply Decoupling  
For optimum performance, bypass capacitors should be installed  
using the shortest leads possible, consistent with reliable operation,  
to reduce the lead inductance. Best performance is obtained with  
0.1 µF ceramic capacitor decoupling. Each group of power pins  
on the ADV71783 must have at least one 0.1 µF decoupling  
capacitor to its corresponding ground. These capacitors should  
be placed as close as possible to the device.  
The layout should be optimized for lowest noise on the ADV7183  
power and ground lines by shielding the digital inputs and provid-  
ing good decoupling. The lead length between groups of VDD and  
GND pins should be minimized to reduce inductive ringing.  
It is important to note that while the ADV7183 contains cir-  
cuitry to reject power supply noise, this rejection decreases with  
frequency. If a high-frequency switching power supply is used,  
the designer should pay close attention to reducing power sup-  
ply noise and consider using a three-terminal voltage regulator  
for supplying power to the analog power plane.  
Ground Planes  
The ground plane should be split into two, one analog and one  
digital. They should be joined directly under the ADV7183.  
The analog ground return path should be through the digital  
(the digital ground is connected to the analog ground and also  
the system ground, whereas the analog ground is only connected  
to the digital ground; this will ensure only analog current will flow  
in the analog ground).  
Digital Signal Interconnect  
The digital inputs and outputs to and from the ADV7183 should  
be isolated as much as possible from the analog inputs and other  
analog circuitry. Also, these input signals should not overlay the  
analog power plane.  
Due to the high clock rates involved, long clock lines to and  
from the ADV7183 should be avoided to reduce noise pickup.  
Any series termination resistors (typically 33) for the digital  
inputs should be connected to the high-speed digital outputs.  
Power Planes  
The ADV7183 and any associated analog circuitry should have  
its own power planes, referred to as the analog and digital  
power planes. These power planes should be connected to the  
regular PCB power plane (VCC) at a single point through a ferrite  
bead. This bead should be located within three inches of the  
ADV7183.  
Analog Signal Interconnect  
The ADV7183 should be located as close as possible to the  
input connectors to minimize noise pickup and reflections due  
to impedance mismatch.  
The PCB power plane should provide power to all digital logic on  
the PC board and the digital power pins on the ADV7183, and  
the analog power plane should provide power to all analog power  
pins on the ADV7183.  
The video input signals should overlay the ground plane, and  
not the analog power plane, to maximize the high-frequency  
power supply rejection.  
Digital outputs, especially pixel data Inputs and clocking sig-  
nals, should never overlay any of the analog signal circuitry and  
should be kept as far away as possible.  
Plane-to-plane noise coupling can be reduced by ensuring that  
portions of the regular PCB power and ground planes do not  
overlay portions of the analog power plane, unless they can be  
arranged so the plane-to-plane noise is common-mode.  
The ADV7183 should have no inputs left floating. Any inputs  
that are not required should be tied to ground.  
REV. 0  
–37–  
ADV7183  
FERRITE  
BEAD  
AVDD  
DVDD  
33F  
10F  
0.1F  
0.01F  
POWER SUPPLY DECOUPLING  
FOR EACH POWER PIN  
AVSS  
AVSS  
AVSS  
AVSS  
FERRITE  
BEAD  
AVSS DVSS  
33F  
10F  
0.1F  
0.01F  
POWER SUPPLY DECOUPLING  
FOR EACH POWER PIN  
DVSS  
DVSS  
100nF  
DVSS  
DVSS  
DVDDIO DVDD AVDD  
AIN1  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
P0  
P1  
AVSS1  
AIN2  
100nF  
100nF  
100nF  
100nF  
100nF  
P2  
AVSS2  
AIN3  
P3  
P4  
AVSS3  
AIN4  
P5  
P6  
AVSS4  
AIN5  
P7  
MULTIFORMAT  
PIXEL PORT*  
P8  
AVSS5  
AIN6  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
GPO0  
GPO1  
GPO2  
GPO3  
AVSS6  
AVSS AVSS AVSS AVSS AVSS AVSS  
INPUT  
SWITCH OVER  
ISO  
0.1F  
0.1F  
CAPY1  
CAPY2  
10F  
0.1F  
LLC  
LLC2  
27MHz OUTPUT CLOCK  
13.5MHz OUTPUT CLOCK  
CLOCK REFERENCE O/P  
AVSS AVSS  
0.1F  
0.1F  
LLCREF  
CAP C1  
CAP C2  
ALMOST EMPTY FIFO O/P  
ALMOST FULL FIFO O/P  
AEF  
AFF  
RD  
10F  
0.1F  
FIFO MANAGEMENT  
SIGNALS ONLY USED  
IN FIFO MODE;  
USE LLC AND GENLOCK  
FOR NON-FIFO MODE  
READ SIGNAL I/P  
OUTPUT ENABLE I/P  
DATAVALID O/P  
OE  
DV  
AVSS AVSS  
CML  
GL/QCLK/HFF  
GL/QCLK/HFF O/P  
0.1F  
REFOUT  
PWRDN  
POWER-DOWN INPUT  
10F  
33F  
0.1F  
HS/RESET  
VS/RESET  
FIELD  
HS/RESET O/P  
VS/RESET O/P  
FIELD O/P  
DVDD  
AVSS  
XTAL  
ELPF  
5.6k⍀  
2nF  
68pF  
27MHz  
DVSS  
DVSS  
33F  
XTAL1  
AVDD  
DVDD DVDD  
DVSS  
ALSB  
2k⍀  
2k⍀  
100R  
100R  
2
I C INTERFACE  
SCLK  
SDA  
CONTROL LINE  
2
I C INTERFACE  
CONTROL LINE  
RESET  
4.7k⍀  
DVDD  
100nF  
*P15P8: 8-BIT CCIR656 PIXEL DATA @ 27MHz  
P7P0: Cb AND Cr 16-BIT CCIR656 PIXEL DATA @ 13.5MHz  
P15P8: Y1 AND Y2 16-BIT CCIR656 PIXEL DATA @ 13.5MHz  
DVSS  
RESET  
Figure 30. Recommended Analog Circuit Layout  
–38–  
REV. 0  
ADV7183  
OUTLINE DIMENSIONS  
Dimensions shown in millimeters and (inches)  
80-Lead Thin Plastic Quad Flatpack [LQFP]  
(ST-80)  
16.25 (0.6398)  
15.75 (0.6201)  
SQ  
1.60 (0.0630)  
14.05 (0.5532)  
13.95 (0.5492)  
MAX  
SQ  
0.75 (0.0295)  
0.50 (0.0197)  
80  
1
61  
60  
SEATING  
PLANE  
12.35  
(0.4862)  
TYP  
TOP VIEW  
(PINS DOWN)  
SQ  
COPLANARITY  
0.10 (0.0039)  
MAX  
0.15 (0.0059)  
0.05 (0.0020)  
41  
40  
20  
21  
0.73 (0.0287)  
0.57 (0.0224)  
0.35 (0.0138)  
0.25 (0.0098)  
1.45 (0.0571)  
1.35 (0.0531)  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
REV. 0  
–39–  
ADV7183  
–40–  
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

ADV7184

Multiformat SDTV Video Decoder with Fast Switch Overlay Support
ADI

ADV7184BSTZ

Multiformat SDTV Video Decoder with Fast Switch Overlay Support
ADI

ADV7185

Professional NTSC/PAL Video Decoder with 10-Bit CCIR656 Output
ADI

ADV7185KST

Professional NTSC/PAL Video Decoder with 10-Bit CCIR656 Output
ADI

ADV7186

Video Decoder and Display Processor
ADI

ADV7188

Multiformat SDTV Video Decoder with Fast Switch Overlay Support
ADI

ADV7188BSTZ

Multiformat SDTV Video Decoder with Fast Switch Overlay Support
ADI

ADV7189

Multiformat SDTV Video Decoder
ADI

ADV7189B

Multiformat SDTV Video Decoder
ADI

ADV7189BBSTZ

High Performance 12-bit Video Decoder with Noise Shaped Video&reg; ADCs
ADI

ADV7189BBSTZ268H

Multiformat SDTV Video Decoder
ADI

ADV7189BBSTZ268H2

Multiformat SDTV Video Decoder
ADI