ADV7390_15 [ADI]

Low Power, Chip Scale, 10-Bit SD/HD Video Encoder;
ADV7390_15
型号: ADV7390_15
厂家: ADI    ADI
描述:

Low Power, Chip Scale, 10-Bit SD/HD Video Encoder

文件: 总108页 (文件大小:1922K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power, Chip Scale,  
10-Bit SD/HD Video Encoder  
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
Gamma correction  
FEATURES  
Programmable adaptive filter control  
Programmable sharpness filter control  
CGMS (720p/1080i) and CGMS Type B (720p/1080i)  
Dual data rate (DDR) input support  
Enhanced definition (ED) programmable features  
(525p/625p)  
8× oversampling (216 MHz output)  
Internal test pattern generator  
Black bar, hatch, flat field/frame  
Individual Y and PrPb output delay  
Gamma correction  
Programmable adaptive filter control  
Fully programmable YCrCb to RGB matrix  
Undershoot limiter  
3 high quality, 10-bit video DACs  
16× (216 MHz) DAC oversampling for SD  
8× (216 MHz) DAC oversampling for ED  
4× (297 MHz) DAC oversampling for HD  
37 mA maximum DAC output current  
Multiformat video input support  
4:2:2 YCrCb (SD, ED, and HD)  
4:4:4 RGB (SD)  
Multiformat video output support  
Composite (CVBS) and S-Video (Y-C)  
Component YPrPb (SD, ED, and HD)  
Component RGB (SD, ED, and HD)  
Lead frame chip scale package (LFCSP) options  
32-lead, 5 mm × 5 mm LFCSP  
Macrovision Rev 1.2 (525p/625p) (ADV7390/ADV7392 only)  
CGMS (525p/625p) and CGMS Type B (525p)  
Dual data rate (DDR) input support  
Standard definition (SD) programmable features  
16× oversampling (216 MHz)  
Internal test pattern generator  
Color and black bar  
Controlled edge rates for start and end of active video  
Individual Y and PrPb output delay  
Undershoot limiter  
40-lead, 6 mm × 6 mm LFCSP  
Wafer level chip scale package (WLCSP) option  
30-ball, 5 × 6 WLCSP with single DAC output  
Advanced power management  
Patented content-dependent low power DAC operation  
Automatic cable detection and DAC power-down  
Individual DAC on/off control  
Sleep mode with minimal power consumption  
74.25 MHz 8-/10-/16-bit high definition input support  
Compliant with SMPTE 274M (1080i), 296M (720p),  
and 240M (1035i)  
Gamma correction  
Digital noise reduction (DNR)  
EIA/CEA-861B compliance support  
Multiple chroma and luma filters  
Luma-SSAF filter with programmable gain/attenuation  
PrPb SSAF  
Separate pedestal control on component and  
composite/S-Video output  
NTSC M, PAL B/D/G/H/I/M/N, PAL 60 support  
NTSC and PAL square pixel operation (24.54 MHz/29.5 MHz)  
Macrovision Rev 7.1.L1 (SD) and Rev 1.2 (ED) compliant  
Copy generation management system (CGMS)  
Closed captioning and wide screen signaling (WSS)  
Integrated subcarrier locking to external video source  
Complete on-chip video timing generator  
On-chip test pattern generation  
Programmable features  
Luma and chroma filter responses  
Vertical blanking interval (VBI)  
Subcarrier frequency (fSC) and phase  
Luma delay  
VCR FF/RW sync mode  
Macrovision Rev 7.1.L1 (ADV7390/ADV7392 only)  
Copy generation management system (CGMS)  
Wide screen signaling (WSS)  
Closed captioning  
Serial MPU interface with I2C compatibility  
2.7 V or 3.3 V analog operation  
1.8 V digital operation  
1.8 V or 3.3 V I/O operation  
High definition (HD) programmable features  
(720p/1080i/1035i)  
4× oversampling (297 MHz)  
Temperature range: −40°C to +85°C  
W Grade automotive range: −40°C to +105°C  
Qualified for automotive applications  
Internal test pattern generator  
Color and black bar, hatch, flat field/frame  
Fully programmable YCrCb to RGB matrix  
Rev. H  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2006-2014 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
TABLE OF CONTENTS  
ED/HD Timing Reset ................................................................ 51  
SD Subcarrier Frequency Lock................................................. 51  
SD VCR FF/RW Sync ................................................................ 52  
Vertical Blanking Interval ......................................................... 52  
SD Subcarrier Frequency Control............................................ 52  
SD Noninterlaced Mode............................................................ 52  
SD Square Pixel Mode ............................................................... 52  
Filters............................................................................................ 54  
ED/HD Test Pattern Color Controls ....................................... 55  
Color Space Conversion Matrix ............................................... 55  
SD Luma and Color Scale Control........................................... 57  
SD Hue Adjust Control.............................................................. 57  
SD Brightness Detect ................................................................. 57  
SD Brightness Control............................................................... 57  
SD Input Standard Autodetection............................................ 58  
Double Buffering........................................................................ 58  
Programmable DAC Gain Control.......................................... 58  
Gamma Correction.................................................................... 59  
ED/HD Sharpness Filter and Adaptive Filter Controls......... 60  
Features .............................................................................................. 1  
Revision History ............................................................................... 3  
Applications....................................................................................... 5  
General Description......................................................................... 5  
Functional Block Diagrams............................................................. 6  
Specifications..................................................................................... 7  
Power Supply Specifications........................................................ 7  
Input Clock Specifications .......................................................... 7  
Analog Output Specifications..................................................... 7  
Digital Input/Output Specifications—3.3 V ............................. 8  
Digital Input/Output Specifications—1.8 V ............................. 8  
MPU Port Timing Specifications ............................................... 8  
Digital Timing Specifications—3.3 V........................................ 9  
Digital Timing Specifications—1.8 V...................................... 10  
Video Performance Specifications ........................................... 11  
Power Specifications .................................................................. 11  
Timing Diagrams........................................................................ 12  
Absolute Maximum Ratings.......................................................... 18  
Thermal Resistance .................................................................... 18  
ESD Caution................................................................................ 18  
Pin Configurations and Function Descriptions ......................... 19  
Typical Performance Characteristics ........................................... 21  
MPU Port Description................................................................... 26  
I2C Operation.............................................................................. 26  
Register Map Access....................................................................... 28  
Register Programming............................................................... 28  
Subaddress Register (SR7 to SR0) ............................................ 28  
ADV7390/ADV7391 Input Configuration ................................. 46  
Standard Definition.................................................................... 46  
Enhanced Definition/High Definition .................................... 46  
Enhanced Definition (at 54 MHz) ........................................... 46  
ADV7392/ADV7393 Input Configuration ................................. 47  
Standard Definition.................................................................... 47  
Enhanced Definition/High Definition .................................... 48  
Enhanced Definition (at 54 MHz) ........................................... 48  
Output Configuration.................................................................... 49  
Design Features............................................................................... 50  
Output Oversampling................................................................ 50  
ED/HD Sharpness Filter and Adaptive Filter Application  
Examples...................................................................................... 61  
SD Digital Noise Reduction...................................................... 62  
SD Active Video Edge Control................................................. 64  
External Horizontal and Vertical Synchronization Control. 65  
Low Power Mode........................................................................ 66  
Cable Detection .......................................................................... 66  
DAC Autopower-Down............................................................. 66  
Sleep Mode.................................................................................. 66  
Pixel and Control Port Readback............................................. 67  
Reset Mechanisms...................................................................... 67  
SD Teletext Insertion ................................................................. 67  
Printed Circuit Board Layout and Design .................................. 69  
Unused Pins ................................................................................ 69  
DAC Configurations.................................................................. 69  
Video Output Buffer and Optional Output Filter.................. 69  
Printed Circuit Board (PCB) Layout ....................................... 70  
Additional Layout Considerations for the WLCSP Package....71  
Typical Applications Circuits.................................................... 72  
Copy Generation Management System....................................... 74  
SD CGMS .................................................................................... 74  
HSYNC  
VSYNC  
and  
HD Interlace External  
Considerations............................................................................ 51  
Rev. H | Page 2 of 108  
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
ED CGMS.....................................................................................74  
HD CGMS....................................................................................74  
CGMS CRC Functionality .........................................................74  
SD Wide Screen Signaling..............................................................77  
SD Closed Captioning ....................................................................78  
Internal Test Pattern Generation...................................................79  
SD Test Patterns...........................................................................79  
ED/HD Test Patterns ..................................................................79  
SD Timing ........................................................................................80  
HD Timing.......................................................................................85  
Video Output Levels .......................................................................86  
SD YPrPb Output Levels—SMPTE/EBU N10........................86  
ED/HD YPrPb Output Levels ...................................................87  
SD/ED/HD RGB Output Levels................................................88  
SD Output Plots ..........................................................................89  
Video Standards ..............................................................................90  
Configuration Scripts .....................................................................92  
Standard Definition....................................................................92  
Enhanced Definition ..................................................................99  
High Definition.........................................................................101  
ADV739x Evaluation Board ........................................................104  
Outline Dimensions......................................................................105  
Ordering Guide .........................................................................107  
Automotive Products................................................................107  
REVISION HISTORY  
9/14—Rev. G to Rev. H  
11/11—Rev. C to Rev. D  
Changed Storage Temperature Range from −60°C to +100°C to  
−60°C to +150°C; Table 13.............................................................18  
Updated Figure 145, Outline Dimensions.................................105  
Changes to Ordering Guide.........................................................107  
Changes to Features Section............................................................1  
Updated Outline Dimensions and changes to Automotive  
Products Section............................................................................107  
2/13—Rev. F to Rev. G  
9/11—Rev. B to Rev. C  
Change to Features Section..............................................................1  
Changes to Table 14 ........................................................................18  
Changes to Figure 62 ......................................................................48  
Changes to Ordering Guide.........................................................107  
Changes to MPU Port Description Section.................................26  
Changes to Ordering Guide.........................................................107  
7/10—Rev. A to Rev. B  
Changes to Features Section............................................................1  
Change to Applications Section ......................................................5  
Changes to General Description.....................................................5  
Added Table 2, Renumbered Subsequent Tables ..........................5  
Added Figure 2, Renumbered Subsequent Figures ......................6  
Changes to Full-Drive Output Current Parameter, Table 5 ........7  
Changes to Table 14 ........................................................................18  
Added Figure 20..............................................................................19  
Changes to Table 15 ........................................................................19  
Changes to ADV7390/ADV7391 Input Configuration  
11/12—Rev. E to Rev. F  
Updated Outline Dimensions......................................................105  
Changes to Ordering Guide.........................................................107  
2/12—Rev. D to Rev. E  
Changes to Table 1 ............................................................................5  
Changes to Digital Input/Output Specifications—  
1.8 V Section ......................................................................................8  
Changes to Table 15 ........................................................................21  
Changes to Table 20 ........................................................................31  
Changes to Table 23 ........................................................................34  
Changes to Table 28 ........................................................................39  
Changes to 16-Bit 4:4:4 RGB Mode Section................................47  
Added External Sync Polarity Section..........................................51  
Deleted ED/HD Nonstandard Timing Mode Section, Figure 63,  
and Table 41, Renumbered Sequentially......................................51  
Changed SD Subcarrier Frequency Lock, Subcarrier Phase  
Reset, and Timing Reset Section to SD Subcarrier Frequency  
Lock Section.....................................................................................52  
Deleted Subaddress 0x84, Bits[2:1] Section, Timing Reset (TR)  
Mode Section, Subcarrier Phase Reset (SCR) Mode Section,  
Figure 64, and Figure 65.................................................................52  
Changes to Ordering Guide.........................................................121  
Section ..............................................................................................45  
Added Additional Layout Considerations for the WLCSP  
Package Section ...............................................................................71  
Added Figure 97..............................................................................73  
Changes to Configuration Scripts Section...................................92  
Changes to Subaddress 0x00, Table 66.........................................93  
Changes to Subaddress 0x00, Table 80.........................................95  
Changes to Subaddress 0x00, Table 83.........................................95  
Changes to Subaddress 0x00, Table 97.........................................98  
Updated Outline Dimensions, Added Figure 150....................106  
Changes to Ordering Guide.........................................................106  
Rev. H | Page 3 of 108  
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
3/09—Rev. 0 to Rev. A  
Changes to Table 30 ....................................................................... 40  
Changes to Table 31 ....................................................................... 41  
Added Table 32 ............................................................................... 42  
Renamed Features Section to Design Features Section............. 48  
Changes to ED/HD Nonstandard Timing Mode Section......... 48  
Changes to Features Section............................................................ 1  
Deleted Detailed Features Section, Changes to Table 1............... 4  
Changes to Figure 1, Added Figure 2............................................. 5  
Changes to Table 2, Input Clock Specifications Section, and  
Analog Output Specifications Section........................................... 6  
Changes to Digital Input/Output Specifications—3.3 V Section  
and Table 5......................................................................................... 7  
Added Digital Input/Output Specifications—1.8 V Section and  
Table 6 ................................................................................................ 7  
Changes to MPU Port Timing Specifications Section,  
Default Conditions ........................................................................... 7  
Changes to Digital Timing Specifications—3.3 V Section and  
Table 8 ................................................................................................ 8  
Added Digital Timing Specifications—1.8 V Section and  
Table 9 ................................................................................................ 9  
Added Video Performance Specifications Section, Default  
Conditions ....................................................................................... 10  
Added Power Specifications Section, Default Conditions........ 10  
Changes to Table 11........................................................................ 10  
Changes to Figure 16...................................................................... 16  
Changes to Table 12........................................................................ 17  
Changes to Table 14, Pin 19 and Pin 1 Descriptions ................. 18  
Changes to MPU Port Description Section ................................ 25  
Changes to I2C Operation Section ............................................... 25  
Added Table 15 ............................................................................... 25  
Changes to Table 17........................................................................ 28  
Changes to Table 19, 0x30 Bit Description ................................. 30  
Changes to Table 27........................................................................ 37  
Changes to Table 29, 0x8B Bit Description................................. 39  
HSYNC  
VSYNC  
Added the HD Interlace External  
and  
Considerations Section.................................................................. 49  
Changes to SD Subcarrier Frequency Lock, Subcarrier Reset,  
and Timing Reset Section.............................................................. 49  
Changes to Subaddress 0x8C to Subaddress 0x8F Section....... 51  
Changes to Programming the FSC Section................................... 51  
Changes to Subaddress 0x82, Bit 4 Section................................. 51  
Added SD Manual CSC Matrix Adjust Feature Section............ 54  
Added Table 47 ............................................................................... 55  
Changes to Subaddress 0x9C to Subaddress 0x9F Section....... 56  
Changes to Subaddress 0xBA Section.......................................... 56  
Added Sleep Mode Section ........................................................... 65  
Changes to Pixel and Control Port Readback Section .............. 66  
Changes to Reset Mechanisms Section ....................................... 66  
Added SD Teletext Insertion Section........................................... 66  
Added Figure 87 ............................................................................. 67  
Added Figure 88 ............................................................................. 68  
Changes to DAC Configuration Section ..................................... 68  
Added Unused Pins Section.......................................................... 68  
Changes to Power Supply Sequencing Section........................... 70  
Changes to Internal Test Pattern Generation Section ............... 77  
Changes to SD Timing, Mode 0 (CCIR-656)—Slave Option  
(Subaddress 0x8A = XXXXX000) Section.................................. 78  
10/06—Revision 0: Initial Version  
Rev. H | Page 4 of 108  
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
APPLICATIONS  
Table 1. Standards Directly Supported by the LFCSP Packages  
Mobile handsets  
Digital still cameras  
Active  
Resolution  
Frame  
Clock Input  
(MHz)  
I/P1 Rate (Hz)  
Standard  
720 × 240  
720 × 288  
720 × 480  
P
P
I
59.94  
50  
29.97  
27  
27  
27  
Portable media and DVD players  
Portable game consoles  
Digital camcorders  
ITU-R  
BT.601/656  
Set-top box (STB)  
720 × 576  
640 × 480  
768 × 576  
I
I
I
25  
27  
ITU-R  
BT.601/656  
NTSC Square  
Pixel  
PAL Square  
Pixel  
Automotive infotainment (ADV7392 and ADV7393 only)  
GENERAL DESCRIPTION  
29.97  
25  
24.54  
29.5  
The ADV7390/ADV7391/ADV7392/ADV7393 are a family of  
high speed, digital-to-analog video encoders on single monolithic  
chips. Three 2.7 V/3.3 V, 10-bit video DACs (a single DAC for  
the WLCSP package) provide support for composite (CVBS),  
S-Video (Y-C), or component (YPrPb/RGB) analog outputs in  
either standard definition (SD) or high definition (HD) video  
formats. The single DAC WLCSP package supports CVBS  
(NTSC and PAL) output only in SD resolution (see Table 2).  
720 × 483  
720 × 483  
720 × 483  
720 × 576  
720 × 483  
720 × 576  
1920 × 1035  
1920 × 1035  
1280 × 720  
P
P
P
P
P
P
I
59.94  
59.94  
59.94  
50  
59.94  
50  
30  
29.97  
60, 50, 30,  
25, 24  
23.97,  
27  
27  
27  
27  
27  
27  
74.25  
74.1758  
74.25  
SMPTE 293M  
BTA T-1004  
ITU-R BT.1358  
ITU-R BT.1358  
ITU-R BT.1362  
ITU-R BT.1362  
SMPTE 240M  
SMPTE 240M  
SMPTE 296M  
Optimized for low power operation, occupying a minimal  
footprint, and requiring few external components, these  
encoders are ideally suited to portable and power-sensitive  
applications requiring TV-out functionality. Cable detection  
and DAC autopower-down features ensure that power  
consumption is kept to a minimum.  
I
P
1280 × 720  
P
74.1758  
SMPTE 296M  
59.94, 29.97  
1920 × 1080  
1920 × 1080  
1920 × 1080  
1920 × 1080  
1920 × 1080  
I
I
P
P
P
30, 25  
29.97  
30, 25, 24  
23.98, 29.97 74.1758  
24 74.25  
74.25  
74.1758  
74.25  
SMPTE 274M  
SMPTE 274M  
SMPTE 274M  
SMPTE 274M  
ITU-R BT.709-5  
The ADV7390/ADV7391 have an 8-bit video input port that  
supports SD video formats over an SDR interface and HD video  
formats over a DDR interface. The ADV7392/ADV7393 have  
a 16-bit video input port that can be configured in a variety of  
ways. SD RGB input is supported.  
1 I = interlaced, P = progressive.  
All members of the family support embedded EAV/SAV timing  
codes, external video synchronization signals, and the I2C® and  
communication protocol. Table 1 and Table 2 list the video  
standards directly supported by the ADV739x family.  
Table 2. Standards Directly Supported by the WLCSP Package  
Active  
Resolution  
Frame  
Clock Input  
(MHz)  
I/P1 Rate (Hz)  
Standard  
720 × 480  
720 × 576  
640 × 480  
768 × 576  
I
I
I
I
29.97  
27  
ITU-R  
BT.601/656  
ITU-R  
BT.601/656  
NTSC Square  
Pixel  
PAL Square  
Pixel  
25  
27  
29.97  
25  
24.54  
29.5  
1 I = interlaced, P = progressive.  
Rev. H | Page 5 of 108  
 
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
FUNCTIONAL BLOCK DIAGRAMS  
VDD (2)  
VAA  
DGND (2)  
AGND  
SCL SDA ALSB  
SFL  
ADV7390/ADV7391  
GND_IO  
VDD_IO  
VBI DATA SERVICE  
INSERTION  
MPU PORT  
SUBCARRIER FREQUENCY  
LOCK (SFL)  
11-BIT  
DAC 1  
DAC 1  
DAC 2  
DAC 3  
16×  
YCrCb  
TO  
PROGRAMMABLE  
ADD  
FILTER  
LUMINANCE  
FILTER  
11-BIT  
DAC 2  
SYNC  
RGB  
SDR/DDR  
8-BIT SD  
OR  
8-BIT ED/HD  
SD/ED/HD INPUT  
4:2:2 TO 4:4:4  
11-BIT  
DAC 3  
DEINTERLEAVE  
PROGRAMMABLE  
CHROMINANCE  
FILTER  
16×  
FILTER  
ADD  
BURST  
SIN/COS DDS  
BLOCK  
ASYNC  
BYPASS  
YCrCb  
YCbCr  
PROGRAMMABLE  
TO  
ED/HD FILTERS  
4×  
FILTER  
RGB MATRIX  
HDTV  
TEST  
PATTERN  
GENERATOR  
SHARPNESS AND  
ADAPTIVE FILTER  
CONTROL  
POWER  
MANAGEMENT  
CONTROL  
REFERENCE  
AND CABLE  
DETECT  
RSET  
VIDEO TIMING GENERATOR  
16×/4× OVERSAMPLING PLL  
RESET  
HSYNC  
VSYNC  
CLKIN PVDD PGND EXT_LF  
COMP  
Figure 1. ADV7390/ADV7391 (32-Lead LFCSP)  
V
DD (2)  
VAA  
DGND (2)  
SCL SDA ALSB  
MPU PORT  
AGND  
SFL  
ADV7390BCBZ  
GND_IO  
VDD_IO  
VBI DATA SERVICE  
INSERTION  
SUBCARRIER FREQUENCY  
LOCK (SFL)  
16×  
FILTER  
PROGRAMMABLE  
LUMINANCE  
FILTER  
ADD  
SYNC  
11-BIT  
DAC 1  
DAC 1  
SDR/DDR  
SD INPUT  
8-BIT SD  
4:2:2 TO 4:4:4  
DEINTERLEAVE  
PROGRAMMABLE  
CHROMINANCE  
FILTER  
16×  
FILTER  
ADD  
BURST  
SIN/COS DDS  
BLOCK  
POWER  
MANAGEMENT  
CONTROL  
REFERENCE  
AND CABLE  
DETECT  
RSET  
VIDEO TIMING GENERATOR  
16× OVERSAMPLING PLL  
RESET  
HSYNC  
VSYNC  
CLKIN PVDD PGND EXT_LF  
COMP  
Figure 2. ADV7390BCBZ-A (30-Ball WLCSP)  
VAA  
V
DD (2)  
DGND (2)  
SCL SDA ALSB  
MPU PORT  
SFL  
AGND  
ADV7392/ADV7393  
GND_IO  
VBI DATA SERVICE  
INSERTION  
SUBCARRIER FREQUENCY  
LOCK (SFL)  
VDD_IO  
12-BIT  
DAC 1  
DAC 1  
DAC 2  
DAC 3  
16×  
YCrCb  
TO  
PROGRAMMABLE  
ADD  
FILTER  
LUMINANCE  
FILTER  
12-BIT  
DAC 2  
SYNC  
RGB  
TO  
YCrCb  
MATRIX  
RGB  
SDR/DDR  
8-/10-/16-BIT SD  
OR  
8-/10-/16-BIT ED/HD  
SD/ED/HD INPUT  
4:2:2 TO 4:4:4  
DEINTERLEAVE  
12-BIT  
DAC 3  
PROGRAMMABLE  
CHROMINANCE  
FILTER  
16×  
FILTER  
ADD  
BURST  
SIN/COS DDS  
BLOCK  
ASYNC  
BYPASS  
YCrCb  
YCbCr  
PROGRAMMABLE  
TO  
ED/HD FILTERS  
4×  
FILTER  
RGB MATRIX  
HDTV  
TEST  
PATTERN  
GENERATOR  
SHARPNESS AND  
ADAPTIVE FILTER  
CONTROL  
POWER  
MANAGEMENT  
CONTROL  
REFERENCE  
AND CABLE  
DETECT  
VIDEO TIMING GENERATOR  
16x/4x OVERSAMPLING PLL  
RSET  
RESET  
HSYNC  
VSYNC  
CLKIN PVDD PGND EXT_LF  
COMP  
Figure 3. ADV7392/ADV7393 (40-Lead LFCSP)  
Rev. H | Page 6 of 108  
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
SPECIFICATIONS  
POWER SUPPLY SPECIFICATIONS  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 3.  
Parameter  
Min  
Typ  
Max  
Unit  
SUPPLY VOLTAGES  
VDD  
VDD_IO  
PVDD  
VAA  
1.71  
1.71  
1.71  
2.6  
1.8  
3.3  
1.8  
3.3  
1.89  
3.63  
1.89  
3.465  
V
V
V
V
POWER SUPPLY REJECTION RATIO  
0.002  
%/%  
INPUT CLOCK SPECIFICATIONS  
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 3.63 V.  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 4.  
Parameter  
Conditions1  
SD/ED  
Min  
Typ  
27  
Max  
Unit  
fCLKIN  
MHz  
ED (at 54 MHz)  
HD  
54  
74.25  
MHz  
MHz  
CLKIN High Time, t9  
CLKIN Low Time, t10  
CLKIN Peak-to-Peak Jitter Tolerance  
40  
40  
% of one clock cycle  
% of one clock cycle  
ns  
2
1 SD = standard definition, ED = enhanced definition (525p/625p), HD = high definition.  
ANALOG OUTPUT SPECIFICATIONS  
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 3.63 V.  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 5.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Full-Drive Output Current  
RSET = 510 Ω, RL = 37.5 Ω  
All DACs enabled  
33  
34.6  
37  
mA  
RSET = 510 Ω, RL = 37.5 Ω  
DAC 1 enabled only1  
RSET = 4.12 kΩ, RL = 300 Ω  
DAC 1, DAC 2, DAC 3  
31.5  
0
33.5  
37  
mA  
Low-Drive Output Current  
DAC-to-DAC Matching  
Output Compliance, VOC  
Output Capacitance, COUT  
Analog Output Delay2  
4.3  
2.0  
mA  
%
V
pF  
ns  
ns  
1.4  
10  
6
1
DAC Analog Output Skew  
DAC 1, DAC 2, DAC 3  
1 The recommended method of bringing this value back to the ideal value is by adjusting Register 0x0B to the recommended value of 0x12.  
2 Output delay measured from the 50% point of the rising edge of the input clock to the 50% point of the DAC output full-scale transition.  
Rev. H | Page 7 of 108  
 
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
DIGITAL INPUT/OUTPUT SPECIFICATIONS—3.3 V  
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 2.97 V to 3.63 V.  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 6.  
Parameter  
Conditions  
Min  
Typ  
4
Max  
Unit  
V
V
µA  
pF  
V
V
µA  
pF  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Input Leakage Current, IIN  
Input Capacitance, CIN  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Three-State Leakage Current  
Three-State Output Capacitance  
2.0  
0.8  
10  
VIN = VDD_IO  
ISOURCE = 400 µA  
ISINK = 3.2 mA  
VIN = 0.4 V, 2.4 V  
2.4  
0.4  
1
4
DIGITAL INPUT/OUTPUT SPECIFICATIONS—1.8 V  
When VDD_IO is set to 1.8 V, all the digital video inputs and control inputs, such as I2C, HS, and VS, should use 1.8 V levels.  
DD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 1.89 V.  
V
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 7.  
Parameter  
Conditions  
Min  
Typ  
4
Max  
Unit  
V
V
pF  
V
V
Input High Voltage, VIH  
Input Low Voltage, VIL  
Input Capacitance, CIN  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Three-State Output Capacitance  
0.7 VDD_IO  
0.3 VDD_IO  
ISOURCE = 400 µA  
ISINK = 3.2 mA  
VDD_IO – 0.4  
0.4  
4
pF  
MPU PORT TIMING SPECIFICATIONS  
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 3.63 V.  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 8.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
MPU PORT, I2C MODE1  
See Figure 17  
SCL Frequency  
0
400  
kHz  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
SCL High Pulse Width, t1  
SCL Low Pulse Width, t2  
Hold Time (Start Condition), t3  
Setup Time (Start Condition), t4  
Data Setup Time, t5  
SDA, SCL Rise Time, t6  
SDA, SCL Fall Time, t7  
Setup Time (Stop Condition), t8  
0.6  
1.3  
0.6  
0.6  
100  
300  
300  
0.6  
1 Guaranteed by characterization.  
Rev. H | Page 8 of 108  
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
DIGITAL TIMING SPECIFICATIONS—3.3 V  
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 2.97 V to 3.63 V.  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 9.  
Parameter  
Conditions1  
Min  
Typ  
Max  
Unit  
VIDEO DATA AND VIDEO CONTROL PORT2, 3  
Data Input Setup Time, t11  
4
SD  
2.1  
2.3  
2.3  
1.7  
1.0  
1.1  
1.1  
1.0  
2.1  
2.3  
1.7  
1.0  
1.1  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ED/HD-SDR  
ED/HD-DDR  
ED (at 54 MHz)  
SD  
ED/HD-SDR  
ED/HD-DDR  
ED (at 54 MHz)  
SD  
ED/HD-SDR or ED/HD-DDR  
ED (at 54 MHz)  
SD  
ED/HD-SDR or ED/HD-DDR  
ED (at 54 MHz)  
SD  
4
Data Input Hold Time, t12  
4
Control Input Setup Time, t11  
4
Control Input Hold Time, t12  
4
Control Output Access Time, t13  
12  
10  
ED/HD-SDR, ED/HD-DDR, or ED (at 54 MHz)  
SD  
4
Control Output Hold Time, t14  
4.0  
ED/HD-SDR, ED/HD-DDR, or ED (at 54 MHz) 3.5  
PIPELINE DELAY5  
SD1  
CVBS/Y-C Outputs (2×)  
CVBS/Y-C Outputs (8×)  
CVBS/Y-C Outputs (16×)  
Component Outputs (2×)  
Component Outputs (8×)  
Component Outputs (16×)  
ED1  
SD oversampling disabled  
SD oversampling enabled  
SD oversampling enabled  
SD oversampling disabled  
SD oversampling enabled  
SD oversampling enabled  
68  
79  
67  
78  
69  
84  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Component Outputs (1×)  
Component Outputs (4×)  
Component Outputs (8×)  
HD1  
ED oversampling disabled  
ED oversampling enabled  
ED oversampling enabled  
41  
49  
46  
Clock cycles  
Clock cycles  
Clock cycles  
Component Outputs (1×)  
Component Outputs (2×)  
Component Outputs (4×)  
RESET CONTROL  
HD oversampling disabled  
HD oversampling enabled  
HD oversampling enabled  
40  
42  
44  
Clock cycles  
Clock cycles  
Clock cycles  
RESET Low Time  
100  
ns  
1 SD = standard definition, ED = enhanced definition (525p/625p), HD = high definition, SDR = single data rate, DDR = dual data rate.  
2 Video data: P[15:0] for ADV7392/ADV7393 or P[7:0] for ADV7390/ADV7391.  
3 Video control:  
and  
.
HSYNC  
VSYNC  
4 Guaranteed by characterization.  
5 Guaranteed by design.  
Rev. H | Page 9 of 108  
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
DIGITAL TIMING SPECIFICATIONS—1.8 V  
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 1.89 V.  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 10.  
Parameter  
Conditions1  
Min  
Typ  
Max  
Unit  
VIDEO DATA AND VIDEO CONTROL PORT2, 3  
Data Input Setup Time, t11  
4
SD  
1.4  
1.9  
1.9  
1.6  
1.4  
1.5  
1.5  
1.3  
1.4  
1.2  
1.0  
1.4  
1.0  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ED/HD-SDR  
ED/HD-DDR  
ED (at 54 MHz)  
SD  
ED/HD-SDR  
ED/HD-DDR  
ED (at 54 MHz)  
SD  
ED/HD-SDR or ED/HD-DDR  
ED (at 54 MHz)  
SD  
ED/HD-SDR or ED/HD-DDR  
ED (at 54 MHz)  
SD  
4
Data Input Hold Time, t12  
4
Control Input Setup Time, t11  
4
Control Input Hold Time, t12  
4
Control Output Access Time, t13  
13  
12  
ED/HD-SDR, ED/HD-DDR, or ED (at 54 MHz)  
SD  
4
Control Output Hold Time, t14  
4.0  
ED/HD-SDR, ED/HD-DDR, or ED (at 54 MHz) 5.0  
PIPELINE DELAY5  
SD1  
CVBS/Y-C Outputs (2×)  
CVBS/Y-C Outputs (8×)  
CVBS/Y-C Outputs (16×)  
Component Outputs (2×)  
Component Outputs (8×)  
Component Outputs (16×)  
ED1  
SD oversampling disabled  
SD oversampling enabled  
SD oversampling enabled  
SD oversampling disabled  
SD oversampling enabled  
SD oversampling enabled  
68  
79  
67  
78  
69  
84  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Component Outputs (1×)  
Component Outputs (4×)  
Component Outputs (8×)  
HD1  
ED oversampling disabled  
ED oversampling enabled  
ED oversampling enabled  
41  
49  
46  
Clock cycles  
Clock cycles  
Clock cycles  
Component Outputs (1×)  
Component Outputs (2×)  
Component Outputs (4×)  
RESET CONTROL  
HD oversampling disabled  
HD oversampling enabled  
HD oversampling enabled  
40  
42  
44  
Clock cycles  
Clock cycles  
Clock cycles  
RESET Low Time  
100  
ns  
1 SD = standard definition, ED = enhanced definition (525p/625p), HD = high definition, SDR = single data rate, DDR = dual data rate.  
2 Video data: P[15:0] for ADV7392/ADV7393 or P[7:0] for ADV7390/ADV7391.  
3 Video control:  
and  
.
HSYNC  
VSYNC  
4 Guaranteed by characterization.  
5 Guaranteed by design.  
Rev. H | Page 10 of 108  
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
VIDEO PERFORMANCE SPECIFICATIONS  
VDD = 1.8 V, PVDD = 1.8 V, VAA = 3.3 V, VDD_IO = 3.3 V, TA = +25°C.  
Table 11.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
STATIC PERFORMANCE  
Resolution  
10  
0.5  
0.5  
Bits  
LSBs  
LSBs  
Integral Nonlinearity (INL)1  
RSET = 510 Ω, RL = 37.5 Ω  
Differential Nonlinearity (DNL)1, 2 RSET = 510 Ω, RL = 37.5 Ω  
STANDARD DEFINTION (SD) MODE  
Luminance Nonlinearity  
Differential Gain  
Differential Phase  
Signal-to-Noise Ratio (SNR)3  
0.5  
0.5  
0.6  
58  
%
%
Degrees  
dB  
NTSC  
NTSC  
Luma ramp  
Flat field full bandwidth  
75  
dB  
ENHANCED DEFINITION (ED) MODE  
Luma Bandwidth  
Chroma Bandwidth  
12.5  
5.8  
MHz  
MHz  
HIGH DEFINITION (HD) MODE  
Luma Bandwidth  
Chroma Bandwidth  
30.0  
13.75  
MHz  
MHz  
1 Measured on DAC 1, DAC 2, and DAC 3.  
2 Differential nonlinearity (DNL) measures the deviation of the actual DAC output voltage step from the ideal. For +ve DNL, the actual step value lies above the ideal  
step value. For −ve DNL, the actual step value lies below the ideal step value.  
3 Measured on the ADV7392/ADV7393 operating in 10-bit input mode.  
POWER SPECIFICATIONS  
VDD = 1.8 V, PVDD = 1.8 V, VAA = 3.3 V, VDD_IO = 3.3 V, TA = +25°C.  
Table 12.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
NORMAL POWER MODE1, 2  
3
IDD  
SD (16× oversampling enabled), CVBS (only one DAC turned on)  
SD (16× oversampling enabled), YPrPb (three DACs turned on)  
ED (8× oversampling enabled)4  
33  
68  
59  
81  
1
50  
122  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
HD (4× oversampling enabled)4  
101  
10  
IDD_IO  
5
IAA  
One DAC enabled  
All DACs enabled  
151  
10  
IPLL  
SLEEP MODE  
IDD  
IAA  
IDD_IO  
IPLL  
5
µA  
µA  
µA  
µA  
0.3  
0.2  
0.1  
1 RSET = 510 Ω (all DACs operating in full-drive mode).  
2 75% color bar test pattern applied to pixel data pins.  
3 IDD is the continuous current required to drive the digital core.  
4 Applicable to both single data rate (SDR) and dual data rate (DDR) input modes.  
5 IAA is the total current required to supply all DACs.  
Rev. H | Page 11 of 108  
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
t13 = control output access time  
t14 = control output hold time  
TIMING DIAGRAMS  
The following abbreviations are used in Figure 4 to Figure 11:  
In addition, see Table 35 for the ADV7390/ADV7391 pixel port  
input configuration and Table 36 for the ADV7392/ADV7393  
pixel port input configuration.  
t9 = clock high time  
t10 = clock low time  
t11 = data setup time  
t12 = data hold time  
CLKIN  
t12  
t9  
t10  
CONTROL  
INPUTS  
HSYNC  
VSYNC  
IN SLAVE MODE  
Y0  
t11  
Y1  
Y2  
PIXEL PORT  
Cb0  
Cr0  
Cb2  
t13  
Cr2  
CONTROL  
OUTPUTS  
IN MASTER/SLAVE MODE  
t14  
Figure 4. SD Input, 8-/10-Bit 4:2:2 YCrCb, Input Mode 000  
CLKIN  
t9  
t
t12  
10  
CONTROL  
INPUTS  
HSYNC  
VSYNC  
IN SLAVE MODE  
Y2  
Y0  
Y1  
Y3  
PIXEL PORT  
PIXEL PORT  
Cb2  
Cb0  
Cr0  
Cr2  
t11  
t13  
CONTROL  
OUTPUTS  
IN MASTER/SLAVE MODE  
t14  
Figure 5. SD Input, 16-Bit 4:2:2 YCrCb, Input Mode 000  
Rev. H | Page 12 of 108  
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
CLKIN  
t12  
t9  
t10  
CONTROL  
INPUTS  
HSYNC  
VSYNC  
PIXEL PORT  
PIXEL PORT  
G0  
B0  
G1  
B1  
G2  
B2  
t11  
PIXEL PORT  
R0  
R1  
R2  
CONTROL  
OUTPUTS  
t14  
t13  
Figure 6. SD Input, 16-Bit 4:4:4 RGB, Input Mode 000  
CLKIN  
t12  
t9  
t10  
CONTROL  
INPUTS  
HSYNC  
VSYNC  
PIXEL PORT  
PIXEL PORT  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Cb0  
Cr0  
Cb2  
Cr2  
Cb4  
Cr4  
t11  
t13  
CONTROL  
OUTPUTS  
t14  
Figure 7. ED/HD-SDR Input, 16-Bit 4:2:2 YCrCb, Input Mode 001  
CLKIN*  
t9  
t10  
CONTROL  
INPUTS  
HSYNC  
VSYNC  
PIXEL PORT  
Cb0  
Y0  
Cr0  
Y1  
Cb2  
Y2  
Cr2  
t12  
t12  
t11  
t11  
t13  
CONTROL  
OUTPUTS  
t14  
*LUMA/CHROMA CLOCK RELATIONSHIP CAN BE INVERTED USING SUBADDRESS 0x01, BITS 1 AND 2.  
HSYNC VSYNC  
), Input Mode 010  
Figure 8. ED/HD-DDR Input, 8-/10-Bit 4:2:2 YCrCb (  
/
Rev. H | Page 13 of 108  
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
CLKIN*  
t9  
t10  
PIXEL PORT  
3FF  
t12  
00  
00  
XY  
t12  
Cb0  
Y0  
Cr0  
Y1  
t11  
t11  
t13  
CONTROL  
OUTPUTS  
t14  
*LUMA/CHROMA CLOCK RELATIONSHIP CAN BE INVERTED USING SUBADDRESS 0x01, BITS 1 AND 2.  
Figure 9. ED/HD-DDR Input, 8-/10-Bit 4:2:2 YCrCb (EAV/SAV), Input Mode 010  
CLKIN  
t9  
t10  
CONTROL  
INPUTS  
HSYNC  
VSYNC  
Cb0  
Y0  
Cr0  
Y1  
Cb2  
Cr2  
PIXEL PORT  
Y2  
t12  
t13  
t14  
t11  
CONTROL  
OUTPUTS  
HSYNC VSYNC  
Figure 10. ED (at 54 MHz) Input, 8-/10-Bit 4:2:2 YCrCb (  
/
), Input Mode 111  
CLKIN  
t9  
t10  
PIXEL PORT  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
t12  
t13  
t14  
t11  
CONTROL  
OUTPUTS  
Figure 11. ED (at 54 MHz) Input, 8-/10-Bit 4:2:2 YCrCb (EAV/SAV), Input Mode 111  
Rev. H | Page 14 of 108  
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
Y OUTPUT  
b
HSYNC  
VSYNC  
PIXEL PORT  
PIXEL PORT*  
Y2  
Y3  
Y0  
Y1  
Cb0 Cr0 Cb2  
Cr2  
a
a = AS PER RELEVANT STANDARD.  
b = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING  
SPECIFICATION SECTION OF THE DATA SHEET.  
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A SYNC FALLING EDGE ON THE OUTPUT AFTER A TIME  
EQUAL TO THE PIPELINE DELAY.  
HSYNC VSYNC  
/
Figure 12. ED-SDR, 16-Bit 4:2:2 YCrCb (  
) Input Timing Diagram  
Y OUTPUT  
b
HSYNC  
VSYNC  
Cr0  
Y1  
Cb0  
Y0  
PIXEL PORT  
a
a(MIN) = 244 CLOCK CYCLES FOR 525p.  
a(MIN) = 264 CLOCK CYCLES FOR 625p.  
b = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING  
SPECIFICATION SECTION OF THE DATA SHEET.  
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A SYNC FALLING EDGE ON THE OUTPUT AFTER A TIME  
EQUAL TO THE PIPELINE DELAY.  
HSYNC VSYNC  
) Input Timing Diagram  
Figure 13. ED-DDR, 8-/10-Bit 4:2:2 YCrCb (  
/
Rev. H | Page 15 of 108  
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
Y OUTPUT  
b
HSYNC  
VSYNC  
Y2  
Y3  
Y0  
Y1  
PIXEL PORT  
PIXEL PORT  
Cb0 Cr0 Cb2  
Cr2  
a
a = AS PER RELEVANT STANDARD.  
b = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING  
SPECIFICATION SECTION OF THE DATA SHEET.  
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A FALLING EDGE OF TRI-LEVEL SYNC ON THE OUTPUT  
AFTER A TIME EQUAL TO THE PIPELINE DELAY.  
HSYNC VSYNC  
/
Figure 14. HD-SDR, 16-Bit 4:2:2 YCrCb (  
) Input Timing Diagram  
Y OUTPUT  
b
HSYNC  
VSYNC  
PIXEL PORT  
Cr0  
Y1  
Cb0  
Y0  
a
a = AS PER RELEVANT STANDARD.  
b = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING  
SPECIFICATION SECTION OF THE DATA SHEET.  
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A FALLING EDGE OF TRI-LEVEL SYNC ON THE OUTPUT  
AFTER A TIME EQUAL TO THE PIPELINE DELAY.  
HSYNC VSYNC  
) Input Timing Diagram  
Figure 15. HD-DDR, 8-/10-Bit 4:2:2 YCrCb (  
/
Rev. H | Page 16 of 108  
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
HSYNC  
VSYNC  
Cr  
Y
PIXEL PORT  
Cb  
Y
PAL = 264 CLOCK CYCLES  
NTSC = 244 CLOCK CYCLES  
Figure 16. SD Input Timing Diagram (Timing Mode 1)  
t5  
t3  
t3  
SDA  
SCL  
t6  
t1  
t2  
t7  
t4  
t8  
Figure 17. MPU Port Timing Diagram (I2C Mode)  
Rev. H | Page 17 of 108  
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 13.  
Parameter1  
Rating  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
VAA to AGND  
VDD to DGND  
PVDD to PGND  
VDD_IO to GND_IO  
AGND to DGND  
AGND to PGND  
AGND to GND_IO  
DGND to PGND  
−0.3 V to +3.9 V  
−0.3 V to +2.3 V  
−0.3 V to +2.3 V  
−0.3 V to +3.9 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to VDD_IO + 0.3 V  
−0.3 V to VAA  
Table 14. Thermal Resistance1  
2
3
4
Package Type  
30-Ball WLCSP  
32-Lead LFCSP  
40-Lead LFCSP  
θJA  
35  
27  
26  
θJC-TOP  
θJC-BOTTOM  
Unit  
°C/W  
°C/W  
°C/W  
1
32  
32  
N/A  
1.2  
1
1 Values are based on a JEDEC 4-layer test board.  
2 With the exposed metal paddle on the underside of the LFCSP soldered to  
the PCB ground.  
DGND to GND_IO  
PGND to GND_IO  
3 This is the thermal resistance of the junction to the top of the package.  
4 This is the thermal resistance of the junction to the bottom of the package.  
Digital Input Voltage to GND_IO  
Analog Outputs to AGND  
Max CLKIN Input Frequency  
Storage Temperature Range (tS)  
Junction Temperature (tJ)  
Lead Temperature (Soldering, 10 sec)  
The ADV739x is an RoHS-compliant, Pb-free product. The lead  
finish is 100% pure Sn electroplate. The device is suitable for Pb-  
free applications up to 255°C ( 5°C) IR reflow (JEDEC STD-20).  
80 MHz  
−60°C to +150°C  
150°C  
The ADV739x is backward compatible with conventional SnPb  
soldering processes. The electroplated Sn coating can be soldered  
with SnPb solder pastes at conventional reflow temperatures of  
220°C to 235°C.  
260°C  
1 Analog output short circuit to any power supply or common can be of an  
indefinite duration.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. H | Page 18 of 108  
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
BALL A1 CORNER  
1
2
3
4
5
V
R
V
DD  
A
B
HSYNC  
P0  
DD_IO  
SET  
V
R
24  
1
2
3
4
5
6
7
8
DD_IO  
P2  
P3  
SET  
PIN 1  
INDICATOR  
DAC1  
VSYNC  
SFL  
P1  
P3  
P2  
P4  
23 COMP  
22 DAC 1  
21 DAC 2  
20 DAC 3  
P4  
ADV7390/  
ADV7391  
TOP VIEW  
(Not to Scale)  
V
DD  
V
COMP DGND  
C
D
E
AA  
DGND  
P5  
19  
18 AGND  
17 PV  
V
AA  
P6  
DD  
GND_IO  
RESET  
AGND  
V
DGND  
P6  
DD  
PV  
DD  
ALSB  
P5  
EXT_LF  
SDA  
NOTES  
F
PGND  
SCL  
CLKIN  
P7  
1. THE EXPOSED PAD SHOULD BE CONNECTED  
TO ANALOG GROUND (AGND).  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
Figure 18. ADV7390/ADV7391 Pin Configuration  
Figure 20. ADV7390BCBZ-A Pin Configuration  
V
R
30  
PIN 1  
DD_IO  
P4  
1
2
SET  
INDICATOR  
29 COMP  
28 DAC 1  
27 DAC 2  
26 DAC 3  
P5  
3
P6  
4
ADV7392/  
ADV7393  
TOP VIEW  
(Not to Scale)  
P7  
DD  
5
V
6
25 V  
AA  
7
24  
DGND  
AGND  
8
23  
22  
21  
P8  
PV  
DD  
9
P9  
EXT_LF  
PGND  
10  
P10  
NOTES  
1. THE EXPOSED PAD SHOULD BE CONNECTED  
TO ANALOG GROUND (AGND).  
Figure 19. ADV7392/ADV7393 Pin Configuration  
Table 15. Pin Function Descriptions  
Pin No.  
ADV7390/  
ADV7391  
ADV7392/  
ADV7393  
ADV7390  
WLCSP  
Input/  
Output Description  
Mnemonic  
9 to 7, 4 to 2,  
31, 30  
F5, E5, E4, C5,  
C4, B5, B4, A4  
P7 to P0  
I
8-Bit Pixel Port (P7 to P0). P0 is the LSB. See Table 35 for  
input modes (ADV7390/ADV7391).  
18 to 15, 11 to  
8, 5 to 2, 39 to  
37, 34  
P15 to P0  
I
16-Bit Pixel Port (P15 to P0). P0 is the LSB. See Table 36 for  
input modes (ADV7392/ADV7393).  
13  
27  
19  
F4  
CLKIN  
I
Pixel Clock Input for HD (74.25 MHz), ED1 (27 MHz or 54 MHz),  
or SD (27 MHz).  
Horizontal Synchronization Signal. This pin can also be  
configured to output an SD, ED, or HD horizontal  
synchronization signal. See the External Horizontal and  
Vertical Synchronization Control section.  
33  
A2  
HSYNC  
I/O  
26  
25  
32  
31  
B2  
B3  
VSYNC  
SFL  
I/O  
I/O  
Vertical Synchronization Signal. This pin can also be  
configured to output an SD, ED, or HD vertical  
synchronization signal. See the External Horizontal and  
Vertical Synchronization Control section.  
Subcarrier Frequency Lock (SFL) Input.  
Rev. H | Page 19 of 108  
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
Pin No.  
ADV7390/  
ADV7391  
ADV7392/  
ADV7393  
ADV7390  
WLCSP  
Input/  
Output Description  
Mnemonic  
24  
30  
A1  
RSET  
I
Controls the amplitudes of the DAC 1, DAC 2, and DAC 3  
outputs. For full-drive operation (for example, into a 37.5 Ω  
load), a 510 Ω resistor must be connected from RSET to  
AGND. For low-drive operation (for example, into a 300 Ω  
load), a 4.12 kΩ resistor must be connected from RSET to  
AGND.  
23  
29  
C2  
B1  
COMP  
DAC 1  
DAC 1, DAC 2,  
DAC 3  
SCL  
SDA  
O
Compensation Pin. Connect a 2.2 nF capacitor from COMP  
to VAA.  
DAC Output. Full-drive and low-drive capable DAC  
DAC Outputs. Full-drive and low-drive capable DACs.  
O
O
22, 21, 20  
28, 27, 26  
12  
11  
10  
14  
14  
13  
12  
20  
F3  
F2  
E3  
D3  
I
I2C Clock Input.  
I2C Data Input/Output.  
ALSB sets up the LSB2 of the MPU I2C address.  
Resets the on-chip timing generator and sets the ADV739x  
into its default mode.  
I/O  
I
I
ALSB  
RESET  
19  
5, 28  
25  
6, 35  
C1  
A3, D4  
VAA  
VDD  
P
P
Analog Power Supply (2.7 V or 3.3 V).  
Digital Power Supply (1.8 V). For dual-supply  
configurations, VDD can be connected to other 1.8 V  
supplies through a ferrite bead or suitable filtering.  
1
17  
1
23  
A5  
E1  
VDD_IO  
PVDD  
P
P
Input/Output Digital Power Supply (1.8 V or 3.3 V).  
PLL Power Supply (1.8 V). For dual-supply configurations,  
PVDD can be connected to other 1.8 V supplies through a  
ferrite bead or suitable filtering.  
16  
15  
18  
6, 29  
22  
21  
24  
7, 36  
E2  
F1  
D1  
C3, D5  
D2  
EXT_LF  
PGND  
AGND  
DGND  
GND_IO  
EPAD  
I
External Loop Filter for the Internal PLL.  
PLL Ground Pin.  
Analog Ground Pin.  
Digital Ground Pin.  
Input/Output Supply Ground Pin.  
Connect to analog ground (AGND).  
G
G
G
G
G
32  
40  
External Pad  
External Pad  
1 ED = enhanced definition = 525p and 625p.  
2 LSB = least significant bit. In the ADV7390/ADV7392, setting the LSB to 0 sets the I2C address to 0xD4. Setting it to 1 sets the I2C address to 0xD6. In the  
ADV7391/ADV7393, setting the LSB to 0 sets the I2C address to 0x54. Setting it to 1 sets the I2C address to 0x56.  
Rev. H | Page 20 of 108  
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
TYPICAL PERFORMANCE CHARACTERISTICS  
Y RESPONSE IN ED 8× OVERSAMPLING MODE  
1.0  
EDPr/Pb RESPONSE. LINEAR INTERP FROM 4:2:2 TO 4:4:4  
0
0.5  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 21. ED 8× Oversampling, PrPb Filter (Linear) Response  
Figure 24. ED 8× Oversampling, Y Filter Response (Focus on Pass Band)  
HD Pr/Pb RESPONSE. SSAF INTERP FROM 4:2:2 TO 4:4:4  
10  
EDPr/Pb RESPONSE. SSAF INTERP FROM 4:2:2 TO 4:4:4  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
18.5  
37.0  
55.5  
74.0  
92.5  
111.0 129.5 148.0  
FREQUENCY (MHz)  
Figure 22. ED 8× Oversampling, PrPb Filter (SSAF™) Response  
Figure 25. HD 4× Oversampling, PrPb (SSAF) Filter Response  
(4:2:2 Input)  
Y RESPONSE IN ED 8× OVERSAMPLING MODE  
0
HD Pr/Pb RESPONSE. 4:4:4 INPUT MODE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–100  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
10 20 30 40 50 60 70 80 90 100 110 120 130 140  
FREQUENCY (MHz)  
Figure 23. ED 8× Oversampling, Y Filter Response  
Figure 26. HD 4× Oversampling, PrPb (SSAF) Filter Response  
(4:4:4 Input)  
Rev. H | Page 21 of 108  
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
Y RESPONSE IN HD 4× OVERSAMPLING MODE  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
18.5  
37.0  
55.5  
74.0  
92.5  
111.0 129.5 148.0  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 27. HD 4× Oversampling, Y Filter Response  
Figure 30. SD PAL, Luma Low-Pass Filter Response  
Y PASS BAND IN HD 4x OVERSAMPLING MODE  
3.0  
1.5  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–1.5  
–3.0  
–4.5  
–6.0  
–7.5  
–9.0  
–10.5  
–12.0  
0
2
4
6
8
10  
12  
27.750  
46.250  
30.063 32.375 34.688 37.000 39.312 41.625 43.937  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 31. SD NTSC, Luma Notch Filter Response  
Figure 28. HD 4× Oversampling, Y Filter Response (Focus on Pass Band)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 32. SD PAL, Luma Notch Filter Response  
Figure 29. SD NTSC, Luma Low-Pass Filter Response  
Rev. H | Page 22 of 108  
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
Y RESPONSE IN SD OVERSAMPLING MODE  
5
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
4
3
2
1
0
–1  
5
6
7
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
1
2
3
4
FREQUENCY (MHz)  
Figure 33. SD 16× Oversampling, Y Filter Response  
Figure 36. SD Luma SSAF Filter, Programmable Gain  
1
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–1  
–2  
–3  
–4  
–5  
0
2
4
6
8
10  
12  
0
1
2
3
4
5
6
7
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 34. SD Luma SSAF Filter Response up to 12 MHz  
Figure 37. SD Luma SSAF Filter, Programmable Attenuation  
4
2
0
–10  
0
–20  
–30  
–40  
–50  
–60  
–70  
–2  
–4  
–6  
–8  
–10  
–12  
0
1
2
3
4
5
6
7
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 35. SD Luma SSAF Filter, Programmable Responses  
Figure 38. SD Luma CIF Low-Pass Filter Response  
Rev. H | Page 23 of 108  
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
12  
12  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 39. SD Luma QCIF Low-Pass Filter Response  
Figure 42. SD Chroma 1.3 MHz Low-Pass Filter Response  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
10  
12  
0
2
4
6
8
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 43. SD Chroma 1.0 MHz Low-Pass Filter Response  
Figure 40. SD Chroma 3.0 MHz Low-Pass Filter Response  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
4
6
8
10  
0
2
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 44. SD Chroma 0.65 MHz Low-Pass Filter Response  
Figure 41. SD Chroma 2.0 MHz Low-Pass Filter Response  
Rev. H | Page 24 of 108  
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 45. SD Chroma CIF Low-Pass Filter Response  
Figure 46. SD Chroma QCIF Low-Pass Filter Response  
Rev. H | Page 25 of 108  
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
MPU PORT DESCRIPTION  
Devices such as a microprocessor can communicate with the  
ADV739x through a 2-wire serial (I2C-compatible) bus. After  
power-up or reset, the MPU port is configured for I2C operation.  
The various devices on the bus use the following protocol. The  
master initiates a data transfer by establishing a start condition,  
defined by a high-to-low transition on SDA while SCL remains  
high. This indicates that an address/data stream follows. All  
peripherals respond to the start condition and shift the next  
I2C OPERATION  
The ADV739x supports a 2-wire serial (I2C-compatible)  
microprocessor bus driving multiple peripherals. This port  
operates in an open-drain configuration. Two wires, serial data  
(SDA) and serial clock (SCL), carry information between any  
device connected to the bus and the ADV739x. The slave  
address depends on the device (ADV7390, ADV7391,  
ADV7392, or ADV7393), the operation (read or write), and the  
state of the ALSB pin (0 or 1). See Table 16, Figure 47, and  
Figure 48. The LSB sets either a read or a write operation. Logic  
1 corresponds to a read operation, and Logic 0 corresponds to a  
write operation. A1 is controlled by setting the ALSB pin of the  
ADV739x to Logic 0 or Logic 1.  
W
eight bits (7-bit address plus the R/ bit).  
The bits are transferred from MSB down to LSB. The peripheral  
that recognizes the transmitted address responds by pulling the  
data line low during the ninth clock pulse. This is known as an  
acknowledge bit. All other devices withdraw from the bus at  
this point and maintain an idle condition. The idle condition  
occurs when the device monitors the SDA and SCL lines  
waiting for the start condition and the correct transmitted  
W
address. The R/ bit determines the direction of the data.  
Logic 0 on the LSB of the first byte means that the master writes  
information to the peripheral. Logic 1 on the LSB of the first byte  
means that the master reads information from the peripheral.  
Table 16. ADV739x I2C Slave Addresses  
The ADV739x acts as a standard slave device on the bus. The  
data on the SDA pin is eight bits long, supporting the 7-bit  
addresses plus the R/ bit. It interprets the first byte as the  
device address and the second byte as the starting subaddress.  
There is a subaddress auto-increment facility. This allows data  
to be written to or read from registers in ascending subaddress  
sequence starting at any valid subaddress. A data transfer is  
always terminated by a stop condition. The user can also access  
any unique subaddress register on a one-by-one basis without  
updating all the registers.  
Device  
ALSB  
Operation  
Write  
Read  
Write  
Read  
Slave Address  
0xD4  
0xD5  
0xD6  
0xD7  
0
0
1
1
0
0
1
1
ADV7390  
and  
ADV7392  
W
Write  
Read  
Write  
Read  
0x54  
0x55  
0x56  
0x57  
ADV7391  
and  
ADV7393  
Stop and start conditions can be detected at any stage during  
the data transfer. If these conditions are asserted out of  
sequence with normal read and write operations, they cause an  
immediate jump to the idle condition. During a given SCL high  
period, the user should issue only a start condition, a stop  
condition, or a stop condition followed by a start condition. If  
an invalid subaddress is issued by the user, the ADV739x does  
not issue an acknowledge but returns to the idle condition. If the  
user uses the auto-increment method of addressing the encoder  
and exceeds the highest subaddress, the following actions are  
taken:  
1
1
0
1
0
1
A1  
X
ADDRESS  
CONTROL  
SET UP BY  
ALSB  
READ/WRITE  
CONTROL  
0
1
WRITE  
READ  
Figure 47. ADV7390/ADV7392 I2C Slave Address  
In read mode, the highest subaddress register contents are  
output until the master device issues a no acknowledge.  
This indicates the end of a read. A no acknowledge condition  
occurs when the SDA line is not pulled low on the ninth pulse.  
In write mode, the data for the invalid byte is not loaded  
into any subaddress register, a no acknowledge is issued by  
the ADV739x, and the part returns to the idle condition.  
0
1
0
1
0
1
A1  
X
ADDRESS  
CONTROL  
SET UP BY  
ALSB  
READ/WRITE  
CONTROL  
0
1
WRITE  
READ  
Figure 49 shows an example of data transfer for a write sequence  
and the start and stop conditions. Figure 50 shows bus write  
and read sequences.  
Figure 48. ADV7391/ADV7393 I2C Slave Address  
Rev. H | Page 26 of 108  
 
 
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
SDA  
SCL  
S
P
9
1–7  
9
9
1–7  
8
8
1–7  
8
START ADDR R/W ACK SUBADDRESS ACK  
DATA  
ACK  
STOP  
Figure 49. I2C Data Transfer  
WRITE  
S
S
SLAVE ADDR A(S)  
LSB = 0  
SUBADDR  
SUBADDR  
A(S)  
DATA  
A(S)  
DATA  
A(M)  
A(S) P  
SEQUENCE  
LSB = 1  
READ  
SEQUENCE  
SLAVE ADDR A(S)  
A(S)  
S
SLAVE ADDR A(S)  
DATA  
DATA  
A(M) P  
S = START BIT  
P = STOP BIT  
A(S) = ACKNOWLEDGE BY SLAVE  
A(M) = ACKNOWLEDGE BY MASTER  
A (S) = NO-ACKNOWLEDGE BY SLAVE  
A (M) = NO-ACKNOWLEDGE BY MASTER  
Figure 50. I2C Read and Write Sequence  
Rev. H | Page 27 of 108  
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
REGISTER MAP ACCESS  
A microprocessor can read from or write to all registers of the  
ADV739x via the MPU port, except for registers that are  
specified as read-only or write-only registers.  
REGISTER PROGRAMMING  
Table 17 to Table 34 describe the functionality of each register.  
All registers can be read from as well as written to, unless  
otherwise stated.  
The subaddress register determines the register accessed by the  
next read or write operation. All communication through the  
MPU port starts with an access to the subaddress register. A  
read/write operation is then performed from/to the target  
address, incrementing to the next address until the transaction  
is complete.  
SUBADDRESS REGISTER (SR7 TO SR0)  
The subaddress register is an 8-bit write-only register. After the  
MPU port is accessed and a read/write operation is selected, the  
subaddress is set up. The subaddress register determines which  
register performs the next operation.  
Table 17. Register 0x00  
SR7 to  
Bit Number  
Register  
Setting  
Reset  
Value  
0x12  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0x00  
Power  
mode  
Sleep mode. With this control enabled, the current consumption is  
reduced to µA level. All DACs and the internal PLL circuit are  
disabled. Registers can be read from and written to in sleep mode.  
0
Sleep  
mode off  
Sleep  
1
mode on  
PLL and oversampling control. This control allows the internal PLL  
circuit to be powered down and the oversampling to be switched off.  
0
1
PLL on  
PLL off  
DAC 3: power on/off.  
DAC 2: power on/off.  
DAC 1: power on/off.  
Reserved.  
0
1
DAC 3 off  
DAC 3 on  
DAC 2 off  
DAC 2 on  
DAC 1 off  
DAC 1 on  
0
1
0
1
0
0
0
Table 18. Register 0x01 to Register 0x09  
SR7 to  
Bit Number1  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Register Setting  
0x01  
Mode  
select  
Reserved.  
0
DDR clock edge alignment  
(used only for ED2 and HD  
DDR modes)  
0
0
Chroma clocked in on rising clock edge and  
luma clocked in on falling clock edge.  
Reserved.  
Reserved.  
Luma clocked in on rising clock edge and  
chroma clocked in on falling clock edge.  
0
1
1
1
0
1
Reserved  
0
Input mode  
(see Subaddress 0x30, Bits[7:3]  
for ED/HD standard selection)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
SD input.  
ED/HD-SDR input.3  
ED/HD-DDR input.  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
ED (at 54 MHz) input.  
Reserved  
0
Rev. H | Page 28 of 108  
 
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
SR7 to  
Bit Number1  
Reset  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Register Setting  
Value  
0x02  
Mode  
Register 0  
Reserved  
0
Zero must be written to this bit.  
Default.  
0x20  
0
1
HD interlace external VSYNC  
and HSYNC  
If using HD HSYNC/VSYNCinterlace mode,  
setting this bit to 1 is recommended (see the  
HD Interlace External HSYNC and VSYNC  
Considerations section for more information).  
Test pattern black bar4  
Manual CSC matrix adjust  
Sync on RGB  
0
1
Disabled.  
Enabled.  
0
1
Disable manual CSC matrix adjust.  
Enable manual CSC matrix adjust.  
No sync.  
0
1
Sync on all RGB outputs.  
RGB component outputs.  
YPrPb component outputs.  
No sync output.  
RGB/YPrPb output select  
SD sync output enable  
ED/HD sync output enable  
0
1
0
1
Output SD syncs on HSYNC and VSYNC pins.  
No sync output.  
0
1
Output ED/HD syncs on  
VSYNC pins.  
HSYNC  
and  
0x03  
0x04  
ED/HD  
CSC  
Matrix 0  
x
x
x
x
LSBs for GY.  
0x03  
0xF0  
ED/HD  
CSC  
Matrix 1  
LSBs for RV.  
LSBs for BU.  
LSBs for GV.  
LSBs for GU.  
Bits[9:2] for GY.  
x
x
x
x
x
x
x
x
x
x
0x05  
0x06  
0x07  
0x08  
0x09  
ED/HD  
CSC  
Matrix 2  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0x4E  
0x0E  
0x24  
0x92  
0x7C  
ED/HD  
CSC  
Matrix 3  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Bits[9:2] for GU.  
Bits[9:2] for GV.  
Bits[9:2] for BU.  
Bits[9:2] for RV.  
ED/HD  
CSC  
Matrix 4  
ED/HD  
CSC  
Matrix 5  
ED/HD  
CSC  
Matrix 6  
1 x = Logic 0 or Logic 1.  
2 ED = enhanced definition = 525p and 625p.  
3 Available on the ADV7392/ADV7393 (40-pin devices) only.  
4 Subaddress 0x31, Bit 2 must also be enabled (ED/HD). Subaddress 0x84, Bit 6 must also be enabled (SD).  
Rev. H | Page 29 of 108  
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
Table 19. Register 0x0B to Register 0x17  
SR7 to  
Bit Number1  
Reset  
SR0  
Register  
Bit Description  
7
0
0
0
0
6
0
0
0
0
5
0
0
0
1
4
0
0
0
1
3
0
0
0
1
2
0
0
0
1
1
0
0
1
1
0
0
1
0
1
Register Setting  
Value  
0x0B  
DAC 1, DAC 2,  
DAC 3 output  
levels  
Positive gain to DAC output voltage  
0%.  
0x00  
+0.018%.  
+0.036%.  
+7.382%.  
+7.5%.  
−7.5%.  
−7.382%.  
−7.364%.  
0
1
0
0
0
0
0
0
Negative gain to DAC output voltage  
1
1
1
1
1
1
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
1
0
1
0
1
−0.018%.  
0x0D  
0x10  
0x13  
DAC power  
mode  
DAC 1 low power mode  
DAC 2 low power mode  
DAC 3 low power mode  
0
DAC 1 low power  
disabled.  
DAC 1 low power enabled.  
0x00  
0x00  
0xXX  
1
0
1
DAC 2 low power  
disabled.  
DAC 2 low power enabled.  
0
1
DAC 3 low power  
disabled.  
DAC 3 low power enabled.  
SD = 16×, ED = 8×.  
SD = 8×, ED = 4×.  
SD/ED oversample rate select  
Reserved  
0
1
0
0
0
0
Cable detection DAC 1 cable detect  
0
1
Cable detected on  
DAC 1.  
DAC 1 unconnected.  
Read only  
DAC 2 cable detect  
0
1
Cable detected on  
DAC 2.  
Read only  
Reserved  
DAC 2 unconnected.  
0
x
0
x
Unconnected DAC autopower-down  
0
1
DAC autopower-down  
disable.  
DAC autopower-down  
enable.  
Reserved  
0
x
0
x
0
x
Pixel Port  
x
x
x
x
Read only.  
P[7:0] readback (ADV7390/ADV7391)  
Readback A2  
P[15:8] readback  
(ADV7392/ADV7393)  
0x14  
0x16  
Pixel Port  
x
x
x
x
x
x
x
x
x
x
x
x
Read only.  
Read only.  
0xXX  
0xXX  
P[7:0] readback (ADV7392/ADV7393)  
Readback B2  
Control port  
readback2  
Reserved  
VSYNC readback  
HSYNC readback  
SFL readback  
Reserved  
x
x
x
0x17  
Software reset  
Reserved  
0
0x00  
Software reset  
0
1
Writing a 1 resets the  
device; this is a self-  
clearing bit.  
Reserved.  
0
0
0
0
0
0
1 x = Logic 0 or Logic 1.  
2 For correct operation, Subaddress 0x01[6:4] must equal the default value of 000.  
Rev. H | Page 30 of 108  
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 20. Register 0x30  
SR7 to  
Bit Number  
Reset  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Register Setting  
Note  
Value  
0x30  
ED/HD Mode  
Register 1  
ED/HD output standard  
0
0
EIA-770.2 output  
EIA-770.3 output  
ED  
HD  
0x00  
0
1
1
0
EIA-770.1 output  
Output levels for full  
input range  
1
1
Reserved  
ED/HD input  
synchronization format  
0
1
External  
,
HSYNC VSYNC  
and field inputs1  
Embedded EAV/SAV  
codes  
ED/HD standard2  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
0
0
0
0
1
0
1
SMPTE 293M, ITU-BT.1358 525p at 59.94 Hz  
BTA-1004, ITU-BT.1362  
ITU-BT.1358  
ITU-BT.1362  
525p at 59.94 Hz  
625p at 50 Hz  
625p at 50 Hz  
SMPTE 296M-1,  
SMPTE 274M-2  
720p at  
60 Hz/59.94 Hz  
0
0
0
0
1
1
1
1
0
1
SMPTE 296M-3  
SMPTE 296M-4,  
SMPTE 274M-5  
720p at 50 Hz  
720p at  
30 Hz/29.97 Hz  
0
0
1
1
0
0
0
0
0
1
SMPTE 296M-6  
SMPTE 296M-7,  
SMPTE 296M-8  
720p at 25 Hz  
720p at  
24 Hz/23.98 Hz  
0
1
0
1
0
SMPTE 240M  
1035i at  
60 Hz/59.94 Hz  
0
0
0
1
1
1
0
1
1
1
0
0
1
0
1
Reserved  
Reserved  
SMPTE 274M-4,  
SMPTE 274M-5  
1080i at  
30 Hz/29.97 Hz  
0
0
1
1
1
1
1
1
0
1
SMPTE 274M-6  
SMPTE 274M-7,  
SMPTE 274M-8  
1080i at 25 Hz  
1080p at  
30 Hz/29.97 Hz  
1
1
0
0
0
0
0
0
0
1
SMPTE 274M-9  
SMPTE 274M-10,  
SMPTE 274M-11  
1080p at 25 Hz  
1080p at  
24 Hz/23.98 Hz  
1
0
0
1
0
ITU-R BT.709-5  
Reserved  
1080Psf at 24 Hz  
10011 to 11111  
1 Synchronization can be controlled with a combination of either  
and  
inputs or  
and field inputs, depending on Subaddress 0x34, Bit 6.  
HSYNC  
HSYNC  
VSYNC  
2
HSYNC  
VSYNC  
Considerations section for more information.  
See the HD Interlace External  
and  
Rev. H | Page 31 of 108  
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
Table 21. Register 0x31 to Register 0x33  
SR7 to  
Bit Number  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
Register Setting  
Pixel data valid off.  
Pixel data valid on.  
4×.  
0x31  
ED/HD Mode  
Register 2  
ED/HD pixel data valid  
HD oversample rate select  
ED/HD test pattern enable  
ED/HD test pattern hatch/field  
0
1
2×.  
0
1
HD test pattern off.  
HD test pattern on.  
Hatch.  
0
1
Field/frame.  
ED/HD vertical blanking interval (VBI)  
open  
0
1
Disabled.  
Enabled.  
ED/HD undershoot limiter  
0
0
1
1
0
1
0
1
Disabled.  
−11 IRE.  
−6 IRE.  
−1.5 IRE.  
ED/HD sharpness filter  
0
1
Disabled.  
Enabled.  
0x32  
ED/HD Mode  
Register 3  
ED/HD Y delay with respect to the  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
0 clock cycles.  
One clock cycle.  
Two clock cycles.  
Three clock cycles.  
Four clock cycles.  
0 clock cycles.  
One clock cycle.  
Two clock cycles.  
Three clock cycles.  
Four clock cycles.  
Disabled.  
0x00  
falling edge of  
HSYNC  
ED/HD color delay with respect to the  
falling edge of HSYNC  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
ED/HD CGMS enable  
0
1
Enabled.  
ED/HD CGMS CRC enable  
ED/HD Cr/Cb sequence  
0
1
Disabled.  
Enabled.  
0x33  
ED/HD Mode  
Register 4  
0
1
0x68  
Cb after falling edge of HSYNC.  
Cr after falling edge of HSYNC.  
0 must be written to this bit.  
8-bit input.  
Reserved  
0
ED/HD input format  
0
1
10-bit input1.  
Sinc compensation filter on DAC 1, DAC  
2, DAC 3  
0
1
Disabled.  
Enabled.  
Reserved  
0
0 must be written to this bit.  
Disabled.  
Enabled.  
ED/HD chroma SSAF filter  
0
1
Reserved  
1
1 must be written to this bit.  
Disabled.  
Enabled.  
ED/HD double buffering  
0
1
1 Available on the ADV7392/ADV7393 (40-pin devices) only.  
Rev. H | Page 32 of 108  
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 22. Register 0x34 to Register 0x38  
SR7 to  
Bit Number1  
Reset  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
Register Setting  
Value  
0x34  
ED/HD Mode  
Register 5  
ED/HD timing reset  
Internal ED/HD timing counters enabled.  
Resets the internal ED/HD timing counters.  
HSYNC output control (see Table 55).  
0x48  
ED/HD HSYNC control2  
ED/HD VSYNC control2  
0
1
0
1
VSYNC output control (see Table 56).  
Reserved  
1
ED Macrovision® enable3  
0
1
ED Macrovision disabled.  
ED Macrovision enabled.  
0 must be written to this bit.  
Reserved  
0
0
1
0 = Field input.  
ED/HD VSYNC input/field  
input  
1 = VSYNC input.  
ED/HD horizontal/vertical  
counter mode4  
0
1
Update field/line counter.  
Field/line counter free running.  
0x35  
ED/HD Mode  
Register 6  
Reserved  
0
0x00  
Reserved  
0
ED/HD sync on PrPb  
0
1
Disabled.  
Enabled.  
ED/HD color DAC swap  
0
1
DAC 2 = Pb, DAC 3 = Pr  
DAC 2 = Pr, DAC 3 = Pb.  
Gamma Correction Curve A.  
Gamma Correction Curve B.  
Disabled.  
ED/HD gamma correction  
curve select  
0
1
ED/HD gamma correction  
enable  
0
1
Enabled.  
ED/HD adaptive filter  
mode  
0
1
Mode A.  
Mode B.  
ED/HD adaptive filter  
enable  
0
1
x
x
x
Disabled.  
Enabled.  
0x36  
0x37  
0x38  
ED/HD Y level5  
ED/HD Cr level5  
ED/HD Cb level5  
ED/HD Test Pattern Y level  
ED/HD Test Pattern Cr level  
ED/HD Test Pattern Cb level  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Y level value.  
Cr level value.  
Cb level value.  
0xA0  
0x80  
0x80  
1 x = Logic 0 or Logic 1.  
2 Used in conjunction with ED/HD sync output enable in Subaddress 0x02, Bit 7 = 1.  
3 Applies to the ADV7390 and ADV7392 only.  
4 When set to 0, the horizontal/vertical counters automatically wrap around at the end of the line/field/frame of the selected standard. When set to 1, the  
horizontal/vertical counters are free running and wrap around when external sync signals indicate to do so.  
5 For use with ED/HD internal test patterns only (Subaddress 0x31, Bit 2 = 1).  
Rev. H | Page 33 of 108  
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
Table 23. Register 0x39 to Register 0x43  
SR7 to  
Bit Number  
Reset  
Register Setting Value  
0x00  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0x39  
ED/HD Mode  
Register 7  
Reserved  
0
0
0
0
0
ED/HD EIA/CEA-861B  
synchronization compliance  
0
1
Disabled  
Enabled  
Reserved  
0
0
0X3A  
ED/HD Mode  
Register 8  
INV_PHSYNC_POL  
0
1
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
0x00  
0x00  
INV_PVSYNC_POL  
INV_PBLANK_POL  
0
1
0
1
Reserved  
0
0
0
0
0
0x40  
ED/HD  
sharpness filter Value A  
gain  
ED/HD sharpness filter gain  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
Gain A = 0  
Gain A = +1  
Gain A = +7  
Gain A = −8  
Gain A = −1  
Gain B = 0  
Gain B = +1  
Gain B = +7  
Gain B = −8  
1
1
1
ED/HD sharpness filter gain  
Value B  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
1
1
1
1
Gain B = −1  
0x41  
0x42  
0x43  
ED/HD CGMS  
Data 0  
ED/HD CGMS data bits  
ED/HD CGMS data bits  
ED/HD CGMS data bits  
0
0
0
0
C19  
C11  
C3  
C18  
C10  
C2  
C17  
C9  
C16  
C8  
CGMS C19 to C1  
6
0x00  
0x00  
0x00  
ED/HD CGMS  
Data 1  
C15  
C7  
C14  
C6  
C13  
C5  
C12  
C4  
CGMS C15 to C8  
ED/HD CGMS  
Data 2  
C1  
C0  
CGMS C7 to C0  
Rev. H | Page 34 of 108  
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 24. Register 0x44 to Register 0x57  
SR7 to  
Bit Number1  
Register  
Setting  
A0  
Reset  
Value  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
SR0  
Register  
Bit Description  
7
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
6
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
5
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
4
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
3
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
2
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
ED/HD Gamma A0  
ED/HD Gamma A1  
ED/HD Gamma A2  
ED/HD Gamma A3  
ED/HD Gamma A4  
ED/HD Gamma A5  
ED/HD Gamma A6  
ED/HD Gamma A7  
ED/HD Gamma A8  
ED/HD Gamma A9  
ED/HD Gamma Curve A (Point 24)  
ED/HD Gamma Curve A (Point 32)  
ED/HD Gamma Curve A (Point 48)  
ED/HD Gamma Curve A (Point 64)  
ED/HD Gamma Curve A (Point 80)  
ED/HD Gamma Curve A (Point 96)  
ED/HD Gamma Curve A (Point 128)  
ED/HD Gamma Curve A (Point 160)  
ED/HD Gamma Curve A (Point 192)  
ED/HD Gamma Curve A (Point 224)  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
ED/HD Gamma B0 ED/HD Gamma Curve B (Point 24)  
ED/HD Gamma B1 ED/HD Gamma Curve B (Point 32)  
ED/HD Gamma B2 ED/HD Gamma Curve B (Point 48)  
ED/HD Gamma B3 ED/HD Gamma Curve B (Point 64)  
ED/HD Gamma B4 ED/HD Gamma Curve B (Point 80)  
ED/HD Gamma B5 ED/HD Gamma Curve B (Point 96)  
ED/HD Gamma B6 ED/HD Gamma Curve B (Point 128)  
ED/HD Gamma B7 ED/HD Gamma Curve B (Point 160)  
ED/HD Gamma B8 ED/HD Gamma Curve B (Point 192)  
ED/HD Gamma B9 ED/HD Gamma Curve B (Point 224)  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
1 x = Logic 0 or Logic 1.  
Rev. H | Page 35 of 108  
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
Table 25. Register 0x58 to Register 0x5D  
SR7 to  
Bit Number1  
Register  
Setting  
Gain A = 0  
Gain A = +1  
Gain A = +7  
Gain A = −8  
Gain A = −1  
Gain B = 0  
Gain B = +1  
Gain B = +7  
Gain B = −8  
Gain B = −1  
Gain A = 0  
Gain A = +1  
Gain A = +7  
Gain A = −8  
Gain A = −1  
Gain B = 0  
Gain B = +1  
Gain B = +7  
Gain B = −8  
Gain B = −1  
Gain A = 0  
Gain A = +1  
Gain A = +7  
Gain A = −8  
Gain A = −1  
Gain B = 0  
Gain B = +1  
Gain B = +7  
Gain B = −8  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0x58  
ED/HD Adaptive Filter Gain 1  
ED/HD Adaptive Filter Gain 1,  
Value A  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
1
1
1
1
ED/HD Adaptive Filter Gain 1,  
Value B  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
1
1
1
1
0x59  
ED/HD Adaptive Filter Gain 2  
ED/HD Adaptive Filter Gain 2,  
Value A  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
0x00  
1
1
1
1
ED/HD Adaptive Filter Gain 2,  
Value B  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
1
1
1
1
0x5A  
ED/HD Adaptive Filter Gain 3  
ED/HD Adaptive Filter Gain 3,  
Value A  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
0x00  
1
1
1
1
ED/HD Adaptive Filter Gain 3,  
Value B  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
1
1
1
1
Gain B = −1  
0x5B  
0x5C  
0x5D  
ED/HD Adaptive Filter  
Threshold A  
ED/HD Adaptive Filter Threshold A  
ED/HD Adaptive Filter Threshold B  
ED/HD Adaptive Filter Threshold C  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Threshold A 0x00  
Threshold B 0x00  
Threshold C 0x00  
ED/HD Adaptive Filter  
Threshold B  
x
x
x
x
x
x
x
x
ED/HD Adaptive Filter  
Threshold C  
1 x = Logic 0 or Logic 1.  
Rev. H | Page 36 of 108  
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 26. Register 0x5E to Register 0x6E  
SR7 to  
Bit Number  
Register  
Setting  
Disabled  
Enabled  
Disabled  
Enabled  
H5 to H0  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
0x5E  
ED/HD CGMS Type B  
Register 0  
ED/HD CGMS Type B  
enable  
ED/HD CGMS Type B  
CRC enable  
0
1
ED/HD CGMS Type B  
header bits  
H5  
H4  
H3  
H2  
H1  
H0  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
ED/HD CGMS Type B  
Register 1  
ED/HD CGMS Type B  
data bits  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
P7 to P0  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
ED/HD CGMS Type B  
Register 2  
ED/HD CGMS Type B  
data bits  
P15  
P23  
P31  
P39  
P47  
P55  
P63  
P71  
P79  
P87  
P95  
P14  
P22  
P30  
P38  
P46  
P54  
P62  
P70  
P78  
P86  
P94  
P13  
P21  
P29  
P37  
P45  
P53  
P61  
P69  
P77  
P85  
P93  
P12  
P20  
P28  
P36  
P44  
P52  
P60  
P68  
P76  
P84  
P92  
P11  
P19  
P27  
P35  
P43  
P51  
P59  
P67  
P75  
P83  
P91  
P10  
P18  
P26  
P34  
P42  
P50  
P58  
P66  
P74  
P82  
P90  
P98  
P9  
P8  
P15 to P8  
ED/HD CGMS Type B  
Register 3  
ED/HD CGMS Type B  
data bits  
P17  
P25  
P33  
P41  
P49  
P57  
P65  
P73  
P81  
P89  
P97  
P16  
P24  
P32  
P40  
P48  
P56  
P64  
P72  
P80  
P88  
P96  
P23 to P16  
P31 to P24  
P39 to P32  
P47 to P40  
P55 to P48  
P63 to P56  
P71 to P64  
P79 to P72  
P87 to P80  
P95 to P88  
P103 to P96  
ED/HD CGMS Type B  
Register 4  
ED/HD CGMS Type B  
data bits  
ED/HD CGMS Type B  
Register 5  
ED/HD CGMS Type B  
data bits  
ED/HD CGMS Type B  
Register 6  
ED/HD CGMS Type B  
data bits  
ED/HD CGMS Type B  
Register 7  
ED/HD CGMS Type B  
data bits  
ED/HD CGMS Type B  
Register 8  
ED/HD CGMS Type B  
data dits  
ED/HD CGMS Type B  
Register 9  
ED/HD CGMS Type B  
data bits  
ED/HD CGMS Type B  
Register 10  
ED/HD CGMS Type B  
data bits  
ED/HD CGMS Type B  
Register 11  
ED/HD CGMS Type B  
data bits  
ED/HD CGMS Type B  
Register 12  
ED/HD CGMS Type B  
data bits  
ED/HD CGMS Type B  
Register 13  
ED/HD CGMS Type B  
data bits  
P103 P102 P101 P100 P99  
ED/HD CGMS Type B  
Register 14  
ED/HD CGMS Type B  
data bits  
P111 P110 P109 P108 P107 P106 P105 P104 P111 to P104 0x00  
P119 P118 P117 P116 P115 P114 P113 P112 P119 to P112 0x00  
P127 P126 P125 P124 P123 P122 P121 P120 P127 to P120 0x00  
ED/HD CGMS Type B  
Register 15  
ED/HD CGMS Type B  
data bits  
ED/HD CGMS Type B  
Register 16  
ED/HD CGMS Type B  
data bits  
Rev. H | Page 37 of 108  
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
Table 27. Register 0x80 to Register 0x83  
SR7 to  
Bit Number  
Reset  
Value  
0x10  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
1
0
0
1
0
1
Register Setting  
NTSC  
PAL B, PAL D, PAL G, PAL H, PAL I  
PAL M  
0x80  
SD Mode  
Register 1  
SD standard  
PAL N  
SD luma filter  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
LPF NTSC  
LPF PAL  
Notch NTSC  
Notch PAL  
Luma SSAF  
Luma CIF  
Luma QCIF  
Reserved  
SD chroma filter  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1.3 MHz  
0.65 MHz  
1.0 MHz  
2.0 MHz  
Reserved  
Chroma CIF  
Chroma QCIF  
3.0 MHz  
0x82  
SD Mode  
Register 2  
SD PrPb SSAF filter  
SD DAC Output 1  
0
1
Disabled  
Enabled  
0x0B  
0
1
See Table 37  
Reserved  
0
SD pedestal  
0
1
Disabled  
Enabled  
SD square pixel mode  
SD VCR FF/RW sync  
SD pixel data valid  
0
1
Disabled  
Enabled  
0
1
Disabled  
Enabled  
0
1
Disabled  
Enabled  
SD active video edge  
control  
0
1
Disabled  
Enabled  
0x83  
SD Mode  
Register 3  
SD pedestal YPrPb output  
0
1
No pedestal on YPrPb  
7.5 IRE pedestal on YPrPb  
Y = 700 mV/300 mV  
Y = 714 mV/286 mV  
0x04  
SD Output Levels Y  
0
1
SD Output Levels PrPb  
0
0
1
1
0
1
0
1
700 mV p-p (PAL), 1000 mV p-p (NTSC)  
700 mV p-p  
1000 mV p-p  
648 mV p-p  
SD vertical blanking  
interval (VBI) open  
0
1
Disabled  
Enabled  
SD closed captioning field  
control  
0
0
1
1
0
1
0
1
Closed captioning disabled  
Closed captioning on odd field only  
Closed captioning on even field only  
Closed captioning on both fields  
Reserved  
Reserved  
0
Rev. H | Page 38 of 108  
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 28. Register 0x84 to Register 0x87  
SR7 to  
Bit Number  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Register Setting  
0x84  
SD Mode  
Register 4  
Reserved  
0
SD SFL/SCR/TR mode select  
0
1
0
1
Disabled.  
SFL mode enabled.  
720 pixels.  
710 (NTSC), 702 (PAL).  
Chroma enabled.  
Chroma disabled.  
Enabled.  
SD active video length  
SD chroma  
0
1
0
1
SD burst  
0
1
Disabled.  
SD color bars  
0
1
Disabled.  
Enabled.  
SD luma/chroma swap  
0
1
DAC 2 = luma, DAC 3 = chroma.  
DAC 2 = chroma, DAC 3 = luma.  
5.17 μs.  
5.31 μs.  
5.59 μs (must be set for  
0x86  
SD Mode  
Register 5  
NTSC color subcarrier adjust (delay from  
the falling edge of output  
the start of color burst)  
0
0
1
0
1
0
0x02  
HSYNC  
pulse to  
Macrovision compliance).  
1
1
Reserved.  
Reserved  
0
SD EIA/CEA-861B synchronization  
compliance  
0
1
Disabled.  
Enabled.  
Reserved  
0
0
SD horizontal/vertical counter mode1  
0
1
Update field/line counter.  
Field/line counter free running.  
Normal.  
Color reversal enabled.  
Disabled.  
SD RGB color swap2  
0
1
0x87  
SD Mode  
Register 6  
SD luma and color scale control  
SD luma scale saturation  
SD hue adjust  
0
1
0x00  
Enabled.  
0
1
Disabled.  
Enabled.  
0
1
Disabled.  
Enabled.  
SD brightness  
0
1
Disabled.  
Enabled.  
SD luma SSAF gain  
0
1
Disabled.  
Enabled.  
SD input standard autodetection  
0
1
Disabled.  
Enabled.  
Reserved  
SD RGB input enable2  
0
0 must be written to this bit.  
SD YCrCb input.  
SD RGB input.  
0
1
1 When set to 0, the horizontal/vertical counters automatically wrap around at the end of the line/field/frame of the selected standard. When set to 1, the  
horizontal/vertical counters are free running and wrap around when external sync signals indicate to do so.  
2 Available on the ADV7392/ADV7393 (40-pin devices) only.  
Rev. H | Page 39 of 108  
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
Table 29. Register 0x88 to Register 0x89  
SR7 to  
Bit Number  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
Reserved  
7
6
5
4
3
2
1
0
Register Setting  
0x88  
SD Mode Register 7  
0
SD noninterlaced mode  
0
1
Disabled.  
Enabled.  
SD double buffering  
SD input format  
0
1
Disabled.  
Enabled.  
0
0
1
0
1
0
8-bit YCbCr input.  
16-bit YCbCr input.1  
10-bit YCbCr/16-bit SD RGB  
input.1  
1
1
Reserved.  
SD digital noise reduction  
SD gamma correction enable  
SD gamma correction curve select  
SD undershoot limiter  
0
1
Disabled.  
Enabled.  
0
1
Disabled.  
Enabled.  
0
1
Gamma Correction Curve A.  
Gamma Correction Curve B.  
Disabled.  
−11 IRE.  
−6 IRE.  
0x89  
SD Mode Register 8  
0
0
1
1
0
1
0
1
0x00  
−1.5 IRE.  
Reserved  
0
0 must be written to this bit.  
Reserved.  
Reserved  
0
SD chroma delay  
0
0
1
1
0
1
0
1
Disabled.  
4 clock cycles.  
8 clock cycles.  
Reserved.  
Reserved  
0
0
0 must be written to these bits.  
1 Available on the ADV7392/ADV7393 (40-pin devices) only.  
Table 30. Register 0x8A to Register 0x98  
SR7 to  
Bit Number1  
Reset  
Value  
0x08  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
Register Setting  
Slave mode.  
Master mode.  
Mode 0.  
Mode 1.  
Mode 2.  
0x8A  
SD Timing Register 0  
SD slave/master mode  
SD timing mode  
0
0
1
1
0
1
0
1
Mode 3.  
Reserved  
1
SD luma delay  
0
0
1
1
0
1
0
1
No delay.  
Two clock cycles.  
Four clock cycles.  
Six clock cycles.  
−40 IRE.  
SD minimum luma value  
SD timing reset  
0
1
−7.5 IRE.  
A low-high-low transition  
resets the internal SD  
timing counters.  
x
Rev. H | Page 40 of 108  
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
SR7 to  
Bit Number1  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
1
0
0
1
0
1
Register Setting  
ta = one clock cycle.  
ta = four clock cycles.  
ta = 16 clock cycles.  
ta = 128 clock cycles.  
tb = 0 clock cycles.  
tb = four clock cycles.  
tb = eight clock cycles.  
tb = 18 clock cycles.  
tc = tb.  
0x8B  
SD Timing Register 1  
Note: Applicable in  
master modes only,  
that is, Subaddress  
0x8A, Bit 0 = 1.  
SD HSYNC width  
0
0
1
1
0
1
0
1
SD HSYNC to VSYNC delay  
X2  
X2  
0
0
1
0
1
0
1
0
1
SD HSYNC to VSYNC rising  
edge delay (Mode 1 only)  
tc = tb + 32 µs.  
One clock cycle.  
Four clock cycles.  
16 clock cycles.  
128 clock cycles.  
0 clock cycles.  
One clock cycle.  
Two clock cycles.  
Three clock cycles.  
SD VSYNC width (Mode 2 only)  
1
0
0
1
1
x
0
1
0
1
x
SD HSYNC to pixel data adjust  
0x8C  
0x8D  
0x8E  
0x8F  
SD FSC Register 03  
SD FSC Register 13  
SD FSC Register 23  
SD FSC Register 33  
SD FSC Phase  
Subcarrier Frequency Bits[7:0]  
Subcarrier Frequency Bits[15:8]  
Subcarrier Frequency Bits[23:16]  
Subcarrier Frequency Bits[31:24]  
Subcarrier Phase Bits[9:2]  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Subcarrier Frequency  
Bits[7:0].  
0x1F  
0x7C  
0xF0  
0x21  
x
x
x
x
x
x
Subcarrier Frequency  
Bits[15:8].  
Subcarrier Frequency  
Bits[23:16].  
Subcarrier Frequency  
Bits[31:24].  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Subcarrier Phase Bits[9:2]. 0x00  
Extended Data Bits[7:0]. 0x00  
Extended Data Bits[15:8]. 0x00  
SD Closed Captioning Extended data on even fields  
SD Closed Captioning Extended data on even fields  
SD Closed Captioning Data on odd fields  
Data Bits[7:0].  
Data Bits[15:8].  
0x00  
0x00  
SD Closed Captioning Data on odd fields  
SD Pedestal Register 0  
SD Pedestal Register 1  
SD Pedestal Register 2  
SD Pedestal Register 3  
Pedestal on odd fields  
Pedestal on odd fields  
Pedestal on even fields  
Pedestal on even fields  
17 16 15 14 13 12 11 10 Setting any of these bits 0x00  
to 1 disables the  
25 24 23 22 21 20 19 18  
17 16 15 14 13 12 11 10  
25 24 23 22 21 20 19 18  
0x00  
0x00  
0x00  
pedestal on the line  
number indicated by  
the bit settings.  
1 x = Logic 0 or Logic 1.  
2 X = don’t care.  
3 SD subcarrier frequency registers default to NTSC subcarrier frequency values.  
Rev. H | Page 41 of 108  
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
Table 31. Register 0x99 to Register 0xA5  
SR7 to  
Bit Number1  
Reset  
Value  
SR0  
Register  
Bit Description  
SD CGMS data  
SD CGMS CRC  
7
6
5
4
3
2
1
0
Register Setting  
0x99  
SD CGMS/WSS 0  
x
x
x
x
CGMS Data Bits[C19:C16]  
Disabled  
Enabled  
0x00  
0
1
SD CGMS on odd fields  
SD CGMS on even fields  
SD WSS  
0
1
Disabled  
Enabled  
0
1
Disabled  
Enabled  
0
1
Disabled  
Enabled  
0x9A  
SD CGMS/WSS 1  
SD CGMS/WSS data  
x
x
x
x
x
x
x
x
CGMS Data Bits[C13:C8] or  
WSS Data Bits[W13:W8]  
0x00  
SD CGMS data  
x
x
x
x
CGMS Data Bits[C15:C14]  
0x9B  
0x9C  
SD CGMS/WSS 2  
SD scale LSB  
SD CGMS/WSS data  
x
x
x
x
x
x
x
x
CGMS Data Bits[C7:C0] or  
WSS Data Bits[W7:W0]  
0x00  
0x00  
LSBs for SD Y scale value  
LSBs for SD Cb scale value  
LSBs for SD Cr scale value  
LSBs for SD FSC phase  
SD Y scale value  
SD Y Scale Bits[1:0]  
SD Cb Scale Bits[1:0]  
SD Cr Scale Bits[1:0]  
Subcarrier Phase Bits[1:0]  
SD Y Scale Bits[9:2]  
SD Cb Scale Bits[9:2]  
SD Cr Scale Bits[9:2]  
SD Hue Adjust Bits[7:0]  
SD Brightness Bits[6:0]  
Disabled  
x
x
x
x
x
x
x
x
x
x
x
x
x
0x9D  
0x9E  
0x9F  
0xA0  
0xA1  
SD Y scale  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0x00  
0x00  
0x00  
0x00  
0x00  
SD Cb scale  
SD Cr scale  
SD hue adjust  
SD Cb scale value  
SD Cr scale value  
SD hue adjust value  
SD brightness/WSS SD brightness value  
SD blank WSS data  
0
1
Enabled  
0xA2  
SD luma SSAF  
SD luma SSAF gain/attenuation  
(only applicable if Subaddress  
0x87, Bit 4 = 1)  
0
0
0
1
0
1
0
0
−4 dB  
0 dB  
0x00  
1
1
0
0
+4 dB  
Reserved  
0
0
0
0
0xA3  
SD DNR 0  
Coring gain border (in DNR  
mode, the values in brackets  
apply)  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
No gain  
0x00  
+1/16 [−1/8]  
+2/16 [−2/8]  
+3/16 [−3/8]  
+4/16 [−4/8]  
+5/16 [−5/8]  
+6/16 [−6/8]  
+7/16 [−7/8]  
+8/16 [−1]  
Coring gain data (in DNR  
mode, the values in brackets  
apply)  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
No gain  
+1/16 [−1/8]  
+2/16 [−2/8]  
+3/16 [−3/8]  
+4/16 [−4/8]  
+5/16 [−5/8]  
+6/16 [−6/8]  
+7/16 [−7/8]  
+8/16 [−1]  
Rev. H | Page 42 of 108  
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
SR7 to  
Bit Number1  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
Register Setting  
0
0xA4  
SD DNR 1  
DNR threshold  
0
0
0
0
0
1
1
1
1
1
1
1
0
62  
1
1
1
1
1
1
63  
Border area  
Block size  
0
1
Two pixels  
Four pixels  
Eight pixels  
16 pixels  
Filter A  
Filter B  
Filter C  
Filter D  
0
1
0xA5  
SD DNR 2  
DNR input select  
0
0
0
1
0
1
1
0
1
0
1
0
0x00  
DNR mode  
0
1
DNR mode  
DNR sharpness mode  
0 pixel offset  
One pixel offset  
DNR block offset  
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
14 pixel offset  
15 pixel offset  
1 x = Logic 0 or Logic 1.  
Table 32. Register 0xA6 to Register 0xBB  
SR7 to  
Bit Number1  
Reset  
Value  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xXX  
SR0  
Register  
Bit Description  
7
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
6
5
4
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
3
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
2
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Register Setting  
0xA6  
0xA7  
0xA8  
0xA9  
0xAA  
0xAB  
0xAC  
0xAD  
0xAE  
0xAF  
0xB0  
0xB1  
0xB2  
0xB3  
0xB4  
0xB5  
0xB6  
0xB7  
0xB8  
0xB9  
0xBA  
SD Gamma A0  
SD Gamma A1  
SD Gamma A2  
SD Gamma A3  
SD Gamma A4  
SD Gamma A5  
SD Gamma A6  
SD Gamma A7  
SD Gamma A8  
SD Gamma A9  
SD Gamma B0  
SD Gamma B1  
SD Gamma B2  
SD Gamma B3  
SD Gamma B4  
SD Gamma B5  
SD Gamma B6  
SD Gamma B7  
SD Gamma B8  
SD Gamma B9  
SD brightness detect  
SD Gamma Curve A (Point 24)  
SD Gamma Curve A (Point 32)  
SD Gamma Curve A (Point 48)  
SD Gamma Curve A (Point 64)  
SD Gamma Curve A (Point 80)  
SD Gamma Curve A (Point 96)  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B0  
SD Gamma Curve A (Point 128)  
SD Gamma Curve A (Point 160)  
SD Gamma Curve A (Point 192)  
SD Gamma Curve A (Point 224)  
SD Gamma Curve B (Point 24)  
SD Gamma Curve B (Point 32)  
SD Gamma Curve B (Point 48)  
SD Gamma Curve B (Point 64)  
SD Gamma Curve B (Point 80)  
SD Gamma Curve B (Point 96)  
SD Gamma Curve B (Point 128)  
SD Gamma Curve B (Point 160)  
SD Gamma Curve B (Point 192)  
SD Gamma Curve B (Point 224)  
SD brightness value  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
Read only  
Rev. H | Page 43 of 108  
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
SR7 to  
Bit Number1  
Reset  
SR0  
Register  
Bit Description  
Field count  
7
6
5
4
3
2
1
0
Register Setting  
Value  
0xBB  
Field count  
x
x
x
Read only  
Reserved  
0x0X  
Reserved  
0
0
0
Encoder version code  
0
0
0
1
Read only; first  
encoder version2  
Read only; second  
encoder version  
1 x = Logic 0 or Logic 1.  
2
HSYNC  
VSYNC  
Considerations section for information about the first encoder version.  
See the HD Interlace External  
and  
Table 33. Register 0xC9 to Register 0xCE  
SR7 to  
Bit Number  
Reset  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
Register Setting  
Disabled.  
Enabled.  
Value  
0xC9  
Teletext control  
Teletext enable  
0x00  
Teletext request mode  
0
1
Line request signal.  
Bit request signal.  
VSYNC.  
Teletext input pin  
select1  
0
1
P0.  
Reserved  
0
0
0
0
0
Reserved.  
0xCA  
Teletext request  
control  
Teletext request falling  
edge position control  
0
0
0
0
0
0
0
1
0 clock cycles.  
One clock cycle.  
0x00  
1
1
1
0
14 clock cycles.  
15 clock cycles.  
0 clock cycles.  
One clock cycle.  
1
1
1
1
Teletext request rising  
edge position control  
0
0
0
0
0
0
0
1
1
1
1
0
14 clock cycles.  
15 clock cycles.  
1
1
1
1
0xCB  
0xCC  
0xCD  
0xCE  
TTX Line Enable 0 Teletext on odd fields  
TTX Line Enable 1 Teletext on odd fields  
TTX Line Enable 2 Teletext on even fields  
TTX Line Enable 3 Teletext on even fields  
22 21 20 19 18 17 16 15  
14 13 12 11 10  
22 21 20 19 18 17 16 15  
14 13 12 11 10  
Setting any of these bits  
to 1 enables teletext on  
the line number indicated  
by the bit settings.  
0x00  
0x00  
0x00  
0x00  
9
8
7
9
8
7
1 The use of P0 as the teletext input pin is available on the ADV7392/ADV7393 (40-pin devices) only.  
Rev. H | Page 44 of 108  
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 34. Register 0xE0 to Register 0xF1  
SR7 to  
Bit Number1  
Reset  
Value  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
SR0  
Register2  
Bit Description  
MV control bits  
MV control bits  
MV control bits  
MV control bits  
MV control bits  
MV control bits  
MV control bits  
MV control bits  
MV control bits  
MV control bits  
MV control bits  
MV control bits  
MV control bits  
MV control bits  
MV control bits  
MV control bits  
MV control bits  
MV control bits  
7
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
6
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
5
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
4
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
3
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
2
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Register Setting  
0xE0  
0xE1  
0xE2  
0xE3  
0xE4  
0xE5  
0xE6  
0xE7  
0xE8  
0xE9  
0xEA  
0xEB  
0xEC  
0xED  
0xEE  
0xEF  
0xF0  
0xF1  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Bits[7:1] must be 0.  
1 x = Logic 0 or Logic 1.  
2 Macrovision registers are available on the ADV7390 and the ADV7392 only.  
Rev. H | Page 45 of 108  
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
ADV7390/ADV7391 INPUT CONFIGURATION  
The ADV7390/ADV7391 support a number of different input  
modes. The desired input mode is selected using Subaddress 0x01,  
Bits[6:4]. The ADV7390/ADV7391 default to standard definition  
(SD) mode on power-up. Table 35 provides an overview of all  
possible input configurations. Each input mode is described in  
detail in this section. Note that the WLCSP option is only  
configured to support SD as shown in Figure 51.  
The CrCb pixel data is also input on Pin P7 to Pin P0 on the  
opposite edge of CLKIN. Pin P0 is the LSB.  
Whether the Y data is clocked in on the rising or falling edge of  
CLKIN is determined by Subaddress 0x01, Bits[2:1] (see Figure 52  
and Figure 53).  
CLKIN  
Table 35. ADV7390/ADV7391 Input Configuration  
P[7:0]  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
Input Mode  
P7 P6 P5 P4 P3 P2 P1 P0  
000 SD  
010 ED/HD-DDR  
111 ED (at 54 MHz)  
YCrCb  
YCrCb  
YCrCb  
NOTES  
1. SUBADDRESS 0x01 [2:1] SHOULD BE SET TO 00 IN THIS CASE.  
Figure 52. ED/HD-DDR Input Sequence (EAV/SAV)—Option A  
STANDARD DEFINITION  
CLKIN  
Subaddress 0x01, Bits[6:4] = 000  
P[7:0]  
3FF  
00  
00  
XY  
Y0  
Cb0  
Y1  
Cr0  
SD YCrCb data can be input in an interleaved 4:2:2 format over  
an 8-bit bus rate of 27 MHz. A 27 MHz clock signal must be  
provided on the CLKIN pin. If required, external synchroni-  
NOTES  
1. SUBADDRESS 0x01 [2:1] SHOULD BE SET TO 11 IN THIS CASE.  
HSYNC  
VSYNC  
zation signals can be provided on the  
and  
pins.  
Figure 53. ED/HD-DDR Input Sequence (EAV/SAV)—Option B  
Embedded EAV/SAV timing codes are also supported. The  
ITU-R BT.601/656 input standard is supported. The interleaved  
pixel data is input on Pin P7 to Pin P0, with Pin P0 being the LSB.  
MPEG2  
DECODER  
ADV7390/  
ADV7391  
CLKIN  
YCrCb  
ADV7390/  
ADV7391  
2
8
VSYNC,  
YCrCb  
P[7:0]  
MPEG2  
HSYNC  
INTERLACED TO  
PROGRESSIVE  
DECODER  
27MHz  
CLKIN  
2
VSYNC,  
HSYNC  
8
YCrCb  
P[7:0]  
Figure 54. ED/HD-DDR Example Application  
Figure 51. SD Example Application  
ENHANCED DEFINITION (AT 54 MHz)  
Subaddress 0x01, Bits[6:4] = 111  
ENHANCED DEFINITION/HIGH DEFINITION  
Subaddress 0x01, Bits[6:4] = 010  
ED YCrCb data can be input in an interleaved 4:2:2 format over  
an 8-bit bus rate of 54 MHz.  
Enhanced definition (ED) or high definition (HD) YCrCb data  
can be input in an interleaved 4:2:2 format over an 8-bit DDR  
bus. The clock signal must be provided on the CLKIN pin. If  
required, external synchronization signals can be provided on  
A 54 MHz clock signal must be provided on the CLKIN pin.  
Embedded EAV/SAV timing codes are supported. External  
synchronization signals are not supported in this mode.  
HSYNC  
VSYNC  
the  
and  
pins. Embedded EAV/SAV timing  
The interleaved pixel data is input on Pin P7 to Pin P0, with Pin P0  
being the LSB.  
codes are also supported.  
8-Bit 4:2:2 ED/HD YCrCb Mode (DDR)  
CLKIN  
In 8-bit DDR 4:2:2 YCrCb input mode, the Y pixel data is input  
on Pin P7 to Pin P0 on either the rising or falling edge of CLKIN.  
Pin P0 is the LSB.  
P[7:0]  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
Figure 55. ED (at 54 MHz) Input Sequence (EAV/SAV)  
Rev. H | Page 46 of 108  
 
 
 
 
 
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
ADV7392/ADV7393 INPUT CONFIGURATION  
The ADV7392/ADV7393 support a number of different input  
modes. The desired input mode is selected using Subaddress 0x01,  
Bits[6:4]. The ADV7392/ADV7393 default to standard definition  
(SD) mode on power-up. Table 36 provides an overview of all  
possible input configurations. Each input mode is described in  
detail in this section.  
16-Bit 4:2:2 YCrCb Mode  
Subaddress 0x87, Bit 7 = 0;  
Subaddress 0x88, Bits[4:3] = 01  
In 16-bit 4:2:2 YCrCb input mode, the Y pixel data is input on  
Pin P15 to Pin P8, with Pin P8 being the LSB.  
The CrCb pixel data is input on Pin P7 to Pin P0, with Pin P0  
being the LSB.  
STANDARD DEFINITION  
Subaddress 0x01, Bits[6:4] = 000  
The pixel data is updated at half the rate of the clock, that is, at a  
rate of 13.5 MHz (see Figure 5).  
Standard definition YCrCb data can be input in 4:2:2 format over  
an 8-, 10-, or 16-bit bus. SD RGB data can be input in 4:4:4 format  
over a 16-bit bus.  
16-Bit 4:4:4 RGB Mode  
Embedded EAV/SAV timing codes are not supported with SD RGB  
mode. Also, master timing mode is not supported for SD RGB  
input mode, therefore, external synchronization must be used.  
A 27 MHz clock signal must be provided on the CLKIN pin. If  
required, external synchronization signals can be provided on  
HSYNC  
VSYNC  
the  
and  
pins. Embedded EAV/SAV timing  
Subaddress 0x87, Bit 7 = 1  
codes are also supported in 8-bit and 10-bit modes.  
In 16-bit 4:4:4 RGB input mode, the red pixel data is input on  
Pin P4 to Pin P0, the green pixel data is input on Pin P10 to  
Pin P5, and the blue pixel data is input on Pin P15 to Pin P11.  
The P0, P5, and P11 pins are the respective bus LSBs.  
8-Bit 4:2:2 YCrCb Mode  
Subaddress 0x87, Bit 7 = 0;  
Subaddress 0x88, Bits[4:3] = 00  
In 8-bit 4:2:2 YCrCb input mode, the interleaved pixel data is  
input on Pin P15 to Pin P8, with Pin P8 being the LSB. The  
ITU-R BT.601/656 input standard is supported.  
The pixel data is updated at half the rate of the clock, that is, at a  
rate of 13.5 MHz (see Figure 6).  
ADV7392/  
ADV7393  
10-Bit 4:2:2 YCrCb Mode  
2
VSYNC,  
Subaddress 0x87, Bit 7 = 0;  
Subaddress 0x88, Bits[4:3] = 10  
MPEG2  
HSYNC  
DECODER  
27MHz  
CLKIN  
In 10-bit 4:2:2 YCrCb input mode, the interleaved pixel data is  
input on Pin P15 to Pin P6, with Pin P6 being the LSB. The ITU-  
R BT.601/656 input standard is supported.  
8/10  
YCrCb  
P[15:8]/P[15:6]  
Figure 56. SD Example Application  
Table 36. ADV7392/ADV7393 Input Configuration  
Input Mode1  
P15  
P14  
P13  
P12  
P11  
P10  
P9  
P8  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
000  
SD2  
SD RGB input enable (0x87[7]) = 0  
8-bit  
YCrCb  
10-bit  
16-bit3  
YCrCb  
SD RGB input enable (0x87[7]) = 1  
Y
CrCb  
16-bit3  
B
G
R
001  
010  
ED/HD-SDR (16-bit)  
ED/HD-DDR4  
8-bit  
Y
CrCb  
ED/HD input format (0x33[2]) = 0  
ED/HD input format (0x33[2]) = 1  
YCrCb  
10-bit  
YCrCb  
111  
ED (at 54 MHz)  
8-bit  
ED/HD input format (0x33[2]) = 0  
YCrCb  
ED/HD input format (0x33[2]) = 1  
10-bit  
YCrCb  
1 The input mode is determined by Subaddress 0x01, Bits[6:4].  
2 In SD mode, the width of the input data is determined by Subaddress 0x88, Bits[4:3].  
3 External synchronization signals must be used in this input mode. Embedded EAV/SAV timing codes are not supported.  
4 ED = enhanced definition = 525p and 625p.  
Rev. H | Page 47 of 108  
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
ENHANCED DEFINITION/HIGH DEFINITION  
Subaddress 0x01, Bits[6:4] = 001 or 010  
M
PEG2  
ADV7392/  
ADV7393  
DECODER  
ED or HD YCrCb data can be input in a 4:2:2 format over an  
8-/10-bit DDR bus or a 16-bit SDR bus.  
CLKIN  
YCrCb  
8
8
The clock signal must be provided on the CLKIN pin. If  
required, external synchronization signals can be provided on  
CrCb  
Y
P[7:0]  
INTERLACED TO  
PROGRESSIVE  
P[15:8]  
HSYNC  
codes are also supported.  
VSYNC  
the  
and  
pins. Embedded EAV/SAV timing  
2
VSYNC  
HSYNC  
16-Bit 4:2:2 YCrCb Mode (SDR)  
Figure 59. ED/HD-SDR Example Application  
In 16-bit 4:2:2 YCrCb input mode, the Y pixel data is input on  
Pin P15 to Pin P8, with P8 being the LSB.  
The CrCb pixel data is input on Pin P7 to Pin P0, with Pin P0  
being the LSB.  
MPEG2  
DECODER  
ADV7392/  
ADV7393  
8-/10-Bit 4:2:2 YCrCb Mode (DDR)  
CLKIN  
YCrCb  
In 8-/10-bit DDR 4:2:2 YCrCb input mode, the Y pixel data is  
input on Pin P15 to Pin P8/P6 on either the rising or falling  
edge of CLKIN. Pin P8/P6 is the LSB.  
8/10  
2
YCrCb  
P[15:8]/P[15:6]  
INTERLACED TO  
PROGRESSIVE  
The CrCb pixel data is also input on Pin P15 to Pin P8/P6  
on the opposite edge of CLKIN. P8/P6 is the LSB.  
VSYNC  
HSYNC  
The 10-bit mode is enabled using Subaddress 0x33, Bit 2.  
Whether the Y data is clocked in on the rising or falling edge of  
CLKIN is determined by Subaddress 0x01, Bits[2:1] (see Figure 57  
and Figure 58).  
Figure 60. ED/HD-DDR Example Application  
ENHANCED DEFINITION (AT 54 MHz)  
Subaddress 0x01, Bits[6:4] = 111  
ED YCrCb data can be input in an interleaved 4:2:2 format on  
an 8-/10-bit bus at a rate of 54 MHz.  
CLKIN  
A 54 MHz clock signal must be provided on the CLKIN pin.  
Embedded EAV/SAV timing codes are supported. External  
synchronization signals are not supported in this mode.  
P[15:8]/  
P]15:6]  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
NOTES  
The interleaved pixel data is input on Pin P15 to Pin P8/P6,  
with Pin P8/P6 being the LSB.  
1. SUBADDRESS 0x01 [2:1] SHOULD BE SET TO 00 IN THIS CASE.  
2. 10-BIT MODE IS ENABLED USING SUBADDRESS 0x33, BIT 2.  
Figure 57. ED/HD-DDR Input Sequence (EAV/SAV)—Option A  
The 10-bit mode is enabled using Subaddress 0x33, Bit 2.  
CLKIN  
CLKIN  
P[15:8]/P[15:6]  
NOTES  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
P[15:8]/  
P[15:P6]  
3FF  
00  
00  
XY  
Y0  
Cb0  
Y1  
Cr0  
1. 10-BIT MODE IS ENABLED USING SUBADDRESS 0x33, BIT 2.  
NOTES  
Figure 61. ED (at 54 MHz) Input Sequence (EAV/SAV)  
1. SUBADDRESS 0x01 [2:1] SHOULD BE SET TO 11 IN THIS CASE.  
2. 10-BIT MODE IS ENABLED USING SUBADDRESS 0x33, BIT 2.  
Figure 58. ED/HD-DDR Input Sequence (EAV/SAV)—Option B  
MPEG2  
DECODER  
ADV7392/  
ADV7393  
54MHz  
YCrCb  
CLKIN  
YCrCb  
8/10  
P[15:8]/P[15:6]  
INTERLACED TO  
PROGRESSIVE  
VSYNC,  
HSYNC  
Figure 62 ED (at 54 MHz) Example Application  
Rev. H | Page 48 of 108  
 
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
OUTPUT CONFIGURATION  
The ADV739x supports a number of different output configurations. Table 37 to Table 39 list all possible output configurations.  
Table 37. SD Output Configurations  
RGB/YPrPb Output Select1  
(Subaddress 0x02, Bit 5)  
SD DAC Output 1  
(Subaddress 0x82, Bit 1)  
SD Luma/Chroma Swap  
(Subaddress 0x84, Bit 7)  
DAC 1  
G
Y
CVBS  
CVBS  
DAC 2  
B
Pb  
Luma  
Chroma  
DAC 3  
R
Pr  
Chroma  
Luma  
0
1
1
1
0
0
1
1
0
0
0
1
1 If SD RGB output is selected, a color reversal is possible using Subaddress 0x86, Bit 7.  
Table 38. ED/HD Output Configurations  
RGB/YPrPb Output Select  
(Subaddress 0x02, Bit 5)  
ED/HD Color DAC Swap  
(Subaddress 0x35, Bit 3)  
DAC 1  
DAC 2  
DAC 3  
0
0
1
1
0
1
0
1
G
G
Y
Y
B
R
Pb  
Pr  
R
B
Pr  
Pb  
Table 39. ED (at 54 MHz) Output Configurations  
RGB/YPrPb Output Select  
(Subaddress 0x02, Bit 5)  
ED/HD Color DAC Swap  
(Subaddress 0x35, Bit 3)  
DAC 1  
DAC 2  
DAC 3  
0
0
1
1
0
1
0
1
G
G
Y
Y
B
R
Pb  
Pr  
R
B
Pr  
Pb  
Rev. H | Page 49 of 108  
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
DESIGN FEATURES  
However, when the CEA861 compliance bit is enabled (0x39,  
Bit 5 for ED/HD modes and 0x86, Bit 3 for SD modes), the part  
expects the HS or VS to be active low or high depending on the  
input format selected (0x30, Bits[7:3]).  
OUTPUT OVERSAMPLING  
The ADV739x includes an on-chip phase-locked loop (PLL)  
that allows for oversampling of SD, ED, and HD video data. By  
default, the PLL is disabled. The PLL can be enabled using  
Subaddress 0x00, Bit 1 = 0.  
If a different polarity other than the default is required for  
ED/HD modes, 0x3A, Bits[2:0] can be used to invert PHSYNCB,  
PVSYNCB or PBLANKB individually regardless of whether  
CEA-861-B mode is enabled. It is not possible to invert  
S_HSYNC or S_VSYNC.  
Table 40 shows the various oversampling rates supported in the  
ADV739x.  
External Sync Polarity  
For SD and ED/HD modes, the ADV739x parts typically expect  
HS and VS to be low during their respective blanking periods.  
Table 40. Output Oversampling Modes and Rates  
Input Mode  
(0x01, Bits[6:4])  
PLL and Oversampling  
Control (0x00, Bit 1)  
SD/ED Oversample Rate  
Select (0x0D, Bit 3)1  
HD Oversample Rate  
Select (0x31, Bit 1)1  
Oversampling Mode  
and Rate  
000  
000  
000  
001/010  
001/010  
001/010  
001/010  
001/010  
001/010  
111  
SD  
SD  
SD  
ED  
ED  
ED  
HD  
HD  
HD  
1
0
0
1
0
0
1
0
0
1
0
0
X
1
0
X
1
0
X
X
X
X
1
0
X
X
X
X
X
X
X
1
0
X
X
X
SD (2×)  
SD (8×)  
SD (16×)  
ED (1×)  
ED (4×)  
ED (8×)  
HD (1×)  
HD (2×)  
HD (4×)  
ED (at 54 MHz)  
ED (at 54 MHz)  
ED (at 54 MHz)  
ED (at 54 MHz) (1×)  
ED (at 54 MHz) (4×)  
ED (at 54 MHz) (8×)  
111  
111  
1 X = don’t care  
Rev. H | Page 50 of 108  
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
There is no negative effect in setting Subaddress 0x02, Bit 0 to  
high, and this bit can remain high for all the other video  
standards.  
HD INTERLACE EXTERNAL HSYNC AND VSYNC  
CONSIDERATIONS  
If the encoder revision code (Subaddress 0xBB, Bits[7:6]) = 01  
or higher, the user should set Subaddress 0x02, Bit 1 to high.  
To ensure exactly correct timing in HD interlace modes when  
ED/HD TIMING RESET  
Subaddress 0x34, Bit 0  
HSYNC  
VSYNC  
using  
and  
synchronization signals. If this bit is  
An ED/HD timing reset is achieved by setting the ED/HD  
timing reset control bit (Subaddress 0x34, Bit 0) to 1. In this  
state, the horizontal and vertical counters remain reset. When  
this bit is set back to 0, the internal counters resume counting.  
This timing reset applies to the ED/HD timing counters only.  
set to low, the first active pixel on each line is masked in HD  
interlace modes and the Pr and Pb outputs are swapped when  
using the YCrCb 4:2:2 input format. Setting Subaddress 0x02,  
Bit 1 to low causes the encoder to behave in the same way as the  
first version of silicon (that is, this setting is backward  
compatible).  
SD SUBCARRIER FREQUENCY LOCK  
Subcarrier Frequency Lock (SFL) Mode  
If the encoder revision code (Subaddress 0xBB, Bits[7:6]) = 00,  
the setting of Subaddress 0x02, Bit 1 has no effect. In this  
version of the encoder, the first active pixel is masked and the  
Pr and Pb outputs are swapped when using YCrCb 4:2:2 input  
format. To avoid these limitations, use the newer revision of  
silicon or use a different type of synchronization.  
In subcarrier frequency lock (SFL) mode (Subaddress 0x84,  
Bits[2:1] = 11), the ADV739x can be used to lock to an external  
video source. The SFL mode allows the ADV739x to automatically  
alter the subcarrier frequency to compensate for line length  
variations. When the part is connected to a device such as an  
ADV7403 video decoder that outputs a digital data stream in the  
SFL format, the part automatically changes to the compensated  
subcarrier frequency on a line-by-line basis (see Figure 63). This  
digital data stream is 67 bits wide, and the subcarrier is contained  
in Bit 0 to Bit 21. Each bit is two clock cycles long.  
These considerations apply only to the HD interlace modes  
HSYNC  
VSYNC  
with external  
and  
synchronization (EAV/SAV  
mode is not affected and always has exactly correct timing).  
ADV739x  
CLKIN  
DAC 1  
DAC 2  
DAC 3  
LLC1  
SFL  
SFL  
COMPOSITE  
P19 TO  
P10  
ADV7403  
VIDEO  
DECODER  
1
VIDEO  
5
PIXEL PORT  
4 BITS  
RESERVED  
21  
0
14 BITS  
SEQUENCE  
4
H/L TRANSITION  
COUNT START  
RESET BIT  
SUBCARRIER  
PHASE  
3
BIT  
LOW  
RESERVED  
2
PLL INCREMENT  
F
128  
SC  
13  
0
RTC  
6768  
14  
19  
TIME SLOT 01  
VALID  
SAMPLE  
INVALID  
SAMPLE  
8/LINE  
LOCKED  
CLOCK  
5 BITS  
RESERVED  
1
2
FOR EXAMPLE, VCR OR CABLE.  
F
PLL INCREMENT IS 22 BITS LONG. VALUE LOADED INTO ADV73xx F DDS REGISTER IS  
SC  
SC  
F
PLL INCREMENTS BITS[21:0] PLUS BITS[0:9] OF SUBCARRIER FREQUENCY REGISTERS.  
SC  
3
SEQUENCE BIT  
PAL: 0 = LINE NORMAL, 1 = LINE INVERTED  
NTSC: 0 = NO CHANGE  
RESET ADV739x DDS.  
4
5
REFER TO THE ADV7390/ADV7391 AND ADV7392/ADV7393 INPUT CONFIGURATION TABLES FOR PIXEL DATA PIN ASSIGNMENTS.  
Figure 63. SD Subcarrier Frequency Lock Timing and Connections Diagram (Subaddress 0x84, Bits [2:1] = 11)  
Rev. H | Page 51 of 108  
 
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
SD VCR FF/RW SYNC  
Subaddress 0x82, Bit 5  
227.5  
1716  
Subcarrier Register Value =  
where:  
×
32 = 569408543  
2
In DVD record applications where the encoder is used with a  
decoder, the VCR FF/RW sync control bit can be used for non-  
standard input video, that is, in fast forward or rewind modes.  
Subcarrier Register Value = 569408543d = 0×21F07C1F  
SD FSC Register 0: 0x1F  
SD FSC Register 1: 0x7C  
SD FSC Register 2: 0xF0  
SD FSC Register 3: 0x21  
In fast forward mode, the sync information at the start of a new  
field in the incoming video usually occurs before the correct  
number of lines/fields is reached. In rewind mode, this sync  
signal usually occurs after the total number of lines/fields is  
reached. Conventionally, this means that the output video has  
corrupted field signals because one signal is generated by the  
incoming video and another is generated when the internal  
line/field counters reach the end of a field.  
Programming the FSC  
The subcarrier frequency register value is divided into four FSC  
registers as shown in the previous example. The four subcarrier  
frequency registers must be updated sequentially, starting with  
Subcarrier Frequency Register 0 and ending with Subcarrier  
Frequency Register 3. The subcarrier frequency updates only  
after the last subcarrier frequency register byte is received by  
the ADV739x. The SD input standard autodetection feature  
must be disabled.  
When the VCR FF/RW sync control is enabled (Subaddress 0x82,  
Bit 5), the line/field counters are updated according to the  
VSYNC  
incoming  
signal and when the analog output matches  
VSYNC  
the incoming  
signal. This control is available in all  
slave-timing modes except Slave Mode 0.  
Typical FSC Values  
VERTICAL BLANKING INTERVAL  
Subaddress 0x31, Bit 4; Subaddress 0x83, Bit 4  
Table 41 outlines the values that should be written to the  
subcarrier frequency registers for NTSC and PAL B/D/G/H/I.  
The ADV739x is able to accept input data that contains vertical  
blanking interval (VBI) data (such as CGMS, WSS, VITS) in  
SD, ED, and HD modes.  
Table 41. Typical FSC Values  
Subaddress  
Description  
NTSC  
0x1F  
0x7C  
0xF0  
0x21  
PAL B/D/G/H/I  
0xCB  
0x8A  
0x09  
0x2A  
0x8C  
FSC0  
If VBI is disabled (Subaddress 0x31, Bit 4 for ED/HD; Subaddress  
0x83, Bit 4 for SD), VBI data is not present at the output and the  
entire VBI is blanked. These control bits are valid in all master  
and slave timing modes.  
0x8D  
FSC1  
0x8E  
FSC2  
0x8F  
FSC3  
SD NONINTERLACED MODE  
Subaddress 0x88, Bit 1  
For the SMPTE 293M (525p) standard, VBI data can be inserted  
on Line 13 to Line 42 of each frame or on Line 6 to Line 43 for  
the ITU-R BT.1358 (625p) standard. VBI data can be present on  
Line 10 to Line 20 for NTSC and on Line 7 to Line 22 for PAL.  
The ADV739x supports an SD noninterlaced mode. Using this  
mode, progressive inputs at twice the frame rate of NTSC and  
PAL (240p/59.94 Hz and 288p/50 Hz, respectively) can be input  
into the ADV739x. The SD noninterlaced mode can be enabled  
using Subaddress 0x88, Bit 1.  
In SD Timing Mode 0 (slave option), if VBI is enabled, the  
blanking bit in the EAV/SAV code is overwritten. It is possible  
to use VBI in this timing mode as well.  
A 27 MHz clock signal must be provided on the CLKIN pin.  
Embedded EAV/SAV timing codes or external horizontal and  
If CGMS is enabled and VBI is disabled, the CGMS data is,  
nevertheless, available at the output.  
HSYNC  
vertical synchronization signals provided on the  
VSYNC  
and  
data.  
SD SUBCARRIER FREQUENCY CONTROL  
Subaddress 0x8C to Subaddress 0x8F  
pins can be used to synchronize the input pixel  
The ADV739x is able to generate the color subcarrier used in  
CVBS and S-Video (Y-C) outputs from the input pixel clock.  
Four 8-bit registers are used to set up the subcarrier frequency.  
The value of these registers is calculated using the following  
equation:  
All input configurations, output configurations, and features  
available in NTSC and PAL modes are available in SD noninter-  
laced mode. For 240p/59.94 Hz input, the ADV739x should be  
configured for NTSC operation and Subaddress 0x88, Bit 1  
should be set to 1.  
Subcarrier Frequency Register =  
For 288p/50 Hz input, the ADV739x should be configured for  
PAL operation and Subaddress 0x88, Bit 1 should be set to 1.  
Number of subcarrier periods in one video line  
× 232  
Number of 27 MHz clock cycles in one video line  
where the sum is rounded to the nearest integer.  
For example, in NTSC mode:  
Rev. H | Page 52 of 108  
 
 
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
For CVBS and S-Video (Y-C) outputs, the SD subcarrier  
frequency registers must be updated to reflect the input clock  
frequency used in SD square pixel mode. The SD input standard  
autodetection feature must be disabled in SD square pixel  
mode. In square pixel mode, the timing diagrams shown in  
Figure 64 and Figure 65 apply.  
SD SQUARE PIXEL MODE  
Subaddress 0x82, Bit 4  
The ADV739x supports an SD square pixel mode (Subaddress  
0x82, Bit 4). For NTSC operation, an input clock of 24.5454 MHz  
is required. The active resolution is 640 × 480. For PAL  
operation, an input clock of 29.5 MHz is required. The active  
resolution is 768 × 576.  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
b
C
r
C
b
8
0
0
0
F
F
F A A  
F B B  
A
B
8
0
0
0
C
r
F
F
0
0
0
0
X
Y
1
0
8
0
1
0
8
0
1
0
1
0
F
F
0
0
X
Y
C
b
C
r
Y
Y
Y
Y
Y
Y
INPUT PIXELS  
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
NTSC/PAL M SYSTEM  
(525 LINES/60Hz)  
272 CLOCK  
1280 CLOCK  
1536 CLOCK  
PAL SYSTEM  
(625 LINES/50Hz)  
344 CLOCK  
START OF ACTIVE  
VIDEO LINE  
END OF ACTIVE  
VIDEO LINE  
Figure 64. Square Pixel Mode EAV/SAV Embedded Timing  
HSYNC  
FIELD  
PIXEL  
DATA  
Cr  
Y
Cb  
Y
PAL = 308 CLOCK CYCLES  
NTSC = 236 CLOCK CYCLES  
Figure 65. Square Pixel Mode Active Pixel Timing  
Rev. H | Page 53 of 108  
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
EXTENDED (SSAF) PrPb FILTER MODE  
FILTERS  
0
–10  
–20  
–30  
–40  
–50  
–60  
Table 42 shows an overview of the programmable filters available  
on the ADV739x.  
Table 42. Selectable Filters  
Filter  
Subaddress  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x82  
0x33  
0x33  
SD Luma LPF NTSC  
SD Luma LPF PAL  
SD Luma Notch NTSC  
SD Luma Notch PAL  
SD Luma SSAF  
SD Luma CIF  
SD Luma QCIF  
0
1
2
3
4
5
6
FREQUENCY (MHz)  
SD Chroma 0.65 MHz  
SD Chroma 1.0 MHz  
SD Chroma 1.3 MHz  
SD Chroma 2.0 MHz  
SD Chroma 3.0 MHz  
SD Chroma CIF  
SD Chroma QCIF  
SD PrPb SSAF  
ED/HD Sinc Compensation Filter  
ED/HD Chroma SSAF  
Figure 66. PrPb SSAF Filter  
If this filter is disabled, one of the chroma filters shown in  
Table 43 can be selected and used for the CVBS or luma/  
chroma signal.  
Table 43. Internal Filter Specifications  
Pass-Band  
Filter  
Ripple (dB)1  
0.16  
3 dB Bandwidth (MHz)2  
Luma LPF NTSC  
Luma LPF PAL  
Luma Notch NTSC  
Luma Notch PAL  
Luma SSAF  
4.24  
4.81  
0.1  
0.09  
0.1  
0.04  
2.3/4.9/6.6  
3.1/5.6/6.4  
6.45  
SD Internal Filter Response  
Subaddress 0x80, Bits[7:2]; Subaddress 0x82, Bit 0  
The Y filter supports several different frequency responses,  
including two low-pass responses, two notch responses, an  
extended (SSAF) response with or without gain boost atten-  
uation, a CIF response, and a QCIF response. The PrPb filter  
supports several different frequency responses, including six  
low-pass responses, a CIF response, and a QCIF response, as  
shown in Figure 38 and Figure 39.  
Luma CIF  
Luma QCIF  
0.127  
3.02  
1.5  
0.65  
1
1.395  
2.2  
3.2  
0.65  
0.5  
Monotonic  
Monotonic  
Monotonic  
0.09  
Chroma 0.65 MHz  
Chroma 1.0 MHz  
Chroma 1.3 MHz  
Chroma 2.0 MHz  
Chroma 3.0 MHz  
Chroma CIF  
0.048  
Monotonic  
Monotonic  
Monotonic  
If SD Luma SSAF gain is enabled (Subaddress 0x87, Bit 4), there  
are 13 response options in the range −4 dB to +4 dB. The desired  
response can be programmed using Subaddress 0xA2. Variation  
in frequency responses is shown in Figure 35 to Figure 37.  
Chroma QCIF  
1 Pass-band ripple is the maximum fluctuation from the 0 dB response in the  
pass band, measured in decibels. The pass band is defined to have 0 Hz to fc  
(Hz) frequency limits for a low-pass filter and 0 Hz to f1 (Hz) and f2 (Hz) to  
infinity for a notch filter, where fc, f1, and f2 are the −3 dB points.  
2 3 dB bandwidth refers to the −3 dB cutoff frequency.  
In addition to the chroma filters listed in Table 42, the ADV739x  
contains an SSAF filter that is specifically designed for the color  
difference component outputs, Pr and Pb. This filter has a cutoff  
frequency of ~2.7 MHz and a gain of –40 dB at 3.8 MHz (see  
Figure 66). This filter can be controlled with Bit 0 of Sub-  
address 0x82, Bit 0.  
Rev. H | Page 54 of 108  
 
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
ED/HD Sinc Compensation Filter Response  
Table 44 shows sample color values that can be programmed  
into the color registers when the output standard selection is set  
to EIA770.2/EIA770.3 (Subaddress 0x30, Bits[1:0] = 00).  
Subaddress 0x33, Bit 3  
The ADV739x includes a filter designed to counter the effect of  
sinc roll-off in DAC 1, DAC 2, and DAC 3 while operating in  
ED/HD mode. This filter is enabled by default. It can be  
disabled using Subaddress 0x33, Bit 3. The benefit of the filter is  
illustrated in Figure 67 and Figure 68.  
Table 44. Sample Color Values for EIA770.2/EIA770.3  
ED/HD Output Standard Selection  
Sample Color  
Y Value  
Cr Value  
Cb Value  
White  
Black  
Red  
Green  
Blue  
Yellow  
Cyan  
235 (0xEB)  
128 (0x80) 128 (0x80)  
128 (0x80) 128 (0x80)  
0.5  
16  
81  
(0x10)  
(0x51)  
0.4  
0.3  
240 (0xF0)  
90  
(0x5A)  
(0x36)  
145 (0x91)  
41 (0x29)  
34  
(0x22) 54  
110 (0x6E)  
240 (0xF0)  
(0x10)  
(0x10) 166 (0xA6)  
106 (0x6A) 222 (0xDE) 202 (0xCA)  
0.2  
210 (0xD2) 146 (0x92) 16  
170 (0xAA) 16  
0.1  
0
Magenta  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
COLOR SPACE CONVERSION MATRIX  
Subaddress 0x03 to Subaddress 0x09  
The internal color space conversion (CSC) matrix automatically  
performs all color space conversions based on the input mode  
programmed in the mode select register (Subaddress 0x01,  
Bits[6:4]). Table 45 and Table 46 show the options available in  
this matrix.  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
Figure 67. ED/HD Sinc Compensation Filter Enabled  
0.5  
0.4  
An SD color space conversion from RGB-in to YPrPb-out is  
possible on the ADV7392/ADV7393. An ED/HD color space  
conversion from RGB-in to YPrPb-out is not possible.  
0.3  
0.2  
Table 45. SD Color Space Conversion Options  
0.1  
YPrPb/RGB Out  
(Subaddress 0x02,  
RGB In/YCrCb In  
(Subaddress 0x87,  
Bit 7)  
0
Input Output1 Bit 5)  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
YCrCb YPrPb  
YCrCb RGB  
1
0
1
0
0
0
1
1
RGB2  
RGB2  
YPrPb  
RGB  
0
5
10  
15  
20  
25  
30  
1 CVBS/Y-C outputs are available for all CSC combinations.  
2 Available on the ADV7392/ADV7393 (40-pin devices) only.  
FREQUENCY (MHz)  
Figure 68. ED/HD Sinc Compensation Filter Disabled  
Table 46. ED/HD Color Space Conversion Options  
YPrPb/RGB Out  
(Subaddress 0x02, Bit 5)  
ED/HD TEST PATTERN COLOR CONTROLS  
Subaddress 0x36 to Subaddress 0x38  
Input  
YCrCb  
YCrCb  
Output  
YPrPb  
RGB  
1
0
Three 8-bit registers at Subaddress 0x36 to Subaddress 0x38  
are used to program the output color of the internal ED/HD  
test pattern generator (Subaddress 0x31, Bit 2 = 1), whether it  
be the lines of the crosshatch pattern or the uniform field test  
pattern. They are not functional as color controls for external  
pixel data input.  
SD Manual CSC Matrix Adjust Feature  
The SD manual CSC matrix adjust feature (available for the  
ADV7392 and ADV7393 only) provides custom coefficient  
manipulation for RGB to YPbPr conversion (for YPbPr to RGB  
conversion, this matrix adjustment is not available).  
The values for the luma (Y) and color difference (Cr and Cb)  
signals used to obtain white, black, and saturated primary and  
complementary colors conform to the ITU-R BT.601-4  
standard.  
Normally, there is no need to modify the SD matrix coefficients  
because the CSC matrix automatically performs the color space  
conversion based on the output color space selected (see Table 46).  
Note that Bit 7 in subaddress 0x87 must be set to enable RGB  
input and, therefore, use the CSC manual adjustment.  
Rev. H | Page 55 of 108  
 
 
 
 
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
The SD CSC matrix scalar uses the following equations:  
Y = (a1 × R) + (a2 × G) + (a3 × B) + a4  
On power-up, the CSC matrix is programmed with the default  
values shown in Table 48.  
Table 48. ED/HD Manual CSC Matrix Default Values  
Pr = (b1 × R) + (b2 × G) + (b3 × B) + b4  
Pb = (c1 × R) + (c2 × G) + (c3 × B) + c4  
Subaddress  
Default  
0x03  
0xF0  
0x4E  
0x0E  
0x24  
0x92  
0x7C  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
The coefficients and their default values are located in the  
registers shown in Table 47.  
Table 47. SD Manual CSC Matrix Default Values  
Coefficient  
Subaddress  
0xBD  
0xBE  
Default  
0x42  
0x81  
0x19  
0x10  
0x70  
0x5E  
0x12  
0x80  
0x26  
0x4A  
0x70  
0x80  
a1  
a2  
a3  
a4  
b1  
b2  
b3  
b4  
c1  
c2  
c3  
c4  
0xBF  
0xC0  
0xC1  
0xC2  
0xC3  
0xC4  
0xC5  
0xC6  
When the ED/HD manual CSC matrix adjust feature is  
enabled, the default coefficient values in Subaddress 0x03  
to Subaddress 0x09 are correct for the HD color space only.  
The color components are converted according to the following  
1080i and 720p standards (SMPTE 274M, SMPTE 296M):  
R = Y + 1.575Pr  
G = Y − 0.468Pr − 0.187Pb  
B = Y + 1.855Pb  
0xC7  
0xC8  
The conversion coefficients should be multiplied by 315 before  
being written to the ED/HD CSC matrix registers. This is  
reflected in the default values for GY = 0x13B, GU = 0x03B,  
GV = 0x093, BU = 0x248, and RV = 0x1F0.  
ED/HD Manual CSC Matrix Adjust Feature  
The ED/HD manual CSC matrix adjust feature provides custom  
coefficient manipulation for color space conversions and is used  
in ED and HD modes only. The ED/HD manual CSC matrix  
adjust feature can be enabled using Subaddress 0x02, Bit 3.  
If the ED/HD manual CSC matrix adjust feature is enabled and  
another input standard (such as ED) is used, the scale values for  
GY, GU, GV, BU, and RV must be adjusted according to this  
input standard color space. The user should consider that the  
color component conversion may use different scale values.  
Normally, there is no need to enable this feature because the CSC  
matrix automatically performs the color space conversion based  
on the input mode chosen (ED or HD) and the output color  
space selected (see Table 46). For this reason, the ED/HD  
manual CSC matrix adjust feature is disabled by default.  
For example, SMPTE 293M uses the following conversion:  
R = Y + 1.402Pr  
If RGB output is selected, the ED/HD CSC matrix scalar uses  
the following equations:  
G = Y − 0.714Pr − 0.344Pb  
B = Y + 1.773Pb  
R = GY × Y + RV × Pr  
The programmable CSC matrix is used for external ED/HD  
pixel data and is not functional when internal test patterns are  
enabled.  
G = GY × Y − (GU × Pb) − (GV × Pr)  
B = GY × Y + BU × Pb  
Note that subtractions are implemented in the hardware.  
If YPrPb output is selected, the following equations are used:  
Y = GY × Y  
Programming the CSC Matrix  
If custom manipulation of the ED/HD CSC matrix coefficients  
is required for a YCrCb-to-RGB color space conversion, use the  
following procedure:  
Pr = RV × Pr  
1. Enable the ED/HD manual CSC matrix adjust feature  
(Subaddress 0x02, Bit 3).  
2. Set the output to RGB (Subaddress 0x02, Bit 5).  
3. Disable sync on PrPb (Subaddress 0x35, Bit 2).  
4. Enable sync on RGB (optional) (Subaddress 0x02, Bit 4).  
Pb = BU × Pb  
where:  
GY = Subaddress 0x05, Bits[7:0] and Subaddress 0x03, Bits[1:0].  
GU = Subaddress 0x06, Bits[7:0] and Subaddress 0x04, Bits[7:6].  
GV = Subaddress 0x07, Bits[7:0] and Subaddress 0x04, Bits[5:4].  
BU = Subaddress 0x08, Bits[7:0] and Subaddress 0x04, Bits[3:2].  
RV = Subaddress 0x09, Bits[7:0] and Subaddress 0x04, Bits[1:0].  
The GY value controls the green signal output level, the BU  
value controls the blue signal output level, and the RV value  
controls the red signal output level.  
Rev. H | Page 56 of 108  
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
For example, to adjust the hue by +4°, write 0x97 to the hue  
adjust control register.  
SD LUMA AND COLOR SCALE CONTROL  
Subaddress 0x9C to Subaddress 0x9F  
4
When enabled, the SD luma and color scale control feature can  
be used to scale the SD Y, Cb, and Cr output levels. This feature  
can be enabled using Subaddress 0x87, Bit 0. This feature affects  
all SD output signals, that is, CVBS, Y-C, YPrPb, and RGB.  
+ 128 151d = 0x97  
0.17578125  
where the sum is rounded to the nearest integer.  
To adjust the hue by −4°, write 0x69 to the hue adjust control  
register.  
When enabled, three 10-bit registers (SD Y scale, SD Cb scale,  
and SD Cr scale) control the scaling of the SD Y, Cb, and Cr  
output levels. The SD Y scale register contains the scaling factor  
used to scale the Y level from 0.0 to 1.5 times its initial level.  
The SD Cb scale and SD Cr scale registers contain the scaling  
factors to scale the Cb and Cr levels from 0.0 to 2.0 times their  
initial levels, respectively.  
4  
+ 128 105d = 0x69  
0.17578125  
where the sum is rounded to the nearest integer.  
SD BRIGHTNESS DETECT  
Subaddress 0xBA  
The values to be written to these 10-bit registers are calculated  
using the following equation:  
The ADV739x allows monitoring of the brightness level of the  
incoming video data. This feature is used to monitor the  
average brightness of the incoming Y signal on a field-by-field  
basis. The information is read from the I2C and, based on this  
information, the color saturation, contrast, and brightness  
controls can be adjusted (for example, to compensate for very  
dark pictures).  
Y, Cb, or Cr Scale Value = Scale Factor × 512  
For example, if Scale Factor = 1.3  
Y, Cb, or Cr Scale Value = 1.3 × 512 = 665.6  
Y, Cb, or Cr Scale Value = 666 (rounded to the nearest integer)  
Y, Cb, or Cr Scale Value = 1010011010b  
The luma data is monitored in the active video area only. The  
average brightness I2C register is updated on the falling edge of  
Subaddress 0x9C, SD scale LSB = 0x2A  
every  
signal. The SD brightness detect register (Subad-  
VSYNC  
Subaddress 0x9D, SD Y scale register = 0xA6  
Subaddress 0x9E, SD Cb scale register = 0xA6  
Subaddress 0x9F, SD Cr scale register = 0xA6  
dress 0xBA) is a read-only register.  
SD BRIGHTNESS CONTROL  
It is recommended that the SD luma scale saturation feature  
(Subaddress 0x87, Bit 1) be enabled when scaling the Y output  
level to avoid excessive Y output levels.  
Subaddress 0xA1, Bits[6:0]  
When this feature is enabled, the SD brightness/WSS control  
register (Subaddress 0xA1) is used to control brightness by  
adding a programmable setup level onto the scaled Y data. This  
feature can be enabled using Subaddress 0x87, Bit 3.  
SD HUE ADJUST CONTROL  
Subaddress 0xA0  
For NTSC with pedestal, the setup can vary from 0 IRE to 22.5 IRE.  
For NTSC without pedestal (see Figure 69) and for PAL, the  
When enabled, the SD hue adjust control register (Subaddress  
0xA0) is used to adjust the hue on the SD composite and  
chroma outputs. This feature can be enabled using Subaddress  
0x87, Bit 2.  
setup can vary from −7.5 IRE to +15 IRE.  
NTSC WITHOUT PEDESTAL  
+7.5 IRE  
100 IRE  
Subaddress 0xA0 contains the bits required to vary the hue of  
the video data, that is, the variance in phase of the subcarrier  
during active video with respect to the phase of the subcarrier  
during the color burst. The ADV739x provides a range of  
22.5° in increments of 0.17578125°. For normal operation  
(zero adjustment), this register is set to 0x80. Value 0xFF and  
Value 0x00 represent the upper and lower limits, respectively, of  
the attainable adjustment in NTSC mode. Value 0xFF and Value  
0x01 represent the upper and lower limits, respectively, of the  
attainable adjustment in PAL mode.  
0 IRE  
–7.5 IRE  
POSITIVE SETUP  
VALUE ADDED  
NEGATIVE SETUP  
VALUE ADDED  
NO SETUP  
VALUE ADDED  
Figure 69. Examples of Brightness Control Values  
The SD brightness control register is an 8-bit register. The seven  
LSBs of this 8-bit register are used to control the brightness  
level, which can be a positive or negative value.  
For example, to add a +20 IRE brightness level to an NTSC  
signal with pedestal, write 0x28 to Subaddress 0xA1.  
The hue adjust value is calculated using the following equation:  
Hue Adjust (°) = 0.17578125° (HCRd − 128)  
0 × (SD Brightness Value) =  
0 × (IRE Value × 2.015631) =  
Where HCRd = the hue adjust control register (decimal).  
0 × (20 × 2.015631) = 0 × (40.31262) ≈ 0x28  
Rev. H | Page 57 of 108  
 
 
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
To add a –7 IRE brightness level to a PAL signal, write 0x72 to  
Subaddress 0xA1.  
PROGRAMMABLE DAC GAIN CONTROL  
Subaddress 0x0B  
0 × (SD Brightness Value) =  
It is possible to adjust the DAC output signal gain up or down  
from its absolute level. This is illustrated in Figure 70.  
0 × (IRE Value × 2.075631) =  
DAC 1 to DAC 3 are controlled by Register 0x0B.  
0 × (7 × 2.015631) = 0x(14.109417) ≈ 0001110b  
0001110b into twos complement = 1110010b = 0x72  
In Case A of Figure 70, the video output signal is gained. The  
absolute level of the sync tip and the blanking level increase  
with respect to the reference video output signal. The overall  
gain of the signal is increased from the reference signal.  
Table 49. Sample Brightness Control Values1  
Setup Level  
(NTSC) with  
Pedestal  
Setup Level  
(NTSC) Without Level  
Pedestal  
15 IRE  
7.5 IRE  
0 IRE  
Setup  
Brightness  
Control Value  
In Case B of Figure 70, the video output signal is reduced. The  
absolute level of the sync tip and the blanking level decrease  
with respect to the reference video output signal. The overall  
gain of the signal is reduced from the reference signal.  
(PAL)  
22.5 IRE  
15 IRE  
7.5 IRE  
0 IRE  
15 IRE  
7.5 IRE  
0 IRE  
0x1E  
0x0F  
0x00  
0x71  
−7.5 IRE  
−7.5 IRE  
CASE A  
1 Values in the range of 0x3F to 0x44 may result in an invalid output signal.  
SD INPUT STANDARD AUTODETECTION  
Subaddress 0x87, Bit 5  
GAIN PROGRAMMED IN DAC OUTPUT LEVEL  
REGISTERS, SUBADDRESS 0x0B  
700mV  
The ADV739x includes an SD input standard autodetect feature  
that can be enabled by setting Subaddress 0x87, Bits[5:1].  
When enabled, the ADV739x can automatically identify an  
NTSC or a PAL B/D/G/H/I input stream. The ADV739x  
automatically updates the subcarrier frequency registers with  
the appropriate value for the identified standard. The ADV739x  
is also configured to correctly encode the identified standard.  
300mV  
The SD standard bits (Subaddress 0x80, Bits[1:0]) and the  
subcarrier frequency registers are not updated to reflect the  
identified standard. All registers retain their default or user-  
defined values.  
NEGATIVE GAIN PROGRAMMED IN  
CASE B  
DAC OUTPUT LEVEL REGISTERS,  
SUBADDRESS 0x0B  
700mV  
DOUBLE BUFFERING  
Subaddress 0x33, Bit 7 for ED/HD;  
Subaddress 0x88, Bit 2 for SD  
300mV  
Double-buffered registers are updated once per field. Double  
buffering improves overall performance because modifications  
to register settings are not be made during active video but take  
effect prior to the start of the active video on the next field.  
Figure 70. Programmable DAC Gain—Positive and Negative Gain  
Using Subaddress 0x33, Bit 7, double buffering can be activated  
on the following ED/HD registers: the ED/HD Gamma A and  
Gamma B curves and ED/HD CGMS registers.  
The range of this feature is specified for 7.5% of the nominal  
output from the DACs. For example, if the output current of the  
DAC is 4.33 mA, the DAC gain control feature can change this  
output current from 4.008 mA (−7.5%) to 4.658 mA (+7.5%).  
Using Subaddress 0x88, Bit 2, double buffering can be activated  
on the following SD registers: the SD Gamma A and Gamma B  
curves, SD Y scale, SD Cr scale, SD Cb scale, SD brightness, SD  
closed captioning, and SD Macrovision Bits[5:0]  
(Subaddress 0xE0, Bits[5:0]).  
Rev. H | Page 58 of 108  
 
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
The reset value of the control registers is 0x00; that is, nominal  
DAC current is output. Table 50 is an example of how the output  
current of the DACs varies for a nominal 4.33 mA output current.  
Gamma correction is performed on the luma data only. The  
user can choose one of two correction curves, Curve A or  
Curve B. Only one of these curves can be used at a time. For  
ED/HD gamma correction, curve selection is controlled using  
Subaddress 0x35, Bit 4. For SD gamma correction, curve  
selection is controlled using Subaddress 0x88, Bit 7.  
Table 50. DAC Gain Control  
DAC Current  
Subaddress 0x0B (mA)  
% Gain  
7.5000%  
7.3820%  
7.3640%  
...  
Note  
The shape of the gamma correction curve is controlled by  
defining the curve response at 10 different locations along the  
curve. By altering the response at these locations, the shape of  
the gamma correction curve can be modified. Between these  
points, linear interpolation is used to generate intermediate  
values. Considering the curve to have a total length of 256  
points, the 10 programmable locations are at the following  
points: 24, 32, 48, 64, 80, 96, 128, 160, 192, and 224. The  
following locations are fixed and cannot be changed: 0, 16, 240,  
and 255.  
0100 0000 (0x40)  
0011 1111 (0x3F)  
0011 1110 (0x3E)  
...  
4.658  
4.653  
4.648  
...  
...  
...  
...  
0000 0010 (0x02)  
0000 0001 (0x01)  
0000 0000 (0x00)  
4.43  
4.38  
4.33  
0.0360%  
0.0180%  
0.0000%  
Reset value,  
nominal  
1111 1111 (0xFF)  
1111 1110 (0xFE)  
...  
4.25  
4.23  
...  
−0.0180%  
−0.0360%  
...  
From the curve locations, 16 to 240, the values at the program-  
mable locations and, therefore, the response of the gamma  
correction curve, should be calculated to produce the following  
result:  
...  
...  
...  
1100 0010 (0xC2)  
1100 0001 (0xC1)  
1100 0000 (0xC0)  
4.018  
4.013  
4.008  
−7.3640%  
−7.3820%  
−7.5000%  
γ
x
DESIRED = (xINPUT  
)
where:  
x
x
DESIRED is the desired gamma corrected output.  
INPUT is the linear input signal.  
GAMMA CORRECTION  
γ is the gamma correction factor.  
Subaddress 0x44 to Subaddress 0x57 for ED/HD;  
Subaddress 0xA6 to Subaddress 0xB9 for SD  
To program the gamma correction registers, calculate the  
10 programmable curve values using the following formula:  
Generally, gamma correction is applied to compensate for the  
nonlinear relationship between signal input and output  
brightness level (as perceived on a CRT). It can also be applied  
wherever nonlinear processing is used.  
γ  
n 16  
240 16  
γn =  
×(240 16) +16  
where:  
Gamma correction uses the function  
SignalOUT = (SignalIN)γ  
γn is the value to be written into the gamma correction register  
for point n on the gamma correction curve.  
n = 24, 32, 48, 64, 80, 96, 128, 160, 192, or 224.  
γ is the gamma correction factor.  
where γ is the gamma correction factor.  
Gamma correction is available for SD and ED/HD video. For  
both variations, there are twenty 8-bit registers. They are used  
to program Gamma Correction Curve A and Gamma  
Correction Curve B.  
For example, setting γ = 0.5 for all programmable curve data  
points results in the following yn values:  
y24 = [(8/224)0.5 × 224] + 16 = 58  
y32 = [(16/224)0.5 × 224] + 16 = 76  
y48 = [(32/224)0.5 × 224] + 16 = 101  
y64 = [(48/224)0.5 × 224] + 16 = 120  
y80 = [(64/224)0.5 × 224] + 16 = 136  
y96 = [(80/224)0.5 × 224] + 16 = 150  
ED/HD gamma correction is enabled using Subaddress 0x35,  
Bit 5. ED/HD Gamma Correction Curve A is programmed at  
Subaddress 0x44 to Subaddress 0x4D, and ED/HD Gamma  
Correction Curve B is programmed at Subaddress 0x4E to  
Subaddress 0x57.  
SD gamma correction is enabled using Subaddress 0x88, Bit 6.  
SD Gamma Correction Curve A is programmed at Subaddress  
0xA6 to Subaddress 0xAF, and SD Gamma Correction Curve B  
is programmed at Subaddress 0xB0 to Subaddress 0xB9.  
y
y
y
y
128 = [(112/224)0.5 × 224] + 16 = 174  
160 = [(144/224)0.5 × 224] + 16 = 195  
192 = [(176/224)0.5 × 224] + 16 = 214  
224 = [(208/224)0.5 × 224] + 16 = 232  
where the sum of each equation is rounded to the nearest integer.  
Rev. H | Page 59 of 108  
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
The gamma curves in Figure 71 and Figure 72 are examples only;  
any user-defined curve in the range from 16 to 240 is acceptable.  
To select one of the 256 individual responses, the corresponding  
gain values, ranging from −8 to +7 for each filter, must be  
programmed into the ED/HD sharpness filter gain register at  
Subaddress 0x40.  
GAMMA CORRECTION BLOCK OUTPUT TO A RAMP INPUT  
300  
ED/HD Adaptive Filter Mode  
250  
SIGNAL OUTPUT  
In ED/HD adaptive filter mode, the following registers are used:  
200  
0.5  
ED/HD Adaptive Filter Threshold A  
ED/HD Adaptive Filter Threshold B  
ED/HD Adaptive Filter Threshold C  
ED/HD Adaptive Filter Gain 1  
ED/HD Adaptive Filter Gain 2  
ED/HD Adaptive Filter Gain 3  
ED/HD sharpness filter gain  
150  
100  
SIGNAL INPUT  
50  
0
0
50  
100  
150  
LOCATION  
200  
250  
To activate the adaptive filter control, the ED/HD sharpness  
filter and the ED/HD adaptive filter must be enabled  
(Subaddress 0x31, Bit 7 = 1, and Subaddress 0x35, Bit 7 = 1,  
respectively).  
Figure 71. Signal Input (Ramp) and Signal Output for Gamma 0.5  
GAMMA CORRECTION BLOCK TO A RAMP INPUT FOR  
The derivative of the incoming signal is compared to the three  
programmable threshold values: ED/HD adaptive filter  
(Threshold A, Threshold B, and Threshold C ) registers  
(Subaddress 0x5B, Subaddress 0x5C, and Subaddress 0x5D).  
The recommended threshold range is 16 to 235, although any  
value in the range of 0 to 255 can be used.  
VARIOUS GAMMA VALUES  
300  
250  
0.3  
200  
0.5  
The edges can then be attenuated with the settings in the  
ED/HD adaptive filter (Gain 1, Gain 2, and Gain 3) registers  
(Subaddress 0x58, Subaddress 0x59 and Subaddress 0x5A), and  
the ED/HD sharpness filter gain register (Subaddress 0x40).  
150  
1.5  
100  
1.8  
50  
There are two adaptive filter modes available. The mode is  
selected using the ED/HD adaptive filter mode control  
(Subaddress 0x35, Bit 6) as follows:  
0
0
50  
100  
150  
LOCATION  
200  
250  
Mode A is used when the ED/HD adaptive filter mode  
control is set to 0. In this case, Filter B (LPF) is used in the  
adaptive filter block. In addition, only the programmed  
values for Gain B in the ED/HD sharpness filter gain  
register and ED/HD adaptive filter (Gain 1, Gain 2, and  
Gain 3) registers are applied when needed. The Gain A  
values are fixed and cannot be changed.  
Mode B is used when ED/HD adaptive filter mode control is  
set to 1. In this mode, a cascade of Filter A and Filter B is used.  
Both settings for Gain A and Gain B in the ED/HD sharpness  
filter gain register and ED/HD adaptive filter (Gain 1, Gain 2,  
and Gain 3) registers become active when needed.  
Figure 72. Signal Input (Ramp) and Selectable Output Curves  
ED/HD SHARPNESS FILTER AND ADAPTIVE FILTER  
CONTROLS  
Subaddress 0x40; Subaddress 0x58 to Subaddress 0x5D  
There are three filter modes available on the ADV739x:  
sharpness filter mode and two adaptive filter modes.  
ED/HD Sharpness Filter Mode  
To enhance or attenuate the Y signal in the frequency ranges  
shown in Figure 73, the ED/HD sharpness filter must be  
enabled (Subaddress 0x31, Bit 7 = 1) and the ED/HD adaptive  
filter must be disabled (Subaddress 0x35, Bit 7 = 0).  
Rev. H | Page 60 of 108  
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
SHARPNESS AND ADAPTIVE FILTER CONTROL BLOCK  
1.5  
1.5  
1.4  
1.6  
1.5  
1.4  
1.4  
1.3  
1.2  
1.1  
1.0  
1.3  
1.2  
1.1  
1.0  
INPUT  
SIGNAL  
STEP  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.9  
0.8  
0.7  
0.6  
0.5  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FILTER A RESPONSE (Gain Ka)  
FREQUENCY (MHz)  
FILTER B RESPONSE (Gain Kb)  
FREQUENCY (MHz)  
FREQUENCY RESPONSE IN SHARPNESS  
FILTER MODE WITH Ka = 3 AND Kb = 7  
Figure 73. ED/HD Sharpness and Adaptive Filter Control  
d
e
a
R2  
R4  
1
b
R1  
c
f
1
R2  
CH1 500mV  
REF A  
M 4.00µs  
1 9.99978ms  
CH1  
ALL FIELDS  
CH1 500mV  
REF A  
M 4.00µs  
1 9.99978ms  
CH1  
ALL FIELDS  
500mV 4.00µs  
500mV 4.00µs  
Block  
Figure 74. ED/HD Sharpness Filter Control with Different Gain Settings for ED/HD Sharpness Filter Gain Values  
Adaptive Filter Control Application  
ED/HD SHARPNESS FILTER AND ADAPTIVE FILTER  
APPLICATION EXAMPLES  
Sharpness Filter Application  
The register settings in Table 52 are used to obtain the results  
shown in Figure 76, that is, to remove the ringing on the input  
Y signal, as shown in Figure 75. Input data is generated by an  
external signal source.  
The ED/HD sharpness filter can be used to enhance or  
attenuate the Y video output signal. The register settings in  
Table 51 are used to achieve the results shown in Figure 74.  
Input data is generated by an external signal source.  
Table 52. Register Settings for Figure 76  
Subaddress  
Register Setting  
0x00  
0x01  
0x02  
0x30  
0x31  
0x35  
0x40  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0xFC  
0x38  
0x20  
0x00  
0x81  
0x80  
0x00  
0xAC  
0x9A  
0x88  
0x28  
0x3F  
Table 51. ED/HD Sharpness Control Settings for Figure 74  
Subaddress  
Register Setting  
Reference1  
0x00  
0xFC  
0x01  
0x10  
0x02  
0x20  
0x30  
0x00  
0x31  
0x81  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x00  
0x08  
0x04  
0x40  
0x80  
0x22  
a
b
c
d
e
f
0x64  
1 See Figure 74.  
Rev. H | Page 61 of 108  
 
 
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
In DNR mode, if the absolute value of the filter output is  
smaller than the threshold, it is assumed to be noise. A  
programmable amount (coring gain border, coring gain data) of  
this noise signal is subtracted from the original signal. In DNR  
sharpness mode, if the absolute value of the filter output is less  
than the programmed threshold, it is assumed to be noise as  
before. However, if the level exceeds the threshold, now being  
identified as a valid signal, a fraction of the signal (coring gain  
border, coring gain data) is added to the original signal to boost  
high frequency components and sharpen the video image.  
In MPEG systems, it is common to process the video information  
in blocks of 8 pixels × 8 pixels for MPEG2 systems or 16 pixels  
× 16 pixels for MPEG1 systems (block size control). DNR can  
be applied to the resulting block transition areas known to  
contain noise. Generally, the block transition area contains two  
pixels. It is possible to define this area to contain four pixels  
(border area).  
Figure 75. Input Signal to ED/HD Adaptive Filter  
It is also possible to compensate for variable block positioning  
or differences in YCrCb pixel timing with the use of the DNR  
block offset.  
The digital noise reduction registers are three 8-bit registers.  
They are used to control the DNR processing.  
DNR MODE  
DNR CONTROL  
BLOCK SIZE CONTROL  
BORDER AREA  
BLOCK OFFSET  
GAIN  
Figure 76. Output Signal from ED/HD Adaptive Filter (Mode A)  
CORING GAIN DATA  
CORING GAIN BORDER  
When the adaptive filter mode is changed to Mode B  
(Subaddress 0x35, Bit 6), the output shown in Figure 77  
can be obtained.  
NOISE  
SIGNAL PATH  
INPUT FILTER  
BLOCK  
FILTER  
SUBTRACT  
OUTPUT  
SIGNAL IN  
Y DATA  
INPUT  
< THRESHOLD?  
THRESHOLD  
RANGE FROM  
ORIGINAL SIGNAL  
FILTER OUTPUT  
> THRESHOLD  
+
DNR OUT  
MAIN SIGNAL PATH  
DNR  
SHARPNESS  
MODE  
DNR CONTROL  
BLOCK SIZE CONTROL  
BORDER AREA  
BLOCK OFFSET  
GAIN  
CORING GAIN DATA  
CORING GAIN BORDER  
NOISE  
SIGNAL PATH  
INPUT FILTER  
BLOCK  
Figure 77. Output Signal from ED/HD Adaptive Filter (Mode B)  
FILTER  
ADD SIGNAL  
ABOVE  
THRESHOLD  
RANGE FROM  
ORIGINAL SIGNAL  
OUTPUT  
SD DIGITAL NOISE REDUCTION  
Subaddress 0xA3 to Subaddress 0xA5  
Y DATA  
INPUT  
> THRESHOLD?  
+
FILTER OUTPUT  
< THRESHOLD  
Digital noise reduction (DNR) is applied to the Y data only.  
A filter block selects the high frequency, low amplitude compo-  
nents of the incoming signal (DNR input select). The absolute  
value of the filter output is compared to a programmable  
threshold value (DNR threshold control). There are two DNR  
modes available: DNR mode and DNR sharpness mode.  
+
DNR OUT  
MAIN SIGNAL PATH  
Figure 78. SD DNR Block Diagram  
Rev. H | Page 62 of 108  
 
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
Coring Gain Border—Subaddress 0xA3, Bits[3:0]  
Block Size—Subaddress 0xA4, Bit 7  
These four bits are assigned to the gain factor applied to border  
areas. In DNR mode, the range of gain values is 0 to 1 in  
increments of 1/8. This factor is applied to the DNR filter  
output that lies below the set threshold range. The result is then  
subtracted from the original signal.  
This bit is used to select the size of the data blocks to be  
processed. Setting the block size control function to Logic 1  
defines a 16 pixel × 16 pixel data block, and Logic 0 defines an  
8 pixel × 8 pixel data block, where one pixel refers to two clock  
cycles at 27 MHz.  
In DNR sharpness mode, the range of gain values is 0 to 0.5 in  
increments of 1/16. This factor is applied to the DNR filter  
output that lies above the threshold range. The result is added to  
the original signal.  
DNR Input Select—Subaddress 0xA5, Bits[2:0]  
These three bits are assigned to select the filter that is applied to  
the incoming Y data. The signal that lies in the pass band of the  
selected filter is the signal processed by DNR. Figure 81 shows  
the filter responses selectable with this control.  
Coring Gain Data—Subaddress 0xA3, Bits[7:4]  
These four bits are assigned to the gain factor applied to the luma  
data inside the MPEG pixel block. In DNR mode, the range of  
gain values is 0 to 1 in increments of 1/8. This factor is applied  
to the DNR filter output that lies below the set threshold range.  
The result is then subtracted from the original signal.  
1.0  
FILTER D  
0.8  
FILTER C  
0.6  
In DNR sharpness mode, the range of gain values is 0 to 0.5 in  
increments of 1/16. This factor is applied to the DNR filter  
output that lies above the threshold range. The result is added to  
the original signal.  
0.4  
0.2  
0
FILTER B  
APPLY DATA  
APPLY BORDER  
CORING GAIN CORING GAIN  
FILTER A  
O X X X X X X O O X X X X X X O  
1
2
3
0
4
5
6
FREQUENCY (MHz)  
OFFSET CAUSED  
BY VARIATIONS IN  
INPUT TIMING  
O X X X X X X O O X X X X X X O  
Figure 81. SD DNR Input Select  
DNR Mode—Subaddress 0xA5, Bit 3  
DNR27 TO DNR24 = 0x01 O X X X X X X O O X X X X X X O  
This bit controls the DNR mode selected. Logic 0 selects DNR  
mode; Logic 1 selects DNR sharpness mode.  
Figure 79. SD DNR Offset Control  
DNR Threshold—Subaddress 0xA4, Bits[5:0]  
DNR works on the principle of defining low amplitude, high  
frequency signals as probable noise and subtracting this noise  
from the original signal.  
These six bits are used to define the threshold value in the range  
of 0 to 63. The range is an absolute value.  
Border Area—Subaddress 0xA4, Bit 6  
In DNR mode, it is possible to subtract a fraction of the signal  
that lies below the set threshold, assumed to be noise, from the  
original signal. The threshold is set in DNR Register 1.  
When this bit is set to Logic 1, the block transition area can be  
defined to consist of four pixels. If this bit is set to Logic 0, the  
border transition area consists of two pixels, where one pixel  
refers to two clock cycles at 27 MHz.  
When DNR sharpness mode is enabled, it is possible to add a  
fraction of the signal that lies above the set threshold to the  
original signal because this data is assumed to be valid data and  
not noise. The overall effect is that the signal is boosted (similar  
to using the extended SSAF filter).  
720 × 485 PIXELS  
TWO-PIXEL  
BORDER  
(NTSC)  
DATA  
Block Offset Control—Subaddress 0xA5, Bits[7:4]  
Four bits are assigned to this control, which allows a shift in the  
data block of 15 pixels maximum. The coring gain positions are  
fixed. The block offset shifts the data in steps of one pixel such  
that the border coring gain factors can be applied at the same  
position regardless of variations in input timing of the data.  
8 × 8 PIXEL BLOCK  
8 × 8 PIXEL BLOCK  
Figure 80. SD DNR Border Area  
Rev. H | Page 63 of 108  
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
At the start of active video, the first three pixels are multiplied  
by 1/8, 1/2, and 7/8, respectively. Approaching the end of active  
video, the last three pixels are multiplied by 7/8, 1/2, and 1/8,  
respectively. All other active video pixels pass through unpro-  
cessed.  
SD ACTIVE VIDEO EDGE CONTROL  
Subaddress 0x82, Bit 7  
The ADV739x is able to control fast rising and falling signals at  
the start and end of active video to minimize ringing.  
When the active video edge control feature is enabled  
(Subaddress 0x82, Bit 7 = 1), the first three pixels and the last  
three pixels of the active video on the luma channel are scaled  
so that maximum transitions on these pixels are not possible.  
LUMA CHANNEL WITH  
ACTIVE VIDEO EDGE  
DISABLED  
LUMA CHANNEL WITH  
ACTIVE VIDEO EDGE  
ENABLED  
100 IRE  
0 IRE  
100 IRE  
87.5 IRE  
50 IRE  
12.5 IRE  
0 IRE  
Figure 82. Example of Active Video Edge Functionality  
VOLTS  
0.5  
IRE:FLT  
100  
50  
0
0
F2  
L135  
–50  
2
0
4
6
8
10  
12  
Figure 83. Example of Video Output with Subaddress 0x82, Bit 7 = 0  
VOLTS  
IRE:FLT  
100  
50  
0
0.5  
0
F2  
L135  
–50  
–2  
0
2
4
6
8
10  
12  
Figure 84. Example of Video Output with Subaddress 0x82, Bit 7 = 1  
Rev. H | Page 64 of 108  
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
EXTERNAL HORIZONTAL AND VERTICAL SYNCHRONIZATION CONTROL  
For timing synchronization purposes, the ADV739x is able to accept either EAV/SAV time codes embedded in the input pixel data or  
HSYNC  
VSYNC  
external synchronization signals provided on the  
and  
pins (see Table 53). It is also possible to output synchronization  
HSYNC VSYNC  
signals on the  
and  
pins (see Table 54 to Table 56).  
Table 53. Timing Synchronization Signal Input Options  
Signal  
Pin  
Condition  
SD slave timing (Mode 1, Mode 2, or Mode 3) selected (Subaddress 0x8A[2:0])1  
SD slave timing (Mode 1, Mode 2, or Mode 3) selected (Subaddress 0x8A[2:0])1  
ED/HD timing synchronization inputs enabled (Subaddress 0x30, Bit 2 = 0)  
ED/HD timing synchronization inputs enabled (Subaddress 0x30, Bit 2 = 0)  
SD HSYNC In  
HSYNC  
VSYNC  
HSYNC  
VSYNC  
SD VSYNC/FIELD In  
ED/HD HSYNC In  
ED/HD VSYNC/FIELD In  
1 SD and ED/HD timing synchronization outputs must also be disabled (Subaddress 0x02[7:6] = 00).  
Table 54. Timing Synchronization Signal Output Options  
Signal  
Pin  
Condition  
SD timing synchronization outputs enabled (Subaddress 0x02, Bit 6 = 1)1  
SD timing synchronization outputs enabled (Subaddress 0x02, Bit 6 = 1)1  
ED/HD timing synchronization outputs enabled (Subaddress 0x02, Bit 7 = 1)2  
ED/HD timing synchronization outputs enabled (Subaddress 0x02, Bit 7 = 1)2  
SD HSYNC Out  
HSYNC  
VSYNC  
HSYNC  
VSYNC  
SD VSYNC/FIELD Out  
ED/HD HSYNC Out  
ED/HD VSYNC/FIELD Out  
1 ED/HD timing synchronization outputs must also be disabled (Subaddress 0x02, Bit 7 = 0).  
2 ED/HD timing synchronization inputs must also be disabled; that is, embedded EAV/SAV timing codes must be enabled (Subaddress 0x30, Bit 2 = 1).  
1, 2  
HSYNC  
Table 55.  
Output Control  
ED/HD Sync  
Output Enable  
(Subaddress 0x02, (Subaddress 0x02,  
Bit 7)  
SD Sync  
Output Enable  
ED/HD HSYNC Control  
(Subaddress 0x34,  
Bit 1)  
ED/HD Input Sync Format  
(Subaddress 0x30,  
Bit 2)  
Signal on HSYNC Pin  
Tristate  
Bit 6)  
Duration  
X
X
X
X
0
0
0
1
N/A  
See the SD Timing  
section.  
Pipelined SD HSYNC  
0
1
X
0
0
1
1
1
1
X
X
X
Pipelined ED/HD HSYNC  
As per  
HSYNC  
timing.  
Same as line  
blanking interval.  
Pipelined ED/HD  
based on AV Code H bit  
HSYNC  
HSYNC  
Same as  
Pipelined ED/HD  
embedded HSYNC.  
based on horizontal  
counter  
1
HSYNC  
HSYNC  
HSYNC  
pulse is aligned with the falling edge of the embedded in the output video.  
In all ED/HD standards where there is an  
output, the start of the  
2 X = don’t care.  
1, 2  
VSYNC  
Table 56.  
Output Control  
ED/HD VSYNC  
Control  
(Subaddress  
0x34, Bit 2)  
ED/HD Input  
Sync Format  
(Subaddress  
0x30, Bit 2)  
ED/HD Sync  
SD Sync  
Output Enable  
(Subaddress  
0x02, Bit 7)  
Output Enable  
(Subaddress  
0x02, Bit 6)  
Signal on VSYNC Pin  
Video Standard  
Duration  
x
x
x
x
0
0
0
1
x
Tristate  
N/A  
Interlaced  
See the SD Timing  
section.  
Pipelined SD VSYNC/field  
0
1
1
0
0
0
1
1
1
x
x
x
x
VSYNC  
Pipelined ED/HD  
or field signal  
As per or  
VSYNC  
field signal timing.  
Field.  
All HD interlaced  
standards  
All ED/HD  
progressive  
standards  
Pipelined field signal  
based on AV Code F bit  
VSYNC  
based  
Vertical blanking  
interval.  
Pipelined  
on AV Code V bit  
Rev. H | Page 65 of 108  
 
 
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
ED/HD VSYNC  
Control  
(Subaddress  
0x34, Bit 2)  
ED/HD Input  
Sync Format  
(Subaddress  
0x30, Bit 2)  
ED/HD Sync  
Output Enable  
(Subaddress  
0x02, Bit 7)  
SD Sync  
Output Enable  
(Subaddress  
0x02, Bit 6)  
Signal on VSYNC Pin  
VSYNC  
based on the vertical  
counter  
Video Standard  
Duration  
X
1
1
1
X
All ED/HD standards  
except 525p  
Aligned with  
serration lines.  
Pipelined ED/HD  
X
1
X
525p  
VSYNC  
Vertical blanking  
interval.  
Pipelined ED/HD  
based on the vertical  
counter  
1
VSYNC  
VSYNC  
VSYNC  
pulse is aligned with the falling edge of the embedded in the output video.  
In all ED/HD standards where there is a  
2 X = don’t care.  
output, the start of the  
LOW POWER MODE  
DAC AUTOPOWER-DOWN  
Subaddress 0x0D, Bits[2:0]  
Subaddress 0x10, Bit 4  
For power-sensitive applications, the ADV739x supports an  
Analog Devices, Inc., proprietary low power mode of operation.  
To use this low power mode, the DACs must be operating in  
full-drive mode (RSET = 510 Ω, RL = 37.5 Ω). Low power mode is  
not available in low-drive mode (RSET = 4.12 kΩ, RL = 300 Ω).  
Low power mode can be independently enabled or disabled on  
each DAC using Subaddress 0x0D, Bits[2:0]. Low power mode  
is disabled by default on all DACs.  
For power-sensitive applications, a DAC autopower-down  
feature can be enabled using Subaddress 0x10, Bit 4. This  
feature is available only when the cable detection feature is  
enabled.  
With this feature enabled, the cable detection circuitry monitors  
DAC 1 and/or DAC 2 once per frame and, if they are  
unconnected, automatically powers down some or all of the  
DACs. Which DAC or DACs are powered down depends on the  
selected output configuration. For CVBS/Y-C output configur-  
ations, if DAC 1 is unconnected, only DAC 1 powers down. If  
DAC 2 is unconnected, DAC 2 and DAC 3 power down.  
In low-power mode, DAC current consumption is content  
dependent and, on a typical video stream, it can be reduced by  
as much as 40%. For applications requiring the highest possible  
video performance, low power mode should be disabled.  
For YPrPb and RGB output configurations, if DAC 1 is uncon-  
nected, all three DACs are powered down. DAC 2 is not monitored  
for YPrPb and RGB output configurations.  
CABLE DETECTION  
Subaddress 0x10, Bits[1:0]  
Once per frame, DAC 1 and/or DAC 2 is monitored. If a cable is  
detected, the appropriate DAC or DACs remain powered up for  
the duration of the frame. If no cable is detected, the appropriate  
DAC or DACs power down until the next frame, when the  
process is repeated.  
The ADV739x includes an Analog Devices proprietary cable  
detection feature. The cable detection feature is available on  
DAC 1 and DAC 2 when operating in full-drive mode (RSET  
=
510 Ω, RL = 37.5 Ω, assuming a connected cable). The feature is  
not available in low-drive mode (RSET = 4.12 kΩ, RL = 300 Ω).  
For a DAC to be monitored, the DAC must be powered up in  
Subaddress 0x00.  
SLEEP MODE  
Subaddress 0x00, Bit 0  
The cable detection feature can be used with all SD, ED, and  
HD video standards. It is available for all output configurations,  
that is, CVBS, Y-C, YPrPb, and RGB output configurations.  
In sleep mode, most of the digital I/O pins of the ADV739x are  
disabled. For inputs, this means that the external data is  
ignored, and internally the logic normally driven by a given  
input is just tied low or high. This includes CLKIN.  
For CVBS/Y-C output configurations, both DAC 1 and DAC 2  
are monitored; that is, the CVBS and Y-C luma outputs are  
monitored. For YPrPb and RGB output configurations, only  
DAC 1 is monitored; that is, the luma or green output is  
monitored.  
For digital output pins, this means that the pin goes into tristate  
(high impedance) mode.  
There are some exceptions to allow the user to continue to  
2
RESET  
communicate with the part via I C: the  
SCL pins are kept alive.  
, ALSB, SDA and  
Once per frame, the ADV739x monitors DAC 1 and/or DAC 2,  
updating Subaddress 0x10, Bit 0 and/or Bit 1, respectively. If a  
cable is detected on one of the DACs, the relevant bit is set to 0.  
If not, the bit is set to 1.  
Most of the analogue circuitry is powered down when in sleep  
mode. In addition, the cable detect feature no longer works as  
the DACs are powered down.  
Sleep mode is enabled using Subaddress 0x00, Bit 0.  
Rev. H | Page 66 of 108  
 
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
RESET  
the  
pin low long enough to cause a reset to take place.  
PIXEL AND CONTROL PORT READBACK  
Subaddress 0x13, Subaddress 0x14, Subaddress 0x16  
All subsequent resets can be done via software.  
SD TELETEXT INSERTION  
Subaddress 0xC9 to Subaddress 0xCE  
The ADV739x supports the readback of most digital inputs via  
the I2C MPU port. This feature is useful for board-level  
connectivity testing with upstream devices.  
The ADV739x supports the insertion of teletext data, using a  
two pin interface, when operating in PAL mode. Teletext  
insertion is enabled using Subaddress 0xC9, Bit 0.  
HSYNC VSYNC  
, and SFL  
The pixel port (P[15:0] or P[7:0]),  
,
are available for readback via the MPU port. The readback  
registers are located at Subaddress 0x13, Subaddress 0x14, and  
Subaddress 0x16.  
In accordance with the PAL WST teletext standard, teletext data  
should be inserted into the ADV739x at a rate of 6.9375 Mbps.  
On the ADV7390/ADV7391, the teletext data is inserted on  
When using this feature, apply a clock signal to the CLKIN pin  
to register the levels applied to the input pins. The SD input  
mode (Subaddress 0x01, Bits[6:4] = 000) must be selected when  
using this feature.  
VSYNC  
the  
can be inserted on the  
Subaddress 0xC9, Bit 2).  
pin. On the ADV7392/ADV7393, the teletext data  
VSYNC  
or P0 pin (selectable through  
RESET MECHANISMS  
Subaddress 0x17, Bit 1  
When teletext insertion is enabled, a teletext request signal is  
output from the ADV739x to indicate when teletext data should  
be inserted. The teletext request signal is output on the SFL pin.  
The position (relative to the teletext data) and width of the  
request signal are configurable using Subaddress 0xCA. The  
request signal can operate in either a line or bit mode. The  
request signal mode is controlled using Subaddress 0xC9, Bit 1.  
A hardware reset is activated with a high-to-low transition on  
RESET  
the  
pin in accordance with the timing specifications.  
This resets all registers to their default values. After a hardware  
reset, the MPU port is configured for I2C operation. For correct  
device operation, a hardware reset is necessary after power-up.  
To account for the noninteger relationship between the teletext  
insertion rate (6.9375 Mbps) and the pixel clock (27 MHz),  
a teletext insertion protocol is implemented in the ADV739x.  
At a rate of 6.9375 Mbps, the time taken for the insertion of  
37 teletext bits equates to 144 pixel clock cycles (at 27 MHz).  
For every 37 teletext bits inserted into the ADV739x, the 10th,  
19th, 28th, and 37th bits are carried for three pixel clock cycles, and  
the remainder are carried for four pixel clock cycles (totaling  
144 pixel clock cycles). The teletext insertion protocol repeats  
every 37 teletext bits or 144 pixel clock cycles until all 360 teletext  
bits are inserted.  
The ADV739x also has a software reset accessible via the I2C  
MPU port. A software reset is activated by writing a 1 to  
Subaddress 0x17, Bit 1. This resets all registers to their default  
values. This bit is self-clearing; that is, after a 1 has been written  
to the bit, the bit automatically returns to 0.  
A hardware reset is necessary after power-up for correct device  
operation. If no hardware reset functionality is required by the  
RESET  
application, the  
pin can be connected to an RC network  
to provide the hardware reset necessary after power-up. After  
power-up, the time constant of the RC network holds  
45 BYTES (360 BITS) – PAL  
ADDRESS AND DATA  
TELETEXT VBI LINE  
RUN-IN CLOCK  
Figure 85. Teletext VBI Line  
Rev. H | Page 67 of 108  
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
tSYNTTXOUT  
CVBS/Y  
tPD  
tPD  
HSYNC  
10.2µs  
TTX  
DATA  
TTX  
DEL  
TTX  
REQ  
PROGRAMMABLE PULSE EDGES  
TTX  
ST  
tSYNTTXOUT = 10.2µs.  
tPD = PIPELINE DELAY THROUGH ADV739x.  
TTX  
DEL  
= TTX  
REQ  
TO TTX  
DATA  
(PROGRAMMABLE RANGE = 4 BITS [0 TO 15 PIXEL CLOCK CYCLES]).  
Figure 86. Teletext Functionality Diagram  
Rev. H | Page 68 of 108  
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
PRINTED CIRCUIT BOARD LAYOUT AND DESIGN  
UNUSED PINS  
Table 57. ADV739x Output Rates  
HSYNC  
VSYNC  
pins are not used, they should be tied  
Input Mode  
(Subaddress 0x01,  
Bits[6:4])  
If the  
and  
to VDD_IO through a pull-up resistor (10 kΩ or 4.7 kΩ). Any  
other unused digital inputs should be tied to ground. Unused  
digital output pins should be left floating. DAC outputs can  
either be left floating or connected to GND. Disabling these  
outputs is recommended.  
Oversampling Output Rate (MHz)  
SD  
Off  
On  
On  
Off  
On  
On  
Off  
On  
On  
27  
(2×)  
(8×)  
(16×)  
(1×)  
(4×)  
(8×)  
(1×)  
(2×)  
(4×)  
108  
216  
27  
108  
216  
74.25  
148.5  
297  
ED  
DAC CONFIGURATIONS  
The ADV739x contains three DACs. All three DACs can be  
configured to operate in full-drive mode. Full-drive mode is  
defined as 34.7 mA full-scale current into a 37.5 Ω load, RL.  
Full drive is the recommended mode of operation for the DACs.  
HD  
Alternatively, all three DACs can be configured to operate in low-  
drive mode. Low-drive mode is defined as 4.33 mA full-scale  
current into a 300 Ω load, RL.  
Table 58. Output Filter Requirements  
Cutoff  
Attenuation  
–50 dB at  
(MHz)  
Frequency  
Application Oversampling (MHz)  
The ADV739x contains an RSET pin. A resistor connected between  
the RSET pin and AGND is used to control the full-scale output  
current and, therefore, the output voltage levels of DAC 1, DAC 2,  
and DAC 3. For full-drive operation, RSET must have a value of  
510 Ω and RL must have a value of 37.5 Ω. For low-drive opera-  
tion, RSET must have a value of 4.12 kΩ, and RL must have a value  
of 300 Ω. The resistor connected to the RSET pin should have a  
1% tolerance.  
SD  
ED  
HD  
2×  
8×  
16×  
1×  
4×  
8×  
1×  
2×  
4×  
> 6.5  
> 6.5  
> 6.5  
> 12.5  
> 12.5  
> 12.5  
> 30  
20.5  
101.5  
209.5  
14.5  
95.5  
203.5  
44.25  
118.5  
267  
> 30  
> 30  
The ADV739x contains a compensation pin, COMP. A 2.2 nF  
compensation capacitor should be connected from the COMP  
pin to VAA.  
10µH  
DAC  
OUTPUT  
3
4
75  
VIDEO OUTPUT BUFFER AND OPTIONAL  
OUTPUT FILTER  
BNC  
OUTPUT  
600Ω  
22pF  
600Ω  
1
An output buffer is necessary on any DAC that operates in low-  
drive mode (RSET = 4.12 kΩ, RL = 300 Ω). Analog Devices  
produces a range of op amps suitable for this application, for  
example, the AD8061. For more information about line driver  
buffering circuits, see the relevant op amp data sheet.  
560Ω  
560Ω  
Figure 87. Example of Output Filter for SD, 16× Oversampling  
4.7µH  
DAC  
OUTPUT  
3
An optional reconstruction (anti-imaging) low-pass filter (LPF)  
may be required on the ADV739x DAC outputs. The filter  
specifications vary with the application. The use of 16× (SD),  
8× (ED), or 4× (HD) oversampling can remove the requirement  
for a reconstruction filter altogether.  
75Ω  
BNC  
OUTPUT  
6.8pF  
6.8pF  
600Ω  
1
600Ω  
4
560Ω  
560Ω  
For applications requiring an output buffer and reconstruction  
filter, the ADA4430-1 and ADA4411-3 integrated video filter  
buffers should be considered.  
Figure 88. Example of Output Filter for ED, 8× Oversampling  
DAC  
OUTPUT  
3
390nH  
75Ω  
BNC  
OUTPUT  
300Ω  
3
1
33pF  
33pF  
75Ω  
1
4
4
500Ω  
500Ω  
Figure 89. Example of Output Filter for HD, 4× Oversampling  
Rev. H | Page 69 of 108  
 
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
CIRCUIT FREQUENCY RESPONSE  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
PRINTED CIRCUIT BOARD (PCB) LAYOUT  
24n  
21n  
18n  
15n  
12n  
9n  
–30  
The ADV739x is a highly integrated circuit containing both  
precision analog and high speed digital circuitry. It is designed  
to minimize interference effects on the integrity of the analog  
circuitry by the high speed digital circuitry. It is imperative that  
these same design and layout techniques be applied to the  
system-level design so that optimal performance is achieved.  
MAGNITUDE (dB)  
–60  
–90  
PHASE (Degrees)  
–120  
–150  
–180  
–210  
–240  
The layout should be optimized for lowest noise on the  
ADV739x power and ground planes by shielding the digital  
inputs and providing good power supply decoupling.  
GROUP DELAY (Seconds)  
6n  
3n  
0
It is recommended to use a 4-layer printed circuit board with  
ground and power planes separating the signal trace layer and  
the solder side layer.  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 90. Output Filter Plot for SD, 16× Oversampling  
Component Placement  
Component placement should be carefully considered to  
separate noisy circuits, such as clock signals and high speed  
digital circuitry, from analog circuitry.  
CIRCUIT FREQUENCY RESPONSE  
0
480  
18n  
16n  
–10  
400  
320  
240  
160  
80  
MAGNITUDE (dB)  
The external loop filter components and components connected  
to the COMP and RSET pins should be placed as close as possible  
to, and on the same side of the PCB as, the ADV739x. Adding  
vias to the PCB to get the components closer to the ADV739x is  
not recommended.  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
14n  
PHASE  
(Degrees)  
12n  
10n  
8n  
GROUP DELAY (Seconds)  
It is recommended that the ADV739x be placed as close as  
possible to the output connector, with the DAC output traces as  
short as possible.  
0
6n  
–80  
–160  
–240  
4n  
The termination resistors on the DAC output traces should be  
placed as close as possible to and on the same side of the PCB as  
the ADV739x. The termination resistors should overlay the  
PCB ground plane.  
2n  
0
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 91. Output Filter Plot for ED, 8× Oversampling  
External filter and buffer components connected to the DAC  
outputs should be placed as close as possible to the ADV739x to  
minimize the possibility of noise pickup from neighboring  
circuitry and to minimize the effect of trace capacitance on  
output bandwidth. This is particularly important when  
operating in low-drive mode (RSET = 4.12 kΩ, RL = 300 Ω).  
CIRCUIT FREQUENCY RESPONSE  
0
200  
120  
40  
PHASE  
(Degrees)  
MAGNITUDE (dB)  
–10  
–20  
–30  
–40  
–50  
GROUP DELAY (Seconds)  
Power Supplies  
It is recommended that a separate regulated supply be provided  
for each power domain (VAA, VDD, VDD_IO, and PVDD). For  
optimal performance, linear regulators rather than switch mode  
regulators should be used. If switch mode regulators must be  
used, care must be taken with regard to the quality of the output  
voltage in terms of ripple and noise. This is particularly true for  
the VAA and PVDD power domains. Each power supply should be  
individually connected to the system power supply at a single  
point through a suitable filtering device, such as a ferrite bead.  
–40  
–120  
–200  
1
10  
100  
FREQUENCY (MHz)  
Figure 92. Output Filter Plot for HD, 4× Oversampling  
Rev. H | Page 70 of 108  
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
Power Supply Decoupling  
ADDITIONAL LAYOUT CONSIDERATIONS FOR THE  
WLCSP PACKAGE  
It is recommended that each power supply pin be decoupled  
with 10 nF and 0.1 µF ceramic capacitors. The VAA, PVDD,  
Due to the high pad density and 0.5 mm pitch of the WLCSP, it  
is not recommended that connections to inner bumps be routed  
on the top PCB layer only.  
V
DD_IO, and both VDD pins should be individually decoupled to  
ground. The decoupling capacitors should be placed as close as  
possible to the ADV739x with the capacitor leads kept as short  
as possible to minimize lead inductance.  
The traces (track and space) must fit within the limits of the  
solder mask openings. Routing all traces on the top surface  
layer of the board, while possible, is usually not a feasible  
solution due to the limitations of the geometries imposed by  
the board fabrication technology. Given a pitch of 0.5 mm with  
a typical solder mask opening diameter of 0.35 mm, there is only  
a 0.15 mm distance between the solder mask openings.  
A 1 µF tantalum capacitor is recommended across the VAA  
supply in addition to the 10 nF and 0.1 µF ceramic capacitors.  
Power Supply Sequencing  
The ADV739x is robust to all power supply sequencing combin-  
ations. Any sequence can be used. However, all power supplies  
should settle to their nominal voltages within one second.  
An alternative to routing on the top surface is to route out on  
buried layers. To achieve this, the pads are connected to the  
lower layers using microvias. See the AN-617 Application Note,  
MicroCSP Wafer Level Chip Scale Package for additional details  
about the board layout for the WLCSP package.  
Digital Signal Interconnect  
The digital signal traces should be isolated as much as possible  
from the analog outputs and other analog circuitry. Digital  
signal traces should not overlay the VAA or PVDD power plane.  
Due to the high clock rates used, avoid long clock traces to the  
ADV739x to minimize noise pickup.  
Any pull-up termination resistors for the digital inputs should  
be connected to the VDD_IO power supply.  
Analog Signal Interconnect  
DAC output traces should be treated as transmission lines with  
appropriate measures taken to ensure optimal performance (for  
example, impedance matched traces). The DAC output traces  
should be kept as short as possible. The termination resistors on  
the DAC output traces should be placed as close as possible to,  
and on the same side of the PCB as, the ADV739x.  
To avoid crosstalk between the DAC outputs, it is recommended  
that as much space as possible be left between the traces  
connected to the DAC output pins. Adding ground traces  
between the DAC output traces is also recommended.  
Rev. H | Page 71 of 108  
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
TYPICAL APPLICATIONS CIRCUITS  
FERRITE BEAD  
NOTES  
1. FOR OPTIMUM PERFORMANCE, EXTERNAL COMPONENTS CONNECTED  
TO THE COMP, R AND DAC OUTPUT PINS SHOULD BE LOCATED  
V
DD_IO  
V
POWER  
DD_IO  
33µF  
10µF  
0.1µF  
0.01µF  
SUPPLY  
DECOUPLING  
SET  
GND_IO  
GND_IO  
GND_IO GND_IO  
CLOSE TO, AND ON THE SAME SIDE OF THE PCB AS, THE ADV739x.  
FERRITE BEAD  
2
PV  
DD  
2. THE I C DEVICE ADDRESS IS CONFIGURABLE USING THE ALSB PIN:  
PV POWER  
DD  
SUPPLY  
DECOUPLING  
33µF  
10µF  
0.1µF  
0.01µF  
PGND  
2
ALSB = 0, I C DEVICE ADDRESS = 0xD4 (ADV7390/ADV7392) OR  
0x54 (ADV7391/ADV7393)  
PGND  
PGND  
PGND  
2
FERRITE BEAD  
ALSB = 1, I C DEVICE ADDRESS = 0xD6 (ADV7390/ADV7392) OR  
V
V
AA  
DD  
0x56 (ADV7391/ADV7393)  
V
POWER  
AA  
33µF  
10µF  
0.1µF  
0.01µF  
AGND  
1µF  
SUPPLY  
DECOUPLING  
3. THE RESISTOR CONNECTED TO THE R  
TOLERANCE.  
PIN SHOULD HAVE A 1%  
SET  
AGND  
FERRITE BEAD  
AGND  
AGND  
AGND  
4. THE RECOMMENDED MODE OF OPERATION FOR THE DACs IS FULL-  
V
POWER SUPPLY  
DECOUPLING FOR  
EACHPOWER PIN  
DD  
33µF  
10µF  
0.1µF  
0.01µF  
DGND  
DRIVE (R  
= 510, R = 37.5).  
L
SET  
DGND  
DGND  
DGND  
V
AA  
2.2nF  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
COMP  
R
SET  
ADV739x  
510Ω  
AGND  
PIXEL PORT INPUTS  
DAC1 TO DAC3 FULL DRIVE OPTION  
(RECOMMENDED)  
P8  
P9  
DAC1 TO DAC3 LOW DRIVE OPTION  
OPTIONAL LPF  
OPTIONAL LPF  
P10  
P11  
P12  
P13  
P14  
P15  
DAC 1  
DAC 2  
DAC 3  
DAC 1  
DAC 2  
DAC 3  
ADV7392/  
ADV7393  
ONLY  
R
SET  
4.12kΩ  
OPTIONAL LPF  
75Ω  
75Ω  
75Ω  
AGND  
ADA4411-3  
AGND AGND AGND  
75Ω  
DAC 1  
DAC 1  
DAC 2  
DAC 3  
HSYNC  
VSYNC  
CONTROL  
INPUTS/OUTPUTS  
LPF  
300Ω  
AGND  
CLKIN  
CLOCK INPUT  
I2C PORT  
ADA4411-3  
SDA  
SCL  
75Ω  
DAC 2  
LPF  
TIE EITHER LOW  
OR HIGH  
ALSB  
300Ω  
AGND  
RESET  
EXTERNAL LOOP FILTER  
ADA4411-3  
PV  
DD  
12nF  
75Ω  
EXT_LF  
DAC 3  
LPF  
150nF  
170Ω  
300Ω  
AGND  
LOOP FILTER COMPONENTS  
SHOULD BE LOCATED  
CLOSE TO THE EXT_LF  
PIN AND ON THE  
SAME SIDE OF THE PCB  
AS THE ADV739x.  
AGND PGND DGND DGND GND_IO  
AGND PGND DGND DGND GND_IO  
Figure 93. ADV739x (LFCSP) Typical Applications Circuit  
Rev. H | Page 72 of 108  
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
FERRITE BEAD  
NOTES  
V
DD_IO  
V
POWER  
DD_IO  
1. FOR OPTIMUM PERFORMANCE, EXTERNAL COMPONENTS CONNECTED  
TO THE COMP, R  
CLOSE TO, AND ON THE SAME SIDE OF THE PCB AS, THE ADV7390.  
33µF  
10µF  
0.1µF  
0.01µF  
SUPPLY  
DECOUPLING  
AND DAC OUTPUT PINS SHOULD BE LOCATED  
SET  
GND_IO  
GND_IO  
GND_IO GND_IO  
FERRITE BEAD  
2
PV  
DD  
2. THE I C DEVICE ADDRESS IS CONFIGURABLE USING THE ALSB PIN:  
PV POWER  
DD  
SUPPLY  
DECOUPLING  
33µF  
10µF  
0.1µF  
0.01µF  
PGND  
2
ALSB = 0, I C DEVICE ADDRESS = 0xD4  
PGND  
PGND  
PGND  
2
FERRITE BEAD  
ALSB = 1, I C DEVICE ADDRESS = 0xD6  
V
V
AA  
DD  
V
POWER  
AA  
33µF  
10µF  
0.1µF  
0.01µF  
AGND  
1µF  
3. THE RESISTOR CONNECTED TO THE R  
SET  
TOLERANCE.  
PIN SHOULD HAVE A 1%  
SUPPLY  
DECOUPLING  
AGND  
FERRITE BEAD  
AGND  
AGND  
AGND  
4. THE RECOMMENDED MODE OF OPERATION FOR THE DACs IS FULL-  
DRIVE (R = 510, = 37.5).  
R
SET  
L
V
POWER SUPPLY  
DECOUPLING FOR  
EACH POWER PIN  
DD  
33µF  
10µF  
0.1µF  
0.01µF  
DGND  
DGND  
DGND  
DGND  
V
AA  
2.2nF  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
COMP  
R
SET  
PIXEL PORT INPUTS  
510Ω  
ADV7390BCBZ  
AGND  
TIE EITHER  
ALSB  
DAC 1  
LOW OR HIGH  
CONTROL  
INPUTS/OUTPUTS  
HSYNC  
VSYNC  
DAC FULL DRIVE OPTION  
(RECOMMENDED)  
CLOCK INPUT  
I2C PORT  
CLKIN  
OPTIONAL LPF  
VIDEO  
75Ω  
SDA  
SCL  
DAC LOW DRIVE OPTION  
RESET  
R
SET  
EXTERNAL LOOP FILTER  
PV  
4.12kΩ  
DD  
AGND  
12nF  
ADA4411-3  
EXT_LF  
150nF  
170Ω  
75Ω  
DAC  
LPF  
VIDEO  
LOOP FILTER COMPONENTS  
SHOULD BE LOCATED  
CLOSE TO THE EXT_LF  
PIN AND ON THE  
SAME SIDE OF THE PCB  
AS THE ADV7390.  
AGND PGND DGND DGND GND_IO  
AGND PGND DGND DGND GND_IO  
300Ω  
AGND  
Figure 94. ADV7390BCBZ-A (WLCSP) Typical Applications Circuit  
Rev. H | Page 73 of 108  
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
COPY GENERATION MANAGEMENT SYSTEM  
SD CGMS  
Subaddress 0x99 to Subaddress 0x9B  
When HD CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 1080i  
CGMS data is applied to Line 19 and Line 582 of the luminance  
vertical blanking interval.  
The ADV739x supports a copy generation management system  
(CGMS) that conforms to the EIAJ CPR-1204 and ARIB TR-B15  
standards. CGMS data is transmitted on Line 20 of odd fields and  
Line 283 of even fields. Subaddress 0x99, Bits[6:5] control  
whether CGMS data is output on odd or even fields or both.  
The HD CGMS data registers are at Subaddress 0x41, Subad-  
ress 0x42, and Subaddress 0x43.  
The ADV739x also supports CGMS Type B packets in HD  
mode (720p and 1080i) in accordance with CEA-805-A.  
SD CGMS data can be transmitted only when the ADV739x is  
configured in NTSC mode. The CGMS data is 20 bits long. The  
CGMS data is preceded by a reference pulse of the same  
amplitude and duration as a CGMS bit (see Figure 95).  
When HD CGMS Type B is enabled (Subaddress 0x5E, Bit 0 = 1),  
720p CGMS data is applied to Line 23 of the luminance vertical  
blanking interval.  
When HD CGMS Type B is enabled (Subaddress 0x5E, Bit 0 = 1),  
1080i CGMS data is applied to Line 18 and Line 581 of the  
luminance vertical blanking interval.  
ED CGMS  
Subaddress 0x41 to Subaddress 0x43;  
Subaddress 0x5E to Subaddress 0x6E  
The HD CGMS Type B data registers are at Subaddress 0x5E to  
Subaddress 0x6E.  
525p Mode  
The ADV739x supports a copy generation management system  
(CGMS) in 525p mode in accordance with EIAJ CPR-1204-1.  
CGMS CRC FUNCTIONALITY  
If SD CGMS CRC (Subaddress 0x99, Bit 4) or ED/HD CGMS  
CRC (Subaddress 0x32, Bit 7) is enabled, the upper six CGMS  
data bits (C19 to C14) that comprise the 6-bit CRC check  
sequence are automatically calculated on the ADV739x. This  
calculation is based on the lower 14 bits (C13 to C0) of the data  
in the CGMS data registers, and the result is output with the  
remaining 14 bits to form the complete 20 bits of the CGMS  
data. The calculation of the CRC sequence is based on the  
polynomial x6 + x + 1 with a preset value of 111111.  
When ED CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 525p  
CGMS data is inserted on Line 41. The 525p CGMS data  
registers are at Subaddress 0x41, Subaddress 0x42, and  
Subaddress 0x43.  
The ADV739x also supports CGMS Type B packets in 525p  
mode in accordance with CEA-805-A.  
When ED CGMS Type B is enabled (Subaddress 0x5E, Bit 0 = 1),  
525p CGMS Type B data is inserted on Line 40. The 525p CGMS  
Type B data registers are at Subaddress 0x5E to Subaddress 0x6E.  
If SD CGMS CRC or ED/HD CGMS CRC is disabled, all 20 bits  
(C19 to C0) are output directly from the CGMS registers (CRC  
must be calculated by the user manually).  
625p Mode  
The ADV739x supports a copy generation management system  
(CGMS) in 625p mode in accordance with IEC 62375 (2004).  
If ED/HD CGMS Type B CRC (Subaddress 0x5E, Bit 1) is  
enabled, the upper six CGMS Type B data bits (P122 to P127)  
that comprise the 6-bit CRC check sequence are automatically  
calculated on the ADV739x. This calculation is based on the  
lower 128 bits (H0 to H5 and P0 to P121) of the data in the  
CGMS Type B data registers. The result is output with the  
remaining 128 bits to form the complete 134 bits of the CGMS  
Type B data. The calculation of the CRC sequence is based on  
the polynomial x6 + x + 1 with a preset value of 111111.  
When ED CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 625p  
CGMS data is inserted on Line 43. The 625p CGMS data  
registers are at Subaddress 0x42 and Subaddress 0x43.  
HD CGMS  
Subaddress 0x41 to Subaddress 0x43;  
Subaddress 0x5E to Subaddress 0x6E  
The ADV739x supports a copy generation management system  
(CGMS) in HD mode (720p and 1080i) in accordance with  
EIAJ CPR-1204-2.  
If ED/HD CGMS Type B CRC is disabled, all 134 bits (H0 to H5  
and P0 to P127) are output directly from the CGMS Type B  
registers (CRC must be calculated by the user manually).  
When HD CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 720p  
CGMS data is applied to Line 24 of the luminance vertical  
blanking interval.  
Rev. H | Page 74 of 108  
 
 
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
+100 IRE  
CRC SEQUENCE  
REF  
+70 IRE  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0 IRE  
–40 IRE  
49.1µs ± 0.5µs  
11.2µs  
2.235µs ± 20ns  
Figure 95. Standard Definition CGMS Waveform  
CRC SEQUENCE  
+700mV  
REF  
BIT 1 BIT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIT 20  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
70% ± 10%  
0mV  
–300mV  
21.2µs ± 0.22µs  
22T  
5.8µs ± 0.15µs  
6T  
T = 1/(fH × 33) = 963ns  
fH = HORIZONTAL SCAN FREQUENCY  
T ± 30ns  
Figure 96. Enhanced Definition (525p) CGMS Waveform  
R = RUN-IN  
S = START CODE  
PEAK WHITE  
C0  
LSB  
C13  
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12  
R
S
500mV ± 25mV  
SYNC LEVEL  
MSB  
13.7µs  
5.5µs ± 0.125µs  
Figure 97. Enhanced Definition (625p) CGMS Waveform  
CRC SEQUENCE  
+700mV  
REF  
BIT 1 BIT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIT 20  
70% ± 10%  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0mV  
T ± 30ns  
–300mV  
17.2µs ± 160ns  
4T  
22T  
3.128µs ± 90ns  
T = 1/(fH × 1650/58) = 781.93ns  
fH = HORIZONTAL SCAN FREQUENCY  
1H  
Figure 98. High Definition (720p) CGMS Waveform  
Rev. H | Page 75 of 108  
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
CRC SEQUENCE  
+700mV  
REF  
BIT 1 BIT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIT 20  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
70% ± 10%  
0mV  
T ± 30ns  
–300mV  
22.84µs ± 210ns  
22T  
4T  
4.15µs ± 60ns  
T = 1/(f × 2200/77) = 1.038µs  
H
f
= HORIZONTAL SCAN FREQUENCY  
H
1H  
Figure 99. High Definition (1080i) CGMS Waveform  
CRC SEQUENCE  
BIT 134  
+700mV  
START  
BIT 1 BIT 2  
70% ± 10%  
.
.
.
0mV  
–300mV  
NOTES  
1. PLEASE REFER TO THE CEA-805-A SPECIFICATION FOR TIMING INFORMATION.  
Figure 100. Enhanced Definition (525p) CGMS Type B Waveform  
CRC SEQUENCE  
BIT 134  
+700mV  
START  
BIT 1 BIT 2  
70% ±10%  
.
.
.
0mV  
–300mV  
NOTES  
1. PLEASE REFER TO THE CEA-805-A SPECIFICATION FOR TIMING INFORMATION.  
Figure 101. High Definition (720p and 1080i) CGMS Type B Waveform  
Rev. H | Page 76 of 108  
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
SD WIDE SCREEN SIGNALING  
Figure 102). The latter portion of Line 23 (after 42.5 µs from the  
Subaddress 0x99, Subaddress 0x9A, Subaddress 0x9B  
HSYNC  
falling edge of  
) is available for the insertion of video.  
The ADV739x supports wide screen signaling (WSS) con-  
forming to the ETSI 300 294 standard. WSS data is transmitted  
on Line 23. WSS data can be transmitted only when the device  
is configured in PAL mode. The WSS data is 14 bits long. The  
function of each of these bits is shown in Table 59. The WSS  
data is preceded by a run-in sequence and a start code (see  
WSS data transmission on Line 23 can be enabled using  
Subaddress 0x99, Bit 7. It is possible to blank the WSS portion  
of Line 23 with Subaddress 0xA1, Bit 7.  
Table 59. Function of WSS Bits  
Bit Number  
Bit Description  
13 12 11 10  
9
8
7
6
5
4
3
1
0
0
1
0
1
1
0
2
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
Setting  
Aspect Ratio, Format, Position  
4:3, full format, N/A  
14:9, letterbox, center  
14:9, letterbox, top  
16:9, letterbox, center  
16:9, letterbox, top  
>16:9, letterbox, center  
14:9, full format, center  
16:0, N/A, N/A  
Mode  
0
1
Camera mode  
Film mode  
Color Encoding  
Helper Signals  
0
1
Normal PAL  
Motion Adaptive ColorPlus  
Not present  
0
1
Present  
Reserved  
0
N/A  
Teletext Subtitles  
0
1
No  
Yes  
Open Subtitles  
0
0
1
1
0
1
0
1
No  
Subtitles in active image area  
Subtitles out of active image area  
Reserved  
Surround Sound  
Copyright  
0
1
No  
Yes  
0
1
No copyright asserted or unknown  
Copyright asserted  
Copying not restricted  
Copying restricted  
Copy Protection  
0
1
500mV  
RUN-IN  
SEQUENCE  
START  
CODE  
ACTIVE  
VIDEO  
W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13  
11.0µs  
38.4µs  
42.5µs  
Figure 102. WSS Waveform Diagram  
Rev. H | Page 77 of 108  
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
SD CLOSED CAPTIONING  
All pixels inputs are ignored on Line 21 and Line 284 if closed  
captioning is enabled.  
Subaddress 0x91 to Subaddress 0x94  
The ADV739x supports closed captioning conforming to the  
standard television synchronizing waveform for color trans-  
mission. When enabled, closed captioning is transmitted during  
the blanked active line time of Line 21 of the odd fields and  
Line 284 of the even fields. Closed captioning can be enabled  
using Subaddress 0x83, Bits[6:5].  
The FCC Code of Federal Regulations (CFR) Title 47 Section  
15.119 and EIA-608 describe the closed captioning information  
for Line 21 and Line 284.  
The ADV739x uses a single buffering method. This means that  
the closed captioning buffer is only 1-byte deep. Therefore,  
there is no frame delay in outputting the closed captioning data,  
unlike other 2-byte deep buffering systems. The data must be  
loaded one line before it is output on Line 21 and Line 284. A  
Closed captioning consists of a seven-cycle sinusoidal burst that  
is frequency- and phase-locked to the caption data. After the  
clock run-in signal, the blanking level is held for two data bits  
and is followed by a Logic 1 start bit. Sixteen bits of data follow  
the start bit. The data consists of two 8-bit bytes (seven data bits  
and one odd parity bit per byte). The data for these bytes is  
stored in SD closed captioning registers (Subaddress 0x93 to  
Subaddress 0x94).  
VSYNC  
typical implementation of this method is to use  
to  
interrupt a microprocessor, which in turn loads the new data  
(two bytes) in every field. If no new data is required for  
transmission, 0s must be inserted in both data registers; this is  
called nulling. It is also important to load control codes, all of  
which are double bytes, on Line 21. Otherwise, a TV does not  
recognize them. If there is a message such as “Hello World” that  
has an odd number of characters, it is important to add a blank  
character at the end to make sure that the end-of-caption,  
2-byte control code lands in the same field.  
The ADV739x also supports the extended closed captioning  
operation, which is active during even fields and encoded on  
Line 284. The data for this operation is stored in SD closed  
captioning registers (Subaddress 0x91 to Subaddress 0x92).  
The ADV739x automatically generates all clock run-in signals  
and timing that support closed captioning on Line 21 and Line 284.  
10.5 ± 0.25µs  
12.91µs  
7 CYCLES OF  
0.5035MHz  
CLOCK RUN-IN  
TWO 7-BIT + PARITY  
ASCII CHARACTERS  
(DATA)  
P
A
R
I
T
Y
P
A
R
I
T
Y
S
T
A
R
T
D0 TO D6  
D0 TO D6  
BYTE 1  
50 IRE  
40 IRE  
BYTE 0  
REFERENCE COLOR BURST  
(9 CYCLES)  
FREQUENCY = F = 3.579545MHz  
SC  
AMPLITUDE = 40 IRE  
10.003µs  
27.382µs  
33.764µs  
Figure 103. SD Closed Captioning Waveform, NTSC  
Rev. H | Page 78 of 108  
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
INTERNAL TEST PATTERN GENERATION  
SD TEST PATTERNS  
ED/HD TEST PATTERNS  
The ADV739x is able to internally generate ED/HD color bar,  
black bar, and hatch test patterns. For ED test patterns, a 27 MHz  
clock signal must be applied to the CLKIN pin. For HD test  
patterns, a 74.25 MHz clock signal must be applied to the  
CLKIN pin.  
The ADV739x is able to internally generate SD color bar and  
black bar test patterns. For this function, a 27 MHz clock signal  
must be applied to the CLKIN pin.  
The register settings in Table 60 are used to generate an SD NTSC  
75% color bar test pattern. All other registers are set as normal/  
default. Component YPrPb output is available on DAC 1 to  
DAC 3. On power-up, the subcarrier frequency registers default  
to the appropriate values for NTSC.  
The register settings in Table 62 are used to generate an ED  
525p hatch test pattern. All other registers are set as normal/  
default. Component YPrPb output is available on DAC 1 to  
DAC 3. For component RGB output rather than YPrPb output,  
0 should be written to Subaddress 0x02, Bit 5.  
Table 60. SD NTSC Color Bar Test Pattern Register Writes  
Subaddress  
Setting  
Table 62. ED 525p Hatch Test Pattern Register Writes  
0x00  
0x82  
0x84  
0x1C  
0xC9  
0x40  
Subaddress  
Setting  
0x00  
0x1C  
0x01  
0x10  
For CVBS and S-Video (Y/C) output, 0xCB instead of 0xC9  
should be written to Subaddress 0x82.  
0x31  
0x05  
To generate an ED 525p black bar test pattern, the settings  
shown in Table 62 should be used with an additional write of  
0x24 to Subaddress 0x02.  
For component RGB output rather than YPrPb output, 0 should  
be written to Subaddress 0x02, Bit 5.  
To generate an SD NTSC black bar test pattern, the settings  
shown in Table 60 should be used with an additional write of  
0x24 to Subaddress 0x02.  
To generate an ED 525p flat field test pattern, the settings  
shown in Table 62 should be used, except that 0x0D should be  
written to Subaddress 0x31.  
For PAL output of either test pattern, the same settings are used  
except that Subaddress 0x80 is programmed to 0x11, and the  
subcarrier frequency (FSC) registers are programmed as shown  
in Table 61.  
The Y, Cr, and Cb levels for the hatch and flat field test patterns  
can be controlled using Subaddress 0x36, Subaddress 0x37, and  
Subaddress 0x38, respectively.  
For ED/HD standards other than 525p, the settings shown in  
Table 62 (and subsequent comments) are used, except that  
Subaddress 0x30, Bits[7:3] are updated as appropriate.  
Table 61. PAL FSC Register Writes  
Subaddress  
Description  
Setting  
0xCB  
0x8A  
0x8C  
0x8D  
FSC0  
FSC1  
0x8E  
FSC2  
0x09  
0x8F  
FSC3  
0x2A  
Note that, when programming the FSC registers, the user must  
write the values in the sequence FSC0, FSC1, FSC2, FSC3. The full  
F
SC value to be written is only accepted after the FSC3 write is  
complete.  
Rev. H | Page 79 of 108  
 
 
 
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
SD TIMING  
Mode 0 (CCIR-656)—Slave Option (Subaddress 0x8A = X X X X X 0 0 0)  
The ADV739x is controlled by the SAV (start of active video) and EAV (end of active video) time codes embedded in the pixel data. All  
timing information is transmitted using a 4-byte synchronization pattern. A synchronization pattern is sent immediately before and after  
VSYNC  
HSYNC  
each line during active picture and retrace. If the  
mode.  
and  
pins are not used, they should be tied to VDD_IO when using this  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
b
C
r
8
0
0
0
F
F
F
F
A
B
A
B
A
B
8
0
0
0
C
b
C
r
F
F
0
0
0
0
X
Y
1
0
8
0
1
0
8
0
1
0
1
0
F
F
0
0
X
Y
C
b
C
r
Y
Y
Y
Y
Y
Y
INPUT PIXELS  
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
1440 CLOCK  
1440 CLOCK  
268 CLOCK  
NTSC/PAL M SYSTEM  
(525 LINES/60Hz)  
280 CLOCK  
PAL SYSTEM  
(625 LINES/50Hz)  
START OF ACTIVE  
VIDEO LINE  
END OF ACTIVE  
VIDEO LINE  
Figure 104. SD Timing Mode 0, Slave Option  
Mode 0 (CCIR-656)—Master Option (Subaddress 0x8A = X X X X X 0 0 1)  
The ADV739x generates H and F signals required for the SAV and EAV time codes in the CCIR-656 standard. The H bit is output  
HSYNC  
VSYNC  
.
on  
and the F bit is output on  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
4
522  
523  
524  
525  
1
2
3
5
6
7
8
10  
11  
20  
21  
22  
9
H
F
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
H
F
ODD FIELD  
EVEN FIELD  
Figure 105. SD Timing Mode 0, Master Option, NTSC  
Rev. H | Page 80 of 108  
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
4
22  
23  
1
2
3
5
6
7
21  
H
F
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
318  
334  
335  
336  
309  
310  
311  
312  
313  
314  
315  
316  
317  
319  
320  
H
F
ODD FIELD  
EVEN FIELD  
Figure 106. SD Timing Mode 0, Master Option, PAL  
ANALOG  
VIDEO  
H
F
Figure 107. SD Timing Mode 0, Master Option, Data Transitions  
Mode 1—Slave Option (Subaddress 0x8A = X X X X X 0 1 0)  
HSYNC  
In this mode, the ADV739x accepts horizontal synchronization and odd/even field signals. When  
is low, a transition of the field  
HSYNC  
HSYNC  
VSYNC  
and pins, respectively.  
input indicates a new frame, that is, vertical retrace.  
and FIELD are input on the  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
3
4
5
7
9
10  
11  
1
2
6
8
HSYNC  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
FIELD  
ODD FIELD EVEN FIELD  
Figure 108. SD Timing Mode 1, Slave Option, NTSC  
Rev. H | Page 81 of 108  
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
3
4
5
7
622  
623  
624  
625  
1
2
6
21  
22  
23  
HSYNC  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
FIELD  
ODD FIELD  
EVEN FIELD  
Figure 109. SD Timing Mode 1, Slave Option, PAL  
Mode 1—Master Option (Subaddress 0x8A = X X X X X 0 1 1)  
In this mode, the ADV739x can generate horizontal synchronization and odd/even field signals. When  
HSYNC  
is low, a transition of the  
field input indicates a new frame, that is, vertical retrace. The ADV739x automatically blanks all normally blank lines as required by the  
HSYNC  
CCIR-624 standard. Pixel data is latched on the rising clock edge following the timing signal transitions.  
and FIELD are output  
HSYNC  
VSYNC  
pins, respectively.  
on the  
and  
HSYNC  
FIELD  
PIXEL  
DATA  
Cr  
Y
Cb  
Y
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 110. SD Timing Mode 1, Odd/Even Field Transitions (Master/Slave)  
Mode 2— Slave Option (Subaddress 0x8A = X X X X X 1 0 0)  
In this mode, the ADV739x accepts horizontal and vertical synchronization signals. A coincident low transition of both  
HSYNC  
VSYNC  
VSYNC  
HSYNC  
low transition when is high indicates the start of an even field.  
and  
inputs indicates the start of an odd field. A  
HSYNC  
VSYNC  
are input on  
The ADV739x automatically blanks all normally blank lines as required by the CCIR-624 standard.  
HSYNC VSYNC  
and  
the  
and  
pins, respectively.  
Rev. H | Page 82 of 108  
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
3
4
5
7
8
20  
21  
22  
1
2
6
10  
11  
9
HSYNC  
VSYNC  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
VSYNC  
EVEN FIELD  
ODD FIELD  
Figure 111. SD Timing Mode 2, Slave Option, NTSC  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
4
622  
623  
624  
625  
1
2
3
5
6
7
21  
22  
23  
HSYNC  
VSYNC  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
VSYNC  
EVEN FIELD  
ODD FIELD  
Figure 112. SD Timing Mode 2, Slave Option, PAL  
Mode 2—Master Option (Subaddress 0x8A = X X X X X 1 0 1)  
In this mode, the ADV739x can generate horizontal and vertical synchronization signals. A coincident low transition of both  
VSYNC VSYNC HSYNC  
HSYNC  
and  
inputs indicates the start of an odd field. A  
ADV739x automatically blanks all normally blank lines as required by the CCIR-624 standard.  
HSYNC VSYNC  
low transition when  
is high indicates the start of an even field. The  
HSYNC  
VSYNC  
are output on the  
and  
and  
pins, respectively.  
HSYNC  
VSYNC  
PIXEL  
DATA  
Cb  
Cr  
Y
Y
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 113. SD Timing Mode 2, Even-to-Odd Field Transition (Master/Slave)  
Rev. H | Page 83 of 108  
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
HSYNC  
VSYNC  
PAL = 864 × CLOCK/2  
NTSC = 858 × CLOCK/2  
PIXEL  
DATA  
Cb  
Y
Cr  
Y
Cb  
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 114. SD Timing Mode 2, Odd-to-Even Field Transition (Master/Slave)  
Mode 3—Master/Slave Option (Subaddress 0x8A = X X X X X 1 1 0 or X X X X X 1 1 1)  
In this mode, the ADV739x accepts or generates horizontal synchronization and odd/even field signals. When  
HSYNC  
is high, a  
transition of the field input indicates a new frame, that is, vertical retrace. The ADV739x automatically blanks all normally blank lines as  
HSYNC  
VSYNC  
HSYNC  
VSYNC  
and  
required by the CCIR-624 standard.  
pins, respectively.  
and  
are output in master mode and input in slave mode on the  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
4
20  
21  
22  
10  
11  
1
2
3
5
6
7
8
9
HSYNC  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
FIELD  
ODD FIELD EVEN FIELD  
Figure 115. SD Timing Mode 3, NTSC  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
5
6
7
21  
22  
23  
HSYNC  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
FIELD  
EVEN FIELD ODD FIELD  
Figure 116. SD Timing Mode 3, PAL  
Rev. H | Page 84 of 108  
Data Sheet  
HD TIMING  
ADV7390/ADV7391/ADV7392/ADV7393  
DISPLAY  
FIELD 1  
VERTICAL BLANKING INTERVAL  
1124  
1125  
1
2
3
4
5
6
7
8
20  
21  
22  
560  
VSYNC  
HSYNC  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 2  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
583  
584  
585  
1123  
VSYNC  
HSYNC  
HSYNC  
VSYNC  
Input Timing  
Figure 117. 1080i  
and  
Rev. H | Page 85 of 108  
 
ADV7390/ADV7391/ADV7392/ADV7393  
VIDEO OUTPUT LEVELS  
Data Sheet  
SD YPrPb OUTPUT LEVELS—SMPTE/EBU N10  
Pattern: 100% Color Bars  
700mV  
700mV  
300mV  
300mV  
Figure 118. Y Levels—NTSC  
Figure 121. Y Levels—PAL  
700mV  
700mV  
Figure 119. Pr Levels—NTSC  
Figure 122. Pr Levels—PAL  
700mV  
700mV  
Figure 120. Pb Levels—NTSC  
Figure 123. Pb Levels—PAL  
Rev. H | Page 86 of 108  
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
ED/HD YPrPb OUTPUT LEVELS  
EIA-770.2, STANDARD FOR Y  
INPUT CODE  
EIA-770.3, STANDARD FOR Y  
OUTPUT VOLTAGE  
INPUT CODE  
940  
OUTPUT VOLTAGE  
940  
700mV  
700mV  
64  
64  
300mV  
300mV  
EIA-770.3, STANDARD FOR Pr/Pb  
OUTPUT VOLTAGE  
EIA-770.2, STANDARD FOR Pr/Pb  
960  
OUTPUT VOLTAGE  
960  
512  
64  
600mV  
700mV  
512  
64  
700mV  
Figure 124. EIA-770.2 Standard Output Signals (525p/625p)  
Figure 126. EIA-770.3 Standard Output Signals (1080i/720p)  
EIA-770.1, STANDARD FOR Y  
Y–OUTPUT LEVELS FOR  
FULL INPUT SELECTION  
INPUT CODE  
OUTPUT VOLTAGE  
782mV  
INPUT CODE  
1023  
OUTPUT VOLTAGE  
940  
700mV  
714mV  
64  
64  
300mV  
286mV  
Pr/Pb–OUTPUT LEVELS FOR  
FULL INPUT SELECTION  
EIA-770.1, STANDARD FOR Pr/Pb  
OUTPUT VOLTAGE  
INPUT CODE  
1023  
OUTPUT VOLTAGE  
960  
700mV  
700mV  
512  
64  
64  
300mV  
Figure 125. EIA-770.1 Standard Output Signals (525p/625p)  
Figure 127. Output Levels for Full Input Selection  
Rev. H | Page 87 of 108  
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
SD/ED/HD RGB OUTPUT LEVELS  
Pattern: 100%/75% Color Bars  
R
R
700mV/525mV  
700mV/525mV  
300mV  
300mV  
G
G
700mV/525mV  
700mV/525mV  
300mV  
300mV  
B
B
700mV/525mV  
700mV/525mV  
300mV  
300mV  
Figure 130. HD RGB Output Levels—RGB Sync Disabled  
Figure 128. SD/ED RGB Output Levels—RGB Sync Disabled  
R
R
700mV/525mV  
600mV  
300mV  
700mV/525mV  
300mV  
0mV  
0mV  
G
G
700mV/525mV  
600mV  
700mV/525mV  
300mV  
0mV  
300mV  
0mV  
B
B
700mV/525mV  
600mV  
700mV/525mV  
300mV  
0mV  
300mV  
0mV  
Figure 131. HD RGB Output Levels—RGB Sync Enabled  
Figure 129. SD/ED RGB Output Levels—RGB Sync Enabled  
Rev. H | Page 88 of 108  
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
SD OUTPUT PLOTS  
VOLTS  
0.6  
VOLTS IRE:FLT  
100  
0.4  
0.2  
0
0.5  
50  
0
0
–0.2  
F1  
L76  
–50  
L608  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
MICROSECONDS  
PRECISION MODE OFF  
40  
50  
60  
MICROSECONDS  
NOISE REDUCTION: 0.00dB  
APL = 39.1%  
625 LINE NTSC NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
APL = 44.5%  
525 LINE NTSC  
SLOW CLAMP TO 0.00V AT 6.72µs  
PRECISION MODE OFF  
SYNCHRONOUS SOUND-IN-SYNC OFF  
FRAMES SELECTED 1, 2, 3, 4  
SYNCHRONOUS SYNC =A  
FRAMES SELECTED 1, 2  
Figure 132. NTSC Color Bars (75%)  
Figure 135. PAL Color Bars (75%)  
VOLTS  
0.5  
VOLTS IRE:FLT  
0.6  
0.4  
50  
0.2  
0
00  
0
–0.2  
L575  
20  
F2  
L238  
0
10  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
MICROSECONDS  
MICROSECONDS  
APL NEEDS SYNC SOURCE.  
625 LINE PAL NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
NO BUNCH SIGNAL  
NOISE REDUCTION: 15.05dB  
APL = 44.3%  
PRECISION MODE OFF  
PRECISION MODE OFF  
SYNCHRONOUS SOUND-IN-SYNC OFF  
FRAMES SELECTED 1  
525 LINE NTSC NO FILTERING  
SLOW CLAMP TO 0.00V AT 6.72µs  
SYNCHRONOUS SYNC = SOURCE  
FRAMES SELECTED 1, 2  
Figure 136. PAL Luma  
Figure 133. NTSC Luma  
VOLTS  
0.5  
VOLTS IRE:FLT  
0.4  
50  
0.2  
0
0
0
–0.2  
–0.4  
–50  
–0.5  
F1  
L76  
L575  
20  
0
10  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
MICROSECONDS  
MICROSECONDS  
APL NEEDS SYNC SOURCE.  
625 LINE PAL NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
NO BUNCH SIGNAL  
NOISE REDUCTION: 15.05dB  
APL NEEDS SYNC SOURCE.  
525 LINE NTSC NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
PRECISION MODE OFF  
SYNCHRONOUS SOUND-IN-SYNC OFF  
FRAMES SELECTED 1  
PRECISION MODE OFF  
SYNCHRONOUS SYNC = B  
FRAMES SELECTED 1, 2  
Figure 137. PAL Chroma  
Figure 134. NTSC Chroma  
Rev. H | Page 89 of 108  
 
ADV7390/ADV7391/ADV7392/ADV7393  
VIDEO STANDARDS  
Data Sheet  
0
DATUM  
H
SMPTE 274M  
ANALOG WAVEFORM  
DIGITAL HORIZONTAL BLANKING  
272T  
*1  
4T  
4T  
1920T  
DIGITAL  
ACTIVE LINE  
ANCILLARY DATA  
(OPTIONAL) OR BLANKING CODE  
EAV CODE  
SAV CODE  
F
F
F
F
0
0
0
0
F
F
0
0
0
0
C
C
r
C
INPUT PIXELS  
Y
V
V
Y
b
r
H*  
H*  
4 CLOCK  
4 CLOCK  
192  
0
2199  
SAMPLE NUMBER  
2112  
2116 2156  
44  
188  
2111  
FVH* = FVH AND PARITY BITS  
SAV/EAV: LINE 1–562: F = 0  
SAV/EAV: LINE 563–1125: F = 1  
SAV/EAV: LINE 1–20; 561–583; 1124–1125: V = 1  
SAV/EAV: LINE 21–560; 584–1123: V = 0  
FOR A FRAME RATE OF 30Hz: 40 SAMPLES  
FOR A FRAME RATE OF 25Hz: 480 SAMPLES  
Figure 138. EAV/SAV Input Data Timing Diagram (SMPTE 274M)  
SMPTE 293M  
ANALOG WAVEFORM  
ANCILLARY DATA  
(OPTIONAL)  
DIGITAL  
SAV CODE  
F
EAV CODE  
F
ACTIVE LINE  
F
F
0
0
0
0
F
F
0
0
0
0
C
b
C
r
C
r
INPUT PIXELS  
V
Y
V
Y
Y
H*  
H*  
4 CLOCK  
4 CLOCK  
853 857  
SAMPLE NUMBER  
719  
723 736  
DATUM  
799  
0
719  
0
H
DIGITAL HORIZONTAL BLANKING  
FVH* = FVH AND PARITY BITS  
SAV: LINE 43–525 = 200H  
SAV: LINE 1–42 = 2AC  
EAV: LINE 43–525 = 274H  
EAV: LINE 1–42 = 2D8  
Figure 139. EAV/SAV Input Data Timing Diagram (SMPTE 293M)  
ACTIVE  
VIDEO  
ACTIVE  
VIDEO  
VERTICAL BLANK  
522 523 524 525  
1
2
5
6
7
8
9
12  
13  
14  
15  
16  
42  
43  
44  
Figure 140. SMPTE 293M (525p)  
Rev. H | Page 90 of 108  
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
ACTIVE  
VIDEO  
ACTIVE  
VIDEO  
VERTICAL BLANK  
12  
13  
1
2
5
6
7
8
9
43  
44  
45  
622 623  
624 625  
4
10  
11  
Figure 141. ITU-R BT.1358 (625p)  
DISPLAY  
VERTICAL BLANKING INTERVAL  
7
1
2
3
4
5
6
747  
748  
749  
750  
26  
27  
744  
745  
8
25  
Figure 142. SMPTE 296M (720p)  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 1  
560  
1
2
5
6
7
8
21  
22  
1124  
1125  
3
4
20  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 2  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
583  
584  
585  
1123  
Figure 143. SMPTE 274M (1080i)  
Rev. H | Page 91 of 108  
ADV7390/ADV7391/ADV7392/ADV7393  
CONFIGURATION SCRIPTS  
Data Sheet  
The scripts listed in the following pages can be used to configure the ADV739x for basic operation. Certain features are enabled by  
default. If required for a specific application, additional features can be enabled. Table 63 lists the scripts available for SD modes of  
operation. Similarly, Table 98 and Table 115 list the scripts available for ED and HD modes of operation, respectively. For all scripts, only  
the necessary register writes are included. All other registers are assumed to have their default values. The WLCSP package supports only  
scripts in Table 65, Table 79, Table 82, and Table 96. In those scripts, Subaddress 0x00 must be set to 0x10.  
STANDARD DEFINITION  
Table 63. SD Configuration Scripts  
Input Format  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
Input Data Width1  
8-bit SDR  
8-bit SDR  
8-bit SDR  
Synchronization Format  
EAV/SAV  
EAV/SAV  
HSYNC VSYNC  
/
EAV/SAV  
Input Color Space  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
RGB  
Output Color Space  
Table Number  
Table 64  
Table 65  
Table 66  
Table 67  
Table 68  
Table 69  
Table 70  
Table 71  
Table 72  
Table 73  
Table 74  
Table 75  
Table 76  
Table 77  
Table 78  
YPrPb  
CVBS/Y-C (S-Video)  
YPrPb  
8-bit SDR  
8-bit SDR  
RGB  
RGB  
HSYNC VSYNC  
/
EAV/SAV  
10-bit SDR  
10-bit SDR  
10-bit SDR  
10-bit SDR  
10-bit SDR  
16-bit SDR  
16-bit SDR  
16-bit SDR  
16-bit SDR  
16-bit SDR  
YPrPb  
YPrPb  
HSYNC VSYNC  
/
HSYNC VSYNC  
/
EAV/SAV  
CVBS/Y-C (S-Video)  
RGB  
RGB  
HSYNC VSYNC  
/
HSYNC VSYNC  
YPrPb  
/
HSYNC VSYNC  
RGB  
/
HSYNC VSYNC  
YPrPb  
/
HSYNC VSYNC  
RGB  
CVBS/Y-C (S-Video)  
RGB  
/
HSYNC VSYNC  
/
RGB  
NTSC Sq. Pixel  
NTSC Sq. Pixel  
8-bit SDR  
16-bit SDR  
EAV/SAV  
HSYNC VSYNC  
/
YCrCb  
RGB  
CVBS/Y-C (S-Video)  
CVBS/Y-C (S-Video)  
Table 79  
Table 80  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
PAL Sq. Pixel  
PAL Sq. Pixel  
8-bit SDR  
8-bit SDR  
8-bit SDR  
8-bit SDR  
8-bit SDR  
10-bBit SDR  
10-bit SDR  
10-bit SDR  
10-bit SDR  
10-bit SDR  
16-bit SDR  
16-bit SDR  
16-bit SDR  
16-bit SDR  
16-bit SDR  
8-bit SDR  
16-bit SDR  
EAV/SAV  
EAV/SAV  
HSYNC VSYNC  
/
EAV/SAV  
HSYNC VSYNC  
/
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
RGB  
YPrPb  
CVBS/Y-C (S-Video)  
YPrPb  
Table 81  
Table 82  
Table 83  
Table 84  
Table 85  
Table 86  
Table 87  
Table 88  
Table 89  
Table 90  
Table 91  
Table 92  
Table 93  
Table 94  
Table 95  
Table 96  
Table 97  
RGB  
RGB  
EAV/SAV  
YPrPb  
YPrPb  
HSYNC VSYNC  
/
HSYNC VSYNC  
/
EAV/SAV  
CVBS/Y-C (S-Video)  
RGB  
RGB  
HSYNC VSYNC  
/
HSYNC VSYNC  
YPrPb  
/
HSYNC VSYNC  
RGB  
/
HSYNC VSYNC  
YPrPb  
/
HSYNC VSYNC  
RGB  
CVBS/Y-C (S-Video)  
RGB  
/
HSYNC VSYNC  
/
EAV/SAV  
RGB  
YCrCb  
RGB  
CVBS/Y-C (S-Video)  
CVBS/Y-C (S-Video)  
HSYNC VSYNC  
/
1 SDR = single data rate.  
Rev. H | Page 92 of 108  
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 64. 8-Bit 525i YCrCb In (EAV/SAV), YPrPb Out  
Table 68. 8-Bit 525i YCrCb In, RGB Out  
Subaddress Setting Description  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
NTSC standard. SSAF luma filter  
enabled.  
RGB output enabled. RGB output sync  
enabled.  
1.3 MHz chroma filter enabled.  
0x80  
0x82  
0x10  
0xC9  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
0x82  
0xC9  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
Pixel data valid. RGB out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
0x8A  
0x0C  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
Table 65. 8-Bit 525i YCrCb In (EAV/SAV), CVBS/Y-C Out  
Subaddress Setting Description  
0x17  
0x00  
0x02  
0x1C  
0x10  
0x00  
0x10  
Software reset  
Table 69. 10-Bit 525i YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
All DACs enabled. PLL enabled (16×).  
WLCSP required.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
0x01  
0x80  
SD input mode.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
NTSC standard. SSAF luma filter  
0x82  
0xCB  
Pixel data valid. CVBS/Y-C (S-Video)  
out. SSAF PrPb filter enabled. Active  
video edge control enabled. Pedestal  
enabled.  
enabled. 1.3 MHz chroma filter enabled.  
0x82  
0x88  
0xC9  
0x10  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
10-bit input enabled.  
Table 66. 8-Bit 525i YCrCb In, YPrPb Out  
Subaddress Setting Description  
Table 70. 10-Bit 525i YCrCb In, YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
0x82  
0x8A  
0xC9  
0x0C  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
0x82  
0xC9  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
0x88  
0x8A  
0x10  
0x0C  
10-bit input enabled.  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
Table 67. 8-Bit 525i YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
RGB output enabled. RGB output sync  
enabled.  
0x80  
0x82  
0x10  
0xC9  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
Pixel data valid. RGB out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
Rev. H | Page 93 of 108  
 
 
 
 
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
Table 71. 10-Bit 525i YCrCb In, CVBS/Y-C Out  
Table 74. 16-Bit 525i YCrCb In, YPrPb Out  
Subaddress Setting Description  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
NTSC standard. SSAF luma filter  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
enabled. 1.3 MHz chroma filter enabled.  
0x82  
0xCB  
Pixel data valid. CVBS/Y-C (S-Video) out.  
SSAF PrPb filter enabled. Active video  
edge control enabled. Pedestal enabled.  
0x82  
0xC9  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
0x88  
0x8A  
0x10  
0x0C  
10-bit input enabled.  
0x88  
0x8A  
0x10  
0x0C  
16-bit RGB input enabled.  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
HSYNC VSYNC  
/
Timing Mode 2 (slave).  
synchronization.  
Table 72. 10-Bit 525i YCrCb In (EAV/SAV), RGB Out  
Table 75. 16-Bit 525i YCrCb In, RGB Out  
Subaddress Setting Description  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
RGB output enabled. RGB output sync  
enabled.  
RGB output enabled. RGB output sync  
enabled.  
0x80  
0x82  
0x10  
0xC9  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
0x80  
0x82  
0x10  
0xC9  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
Pixel data valid. RGB out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
Pixel data valid. RGB out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
0x88  
0x10  
10-bit input enabled.  
0x88  
0x8A  
0x10  
0x0C  
16-bit RGB input enabled.  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
Table 73. 10-Bit 525i YCrCb In, RGB Out  
Subaddress Setting Description  
Table 76. 16-Bit 525i RGB In, YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
RGB output enabled. RGB output sync  
enabled.  
0x80  
0x82  
0x10  
0xC9  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
Pixel data valid. RGB out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
0x82  
0xC9  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
0x88  
0x8A  
0x10  
0x0C  
10-bit input enabled.  
0x87  
0x88  
0x8A  
0x80  
0x10  
0x0C  
RGB input enabled.  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
16-bit RGB input enabled.  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
Rev. H | Page 94 of 108  
 
 
 
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 77. 16-Bit 525i RGB In, CVBS/Y-C Out  
Subaddress Setting Description  
Table 80. 16-Bit NTSC Square Pixel RGB In, CVBS/Y-C Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
NTSC standard. SSAF luma filter  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
enabled. 1.3 MHz chroma filter enabled.  
0x82  
0xCB  
Pixel data valid. CVBS/Y-C (S-Video) out.  
SSAF PrPb filter enabled. Active video  
edge control enabled. Pedestal enabled.  
0x82  
0xDB  
Pixel data valid. CVBS/Y-C (S-Video) out.  
SSAF PrPb filter enabled. Active video  
edge control enabled. Pedestal  
0x87  
0x88  
0x8A  
0x80  
0x10  
0x0C  
RGB input enabled.  
enabled. Square pixel mode enabled.  
16-bit RGB input enabled.  
0x87  
0x88  
0x8A  
0x80  
0x10  
0x0C  
RGB input enabled.  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
16-bit RGB input enabled.  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
0x8C  
0x8D  
0x8E  
0x8F  
0x55  
0x55  
0x55  
0x25  
Subcarrier frequency register values  
for CVBS and/or S-Video (Y-C) output  
in NTSC square pixel mode (24.5454  
MHz input clock).  
Table 78. 16-Bit 525i RGB In, RGB Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
RGB output enabled. RGB output sync  
enabled.  
Table 81. 8-Bit 625i YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
0x80  
0x82  
0x10  
0xC9  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x11  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
Pixel data valid. RGB out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x87  
0x88  
0x8A  
0x80  
0x10  
0x0C  
RGB input enabled.  
0x82  
0xC1  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
16-bit RGB input enabled.  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
Table 82. 8-Bit 625i YCrCb In (EAV/SAV), CVBS/Y-C Out  
Subaddress Setting Description  
Table 79. 8-Bit NTSC Square Pixel YCrCb In (EAV/SAV),  
CVBS/Y-C Out  
Subaddress Setting Description  
0x17  
0x00  
0x02  
0x1C  
0x10  
0x00  
0x11  
Software reset.  
All DACs enabled. PLL enabled (16×).  
WLCSP required.  
0x17  
0x00  
0x02  
0x1C  
0x10  
0x00  
0x10  
Software reset  
All DACs enabled. PLL enabled (16×).  
WLCSP required.  
0x01  
0x80  
SD input mode.  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x01  
0x80  
SD input mode.  
NTSC standard. SSAF luma filter  
0x82  
0xC3  
Pixel data valid. CVBS/Y-C (S-Video)  
out. SSAF PrPb filter enabled. Active  
video edge control enabled.  
enabled. 1.3 MHz chroma filter enabled.  
0x82  
0xDB  
Pixel data valid. CVBS/Y-C (S-Video)  
out. SSAF PrPb filter enabled. Active  
video edge control enabled. Pedestal  
enabled. Square pixel mode enabled.  
0x8C  
0x8D  
0x8E  
0x8F  
0xCB  
0x8A  
0x09  
0x2A  
Subcarrier frequency register values  
for CVBS and/or S-Video (Y-C) output  
in PAL mode (27 MHz input clock).  
0x8C  
0x8D  
0x8E  
0x8F  
0x55  
0x55  
0x55  
0x25  
Subcarrier frequency register values  
for CVBS and/or S-Video (Y-C) output  
in NTSC square pixel mode (24.5454  
MHz input clock).  
Rev. H | Page 95 of 108  
 
 
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
Table 83. 8-Bit 625i YCrCb In, YPrPb Out  
Table 87. 10-Bit 625i YCrCb In, YPrPb Out  
Subaddress Setting Description  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x11  
Software reset.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x11  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x82  
0x8A  
0xC1  
0x0C  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
0x82  
0xC1  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
0x88  
0x8A  
0x10  
0x0C  
10-bit input enabled.  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
Table 84. 8-Bit 625i YCrCb In (EAV/SAV), RGB Out  
Table 88. 10-Bit 625i YCrCb In, CVBS/Y-C Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
Subaddress Setting Description  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x11  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
RGB output enabled. RGB output sync  
enabled.  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x80  
0x82  
0x11  
0xC1  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x82  
0xC3  
Pixel Data Valid. CVBS/Y-C (S-Video)  
Out. SSAF PrPb filter enabled. Active  
video edge control enabled.  
Pixel data valid. RGB out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
0x88  
0x8A  
0x10  
0x0C  
10-bit input enabled.  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
Table 85. 8-Bit 625i YCrCb In, RGB Out  
Subaddress Setting Description  
0x8C  
0x8D  
0x8E  
0x8F  
0xCB  
0x8A  
0x09  
0x2A  
Subcarrier frequency register values  
for CVBS and/or S-Video (Y-C) output  
in PAL mode (27 MHz input clock).  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
RGB output enabled. RGB output sync  
enabled.  
Table 89. 10-Bit 625i YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
0x80  
0x82  
0x11  
0xC1  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
Pixel data valid. RGB out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
RGB output enabled. RGB output sync  
enabled.  
0x8A  
0x0C  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
0x80  
0x82  
0x11  
0xC1  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
Pixel data valid. RGB out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
Table 86. 10-Bit 625i YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x11  
Software reset.  
0x88  
0x10  
10-bit input enabled.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x82  
0x88  
0xC1  
0x10  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
10-bit input enabled.  
Rev. H | Page 96 of 108  
 
 
 
 
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 90. 10-Bit 625i YCrCb In, RGB Out  
Table 93. 16-Bit 625i RGB In, YPrPb Out  
Subaddress Setting Description  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x11  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
RGB output enabled. RGB output sync  
enabled.  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x80  
0x82  
0x11  
0xC1  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x82  
0xC1  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
Pixel data valid. RGB out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
0x87  
0x88  
0x8A  
0x80  
0x10  
0x0C  
RGB input enabled.  
16-bit RGB input enabled.  
0x88  
0x8A  
0x10  
0x0C  
10-bit input enabled.  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
Table 94. 16-Bit 625i RGB In, CVBS/Y-C Out  
Subaddress Setting Description  
Table 91. 16-Bit 625i YCrCb In, YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x11  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x11  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x82  
0xC3  
Pixel data valid. CVBS/Y-C (S-Video)  
out. SSAF PrPb filter enabled. Active  
video edge control enabled.  
0x82  
0xC1  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
0x87  
0x88  
0x8A  
0x80  
0x10  
0x0C  
RGB input enabled.  
16-bit RGB input enabled.  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
0x88  
0x8A  
0x10  
0x0C  
16-bit RGB input enabled.  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
0x8C  
0x8D  
0x8E  
0x8F  
0xCB  
0x8A  
0x09  
0x2A  
Subcarrier frequency register values  
for CVBS and/or S-Video (Y-C) output  
in PAL mode (27 MHz input clock).  
Table 92. 16-Bit 625i YCrCb In, RGB Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
Table 95. 16-Bit 625i RGB In, RGB Out  
Subaddress Setting Description  
RGB output enabled. RGB output sync  
enabled.  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
0x80  
0x82  
0x11  
0xC1  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
Pixel data valid. RGB out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
RGB output enabled. RGB output sync  
enabled.  
0x80  
0x82  
0x11  
0xC1  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x88  
0x8A  
0x10  
0x0C  
16-bit RGB input enabled.  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
Pixel data valid. RGB out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
0x87  
0x88  
0x8A  
0x80  
0x10  
0x0C  
RGB input enabled.  
16-bit RGB input enabled.  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
Rev. H | Page 97 of 108  
 
 
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
Table 96. 8-Bit PAL Square Pixel YCrCb In (EAV/SAV),  
CVBS/Y-C Out  
Table 97. 16-Bit PAL Square Pixel RGB In, CVBS/Y-C Out  
Subaddress Setting Description  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x11  
Software reset.  
0x17  
0x00  
0x02  
0x1C  
0x10  
0x00  
0x11  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
All DACs enabled. PLL enabled (16×).  
WLCSP required.  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x01  
0x80  
SD input mode.  
0x82  
0xD3  
Pixel data valid. CVBS/Y-C (S-Video)  
out. SSAF PrPb filter enabled. Active  
video edge control enabled. Square  
pixel mode enabled.  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x82  
0xD3  
Pixel data valid. CVBS/Y-C (S-Video)  
out. SSAF PrPb filter enabled. Active  
video edge control enabled. Square  
pixel mode enabled.  
0x87  
0x88  
0x8A  
0x80  
0x10  
0x0C  
RGB input enabled.  
16-bit RGB input enabled.  
Timing Mode 2 (slave). HSYNC/VSYNC  
synchronization.  
0x8C  
0x8D  
0x8E  
0x8F  
0x0C  
0x8C  
0x79  
0x26  
Subcarrier frequency register values  
for CVBS and/or S-Video (Y-C) output  
in PAL square pixel mode (29.5 MHz  
input clock).  
0x8C  
0x8D  
0x8E  
0x8F  
0x0C  
0x8C  
0x79  
0x26  
Subcarrier frequency register values  
for CVBS and/or S-Video (Y-C) output  
in PAL square pixel mode (29.5 MHz  
input clock).  
Rev. H | Page 98 of 108  
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
ENHANCED DEFINITION  
Table 98. ED Configuration Scripts  
Input Format  
Input Data Width  
Synchronization Format  
EAV/SAV  
EAV/SAV  
EAV/SAV  
EAV/SAV  
EAV/SAV  
HSYNC VSYNC  
/
EAV/SAV  
HSYNC VSYNC  
/
Input Color Space  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
Output Color Space  
Table Number  
Table 107  
Table 109  
Table 108  
Table 110  
Table 99  
Table 100  
Table 101  
Table 102  
525p  
525p  
525p  
525p  
525p  
525p  
8-bit DDR  
8-bit DDR  
YPrPb  
RGB  
YPrPb  
RGB  
YPrPb  
YPrPb  
RGB  
10-bit DDR  
10-bit DDR  
16-bit SDR  
16-bit SDR  
16-bit SDR  
16-bit SDR  
YCrCb  
YCrCb  
525p  
525p  
YCrCb  
YCrCb  
RGB  
625p  
625p  
625p  
625p  
625p  
625p  
625p  
625p  
8-bit DDR  
8-bit DDR  
10-bit DDR  
10-bit DDR  
16-bit SDR  
16-bit SDR  
16-bit SDR  
16-bit SDR  
EAV/SAV  
EAV/SAV  
EAV/SAV  
EAV/SAV  
EAV/SAV  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YPrPb  
RGB  
YPrPb  
RGB  
YPrPb  
YPrPb  
RGB  
Table 111  
Table 113  
Table 112  
Table 114  
Table 103  
Table 104  
Table 105  
Table 106  
HSYNC VSYNC  
/
EAV/SAV  
HSYNC VSYNC  
RGB  
/
Table 99. 16-Bit 525p YCrCb In (EAV/SAV), YPrPb Out  
Table 102. 16-Bit 525p YCrCb In, RGB Out  
Subaddress Setting Description  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x30  
0x02  
0x1C  
0x10  
0x04  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x10  
0x10  
Software reset.  
All DACs enabled. PLL enabled (8×).  
ED-SDR input mode.  
All DACs enabled. PLL enabled (8×).  
ED-SDR input mode.  
525p at 59.94 Hz. EAV/SAV synchroni-  
zation. EIA-770.2 output levels.  
RGB output enabled. RGB output sync  
enabled.  
0x31  
0x01  
Pixel data valid.  
0x30  
0x31  
0x00  
0x01  
525p at 59.94 Hz. HSYNC/VSYNC synch-  
ronization. EIA-770.2 output levels.  
Pixel data valid.  
Table 100. 16-Bit 525p YCrCb In, YPrPb Out  
Subaddress Setting Description  
Table 103. 16-Bit 625p YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x30  
0x02  
0x1C  
0x10  
0x00  
Software reset.  
All DACs enabled. PLL enabled (8×).  
ED-SDR input mode.  
0x17  
0x00  
0x01  
0x30  
0x02  
0x1C  
0x10  
0x1C  
Software reset.  
All DACs enabled. PLL enabled (8×).  
ED-SDR input mode.  
525p at 59.94 Hz. HSYNC/VSYNC synch-  
ronization. EIA-770.2 output levels.  
Pixel data valid.  
0x31  
0x01  
625p at 50 Hz. EAV/SAV synchroni-  
zation. EIA-770.2 output levels.  
0x31  
0x01  
Pixel data valid.  
Table 101. 16-Bit 525p YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
Table 104. 16-Bit 625p YCrCb In, YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x10  
0x10  
Software reset.  
All DACs enabled. PLL enabled (8×).  
ED-SDR input mode.  
0x17  
0x00  
0x01  
0x30  
0x02  
0x1C  
0x10  
0x18  
Software reset.  
All DACs enabled. PLL enabled (8×).  
ED-SDR input mode.  
RGB output enabled. RGB output sync  
enabled.  
0x30  
0x31  
0x04  
0x01  
525p at 59.94 Hz. EAV/SAV synchroni-  
zation. EIA-770.2 output levels.  
625p at 50 Hz. HSYNC/VSYNC synch-  
ronization. EIA-770.2 output levels.  
Pixel data valid.  
0x31  
0x01  
Pixel data valid.  
Rev. H | Page 99 of 108  
 
 
 
 
 
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
Table 105. 16-Bit 625p YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
Table 109. 8-Bit 525p YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x10  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
All DACs enabled. PLL enabled (8×).  
ED-SDR input mode.  
All DACs enabled. PLL enabled (8×).  
ED-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
RGB output enabled. RGB output sync  
enabled.  
0x02  
0x30  
0x31  
0x10  
0x04  
0x01  
RGB output enabled. RGB output sync  
enabled.  
0x30  
0x31  
0x1C  
0x01  
625p at 50 Hz. EAV/SAV synchroniza-  
tion. EIA-770.2 output levels.  
525p at 59.94 Hz. EAV/SAV synchro-  
nization. EIA-770.2 output levels.  
Pixel data valid.  
Pixel data valid.  
Table 106. 16-Bit 625p YCrCb In, RGB Out  
Subaddress Setting Description  
Table 110. 10-Bit 525p YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x10  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
All DACs enabled. PLL enabled (8×).  
ED-SDR input mode.  
All DACs enabled. PLL enabled (8×).  
ED-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
RGB output enabled. RGB output sync  
enabled.  
0x02  
0x30  
0x10  
0x04  
RGB output enabled. RGB output sync  
enabled.  
0x30  
0x31  
0x18  
0x01  
625p at 50 Hz. HSYNC/VSYNC synch-  
ronization. EIA-770.2 output levels.  
Pixel data valid.  
525p at 59.94 Hz. EAV/SAV synchro-  
nization. EIA-770.2 output levels.  
0x31  
0x33  
0x01  
0x6C  
Pixel data valid.  
10-bit input enabled.  
Table 107. 8-Bit 525p YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
Table 111. 8-Bit 625p YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
All DACs enabled. PLL enabled (8×).  
ED-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
All DACs enabled. PLL enabled (8×).  
0x30  
0x31  
0x04  
0x01  
525p at 59.94 Hz. EAV/SAV synchro-  
nization. EIA-770.2 output levels.  
ED-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
Pixel data valid.  
0x30  
0x31  
0x1C  
0x01  
625p at 50 Hz. EAV/SAV synchroniza-  
tion. EIA-770.2 output levels.  
Pixel data valid.  
Table 108. 10-Bit 525p YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
Table 112. 10-Bit 625p YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
All DACs enabled. PLL enabled (8×).  
ED-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
All DACs enabled. PLL enabled (8×).  
0x30  
0x04  
525p at 59.94 Hz. EAV/SAV synchro-  
nization. EIA-770.2 output levels.  
ED-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
0x31  
0x33  
0x01  
0x6C  
Pixel data valid.  
0x30  
0x1C  
625p at 50 Hz. EAV/SAV synchroniza-  
tion. EIA-770.2 output levels.  
10-bit input enabled.  
0x31  
0x33  
0x01  
0x6C  
Pixel data valid.  
10-bit input enabled.  
Rev. H | Page 100 of 108  
 
 
 
 
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 113. 8-Bit 625p YCrCb In (EAV/SAV), RGB Out  
Table 114. 10-Bit 625p YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
All DACs enabled. PLL enabled (8×).  
All DACs enabled. PLL enabled (8×).  
ED-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
ED-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
0x02  
0x30  
0x31  
0x10  
0x1C  
0x01  
RGB output enabled. RGB output sync  
enabled.  
0x02  
0x30  
0x10  
0x1C  
RGB output enabled. RGB output sync  
enabled.  
625p at 50 Hz. EAV/SAV synchroni-  
zation. EIA-770.2 output levels.  
625p at 50 Hz. EAV/SAV synchroni-  
zation. EIA-770.2 output levels.  
Pixel data valid.  
0x31  
0x33  
0x01  
0x6C  
Pixel data valid.  
10-bit input enabled.  
HIGH DEFINITION  
Table 115. HD Configuration Scripts  
Input Format  
Input Data Width  
Synchronization Format  
EAV/SAV  
EAV/SAV  
EAV/SAV  
EAV/SAV  
EAV/SAV  
HSYNC VSYNC  
/
EAV/SAV  
HSYNC VSYNC  
/
Input Color Space  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
Output Color Space  
Table Number  
Table 124  
Table 126  
Table 125  
Table 127  
Table 116  
Table 117  
Table 118  
Table 119  
720p  
720p  
720p  
720p  
720p  
720p  
8-bit DDR  
8-bit DDR  
YPrPb  
RGB  
YPrPb  
RGB  
YPrPb  
YPrPb  
RGB  
10-bit DDR  
10-bit DDR  
16-bit SDR  
16-bit SDR  
16-bit SDR  
16-bit SDR  
YCrCb  
YCrCb  
720p  
720p  
YCrCb  
YCrCb  
RGB  
1080i  
1080i  
1080i  
1080i  
1080i  
1080i  
1080i  
1080i  
8-bit DDR  
8-bit DDR  
10-bit DDR  
10-bit DDR  
16-bit SDR  
16-bit SDR  
16-bit SDR  
16-bit SDR  
EAV/SAV  
EAV/SAV  
EAV/SAV  
EAV/SAV  
EAV/SAV  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YPrPb  
RGB  
YPrPb  
RGB  
YPrPb  
YPrPb  
RGB  
Table 128  
Table 130  
Table 129  
Table 131  
Table 120  
Table 121  
Table 122  
Table 123  
HSYNC VSYNC  
/
EAV/SAV  
HSYNC VSYNC  
RGB  
/
Rev. H | Page 101 of 108  
 
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
Table 116. 16-Bit 720p YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
Table 121. 16-Bit 1080i YCrCb In, YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x30  
0x02  
0x1C  
0x10  
0x2C  
Software reset.  
0x17  
0x00  
0x01  
0x30  
0x02  
0x1C  
0x10  
0x18  
Software reset.  
All DACs enabled. PLL enabled (4×).  
HD-SDR input mode.  
All DACs enabled. PLL enabled (4×).  
HD-SDR input mode.  
720p at 60 Hz/59.94 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
1080i at 30 Hz/29.97 Hz. HSYNC/VSYNC  
synchronization. EIA-770.3 output levels.  
0x31  
0x01  
Pixel data valid. 4× oversampling.  
0x31  
0x01  
Pixel data valid. 4× oversampling.  
Table 122. 16-Bit 1080i YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
Table 117. 16-Bit 720p YCrCb In, YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x10  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x30  
0x02  
0x1C  
0x10  
0x28  
Software reset.  
All DACs enabled. PLL enabled (4×).  
HD-SDR input mode.  
All DACs enabled. PLL enabled (4×).  
HD-SDR input mode.  
RGB output enabled. RGB output sync  
enabled.  
720p at 60 Hz/59.94 Hz. HSYNC/VSYNC  
synchronization. EIA-770.3 output levels.  
Pixel data valid. 4× oversampling.  
0x30  
0x31  
0x6C  
0x01  
1080i at 30 Hz/29.97 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
0x31  
0x01  
Pixel data valid. 4× oversampling.  
Table 118. 16-Bit 720p YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
Table 123. 16-Bit 1080i YCrCb In, RGB Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x10  
0x10  
Software reset.  
All DACs enabled. PLL enabled (4×).  
HD-SDR input mode.  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x10  
0x10  
Software reset.  
All DACs enabled. PLL enabled (4×).  
HD-SDR input mode.  
RGB output enabled. RGB output sync  
enabled.  
RGB output enabled. RGB output sync  
enabled.  
0x30  
0x31  
0x2C  
0x01  
720p at 60 Hz/59.94 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
0x30  
0x31  
0x18  
0x01  
1080i at 30 Hz/29.97 Hz. HSYNC/VSYNC  
synchronization. EIA-770.3 output levels.  
Pixel data valid. 4× oversampling.  
Pixel data valid. 4× oversampling.  
Table 119. 16-Bit 720p YCrCb In, RGB Out  
Subaddress Setting Description  
Table 124. 8-Bit 720p YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x10  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
All DACs enabled. PLL enabled (4×).  
HD-SDR input mode.  
All DACs enabled. PLL enabled (4×).  
HD-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
RGB output enabled. RGB output sync  
enabled.  
0x30  
0x31  
0x2C  
0x01  
720p at 60 Hz/59.94 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
0x30  
0x31  
0x28  
0x01  
720p at 60 Hz/59.94 Hz. HSYNC/VSYNC  
synchronization. EIA-770.3 output levels.  
Pixel data valid. 4× oversampling.  
Pixel data valid. 4× oversampling.  
Table 125. 10-Bit 720p YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
Table 120. 16-Bit 1080i YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
0x17  
0x00  
0x01  
0x30  
0x02  
0x1C  
0x10  
0x6C  
Software reset.  
All DACs enabled. PLL enabled (4×).  
All DACs enabled. PLL enabled (4×).  
HD-SDR input mode.  
HD-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
1080i at 30 Hz/29.97 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
0x30  
0x2C  
720p at 60 Hz/59.94 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
0x31  
0x01  
Pixel data valid. 4× oversampling.  
0x31  
0x33  
0x01  
0x6C  
Pixel data valid. 4× oversampling.  
10-bit input enabled.  
Rev. H | Page 102 of 108  
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 126. 8-Bit 720p YCrCb In (EAV/SAV), RGB Out  
Table 129. 10-Bit 1080i YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
All DACs enabled. PLL enabled (4×).  
All DACs enabled. PLL enabled (4×).  
HD-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
HD-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
0x02  
0x30  
0x31  
0x10  
0x2C  
0x01  
RGB output enabled. RGB output sync  
enabled.  
0x30  
0x6C  
1080i at 30 Hz/29.97 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
720p at 60 Hz/59.94 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
0x31  
0x33  
0x01  
0x6C  
Pixel data valid. 4× oversampling.  
10-bit input enabled.  
Pixel data valid. 4× oversampling.  
Table 130. 8-Bit 1080i YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
Table 127. 10-Bit 720p YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
All DACs enabled. PLL enabled (4×).  
All DACs enabled. PLL enabled (4×).  
HD-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
HD-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
0x02  
0x30  
0x31  
0x10  
0x6C  
0x01  
RGB output enabled. RGB output sync  
enabled.  
0x02  
0x30  
0x10  
0x2C  
RGB output enabled. RGB output sync  
enabled.  
1080i at 30 Hz/29.97 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
720p at 60 Hz/59.94 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
Pixel data valid. 4× oversampling.  
0x31  
0x33  
0x01  
0x6C  
Pixel data valid. 4× oversampling.  
10-bit input enabled.  
Table 131. 10-Bit 1080i YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
Table 128. 8-Bit 1080i YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
All DACs enabled. PLL enabled (4×).  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
HD-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
All DACs enabled. PLL enabled (4×).  
HD-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
0x02  
0x30  
0x10  
0x6C  
RGB output enabled. RGB output sync  
enabled.  
0x30  
0x31  
0x6C  
0x01  
1080i at 30 Hz/29.97 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
1080i @ 30 Hz/29.97 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
Pixel data valid. 4× oversampling.  
0x31  
0x33  
0x01  
0x6C  
Pixel data valid. 4× oversampling.  
10-bit input enabled.  
Rev. H | Page 103 of 108  
 
 
 
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
ADV739X EVALUATION BOARD  
Data Sheet  
These two boards allow the user to perform a complete  
To accommodate evaluation of the ADV7390/ADV7391/  
ADV7392/ADV7393, Analog Devices provides a two-board  
solution. The ADV739x evaluation platform front-end board  
contains an Analog Devices decoder (ADV7403) and an FPGA.  
The back-end board (where the actual ADV739x is attached) is  
connected to the front-end board through a connector.  
evaluation of the part, although it is also possible to order only  
the back-end board. Note that these two boards must be  
ordered separately.  
For more information about the evaluation boards, see the  
evaluation board documentation available on the Analog  
Devices product web page.  
ADV739x EVALUATION PLATFORM  
FRONT FRONT-END BOARD  
ADV739x EVALUATION BOARD  
EXPANSION PORT  
CVBS  
RGB  
CVBS  
ADV7403  
DECODER  
RGB  
FPGA  
ADV739x  
ENCODER  
YPrPb  
YPrPb  
YC  
YC  
USB  
Figure 144. ADV739x Front-End and Back-End Evaluation Boards  
Rev. H | Page 104 of 108  
 
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
0.50  
BSC  
PIN 1  
INDICATOR  
4.75  
BSC SQ  
3.25  
3.10 SQ  
2.95  
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
3.50 REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
COPLANARITY  
0.08  
0.30  
0.25  
0.18  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
Figure 145. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad  
(CP-32-2)  
Dimensions shown in millimeters  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
25  
32  
24  
1
0.50  
BSC  
3.45  
3.30 SQ  
3.15  
EXPOSED  
PAD  
17  
8
16  
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
3.50 REF  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.  
Figure 146. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
5 mm × 5 mm Body, Very Very Thin Quad  
(CP-32-13)  
Dimensions shown in millimeters  
Rev. H | Page 105 of 108  
 
ADV7390/ADV7391/ADV7392/ADV7393  
Data Sheet  
6.10  
6.00 SQ  
5.90  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
31  
30  
40  
1
5.85  
5.75 SQ  
5.65  
0.50  
BSC  
PIN 1  
INDICATOR  
4.25  
4.10 SQ  
3.95  
EXPOSED  
PAD  
(BOTTOM VIEW)  
10  
11  
21  
20  
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
4.50 REF  
0.80 MAX  
0.65 TYP  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
0.30  
0.23  
0.18  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2  
Figure 147. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
6 mm × 6 mm Body, Very Thin Quad  
(CP-40-1)  
Dimensions shown in millimeters  
2.565  
2.525  
2.485  
3
2
1
5
4
A
BALL A1  
IDENTIFIER  
B
C
D
E
F
3.045  
3.005  
2.965  
2.50  
REF  
0.50  
BALL PITCH  
BOTTOM VIEW  
(BALL SIDE UP)  
TOP VIEW  
(BALL SIDE DOWN)  
0.390  
0.360  
0.330  
2.00 REF  
0.660  
0.600  
0.540  
SIDE VIEW  
COPLANARITY  
0.05  
0.360  
0.320  
0.280  
SEATING  
PLANE  
0.270  
0.240  
0.210  
Figure 148. 30-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-30-3)  
Dimensions shown in millimeters  
Rev. H | Page 106 of 108  
Data Sheet  
ADV7390/ADV7391/ADV7392/ADV7393  
ORDERING GUIDE  
Temperature  
Range  
Macrovision3  
Anti-Taping  
Model1, 2  
Package Description  
Package Option  
CP-32-2  
CP-32-2  
ADV7390BCPZ  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +105°C  
−40°C to +105°C  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
N/A  
Yes  
No  
Yes  
No  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
ADV7390BCPZ-REEL  
ADV7390WBCPZ  
ADV7390WBCPZ-RL  
ADV7390BCBZ-A-RL  
ADV7391BCPZ  
ADV7391BCPZ-REEL  
ADV7391WBCPZ  
ADV7391WBCPZ-RL  
ADV7391BCBZ-A-RL  
ADV7392BCPZ  
ADV7392BCPZ-REEL  
ADV7392BCPZ-3REEL  
ADV7392WBCPZ  
ADV7392WBCPZ-REEL  
ADV7393BCPZ  
ADV7393BCPZ-REEL  
ADV7393WBCPZ  
ADV7393WBCPZ-REEL  
EVAL-ADV739xFEZ  
EVAL-ADV7390EBZ  
EVAL-ADV7391EBZ  
EVAL-ADV7392EBZ  
EVAL-ADV7393EBZ  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ] CP-32-13  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ] CP-32-13  
30-Ball Wafer Level Chip Scale Package [WLCSP]  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
CB-30-3  
CP-32-2  
CP-32-2  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ] CP-32-13  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ] CP-32-13  
30-Ball Wafer Level Chip Scale Package [WLCSP]  
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
ADV739x Evaluation Platform Front-End Board  
ADV7390 Evaluation Board  
CB-30-3  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
ADV7391 Evaluation Board  
ADV7392 Evaluation Board  
ADV7393 Evaluation Board  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
3 Macrovision-enabled ICs require the buyer to be an approved licensee (authorized buyer) of ICs that are able to output Macrovision Rev 7.1.L1-compliant video.  
AUTOMOTIVE PRODUCTS  
The ADV7390W, ADV7391W, ADV7392W, and ADV7393W models are available with controlled manufacturing to support the quality  
and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the  
commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade  
products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific  
product ordering information and to obtain the specific Automotive Reliability reports for these models.  
Rev. H | Page 107 of 108  
 
 
ADV7390/ADV7391/ADV7392/ADV7393  
NOTES  
Data Sheet  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2006-2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06234-0-9/14(H)  
Rev. H | Page 108 of 108  

相关型号:

ADV7391

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

ADV7391BCPZ

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

ADV7391BCPZ-REEL

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

ADV7391EBZ

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

ADV7391WBCPZ

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

ADV7391WBCPZ-RL

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

ADV7391_15

Low Power, Chip Scale, 10-Bit SD/HD Video Encoder
ADI

ADV7392

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

ADV7392BCPZ

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

ADV7392BCPZ-3REEL

COLOR SIGNAL ENCODER, QCC40, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD-2, LFSCP-40
ADI

ADV7392BCPZ-REEL

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

ADV7392EBZ

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI