ADXL323KCPZ [ADI]

Small, Low Power, 2-Axis 【3 g i MEMS Accelerometer; 小尺寸,低功耗, 2轴【 3 GI MEMS加速度计
ADXL323KCPZ
型号: ADXL323KCPZ
厂家: ADI    ADI
描述:

Small, Low Power, 2-Axis 【3 g i MEMS Accelerometer
小尺寸,低功耗, 2轴【 3 GI MEMS加速度计

文件: 总16页 (文件大小:238K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Small, Low Power, 2-Axis ± ± g  
iMEMS® Accelerometer  
ADXL±2±  
FEATURES  
GENERAL DESCRIPTION  
2-axis sensing  
The ADXL323 is a small, thin, low power, complete 2-axis  
accelerometer with signal-conditioned voltage outputs, all  
on a single, monolithic IC. The product measures acceleration  
with a minimum full-scale range of 3 g. It can measure the  
static acceleration of gravity in tilt-sensing applications, as well  
as dynamic acceleration resulting from motion, shock, or  
vibration.  
Small, low-profile package  
4 mm × 4 mm × 1.45 mm LFCSP_LQ  
Low power  
180 μA at VS = 1.8 V (typical)  
Single-supply operation  
1.8 V to 5.25 V  
10,000 g shock survival  
The user selects the bandwidth of the accelerometer using the  
CX and CY capacitors at the XOUT and YOUT pins. Bandwidths  
can be selected to suit the application, with a range of 0.5 Hz  
to 1600 Hz.  
Excellent temperature stability  
BW adjustment with a single capacitor per axis  
RoHS/WEEE lead-free compliant  
APPLICATIONS  
Cost-sensitive, low power, motion- and tilt-sensing  
applications  
The ADXL323 is available in a small, low profile, 4 mm ×  
4 mm × 1.45 mm, 16-lead, plastic lead frame chip scale package  
(LFCSP_LQ).  
Mobile devices  
Gaming systems  
Disk drive protection  
Image stabilization  
Sports and health devices  
FUNCTIONAL BLOCK DIAGRAM  
+3V  
V
S
ADXL323  
R
R
X
Y
FILT  
OUT  
OUTPUT AMP  
OUTPUT AMP  
2-AXIS  
SENSOR  
C
X
Y
C
AC AMP  
DEMOD  
DC  
FILT  
OUT  
C
COM  
ST  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADXL±2±  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Performance................................................................................ 11  
Applications..................................................................................... 12  
Power Supply Decoupling ......................................................... 12  
Setting the Bandwidth Using CX, CY, and CZ .......................... 12  
Self Test........................................................................................ 12  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 11  
Mechanical Sensor...................................................................... 11  
Design Trade-Offs for Selecting Filter Characteristics: The  
Noise/BW Trade-Off.................................................................. 12  
Use with Operating Voltages Other Than 3 V ........................... 12  
Axes of Acceleration Sensitivity ............................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
REVISION HISTORY  
8/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
ADXL±2±  
SPECIFICATIONS  
TA = 25°C, VS = 3 V, CX = CY = 0.1 μF, acceleration = 0 g, unless otherwise noted. All minimum and maximum specifications are  
guaranteed. Typical specifications are not guaranteed.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SENSOR INPUT  
Each axis  
Measurement Range  
3
3.6  
0.3  
1
0.1  
1
g
Nonlinearity  
% of full scale  
%
Package Alignment Error  
Inter-Axis Alignment Error  
Cross Axis Sensitivity1  
SENSITIVITY (RATIOMETRIC)2  
Sensitivity at XOUT, YOUT  
Sensitivity Change Due to Temperature3  
ZERO g BIAS LEVEL (RATIOMETRIC)  
0 g Voltage at XOUT, YOUT  
0 g Offset vs. Temperature  
NOISE PERFORMANCE  
Noise Density XOUT, YOUT  
FREQUENCY RESPONSE4  
Degrees  
Degrees  
%
Each axis  
VS = 3 V  
VS = 3 V  
Each axis  
VS = 3 V  
270  
300  
0.01ꢀ  
330  
mV/g  
%/°C  
1.3ꢀ  
1.ꢀ  
0.6  
1.6ꢀ  
V
mg/°C  
280  
μg/√Hz rms  
Bandwidth XOUT, YOUT  
No external filter  
1600  
Hz  
RFILT Tolerance  
Sensor Resonant Frequency  
SELF TEST6  
32 1ꢀ%  
ꢀ.ꢀ  
kΩ  
kHz  
Logic Input Low  
Logic Input High  
+0.6  
+2.4  
+60  
−1ꢀ0  
+1ꢀ0  
V
V
ST Actuation Current  
Output Change at XOUT  
Output Change at YOUT  
OUTPUT AMPLIFIER  
Output Swing Low  
Output Swing High  
POWER SUPPLY  
ꢁA  
mV  
mV  
Self Test 0 to Self Test 1  
Self Test 0 to Self Test 1  
No load  
No load  
0.1  
2.8  
V
V
Operating Voltage Range  
Supply Current  
Turn-On Time7  
1.8  
ꢀ.2ꢀ  
+70  
V
ꢁA  
ms  
VS = 3 V  
320  
1
No external filter  
TEMPERATURE  
Operating Temperature Range  
−2ꢀ  
°C  
1 Defined as coupling between two axes.  
2 Sensitivity is essentially ratiometric to VS.  
3 Defined as the output change from ambient-to-maximum temperature or ambient-to-minimum temperature.  
4 Actual frequency response controlled by user-supplied external filter capacitors (CX, CY).  
Bandwidth with external capacitors = 1/(2 × π × 32 kΩ × C). For CX, CY = 0.003 μF, bandwidth = 1.6 kHz. For CX, CY = 10 μF, bandwidth = 0.ꢀ Hz.  
6 Self-test response changes cubically with VS.  
7 Turn-on time is dependent on CX, CY and is approximately 160 × CX or CY + 1 ms, where CX, CY are in μF.  
Rev. 0 | Page 3 of 16  
 
ADXL±2±  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
Acceleration (Any Axis, Unpowered)  
Acceleration (Any Axis, Powered)  
VS  
All Other Pins  
Output Short-Circuit Duration  
(Any Pin to Common)  
10,000 g  
10,000 g  
−0.3 V to +7.0 V  
(COM − 0.3 V) to (VS + 0.3 V)  
Indefinite  
Temperature Range (Powered)  
Temperature Range (Storage)  
−ꢀꢀ°C to +12ꢀ°C  
−6ꢀ°C to +1ꢀ0°C  
CRITICAL ZONE  
tP  
T
TO T  
L
P
T
P
RAMP-UP  
T
L
tL  
T
SMAX  
T
SMIN  
tS  
RAMP-DOWN  
PREHEAT  
t
25°C TO PEAK  
TIME  
Figure 2. Recommended Soldering Profile  
Table 3. Recommended Soldering Profile  
Profile Feature  
Sn63/Pb37  
Pb-Free  
Average Ramp Rate (TL to TP)  
Preheat  
3°C/sec max  
3°C/sec max  
Minimum Temperature (TSMIN  
Maximum Temperature (TSMAX  
)
100°C  
1ꢀ0°C  
1ꢀ0°C  
200°C  
)
Time (TSMIN to TSMAX), tS  
TSMAX to TL  
Ramp-Up Rate  
Time Maintained Above Liquidous (TL)  
Liquidous Temperature (TL)  
Time (tL)  
Peak Temperature (TP)  
Time within ꢀ°C of Actual Peak Temperature (tP)  
Ramp-Down Rate  
60 sec to 120 s  
3°C/sec max  
183°C  
60 sec to 1ꢀ0 sec  
240°C + 0°C/−ꢀ°C  
10 sec to 30 sec  
6°C/sec max  
60 sec to 180 sec  
3°C/sec max  
217°C  
60 sec to 1ꢀ0 sec  
260°C + 0°C/−ꢀ°C  
20 sec to 40 sec  
6°C/sec max  
Time 2ꢀ°C to Peak Temperature  
6 minutes max  
8 minutes max  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 4 of 16  
 
ADXL±2±  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
0.50  
MAX  
4
0.65  
0.325  
0.35  
MAX  
0.65  
16  
15  
14  
13  
4
ADXL323  
1
2
3
4
12  
NC  
ST  
X
OUT  
1.95  
TOP VIEW  
(Not to Scale)  
0.325  
11  
10  
NC  
Y
+Y  
COM  
NC  
CENTER PAD IS NOT  
OUT  
INTERNALLY CONNECTED  
BUT SHOULD BE SOLDERED  
FOR MECHANICAL INTEGRITY  
+X  
6
9
NC  
5
7
8
1.95  
DIMENSIONS SHOWN IN MILLIMETERS  
NC = NO CONNECT  
Figure 4. Recommended PCB Layout  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
NC  
No Connect  
2
ST  
Self Test  
3
4
COM  
NC  
Common  
No Connect  
6
7
8
COM  
COM  
COM  
NC  
Common  
Common  
Common  
No Connect  
9
NC  
No Connect  
10  
11  
12  
13  
14  
1ꢀ  
16  
YOUT  
NC  
XOUT  
NC  
VS  
VS  
Y Channel Output  
No Connect  
X Channel Output  
No Connect  
Supply Voltage (1.8 V to ꢀ.2ꢀ V)  
Supply Voltage (1.8 V to ꢀ.2ꢀ V)  
No Connect  
NC  
Rev. 0 | Page ꢀ of 16  
 
ADXL±2±  
TYPICAL PERFORMANCE CHARACTERISTICS  
N > 1000 for all typical performance plots, unless otherwise noted.  
16  
16  
14  
12  
10  
8
14  
12  
10  
8
6
6
4
4
2
2
0
0
0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09  
0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09  
OUTPUT (V)  
OUTPUT (V)  
Figure 5. X-Axis Zero g Bias at 25°C, VS = 2 V  
Figure 8. Y-Axis Zero g Bias at 25°C, VS = 2 V  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
0
0
1.42  
1.44  
1.46  
1.48  
1.50  
1.52  
1.54  
1.56  
1.58  
1.42  
1.44  
1.46  
1.48  
1.50  
1.52  
1.54  
1.56  
1.58  
OUTPUT (V)  
OUTPUT (V)  
Figure 6. X-Axis Zero g Bias at 25°C, VS = 3 V  
Figure 9. Y-Axis Zero g Bias at 25°C, VS = 3 V  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
2.30 2.34 2.38 2.42 2.46 2.50 2.54 2.58 2.62 2.66 2.70  
OUTPUT (V)  
2.30 2.34 2.38 2.42 2.46 2.50 2.54 2.58 2.62 2.66 2.70  
OUTPUT (V)  
Figure 7. X-Axis Zero g Bias at 25°C, VS = 5 V  
Figure 10. Y-Axis Zero g Bias at 25°C, VS = 5 V  
Rev. 0 | Page 6 of 16  
 
ADXL±2±  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
0
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5 1.0 1.5 2.0 2.5  
/°C)  
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5 1.0 1.5 2.0 2.5  
/°C)  
TEMPERATURE COEFFICIENT (m  
g
TEMPERATURE COEFFICIENT (m  
g
Figure 11. X-Axis Zero g Bias Temperature Coefficient, VS = 3 V  
Figure 14. Y-Axis Zero g Bias Temperature Coefficient, VS = 3 V  
35  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5 1.0 1.5 2.0 2.5  
/°C)  
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5 1.0 1.5 2.0 2.5  
/°C)  
TEMPERATURE COEFFICIENT (m  
g
TEMPERATURE COEFFICIENT (m  
g
Figure 12. X-Axis Zero g Bias Temperature Coefficient, VS = 5 V  
Figure 15. Y-Axis Zero g Bias Temperature Coefficient, VS = 5 V  
1.55  
N = 8  
1.54  
1.55  
N = 8  
1.54  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
1.46  
1.45  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
1.46  
1.45  
–30 –20 –10  
0
10  
20  
30  
40  
50  
60  
70  
80  
–30 –20 –10  
0
10  
20  
30  
40  
50  
60  
70  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. X-Axis Zero g Bias vs. Temperature;  
Figure 16. Y-Axis Zero g Bias vs. Temperature;  
Eight Parts Soldered to PCB, VS = 3 V  
Eight Parts Soldered to PCB, VS = 3 V  
Rev. 0 | Page 7 of 16  
 
ADXL±2±  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
0
0.170 0.174 0.178 0.182 0.186 0.190 0.194 0.198 0.202 0.206 0.210  
0.170 0.174 0.178 0.182 0.186 0.190 0.194 0.198 0.202 0.206 0.210  
SENSITIVITY (V/  
g)  
SENSITIVITY (V/  
g)  
Figure 17. X-Axis Sensitivity at 25°C, VS = 2 V  
Figure 20. Y-Axis Sensitivity at 25°C, VS = 2 V  
60  
50  
40  
30  
20  
10  
70  
60  
50  
40  
30  
20  
10  
0
0
0.26  
0.27  
0.28  
0.29  
0.30  
0.31  
0.32  
0.33  
0.34  
0.26  
0.27  
0.28  
0.29  
0.30  
0.31  
0.32  
0.33  
0.34  
SENSITIVITY (V/  
g)  
SENSITIVITY (V/g)  
Figure 18. X-Axis Sensitivity at 25°C, VS = 3 V  
Figure 21. Y-Axis Sensitivity at 25°C, VS = 3 V  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
0
0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60  
SENSITIVITY (V/  
0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60  
g)  
SENSITIVITY (V/g)  
Figure 19. X-Axis Sensitivity at 25°C, VS = 5 V  
Figure 22. Y-Axis Sensitivity at 25°C, VS = 5 V  
Rev. 0 | Page 8 of 16  
ADXL±2±  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
–2.0 –1.6 –1.2 –0.8 –0.4  
0
0.4 0.8 1.2 1.6 2.0  
–2.0 –1.6 –1.2 –0.8 –0.4  
0
0.4 0.8 1.2 1.6 2.0  
DRIFT (%)  
DRIFT (%)  
Figure 23. X-Axis Sensitivity Drift Over Temperature, VS = 3 V  
Figure 26. Y-Axis Sensitivity Drift Over Temperature, VS = 3 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
–2.0 –1.6 –1.2 –0.8 –0.4  
0
0.4 0.8 1.2 1.6 2.0  
–2.0 –1.6 –1.2 –0.8 –0.4  
0
0.4 0.8 1.2 1.6 2.0  
DRIFT (%)  
DRIFT (%)  
Figure 24. X-Axis Sensitivity Drift Over Temperature, VS = 5 V  
Figure 27. Y-Axis Sensitivity Drift Over Temperature, VS = 5 V  
0.33  
N = 8  
0.32  
0.33  
N = 8  
0.32  
0.31  
0.30  
0.29  
0.28  
0.27  
0.31  
0.30  
0.29  
0.28  
0.27  
–30 –20 –10  
0
10  
20  
30  
40  
50  
60  
70  
80  
–30 –20 –10  
0
10  
20  
30  
40  
50  
60  
70  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 25. X-Axis Sensitivity vs. Temperature  
Eight Parts Soldered to PCB, VS = 3 V  
Figure 28. Y-Axis Sensitivity vs. Temperature  
Eight Parts Soldered to PCB, VS = 3 V  
Rev. 0 | Page 9 of 16  
 
ADXL±2±  
600  
500  
400  
300  
200  
100  
T
4
3
2
1
0
0
B
B
W
CH1 1.00V W CH2 500mV  
CH3 500mV CH4 500mV  
M1.00ms  
T 9.400%  
A CH1  
300mV  
1
2
3
4
5
6
SUPPLY (V)  
Figure 29. Typical Current Consumption vs. Supply Voltage  
Figure 30. Typical Turn-On Time; CX, CY = 0.0047 μF, VS = 3 V  
Rev. 0 | Page 10 of 16  
ADXL±2±  
THEORY OF OPERATION  
The ADXL323 is a complete 2-axis acceleration measurement  
system on a single, monolithic IC. The ADXL323 has a measure-  
ment range of 3 g minimum. It contains a polysilicon surface  
micromachined sensor and signal conditioning circuitry to  
implement an open-loop acceleration measurement architecture.  
The output signals are analog voltages that are proportional to  
acceleration. The accelerometer can measure the static accelera-  
tion of gravity in tilt sensing applications, as well as dynamic  
acceleration resulting from motion, shock, or vibration.  
MECHANICAL SENSOR  
The ADXL323 uses a single structure for sensing the X-axis and  
Y-axis. As a result, the sense directions of the two axes are  
highly orthogonal with little cross axis sensitivity. Mechanical  
misalignment of the sensor die to the package is the chief  
source of cross axis sensitivity. Mechanical misalignment can, of  
course, be calibrated out at the system level.  
PERFORMANCE  
Rather than using additional temperature compensation  
circuitry, innovative design techniques ensure that high  
performance is built in to the ADXL323. As a result, there is  
neither quantization error nor nonmonotonic behavior, and  
temperature hysteresis is very low (typically less than 3 mg over  
the −25°C to +70°C temperature range).  
The sensor is a polysilicon surface micromachined structure  
built on top of a silicon wafer. Polysilicon springs suspend the  
structure over the surface of the wafer and provide a resistance  
against acceleration forces. Deflection of the structure is meas-  
ured using a differential capacitor that consists of independent  
fixed plates and plates attached to the moving mass. The fixed  
plates are driven by 180° out-of-phase square waves. Acceleration  
deflects the moving mass and unbalances the differential  
capacitor resulting in a sensor output whose amplitude is  
proportional to acceleration. Phase-sensitive demodulation  
techniques are then used to determine the magnitude and  
direction of the acceleration.  
Figure 13 and Figure 16 show the zero g output performance of  
eight parts (X-axis and Y-axis) soldered to a PCB over a −25°C  
to +70°C temperature range.  
Figure 25 and Figure 28 demonstrate the typical sensitivity shift  
over temperature for supply voltages of 3 V. This is typically  
better than 1ꢀ over the −25°C to +70°C temperature range.  
The demodulator output is amplified and brought off-chip  
through a 32 kΩ resistor. The user then sets the signal band-  
width of the device by adding a capacitor. This filtering improves  
measurement resolution and helps prevent aliasing.  
Rev. 0 | Page 11 of 16  
 
ADXL±2±  
APPLICATIONS  
Never expose the ST pin to voltages greater than VS + 0.3 V.  
If this cannot be guaranteed due to the system design (for  
example, if there are multiple supply voltages), a low VF  
clamping diode between ST and VS is recommended.  
POWER SUPPLY DECOUPLING  
For most applications, a single 0.1 μF capacitor, CDC, placed  
close to the ADXL323 supply pins adequately decouples the  
accelerometer from noise on the power supply. However, in  
applications where noise is present at the 50 kHz internal clock  
frequency (or any harmonic thereof), additional care in power  
supply bypassing is required because this noise can cause errors  
in acceleration measurement. If additional decoupling is needed,  
a 100 Ω (or smaller) resistor or ferrite bead can be inserted in  
the supply line. Additionally, a larger bulk bypass capacitor  
(1 μF or greater) can be added in parallel to CDC. Ensure that the  
connection from the ADXL323 ground to the power supply  
ground is low impedance because noise transmitted through  
ground has an effect similar to that of noise transmitted  
through VS.  
DESIGN TRADE-OFFS FOR SELECTING FILTER  
CHARACTERISTICS: THE NOISE/BW TRADE-OFF  
The selected accelerometer bandwidth ultimately determines  
the measurement resolution (smallest detectable acceleration).  
Filtering can be used to lower the noise floor to improve the  
resolution of the accelerometer. Resolution is dependent on the  
analog filter bandwidth at XOUT and YOUT  
.
The output of the ADXL323 has a typical bandwidth of greater  
than 1600 Hz. The user must filter the signal at this point to  
limit aliasing errors. The analog bandwidth must be no more  
than half the analog-to-digital sampling frequency to minimize  
aliasing. The analog bandwidth can be further decreased to  
reduce noise and improve resolution.  
SETTING THE BANDWIDTH USING CX, CY, AND CZ  
The ADXL323 has provisions for band limiting the XOUT pin  
and the YOUT pin. Capacitors must be added at these pins to  
implement low-pass filtering for antialiasing and noise  
reduction. The equation for the 3 dB bandwidth is  
The ADXL323 noise has the characteristics of white Gaussian  
noise, which contributes equally at all frequencies and is  
described in terms of ꢁg/√Hz (the noise is proportional to the  
square root of the accelerometer bandwidth). The user should  
limit bandwidth to the lowest frequency needed by the applica-  
tion to maximize the resolution and dynamic range of the  
accelerometer.  
F
−3 dB = 1/(2π(32 kΩ) × C(X, Y, Z)  
or more simply  
–3 dB = 5 ꢁF/C(X, Y, Z)  
)
F
The tolerance of the internal resistor (RFILT) typically varies as  
much as 15ꢀ of its nominal value (32 kΩ), and the bandwidth  
varies accordingly. A minimum capacitance of 0.0047 ꢁF for CX,  
CY, and CZ is recommended in all cases.  
With the single-pole, roll-off characteristic, the typical noise of  
the ADXL323 is determined by  
rms Noise = Noise Density × ( BW ×1.6)  
Table 5. Filter Capacitor Selection, CX, CY, and CZ  
Often, the peak value of the noise is desired. Peak-to-peak noise  
can only be estimated by statistical methods. Table 6 is useful  
for estimating the probabilities of exceeding various peak  
values, given the rms value.  
Bandwidth (Hz)  
Capacitor (μF)  
1
4.7  
10  
ꢀ0  
100  
200  
ꢀ00  
0.47  
0.10  
0.0ꢀ  
0.027  
0.01  
Table 6. Estimation of Peak-to-Peak Noise  
% of Time that Noise Exceeds  
Nominal Peak-to-Peak Value  
Peak-to-Peak Value  
2 × rms  
32  
4 × rms  
6 × rms  
8 × rms  
4.6  
0.27  
0.006  
SELF TEST  
The ST pin controls the self-test feature. When this pin is set to  
VS, an electrostatic force is exerted on the accelerometer beam.  
The resulting movement of the beam allows the user to test if  
the accelerometer is functional. The typical change in output is  
−500 mg (corresponding to −150 mV) in the X-axis, and 500 mg  
(or 150 mV) on the Y-axis. This ST pin can be left open circuit  
or connected to common (COM) in normal use.  
USE WITH OPERATING VOLTAGES OTHER THAN 3 V  
The ADXL323 is tested and specified at VS = 3 V; however, it  
can be powered with VS as low as 1.8 V or as high as 5.25 V.  
Note that some performance parameters change as the supply  
voltage is varied.  
Rev. 0 | Page 12 of 16  
 
 
ADXL±2±  
At VS = 1.8 V, the self-test response is approximately −40 mV  
for the X-axis and +40 mV for the Y-axis.  
The ADXL323 output is ratiometric; therefore, the output  
sensitivity (or scale factor) varies proportionally to the supply  
voltage. At VS = 5 V, the output sensitivity is typically 550 mV/g.  
At VS = 2 V, the output sensitivity is typically 190 mV/g.  
The supply current decreases as the supply voltage decreases.  
Typical current consumption at VS = 5 V is 500 μA, and typical  
current consumption at VS = 1.8 V is 180 μA.  
The zero g bias output is also ratiometric, so the zero g output is  
nominally equal to VS/2 at all supply voltages.  
AXES OF ACCELERATION SENSITIVITY  
A
Y
The output noise is not ratiometric but is absolute in volts;  
therefore, the noise density decreases as the supply voltage  
increases. This is because the scale factor (mV/g) increases,  
while the noise voltage remains constant. At VS = 5 V, the noise  
density is typically 180 μg/√Hz, while at VS = 1.8 V, the noise  
density is typically 360 ꢁg/√Hz.  
TOP  
Self-test response in g is roughly proportional to the square of  
the supply voltage. However, when ratiometricity of sensitivity  
is factored in with supply voltage, the self-test response in volts  
is roughly proportional to the cube of the supply voltage. For  
example, at VS = 5 V, the self-test response for the ADXL323 is  
approximately −700 mV for the X-axis and +700 mV for the Y-axis.  
A
X
Figure 31. Axes of Acceleration Sensitivity, Corresponding Output Voltage  
Increases When Accelerated Along the Sensitive Axis  
X
Y
= –1g  
= 0g  
OUT  
OUT  
TOP  
GRAVITY  
X
Y
= 0g  
= –1g  
X
Y
= 0g  
= 1g  
OUT  
OUT  
OUT  
OUT  
TOP  
TOP  
TOP  
X
Y
= 1g  
= 0g  
OUT  
OUT  
T
O
P
X
Y
= 0g  
= 0g  
X
Y
= 0g  
= 0g  
OUT  
OUT  
OUT  
OUT  
Figure 32. Output Response vs. Orientation to Gravity  
Rev. 0 | Page 13 of 16  
 
ADXL±2±  
OUTLINE DIMENSIONS  
0.20 MIN  
13  
PIN 1  
INDICATOR  
0.20 MIN  
0.65 BSC  
16  
PIN 1  
1
4
12  
9
4.15  
4.00 SQ  
3.85  
INDICATOR  
2.43  
1.75 SQ  
1.08  
TOP  
VIEW  
BOTTOM  
VIEW  
8
5
0.55  
0.50  
0.45  
1.95 BSC  
0.05 MAX  
0.02 NOM  
1.50  
1.45  
1.40  
0.35  
0.30  
0.25  
COPLANARITY  
0.05  
SEATING  
PLANE  
Figure 33. 16-Lead Lead Frame Chip Scale Package [LFCSP_LQ]  
4 mm × 4 mm Body, Thick Quad  
(CP-16-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Measurement Range Specified Voltage  
Temperature Range Package Description Package Option  
ADXL323KCPZ1  
ADXL323KCPZ–RL1  
EVAL-ADXL323Z1  
3 g  
3 g  
3 V  
3 V  
−2ꢀ°C to +70°C  
−2ꢀ°C to +70°C  
16-Lead LFCSP_LQ  
16-Lead LFCSP_LQ  
Evaluation Board  
CP-16-ꢀ  
CP-16-ꢀ  
1 Z = Pb-free part.  
Rev. 0 | Page 14 of 16  
 
 
 
ADXL±2±  
NOTES  
Rev. 0 | Page 1ꢀ of 16  
ADXL±2±  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06237-0-8/06(0)  
Rev. 0 | Page 16 of 16  
 
 
 
 
 
 
 
 

相关型号:

ADXL323KCPZ-RL

Small, Low Power, 2-Axis 【3 g i MEMS Accelerometer
ADI

ADXL325

Small, Low Power, 3-Axis ±5 g Accelerometer
ADI

ADXL325BCPZ

Small, Low Power, 3-Axis ±5 g Accelerometer
ADI

ADXL325BCPZ-RL

Small, Low Power, 3-Axis ±5 g Accelerometer
ADI

ADXL325BCPZ-RL7

Small, Low Power, 3-Axis ±5 g Accelerometer
ADI

ADXL326

Small, Low Power, 3-Axis ±16 g Accelerometer
ADI

ADXL326BCPZ

Small, Low Power, 3-Axis ±16 g Accelerometer
ADI

ADXL326BCPZ-RL

Small, Low Power, 3-Axis ±16 g Accelerometer
ADI

ADXL326BCPZ-RL7

Small, Low Power, 3-Axis ±16 g Accelerometer
ADI

ADXL327

Small, Low Power, 3-Axis ±2 g Accelerometer
ADI

ADXL327BCPZ

Small, Low Power, 3-Axis ±2 g Accelerometer
ADI

ADXL327BCPZ-RL

Small, Low Power, 3-Axis ±2 g Accelerometer
ADI