ADuM6210BRSZ [ADI]

Dual-Channel Isolators with Integrated DC-to-DC Converters; 双通道隔离器,集成DC- DC转换器
ADuM6210BRSZ
型号: ADuM6210BRSZ
厂家: ADI    ADI
描述:

Dual-Channel Isolators with Integrated DC-to-DC Converters
双通道隔离器,集成DC- DC转换器

转换器
文件: 总24页 (文件大小:532K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual-Channel Isolators with  
Integrated DC-to-DC Converters  
ADuM6210/ADuM6211/ADuM6212  
FUNCTIONAL BLOCK DIAGRAM  
Data Sheet  
FEATURES  
isoPower integrated, isolated dc-to-dc converter  
Regulated 3.15 V to 5.25 V output  
Up to 150 mW output power  
Dual dc-to-100 Mbps (NRZ) signal isolation channels  
Soft start power supply  
20-lead SSOP package with 5.3 mm creepage  
Supports SPI up to 15 MHz  
High temperature operation: 105°C  
High common-mode transient immunity: >25 kV/µs  
Safety and regulatory approvals  
1
20  
V
V
DD1  
DD2  
2
19 GND  
ISO  
GND  
/V  
P
2-CHANNEL iCoupler CORE  
3
18  
V
V
/V  
V
V
OA IA  
IA OA  
ADuM6210/ADuM6211/  
ADuM6212  
4
17  
/V  
/V  
IB OB  
OB IB  
GND  
P
5
16  
GND  
GND  
NC  
ISO  
ISO  
GND  
P
6
15  
14  
NC  
7
8
PCS  
OSC  
13  
PDIS  
V
V
SEL  
ISO  
V
1.25V 12  
9
DDP  
UL recognition (pending)  
GND  
P
10  
11  
GND  
RECT REG  
ISO  
3750 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice #5A (pending)  
VDE certificate of conformity (pending)  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
Figure 1. ADuM6210/ADuM6211/ADuM6212  
V
IORM = 849 V peak  
APPLICATIONS  
RS-232 transceivers  
Power supply start-up bias and gate drives  
Isolated sensor interfaces  
Industrial PLCs  
GENERAL DESCRIPTION  
The ADuM6210/ADuM6211/ADuM62121 are dual-channel  
digital isolators with isoPower®, an integrated, isolated dc-to-  
dc converter. Based on the Analog Devices, Inc., iCoupler®  
technology, the dc-to-dc converter provides regulated, isolated  
power that is adjustable between 3.15 V and 5.25 V. Input supply  
voltages can range from slightly below the required output to  
significantly higher. Popular voltage combinations and their  
associated power levels are shown in Table 1.  
Table 1. Power Levels  
Input Voltage (V)  
Output Voltage (V) Output Power (mW)  
5
5
150  
100  
66  
5
3.3  
3.3  
3.3  
The ADuM6210/ADuM6211/ADuM6212 eliminate the need  
for a separate, isolated dc-to-dc converter in low power, isolated  
designs. The iCoupler chip-scale transformer technology is used for  
isolated logic signals and for the magnetic components of the dc-  
to-dc converter. The result is a small form factor, total isolation  
solution.  
isoPower uses high frequency switching elements to transfer  
power through its transformer. Take special care during printed  
circuit board (PCB) layout to meet emissions standards. See the  
AN-0971 Application Note for board layout recommendations.  
1
Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329. Other patents are pending.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
 
ADuM6210/ADuM6211/ADuM6212  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Recommended Operating Conditions .................................... 10  
Absolute Maximum Ratings ......................................................... 11  
ESD Caution................................................................................ 11  
Pin Configurations and Function Descriptions......................... 12  
Truth Tables................................................................................. 15  
Typical Performance Characteristics ........................................... 16  
Applications Information .............................................................. 19  
PCB Layout ................................................................................. 19  
Thermal Analysis ....................................................................... 20  
Propagation Delay Parameters ................................................. 20  
EMI Considerations................................................................... 20  
DC Correctness and Magnetic Field Immunity........................... 20  
Power Consumption .................................................................. 21  
Insulation Lifetime..................................................................... 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 V Primary Input Supply/  
5 V Secondary Isolated Supply ................................................... 3  
Electrical Characteristics—3.3 V Primary Input Supply/  
3.3 V Secondary Isolated Supply ................................................ 5  
Electrical Characteristics—5 V Primary Input Supply/  
3.3 V Secondary Isolated Supply ................................................ 7  
Package Characteristics ............................................................... 9  
Regulatory Approvals................................................................... 9  
Insulation and Safety-Related Specifications............................ 9  
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation  
Characteristics ............................................................................ 10  
REVISION HISTORY  
1/13—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
Data Sheet  
ADuM6210/ADuM6211/ADuM6212  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/5 V SECONDARY ISOLATED SUPPLY  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = VDDP = 5 V, VSEL resistor network: R1 = 10 kΩ, R2 = 30.9 kΩ between VISO and  
GNDISO. Minimum/maximum specifications apply over the entire recommended operation range, which is 4.5 V ≤ VDD1, VDD2, VDDP ≤ 5.5 V  
and −40°C ≤ TA ≤ +105°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless  
otherwise noted.  
Table 2. DC-to-DC Converter Static Specifications  
Parameter  
Symbol Min Typ Max Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTER SUPPLY  
Setpoint  
Thermal Coefficient  
Line Regulation  
Load Regulation  
Output Ripple  
VISO  
5.0  
−44  
20  
1.3  
75  
200  
125  
600  
V
IISO = 15 mA, R1 = 10 kΩ, R2 = 30.9 kΩ  
VISO (TC)  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
VISO (NOISE)  
fOSC  
μV/°C  
mV/V  
%
IISO = 15 mA, VDDP = 4.5 V to 5.5 V  
IISO = 3 mA to 27 mA  
3
mV p-p 20 MHz bandwidth, CBO = 0.1 µF||10 µF, IISO = 27 mA  
mV p-p CBO = 0.1 µF||10 µF, IISO = 27 mA  
MHz  
kHz  
mA  
%
Output Noise  
Switching Frequency  
Pulse-Width Modulation Frequency  
Output Supply  
Efficiency at IISO (MAX)  
IDDP, No VISO Load  
IDDP, Full VISO Load  
Thermal Shutdown  
Shutdown Temperature  
Thermal Hysteresis  
fPWM  
IISO (MAX)  
30  
5.5 V > VISO > 4.5 V  
IISO = 27 mA  
29  
6.8  
30  
IDDP (Q)  
IDDP (MAX)  
12  
mA  
mA  
154  
10  
°C  
°C  
Table 3. Data Channel Supply Current  
1 Mbps—A, B, C Grades  
25 Mbps—B, C Grades  
100 Mbps—C Grade  
Test Conditions/  
Unit Comments  
Parameter  
Symbol Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
SUPPLY CURRENT  
ADuM6210  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
1.1  
2.7  
2.1  
2.3  
2.7  
1.1  
1.6  
4.5  
2.7  
2.9  
4.5  
1.6  
6.2  
4.8  
4.9  
4.7  
4.8  
6.2  
7.0  
7.0  
6.5  
6.5  
7.0  
7.0  
20  
9.5  
15  
15.6  
9.5  
20  
25  
15  
19  
19  
15  
25  
mA  
mA  
mA  
mA  
mA  
mA  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
ADuM6211  
ADuM6212  
Table 4. Switching Specifications  
A Grade  
B Grade  
C Grade  
Test Conditions/  
Comments  
Parameter  
Symbol Min  
Typ Max Min Typ Max Min Typ Max Unit  
SWITCHING SPECIFICATIONS  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Pulse Width  
Propagation Delay Skew  
Channel Matching  
Codirectional  
Opposing Direction  
Jitter  
1
50  
10  
25  
35  
3
100  
24  
2
Mbps Within PWD limit  
13  
10  
tPHL, tPLH  
PWD  
PW  
tPSK  
18  
ns  
ns  
ns  
ns  
50% input to 50% output  
|tPLH − tPHL  
Within PWD limit  
|
1000  
40  
38  
12  
9
Between any two units  
tPSKCD  
tPSKOD  
5
10  
3
6
2
5
ns  
ns  
ns  
2
2
1
Rev. 0 | Page 3 of 24  
 
 
ADuM6210/ADuM6211/ADuM6212  
Data Sheet  
Table 5. Input and Output Characteristics  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Logic High Input Threshold  
VIH  
VIL  
0.7 VISO,  
0.7 VDD1  
V
V
V
V
Logic Low Input Threshold  
Logic High Output Voltages  
0.3 VISO,  
0.3 VDD1  
VOH  
VDD1 − 0.1,  
VDD2 − 0.1  
VDD1 − 0.4,  
VDD2 − 0.4  
V
DD1, VDD2  
DD1 − 0.2,  
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
V
VDD2 − 0.2  
Logic Low Output Voltages  
VOL  
0.0  
0.2  
0.1  
0.4  
V
V
IOx = 20 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
VDD1, VDD2 ,VDDP supply  
Undervoltage Lockout  
Positive Going Threshold  
Negative Going Threshold  
Hysteresis  
VUV+  
VUV−  
VUVH  
2.6  
2.4  
0.2  
V
V
V
Supply Current per Channel  
Quiescent Input Supply Current  
Quiescent Output Supply Current  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
Input Currents per Channel  
AC SPECIFICATIONS  
IDDI(Q)  
IDDO(Q)  
IDDI(D)  
IDDO(D)  
II  
0.54  
1.6  
0.09  
0.04  
+0.01  
0.8  
2.0  
mA  
mA  
mA/Mbps  
mA/Mbps  
µA  
−10  
25  
+10  
0 V ≤ VIx ≤ VDDx  
10% to 90%  
VIx = VDD1 or VISO, VCM = 1000 V,  
transient magnitude = 800 V  
Output Rise/Fall Time  
Common-Mode Transient  
Immunity1  
tR/tF  
|CM|  
2.5  
35  
ns  
kV/µs  
Refresh Rate  
tr  
1.6  
µs  
1 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VOx > 0.8 × VDD1 or 0.8 × VISO for a high input or VOx < 0.8 × VDD1 or 0.8  
× VISO for a low input. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.  
Rev. 0 | Page 4 of 24  
 
Data Sheet  
ADuM6210/ADuM6211/ADuM6212  
ELECTRICAL CHARACTERISTICS—3.3 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = VDDP = 3.3 V, VSEL resistor network: R1 = 10 kΩ, R2 = 16.9 kΩ between VISO and  
GNDISO. Minimum/maximum specifications apply over the entire recommended operation range, which is 3.0 V ≤ VDD1, VDD2, VDDP  
3.6 V, and −40°C ≤ TA ≤ +105°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels,  
unless otherwise noted.  
The digital isolator channels and the power section work independently, and under the operating voltages in this section, there may not  
be sufficient current from the VISO to run both data channels at the maximum data rate. Verify that the application is within the power  
capability of VISO if that supply is providing power to VDD2  
.
Table 6. DC-to-DC Converter Static Specifications  
Parameter  
Symbol  
Min Typ Max Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTER SUPPLY  
Setpoint  
Thermal Coefficient  
Line Regulation  
Load Regulation  
Output Ripple  
Output Noise  
Switching Frequency  
Pulse-Width Modulation Frequency fPWM  
VISO  
3.3  
−26  
20  
1.3  
50  
130  
125  
600  
V
IISO = 10 mA, R1 = 10 kΩ, R2 = 16.9 kΩ  
IISO = 20 mA  
IISO = 10 mA, VDDP = 3.0 V to 3.6 V  
IISO = 2 mA to 18 mA  
20 MHz bandwidth, CBO = 0.1 µF||10 µF, IISO = 18 mA  
CBO = 0.1 µF||10 µF, IISO = 18 mA  
VISO (TC)  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
VISO (NOISE)  
fOSC  
μV/°C  
mV/V  
%
mV p-p  
mV p-p  
MHz  
kHz  
3
Output Supply  
Efficiency at IISO (MAX)  
IDDP, No VISO Load  
IDDP, Full VISO Load  
Thermal Shutdown  
Shutdown Temperature  
Thermal Hysteresis  
IISO (MAX)  
20  
mA  
%
mA  
mA  
3.6 V > VISO > 3 V  
IISO = 18 mA  
27  
3.3  
77  
IDDP (Q)  
IDDP (MAX)  
10.5  
154  
10  
°C  
°C  
Table 7. Data Channel Supply Current  
1 Mbps—A, B, C Grades  
25 Mbps—B, C Grades  
100 Mbps—C Grade  
Test Conditions/  
Unit Comments  
Parameter  
Symbol Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
SUPPLY CURRENT  
ADuM6210  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
0.75  
2.0  
1.6  
1.7  
2.0  
1.4  
3.5  
2.1  
2.3  
3.5  
1.4  
5.1  
2.7  
3.8  
3.9  
2.7  
5.1  
9.0  
4.6  
5.0  
6.2  
4.6  
9.0  
17  
4.8  
11  
11  
4.8  
17  
23  
9
15  
15  
9
mA  
mA  
mA  
mA  
mA  
mA  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
ADuM6211  
ADuM6212  
0.75  
23  
Table 8. Switching Specifications  
A Grade  
B Grade  
C Grade  
Test Conditions/  
Comments  
Parameter  
Symbol Min Typ Max Min Typ Max Min Typ Max Unit  
SWITCHING SPECIFICATIONS  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Pulse Width  
Propagation Delay Skew  
Channel Matching  
Codirectional  
Opposing Direction  
Jitter  
1
50  
10  
25  
35  
3
100  
33  
2.5  
Mbps Within PWD limit  
tPHL, tPLH  
PWD  
PW  
20  
10  
25  
ns  
ns  
ns  
ns  
50% input to 50% output  
|tPLH − tPHL  
Within PWD limit  
|
1000  
40  
tPSK  
38  
16  
12  
Between any two units  
tPSKCD  
tPSKOD  
5
10  
3
6
2.5  
5
ns  
ns  
ns  
2
2
1
Rev. 0 | Page 5 of 24  
 
ADuM6210/ADuM6211/ADuM6212  
Data Sheet  
Table 9. Input and Output Characteristics  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Logic High Input Threshold  
VIH  
VIL  
0.7 VISO  
0.7 VDD1  
,
V
V
V
V
Logic Low Input Threshold  
Logic High Output Voltages  
0.3 VISO  
0.3 VDD1  
,
VOH  
VDD1 − 0.1,  
VDD1, VDD2  
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
V
DD2 − 0.1  
VDD1 − 0.4,  
DD2 − 0.4  
VDD1 − 0.2,  
VDD2 − 0.2  
V
Logic Low Output Voltages  
VOL  
0.0  
0.2  
0.1  
0.4  
V
V
IOx = 20 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
VDD1, VDD2 ,VDDP supply  
Undervoltage Lockout  
Positive Going Threshold  
Negative Going Threshold  
Hysteresis  
VUV+  
VUV−  
VUVH  
2.6  
2.4  
0.2  
V
V
V
Supply Current per Channel  
Quiescent Input Supply Current  
Quiescent Output Supply Current IDDO(Q)  
IDDI(Q)  
0.4  
1.2  
0.6  
1.7  
mA  
mA  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
Input Currents per Channel  
AC SPECIFICATIONS  
Output Rise/Fall Time  
Common-Mode Transient  
Immunity1  
IDDI(D)  
IDDO(D)  
II  
0.08  
0.015  
+0.01  
mA/Mbps  
mA/Mbps  
µA  
−10  
25  
+10  
0 V ≤ VIx ≤ VDDx  
10% to 90%  
VIx = VDD1 or VISO, VCM = 1000 V,  
transient magnitude = 800 V  
tR/tF  
|CM|  
3
35  
ns  
kV/µs  
Refresh Rate  
tr  
1.6  
µs  
1 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VOx > 0.8 × VDD1 or 0.8 × VISO for a high input or VOx < 0.8 × VDD1 or 0.8  
× VISO for a low input. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.  
Rev. 0 | Page 6 of 24  
 
Data Sheet  
ADuM6210/ADuM6211/ADuM6212  
ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY  
All typical specifications are at TA = 25°C, VDD1 = VDDP = 5 V, VDD2 = 3.3 V, VSEL resistor network: R1 = 10 kΩ, R2 = 16.9 kΩ between VISO  
and GNDISO. Minimum/maximum specifications apply over the entire recommended operation range, which is 4.5 V ≤ VDD1, VDDP  
5.5 V, 3.0 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +105°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and  
CMOS signal levels, unless otherwise noted.  
Table 10. DC-to-DC Converter Static Specifications  
Parameter  
Symbol  
Min Typ Max Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTER SUPPLY  
Setpoint  
Thermal Coefficient  
Line Regulation  
Load Regulation  
Output Ripple  
Output Noise  
Switching Frequency  
Pulse-Width Modulation Frequency fPWM  
Output Supply  
Efficiency at IISO (MAX)  
IDDP, No VISO Load  
IDDP, Full VISO Load  
Thermal Shutdown  
Shutdown Temperature  
Thermal Hysteresis  
VISO  
3.3  
−26  
20  
1.3  
50  
130  
125  
600  
V
IISO = 15 mA, R1 = 10 kΩ, R2 = 16.9 kΩ  
VISO (TC)  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
VISO (NOISE)  
fOSC  
μV/°C  
mV/V  
%
mV p-p  
mV p-p  
MHz  
kHz  
mA  
%
mA  
mA  
IISO = 15 mA, VDDP = 4.5 V to 5.5 V  
IISO = 3 mA to 27 mA  
20 MHz bandwidth, CBO = 0.1 µF||10 µF, IISO = 27 mA  
CBO = 0.1 µF||10 µF, IISO = 27 mA  
3
8
IISO (MAX)  
30  
3.6 V > VISO > 3 V  
IISO = 27 mA  
24  
3.2  
85  
IDDP (Q)  
IDDP (MAX)  
154  
10  
°C  
°C  
Table 11. Data Channel Supply Current  
1 Mbps—A, B, C Grades  
25 Mbps—B, C Grades  
100 Mbps—C Grade  
Test Conditions/  
Unit Comments  
Parameter  
Symbol Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
SUPPLY CURRENT  
ADuM6210  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
1.1  
2.0  
2.1  
1.7  
2.0  
1.1  
1.6  
3.5  
2.7  
2.3  
3.5  
1.6  
6.2  
2.7  
4.9  
3.9  
2.7  
6.2  
7.0  
4.6  
6.5  
6.2  
4.6  
7.0  
20  
4.8  
15  
11  
4.8  
20  
25  
9.0  
19  
15  
9.0  
25  
mA  
mA  
mA  
mA  
mA  
mA  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
ADuM6211  
ADuM6212  
Table 12. Switching Specifications  
A Grade  
B Grade  
C Grade  
Test Conditions/  
Comments  
Parameter  
Symbol Min  
Typ Max Min Typ Max Min Typ Max Unit  
SWITCHING SPECIFICATIONS  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Pulse Width  
Propagation Delay Skew  
Channel Matching  
Codirectional  
Opposing Direction  
Jitter  
1
50  
10  
25  
35  
3
100  
26  
Mbps Within PWD limit  
13  
20  
tPHL, tPLH  
PWD  
PW  
tPSK  
ns  
ns  
ns  
ns  
50% input to 50% output  
|tPLH − tPHL  
Within PWD limit  
2.5  
|
1000  
40  
10  
38  
16  
12  
Between any two units  
tPSKCD  
tPSKOD  
5
10  
3
6
2
5
ns  
ns  
ns  
2
2
1
Rev. 0 | Page 7 of 24  
 
ADuM6210/ADuM6211/ADuM6212  
Data Sheet  
Table 13. Input and Output Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Logic High Input Threshold  
VIH  
VIL  
0.7 VISO  
0.7 VDD1  
,
V
V
V
V
Logic Low Input Threshold  
Logic High Output Voltages  
0.3 VISO  
0.3 VDD1  
,
VOH  
VDD1 − 0.1,  
VDD1, VDD2  
IOx = −20 µA, VIx = VIxH  
VDD2 − 0.1  
VDD1 − 0.4,  
VDD2 − 0.4  
VDD1 − 0.2,  
IOx = −4 mA, VIx = VIxH  
VDD2 − 0.2  
Logic Low Output Voltages  
VOL  
0.0  
0.2  
0.1  
0.4  
V
V
IOx = 20 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
VDD1, VDD2 ,VDDP supply  
Undervoltage Lockout  
Positive Going Threshold  
Negative Going Threshold  
Hysteresis  
VUV+  
VUV−  
VUVH  
2.6  
2.4  
0.2  
V
V
V
Supply Current per Channel  
Quiescent Input Supply Current  
Quiescent Output Supply Current  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
Input Currents per Channel  
AC SPECIFICATIONS  
IDDI(Q)  
IDDO(Q)  
IDDI(D)  
IDDO(D)  
II  
0.54  
1.2  
0.09  
0.02  
+0.01  
0.75  
2.0  
mA  
mA  
mA/Mbps  
mA/Mbps  
µA  
−10  
25  
+10  
0 V ≤ VIx ≤ VDDx  
10% to 90%  
VIx = VDD1 or VISO, VCM = 1000 V,  
transient magnitude = 800 V  
Output Rise/Fall Time  
Common-Mode Transient  
Immunity1  
tR/tF  
|CM|  
2.5  
35  
ns  
kV/µs  
Refresh Rate  
tr  
1.6  
µs  
1 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VOx > 0.8 × VDD1 or 0.8 × VISO for a high input or VOx < 0.8 × VDD1 or 0.8  
× VISO for a low input. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.  
Rev. 0 | Page 8 of 24  
 
Data Sheet  
ADuM6210/ADuM6211/ADuM6212  
PACKAGE CHARACTERISTICS  
Table 14. Thermal and Isolation Characteristics  
Parameter  
Symbol Min Typ Max Unit Test Conditions/Comments  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
RI-O  
CI-O  
CI  
1012  
2.2  
4.0  
50  
Ω
pF  
pF  
f = 1 MHz  
IC Junction-to-Ambient Thermal Resistance θJA  
°C/W Thermocouple located at center of package underside,  
test conducted on 4-layer board with thin traces3  
1 The device is considered a 2-terminal device: Pin 1 through Pin 10 are shorted together; and Pin 11 through Pin 20 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
3 See the Thermal Analysis section for thermal model definitions.  
REGULATORY APPROVALS  
Table 15.  
UL (Pending)1  
CSA (Pending)  
VDE (Pending)2  
Recognized under 1577 Component  
Recognition Program1  
Approved under CSA Component  
Acceptance Notice #5A  
Certified according to DIN V VDE V 0884-10  
(VDE V 0884-10):2006-122  
Single Protection, 3750 V RMS  
Isolation Voltage  
Reinforced insulation per CSA 60950-1-03  
and IEC 60950-1, 265 V rms (375 V peak)  
maximum working voltage  
Reinforced insulation, 849 V peak  
File E214100  
File 205078  
File 2471900-4880-0001  
1 In accordance with UL 1577, each ADuM6210/ADuM6211/ADuM6212 is proof tested by applying an insulation test voltage ≥ 3000 V rms for 1 second  
(current leakage detection limit = 10 µA).  
2 In accordance with DIN V VDE V 0884-10, each ADuM6210/ADuM6211/ADuM6212 is proof tested by applying an insulation test voltage ≥1590 V peak for  
1 second (partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 16. Critical Safety-Related Dimensions and Material Properties  
Parameter  
Symbol Value  
Unit Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
3750  
5.3  
V rms 1-minute duration  
L(I01)  
L(I02)  
mm  
Measured from input terminals to output terminals,  
shortest distance through air  
Minimum External Tracking (Creepage)  
5.3  
mm  
Measured from input terminals to output terminals,  
shortest distance path along body  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017 min mm  
Distance through insulation  
DIN IEC 112/VDE 0303, Part 1  
Material group (DIN VDE 0110, 1/89, Table 1)  
CTI  
>400  
II  
V
Rev. 0 | Page 9 of 24  
 
 
 
 
 
 
ADuM6210/ADuM6211/ADuM6212  
Data Sheet  
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS  
These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by  
the protective circuits. The asterisk (*) marking on packages denotes DIN V VDE V 0884-10 approval.  
Table 17. VDE Characteristics  
Description  
Test Conditions/Comments  
Symbol  
Characteristic  
Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method b1  
I to IV  
I to IV  
I to III  
40/105/21  
2
VIORM  
Vpd(m)  
849  
1592  
V peak  
V peak  
VIORM × 1.875 = Vpd(m), 100% production test,  
tini = tm = 1 sec, partial discharge < 5 pC  
Input-to-Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
VIORM × 1.5 = Vpd(m), tini = 60 sec,  
tm = 10 sec, partial discharge < 5 pC  
VIORM × 1.2 = Vpd(m), tini = 60 sec,  
tm = 10 sec, partial discharge < 5 pC  
Vpd(m)  
Vpd(m)  
1273  
1018  
V peak  
V peak  
After Input and/or Safety Test Subgroup 2 and  
Subgroup 3  
Highest Allowable Overvoltage  
Withstand Isolation Voltage  
Surge Isolation Voltage  
Safety Limiting Values  
VIOTM  
VISO  
VIOSM  
5300  
3750  
6000  
V peak  
V rms  
V peak  
1 minute withstand rating  
VIOSM(TEST) = 10 kV, 1.2 µs rise time, 50 µs, 50% fall time  
Maximum value allowed in the event of a failure  
(see Figure 2)  
Case Temperature  
TS  
IS1  
RS  
150  
2.5  
>109  
°C  
W
Ω
Safety Total Dissipated Power  
Insulation Resistance at TS  
VIO = 500 V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
Figure 2. Thermal Derating Curve, Dependence of Safety Limiting Values on Case Temperature, per DIN V VDE V 0884-10  
RECOMMENDED OPERATING CONDITIONS  
Table 18.  
Parameter  
Symbol  
Min  
Max  
Unit  
Operating Temperature1  
Supply Voltages2  
VDDP at VISO = 3.0 V to 3.6 V  
VDDP at VISO = 4.5 V to 5.5 V  
VDD1, VDD2  
TA  
−40  
+105  
°C  
VDDP  
3.0  
4.5  
2.7  
5.5  
5.5  
5.5  
V
V
V
VDD1, VDD2  
1 Operation at 105°C requires reduction of the maximum load current as specified in Table 19.  
2 Each voltage is relative to its respective ground.  
Rev. 0 | Page 10 of 24  
 
 
 
 
Data Sheet  
ADuM6210/ADuM6211/ADuM6212  
ABSOLUTE MAXIMUM RATINGS  
Ambient temperature = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 19.  
Parameter  
Storage Temperature Range (TST)  
Ambient Operating  
Temperature Range (TA)  
Supply Voltages (VDDP, VDD1, VDD2, VISO  
VISO Supply Current2  
Rating  
−55°C to +150°C  
−40°C to +105°C  
1
)
−0.5 V to +7.0 V  
TA = −40°C to +105°C  
30 mA  
Table 20. Maximum Continuous Working Voltage  
Supporting 50-Year Minimum Lifetime1  
Applicable  
1, 3  
Input Voltage (VIA, VIB, PDIS, VSEL  
)
−0.5 V to VDDI + 0.5 V  
−0.5 V to VDDO + 0.5 V  
−10 mA to +10 mA  
1, 3  
Output Voltage ( VOA, VOB  
)
Average Output Current Per Data  
Parameter  
Max Unit  
Certification  
Output Pin4  
AC Voltage  
Common-Mode Transients5  
−100 kV/µs to +100 kV/µs  
Bipolar Waveform  
560  
V peak All certifications,  
50-year operation  
1 All voltages are relative to their respective ground.  
2 The VISO provides current for dc and dynamic loads on the VISO I/O  
channels. This current must be included when determining the total  
Unipolar Waveform 560  
DC Voltage  
V peak  
V
ISO supply current. For ambient temperatures between 85°C and 105°C,  
|DC Peak Voltage|  
560  
V peak  
maximum allowed current is reduced.  
3 VDDI and VDDO refer to the supply voltages on the input and output sides  
of a given channel, respectively. See the PCB Layout section.  
4 See Figure 2 for the maximum rated current values for various  
temperatures.  
1 Refers to the continuous voltage magnitude imposed across the  
isolation barrier. See the Insulation Lifetime section for more  
information.  
5 Refers to common-mode transients across the insulation barrier.  
Common-mode transients exceeding the absolute maximum ratings may  
cause latch-up or permanent damage.  
ESD CAUTION  
Rev. 0 | Page 11 of 24  
 
 
 
 
 
 
 
 
 
ADuM6210/ADuM6211/ADuM6212  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
V
DD1  
DD2  
GND  
V
GND  
P
ISO  
3
V
IA  
IB  
OA  
4
V
V
OB  
ADuM6210  
GND  
GND  
GND  
NC  
5
P
P
ISO  
TOP VIEW  
GND  
6
(Not to Scale)  
ISO  
7
NC  
V
8
PDIS  
SEL  
V
V
9
DDP  
ISO  
GND  
P
11 GND  
ISO  
10  
NOTES  
1. PINS LABELED NC CAN BE ALLOWED  
TO FLOAT, BUT IT IS BETTER TO  
CONNECT THESE PINS TO GROUND.  
AVOID ROUTING HIGH SPEED SIGNALS  
THROUGH THESE PINS BECAUSE  
NOISE COUPLING MAY RESULT.  
Figure 3. ADuM6210 Pin Configuration  
Table 21. ADuM6210 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
VDD1  
Power Supply for the Side 1 Logic Circuits of the Device. It is independent of VDDP and can operate between 3.0 V  
and 5.5 V.  
2, 5, 6, 10  
GNDP  
Ground Reference for Isolator Side 1. All of these pins are internally connected, and it is recommended that all GNDP  
pins be connected to a common ground.  
3
4
7, 14  
VIA  
VIB  
NC  
Logic Input A.  
Logic Input B.  
No Connect. Pins labeled NC can be allowed to float, but it is better to connect these pins to ground. Avoid  
routing high speed signals through these pins because noise coupling may result.  
8
9
PDIS  
VDDP  
Power Disable. When this pin is tied to a logic low, the power converter is active; when tied to a logic high, the  
power supply enters a low power standby mode.  
Primary isoPower Supply Voltage, 3.0 V to 5.5 V.  
11, 15, 16, 19 GNDISO  
Ground Reference for Isolator Side 2. All of these pins are internally connected, and it is recommended that all GNDISO  
pins be connected to a common ground.  
12  
13  
VISO  
VSEL  
Secondary Supply Voltage Output for External Loads, 3.3 V (VSEL Low) or 5.0 V (VSEL High).  
Output Voltage Select. Provide a thermally matched resistor network between VISO and GNDISO to divide the  
required output voltage to match the 1.25 V reference voltage. VISO voltage can be programmed up to 20%  
higher or 75% lower than VDDP but must be within the allowed output voltage range.  
17  
18  
20  
VOB  
VOA  
VDD2  
Logic Output B.  
Logic Output A.  
Power Supply for the Side 2 Logic Circuits of the Device. It is independent of VISO and can operate between 3.0 V  
and 5.5 V.  
Rev. 0 | Page 12 of 24  
 
Data Sheet  
ADuM6210/ADuM6211/ADuM6212  
V
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
V
DD1  
DD2  
GND  
V
GND  
P
ISO  
3
V
OA  
IA  
4
V
V
IB  
OB  
ADuM6211  
GND  
GND  
GND  
NC  
5
P
P
ISO  
ISO  
TOP VIEW  
GND  
6
(Not to Scale)  
7
NC  
PDIS  
V
8
SEL  
V
V
9
DDP  
ISO  
GND  
P
11 GND  
ISO  
10  
NOTES  
1. PINS LABELED NC CAN BE ALLOWED  
TO FLOAT, BUT IT IS BETTER TO  
CONNECT THESE PINS TO GROUND.  
AVOID ROUTING HIGH SPEED SIGNALS  
THROUGH THESE PINS BECAUSE  
NOISE COUPLING MAY RESULT.  
Figure 4. ADuM6211 Pin Configuration  
Table 22. ADuM6211 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
VDD1  
Power Supply for the Side 1 Logic Circuits of the Device. It is independent of VDDP and can operate between 3.0 V  
and 5.5 V.  
2, 5, 6, 10  
GNDP  
Ground Reference for Isolator Side 1. All of these pins are internally connected, and it is recommended that all GNDP  
pins be connected to a common ground.  
3
4
VOA  
VIB  
Logic Output A.  
Logic Input B.  
7, 14  
NC  
No Connect. Pins labeled NC can be allowed to float, but it is better to connect these pins to ground. Avoid  
routing high speed signals through these pins because noise coupling may result.  
8
9
PDIS  
VDDP  
Power Disable. When this pin is tied to a logic low, the power converter is active; when tied to a logic high, the  
power supply enters a low power standby mode.  
Primary isoPower Supply Voltage, 3.0 V to 5.5 V.  
11, 15, 16, 19 GNDISO  
Ground Reference for Isolator Side 2. All of these pins are internally connected, and it is recommended that all GNDISO  
pins be connected to a common ground.  
12  
13  
VISO  
VSEL  
Secondary Supply Voltage Output for External Loads, 3.3 V (VSEL Low) or 5.0 V (VSEL High).  
Output Voltage Select. Provide a thermally matched resistor network between VISO and GNDISO to divide the  
required output voltage to match the 1.25 V reference voltage. VISO voltage can be programmed up to 20%  
higher or 75% lower than VDDP but must be within the allowed output voltage range.  
17  
18  
20  
VOB  
VIA  
VDD2  
Logic Output B.  
Logic Input A.  
Power Supply for the Side 2 Logic Circuits of the Device. It is independent of VISO and can operate between 3.0 V  
and 5.5 V.  
Rev. 0 | Page 13 of 24  
 
ADuM6210/ADuM6211/ADuM6212  
Data Sheet  
V
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
V
DD1  
DD2  
GND  
V
GND  
P
ISO  
3
V
OA  
OB  
IA  
4
V
V
IB  
ADuM6212  
GND  
GND  
GND  
GND  
NC  
5
P
P
ISO  
ISO  
TOP VIEW  
6
(Not to Scale)  
7
NC  
PDIS  
V
8
SEL  
V
V
9
DDP  
ISO  
GND  
P
11 GND  
ISO  
10  
NOTES  
1. PINS LABELED NC CAN BE ALLOWED  
TO FLOAT, BUT IT IS BETTER TO  
CONNECT THESE PINS TO GROUND.  
AVOID ROUTING HIGH SPEED SIGNALS  
THROUGH THESE PINS BECAUSE  
NOISE COUPLING MAY RESULT.  
Figure 5. ADuM6212 Pin Configuration  
Table 23. ADuM6212 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
VDD1  
Power Supply for the Side 1 Logic Circuits of the Device. It is independent of VDDP and can operate between 3.0 V  
and 5.5 V.  
2, 5, 6, 10  
GNDP  
Ground Reference for Isolator Side 1. All of these pins are internally connected, and it is recommended that all GNDP  
pins be connected to a common ground.  
3
4
7, 14  
VOA  
VOB  
NC  
Logic Output A.  
Logic Output B.  
No Connect. Pins labeled NC can be allowed to float, but it is better to connect these pins to ground. Avoid  
routing high speed signals through these pins because noise coupling may result.  
8
PDIS  
Power Disable. When this pin is tied to a logic low, the power converter is active; when tied to a logic high, the  
power supply enters a low power standby mode.  
9
VDDP  
Primary isoPower Supply Voltage, 3.0 V to 5.5 V.  
11, 15, 16,19  
GNDISO  
Ground Reference for Isolator Side 2. All of these pins are internally connected, and it is recommended that all GNDISO  
pins be connected to a common ground.  
12  
13  
VISO  
VSEL  
Secondary Supply Voltage Output for External Loads, 3.3 V (VSEL Low) or 5.0 V (VSEL High).  
Output Voltage Select. Provide a thermally matched resistor network between VISO and GNDISO to divide the  
required output voltage to match the 1.25 V reference voltage. VISO voltage can be programmed up to 20%  
higher or 75% lower than VDDP but must be within the allowed output voltage range.  
17  
18  
20  
VIB  
VIA  
VDD2  
Logic Input B.  
Logic Input A.  
Power Supply for the Side 2 Logic Circuits of the Device. It is independent of VISO and can operate between  
3.0 V and 5.5 V.  
Rev. 0 | Page 14 of 24  
Data Sheet  
ADuM6210/ADuM6211/ADuM6212  
TRUTH TABLES  
Table 24. Power Section Truth Table (Positive Logic)  
VDDP (V)  
VSEL Input  
PDIS Input  
VISO Output (V)  
Notes  
5
5
3.3  
3.3  
5
5
3.3  
3.3  
R1 = 10 kΩ, R2 = 30.9 kΩ  
R1 = 10 kΩ, R2 = 30.9 kΩ  
R1 = 10 kΩ, R2 = 16.9 kΩ  
R1 = 10 kΩ, R2 = 16.9 kΩ  
R1 = 10 kΩ, R2 = 30.9 kΩ  
R1 = 10 kΩ, R2 = 30.9 kΩ  
R1 = 10 kΩ, R2 = 16.9 kΩ  
R1 = 10 kΩ, R2 = 16.9 kΩ  
Low  
High  
Low  
High  
Low  
High  
Low  
5
0
3.3  
0
3.3  
0
5
0
Configuration not recommended  
High  
Table 25 Data Section Truth Table (Positive Logic)  
VDDI State1  
Powered  
Powered  
X2  
VIx Input1 VDDO State1 VOx Output1  
Notes  
High  
Low  
X2  
Powered  
Powered  
High  
Low  
Normal operation, data is high  
Normal operation, data is low  
Output is off  
Unpowered Z3  
Unpowered Low  
Unpowered High  
Powered  
Powered  
Low  
Output default low  
Indeterminate If a high level is applied to an input when no supply is present, it can parasiti-  
cally power the input side, causing unpredictable operation  
1 The references to I and O in this table refer to the input side and output side of a given data path and the associated power supply.  
2 X = don’t care.  
3 Z = high impedance state.  
Rev. 0 | Page 15 of 24  
 
 
ADuM6210/ADuM6211/ADuM6212  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.35  
I
DDP  
POWER DISSIPATION  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
V
V
= V  
= V  
= V  
= 5V/V  
= 3.3V/V  
= 5V  
DD1  
DD1  
DD1  
DDP  
DDP  
DDP  
DD2  
= 3.3V  
DD2  
= 5V/V  
= 3.3V  
DD2  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
0
0.02  
0.04  
LOAD CURRENT (A)  
0.06  
0.08  
V
INPUT VOLTAGE (V)  
DD1  
Figure 6. Typical Power Supply Efficiency at 5 V/5 V, 3.3 V/3.3 V, and 5 V/3.3 V  
Figure 9. Typical Short-Circuit Input Current and Power Dissipation vs. VDD1  
Supply Voltage  
450  
V
V
V
= V  
= V  
= V  
= 5V/V  
DD2  
= 5V  
= 3.3V  
= 3.3V  
DD1  
DD1  
DD1  
DDP  
DDP  
DDP  
= 3.3V/V  
DD2  
400  
350  
300  
250  
200  
150  
100  
50  
= 5V/V  
DD2  
90% LOAD  
10% LOAD  
(1ms/DIV)  
0
0
10  
20  
(mA)  
30  
40  
I
ISO  
Figure 7. Typical Total Power Dissipation vs. IISO  
Figure 10. Typical VISO Transient Load Response, 5 V Output,  
10% to 90% Load Step  
35  
30  
25  
20  
15  
10  
5
90% LOAD  
10% LOAD  
V
V
V
= V  
= V  
= V  
= 5V/V  
= 3.3V/V  
= 5V  
DD1  
DD1  
DD1  
DDP  
DDP  
DDP  
DD2  
= 3.3V  
DD2  
= 5V/V  
= 3.3V  
DD2  
0
0
25  
50  
75  
100  
(1ms/DIV)  
I
(mA)  
DDP  
Figure 8. Typical Isolated Output Supply Current, IISO, as a Function of  
External Load at 5 V/5 V, 3.3 V/3.3 V, and 5 V/3.3 V  
Figure 11. Typical Transient Load Response, 3 V Output,  
10% to 90% Load Step  
Rev. 0 | Page 16 of 24  
 
Data Sheet  
ADuM6210/ADuM6211/ADuM6212  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
90% LOAD  
30mA LOAD  
20mA LOAD  
10mA LOAD  
10% LOAD  
(1ms/DIV)  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
OUTPUT VOLTAGE (V)  
Figure 12. Typical Transient Load Response, 5 V Input, 3.3 V Output,  
10% to 90% Load Step  
Figure 15. Relationship Between Output Voltage and Required Input Voltage,  
Under Load, to Maintain >80% Duty Factor in the PWM  
4.970  
4.965  
4.960  
4.955  
4.950  
4.945  
4.940  
500  
V
V
= V  
= V  
= 5V/V  
= 5V/V  
= 5V  
= 3.3V  
DD1  
DD1  
DDP  
DDP  
DD2  
DD2  
450  
400  
350  
300  
250  
200  
150  
100  
0
1
2
3
4
–40  
–20  
0
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
TIME (µs)  
Figure 16. Power Dissipation with a 30 mA Load vs. Temperature  
Figure 13. Typical VISO = 5 V Output Voltage Ripple at 90% Load  
500  
3.280  
V
V
V
= V  
= V  
= V  
= 5V/V  
= 3.3V/V  
= 5V  
DD1  
DD1  
DD1  
DDP  
DDP  
DDP  
DD2  
= 3.3V  
DD2  
450  
400  
350  
300  
250  
200  
150  
100  
= 5V/V  
= 3.3V  
DD2  
2.278  
3.276  
3.274  
3.272  
3.270  
0
1
2
3
4
–40  
–20  
0
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
TIME (µs)  
Figure 17. Power Dissipation with a 20 mA Load vs. Temperature  
Figure 14. Typical VISO = 3.3 V Output Voltage Ripple at 90% Load  
Rev. 0 | Page 17 of 24  
 
ADuM6210/ADuM6211/ADuM6212  
Data Sheet  
10  
20  
15  
10  
5
8
6
5V  
5V  
3.3V  
4
2
0
3.3V  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 18. Typical Supply Current per Input Channel vs. Data Rate  
for 5 V and 3.3 V Operation (No Output Load)  
Figure 21. Typical ADuM6210 VDD1 or ADuM5212 VDD2 Supply Current vs.  
Data Rate for 5 V and 3.3 V Operation  
10  
20  
8
15  
6
10  
4
5V  
5V  
5
2
3.3V  
3.3V  
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 19. Typical Supply Current per Output Channel vs. Data Rate  
for 5 V and 3.3 V Operation (No Output Load)  
Figure 22. Typical ADuM6210 VDD2 or ADuM5212 VDD2 Supply Current vs.  
Data Rate for 5 V and 3.3 V Operation  
20  
10  
8
15  
6
5V  
10  
4
5V  
3.3V  
5
2
0
3.3V  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 20. Typical Supply Current per Output Channel vs. Data Rate  
for 5 V and 3.3 V Operation (15 pF Output Load)  
Figure 23. Typical ADuM6211 VDD1 or VDD2 Supply Current vs. Data Rate for  
5 V and 3.3 V Operation  
Rev. 0 | Page 18 of 24  
 
 
 
 
 
Data Sheet  
ADuM6210/ADuM6211/ADuM6212  
APPLICATIONS INFORMATION  
passive components to bypass the power effectively as well as  
set the output voltage and bypass the core voltage regulator (see  
Figure 24 through Figure 26).  
The dc-to-dc converter section of the ADuM6210/ADuM6211/  
ADuM6212 works on principles that are common to most  
modern power supplies. It has a split controller architecture with  
isolated pulse-width modulation (PWM) feedback. VDDP power is  
supplied to an oscillating circuit that switches current into a chip-  
scale air core transformer. Power transferred to the secondary  
side is rectified and regulated to a value between 3.15 V and  
5.25 V depending on the setpoint supplied by an external  
voltage divider (see Equation 1). The secondary (VISO) side  
controller regulates the output by creating a PWM control signal  
that is sent to the primary (VDDP) side by a dedicated iCoupler  
data channel. The PWM modulates the oscillator circuit to control  
the power being sent to the secondary side. Feedback allows for  
significantly higher power and efficiency.  
PWR  
EN  
8
V
DDP  
9
GND  
P
+
10  
10µF  
0.1µF  
Figure 24. VDDP Bias and Bypass Components  
V
V
SEL  
R2  
13  
12  
11  
30k  
ISO  
GND  
ISO  
+
R1  
10kΩ  
0.1µF  
10µF  
Figure 25. VISO Bias and Bypass Components  
(R1+ R2)  
VISO =1.25 V  
(1)  
R1  
The power supply section of the ADuM6210/ADuM6211/  
ADuM6212 uses a 125 MHz oscillator frequency to efficiently  
pass power through its chip-scale transformers. Bypass capaci-  
tors are required for several operating frequencies. Noise  
suppression requires a low inductance, high frequency  
capacitor; ripple suppression and proper regulation require  
a large value bulk capacitor. These capacitors are most  
conveniently connected between Pin 9 and Pin 10 for VDDP and  
between Pin 11 and Pin 12 for VISO. To suppress noise and reduce  
ripple, a parallel combination of at least two capacitors is required.  
The recommended capacitor values are 0.1 µF and 10 µF for  
where:  
R1 is a resistor between VSEL and GNDISO  
R2 is a resistor between VSEL and VISO  
.
.
Because the output voltage can be adjusted continuously,  
there are an infinite number of operating conditions. This  
data sheet addresses three discrete operating conditions in the  
Specifications tables. Many other combinations of input and  
output voltage are possible; Figure 15 depicts the supported  
voltage combinations at room temperature. Figure 15 was  
generated by fixing the VISO load and decreasing the input  
voltage until the PWM was at 80% duty cycle. Each of the  
curves represents the minimum input voltage that is required  
for operation under this criterion. For example, if the applica-  
tion requires 30 mA of output current at 5 V, the minimum  
input voltage at VDDP is 4.25 V. Figure 15 also illustrates why  
the VDDP = 3.3 V input and VISO = 5 V configuration is not  
recommended. Even at 10 mA of output current, the PWM  
cannot maintain less than 80% duty factor, leaving no margin  
to support load or temperature variations.  
V
DD1. The smaller capacitor must have a low ESR; for example,  
use of an NPO or X5R ceramic capacitor is advised. Ceramic  
capacitors are also recommended for the 10 μF bulk capacitance.  
An additional 10 nF capacitor can be added in parallel if further  
EMI reduction is required.  
Note that the total lead length between the ends of the low ESR  
capacitor and the input power supply pin must not exceed 2 mm.  
V
V
DD2  
DD1  
GND  
P
GND  
ISO  
V
V
/V  
V
V
/V  
OA IA  
IA OA  
Typically, the ADuM6210/ADuM6211/ADuM6212 dissipates  
about 17% more power between room temperature and maxi-  
mum temperature; therefore, the 20% PWM margin covers  
temperature variations.  
/V  
/V  
OB IB  
IB OB  
ADuM6210/  
ADuM6211/  
ADuM6212  
GND  
GND  
ISO  
P
PDIS  
V
V
SEL  
The ADuM6210/ADuM6211/ADuM6212 implement  
undervoltage lockout (UVLO) with hysteresis on the primary  
and secondary side I/O pins as well as the VDDP power input.  
This feature ensures that the converter does not go into  
oscillation due to noisy input power or slow power-on ramp rates.  
V
DDP  
ISO  
GND  
GND  
ISO  
P
BYPASS < 2mm  
Figure 26. Recommended PCB Layout  
In applications involving high common-mode transients, ensure  
that board coupling across the isolation barrier is minimized.  
Furthermore, design the board layout such that any coupling  
that does occur equally affects all pins on a given component side.  
Failure to ensure this can cause voltage differentials between pins,  
exceeding the absolute maximum ratings specified in Table 19,  
thereby leading to latch-up and/or permanent damage.  
PCB LAYOUT  
The ADuM6210/ADuM6211/ADuM6212 digital isolators with  
0.15 W isoPower integrated dc-to-dc converters require no exter-  
nal interface circuitry for the logic interfaces. Power supply  
bypassing with a low ESR capacitor is required, as close to the  
chip pads as possible. The isoPower inputs require several  
Rev. 0 | Page 19 of 24  
 
 
 
 
ADuM6210/ADuM6211/ADuM6212  
Data Sheet  
THERMAL ANALYSIS  
DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY  
The ADuM6210/ADuM6211/ADuM6212 consist of four  
internal die attached to a split lead frame with two die attach  
paddles. For the purposes of thermal analysis, the chip is  
treated as a thermal unit, with the highest junction tempera-  
ture reflected in the θJA from Table 14. The value of θJA is based  
on measurements taken with the parts mounted on a JEDEC  
standard, 4-layer board with fine width traces and still air.  
Under normal operating conditions, the ADuM6210/  
ADuM6211/ADuM6212 can operate at full load across the  
full temperature range without derating the output current.  
Positive and negative logic transitions at the isolator input cause  
narrow (~1 ns) pulses to be sent to the decoder via the transformer.  
The decoder is bistable and is, therefore, either set or reset by  
the pulses, indicating input logic transitions. In the absence of  
logic transitions at the input for more than 1.6 μs, periodic sets  
of refresh pulses that are indicative of the correct input state are  
sent to ensure dc correctness at the output. If the decoder receives  
no internal pulses of more than approximately 6.4 μs, the input  
side is assumed to be unpowered or nonfunctional, in which  
case, the isolator output is forced to a default low state by the  
watchdog timer circuit. This situation should occur in the  
ADuM6210/ADuM6211/ADuM6212 only during power-up  
and power-down operations.  
PROPAGATION DELAY PARAMETERS  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component (see Figure 27).  
The propagation delay to a logic low output may differ from the  
propagation delay to a logic high.  
The limitation on the ADuM6210/ADuM6211/ADuM6212  
magnetic field immunity is set by the condition in which induced  
voltage in the transformer receiving coil is sufficiently large to either  
falsely set or reset the decoder. The following analysis defines  
the conditions under which this can occur. The 3.3 V operating  
condition of the ADuM6210/ADuM6211/ADuM6212 is  
examined because it represents the most susceptible mode of  
operation.  
INPUT (V  
)
50%  
Ix  
tPLH  
tPHL  
OUTPUT (V  
)
50%  
Ox  
Figure 27. Propagation Delay Parameters  
The pulses at the transformer output have an amplitude of >1.5 V.  
The decoder has a sensing threshold of about 0.5 V, thus estab-  
lishing a 0.5 V margin in which induced voltages can be tolerated.  
The voltage induced across the receiving coil is given by  
Pulse width distortion is the maximum difference between these  
two propagation delay values and is an indication of how  
accurately the input signal timing is preserved.  
Channel-to-channel matching refers to the maximum amount  
the propagation delay differs between channels within a single  
ADuM6210/ADuM6211/ADuM6212 component.  
2
V = (−dβ/dt)∑πrn ; n = 1, 2, … , N  
where:  
β is the magnetic flux density (gauss).  
rn is the radius of the nth turn in the receiving coil (cm).  
N is the number of turns in the receiving coil.  
Propagation delay skew refers to the maximum amount the  
propagation delay differs between multiple ADuM6210/  
ADuM6211/ADuM6212 devices operating under the same  
conditions.  
Given the geometry of the receiving coil in the ADuM6210/  
ADuM6211/ADuM6212 and an imposed requirement that  
the induced voltage be, at most, 50% of the 0.5 V margin at the  
decoder, a maximum allowable magnetic field is calculated as  
shown in Figure 28.  
EMI CONSIDERATIONS  
The dc-to-dc converter section of the ADuM6210/ADuM6211/  
ADuM6212 components must, of necessity, operate at a very high  
frequency to allow efficient power transfer through the small  
transformers. This creates high frequency currents that can  
propagate in circuit board ground and power planes, causing  
edge and dipole radiation. Grounded enclosures are recom-  
mended for applications that use these devices. If grounded  
enclosures are not possible, follow good RF design practices  
in the layout of the PCB. See the AN-0971 Application Note for  
the most current PCB layout recommendations for the  
100  
10  
1
0.1  
ADuM6210/ADuM6211/ADuM6212.  
0.01  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 28. Maximum Allowable External Magnetic Flux Density  
Rev. 0 | Page 20 of 24  
 
 
 
 
 
 
Data Sheet  
ADuM6210/ADuM6211/ADuM6212  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 kgauss induces a  
voltage of 0.25 V at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
Similarly, if such an event occurs during a transmitted pulse  
(and is of the worst-case polarity), it reduces the received pulse  
from >1.0 V to 0.75 V, which is still well above the 0.5 V sensing  
threshold of the decoder.  
POWER CONSUMPTION  
The VDDP power supply input provides power only to the  
converter. Power for the data channels is provided through  
V
V
DD1 and VDD2. These power supplies can be connected to  
DDP and VISO, if desired; or the supplies can receive power  
from an independent source. The converter should be treated  
as a standalone supply to be utilized at the discretion of the  
designer.  
The preceding magnetic flux density values correspond to specific  
current magnitudes at given distances from the ADuM6210/  
ADuM6211/ADuM6212 transformers. Figure 29 expresses  
these allowable current magnitudes as a function of frequency  
for selected distances. As shown in Figure 29, the ADuM6210/  
ADuM6211/ADuM6212 are extremely immune and can be  
affected only by extremely large currents operated at high fre-  
quency very close to the component. For the 1 MHz example,  
a 0.5 kA current, placed 5 mm away from the ADuM6210/  
ADuM6211/ADuM6212, is required to affect component  
operation.  
The VDD1 or VDD2 supply current at a given channel of the  
ADuM6210/ADuM6211/ADuM6212 isolator is a function of  
the supply voltage, the data rate of the channel, and the output  
load of the channel.  
For each input channel, the supply current is given by  
I
DDI = IDDI(Q)  
f ≤ 0.5 fr  
f > 0.5 fr  
IDDI = IDDI(D) × (2f fr) + IDDI(Q)  
For each output channel, the supply current is given by  
DDO = IDDO(Q) f ≤ 0.5 fr  
DDO = (IDDO(D) + (0.5 × 10−3) × CL × VDDO) × (2f − fr) + IDDO(Q)  
f > 0.5 fr  
I
1k  
I
DISTANCE = 1m  
100  
where:  
DDI(D), IDDO(D) are the input and output dynamic supply currents  
per channel (mA/Mbps).  
DDI(Q), IDDO(Q) are the specified input and output quiescent  
I
10  
DISTANCE = 100mm  
I
supply currents (mA).  
1
f is the input logic signal frequency (MHz); it is half the input  
data rate, expressed in units of Mbps.  
fr is the input stage refresh rate (Mbps).  
CL is the output load capacitance (pF).  
DISTANCE = 5mm  
0.1  
0.01  
VDDO is the output supply voltage (V).  
1k  
10k  
100k  
1M  
10M  
100M  
To calculate the total VDD1 and VDD2 supply current, the supply  
currents for each input and output channel corresponding to  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 29. Maximum Allowable Current for Various Current-to-ADuM621x  
Spacings  
V
DD1 and VDD2 are calculated and totaled. Figure 18 and  
Figure 19 show per-channel supply currents as a function of  
data rate for an unloaded output condition. Figure 20 shows the  
per-channel supply current as a function of data rate for a 15 pF  
output condition. Figure 21 through Figure 23 show the total  
VDD1 and VDD2 supply current as a function of data rate for  
ADuM6210/ADuM6211/ADuM6212 channel configurations.  
Note that, in combinations of strong magnetic field and high  
frequency, any loops formed by PCB traces can induce error  
voltages that are sufficiently large to trigger the thresholds of  
succeeding circuitry. Exercise care in the layout of such traces  
to avoid this possibility.  
Rev. 0 | Page 21 of 24  
 
 
ADuM6210/ADuM6211/ADuM6212  
Data Sheet  
In the case of dc or unipolar ac voltage, the stress on the insulation  
is significantly lower. This allows operation at higher working  
voltages while still achieving a 50-year service life. The working  
voltages listed in Table 20 can be applied while maintaining the  
50-year minimum lifetime, provided that the voltage conforms to  
either the dc or unipolar ac voltage cases. Any cross-insulation  
voltage waveform that does not conform to Figure 31 or Figure 32  
must be treated as a bipolar ac waveform, and its peak voltage  
must be limited to the 50-year lifetime voltage value listed in  
Table 20.  
INSULATION LIFETIME  
All insulation structures eventually break down when subjected to  
voltage stress over a sufficiently long period. The rate of insulation  
degradation is dependent on the characteristics of the voltage  
waveform applied across the insulation. Analog Devices conducts  
an extensive set of evaluations to determine the lifetime of the  
insulation structure within the ADuM6210/ADuM6211/  
ADuM6212.  
Accelerated life testing is performed using voltage levels that are  
higher than the rated continuous working voltage. Acceleration  
factors for several operating conditions are determined, allowing  
calculation of the time to failure at the working voltage of  
interest. The values shown in Table 20 summarize the peak  
voltages for 50 years of service life in several operating condi-  
tions. In many cases, the working voltage approved by agency  
testing is higher than the 50-year service life voltage. Operation  
at working voltages that are higher than the service life voltage  
listed leads to premature insulation failure.  
RATED PEAK VOLTAGE  
0V  
Figure 30. Bipolar AC Waveform  
RATED PEAK VOLTAGE  
The insulation lifetime of the ADuM6210/ADuM6211/  
ADuM6212 depends on the voltage waveform type imposed  
across the isolation barrier. The iCoupler insulation structure  
degrades at different rates, depending on whether the wave-  
form is bipolar ac, unipolar ac, or dc. Figure 30, Figure 31, and  
Figure 32 illustrate these different isolation voltage waveforms.  
0V  
Figure 31. DC Waveform  
RATED PEAK VOLTAGE  
0V  
Bipolar ac voltage is the most stringent environment. A 50-year  
operating lifetime under the bipolar ac condition determines  
the Analog Devices recommended maximum working voltage.  
NOTES  
1. THE VOLTAGE IS SHOWN AS SINU SOIDAL FOR ILLUSTRATION  
PUPOSES ONLY. IT IS MEANT TO REPRESENT ANY VOLTAGE  
WAVEFORM VARYING BETWEEN 0V AND SOME LIMITING VALUE.  
THE LIMITING VALUE CAN BE POSITIVE OR NEGATIVE,  
BUT THE VOLTAGE CANNOT CROSS 0V.  
Figure 32. Unipolar AC Waveform  
Rev. 0 | Page 22 of 24  
 
 
 
 
Data Sheet  
ADuM6210/ADuM6211/ADuM6212  
OUTLINE DIMENSIONS  
7.50  
7.20  
6.90  
11  
20  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
1
10  
0.25  
0.09  
1.85  
1.75  
1.65  
2.00 MAX  
8°  
4°  
0°  
0.95  
0.75  
0.55  
0.38  
0.22  
0.05 MIN  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.65 BSC  
COMPLIANT TO JEDEC STANDARDS MO-150-AE  
Figure 33. 20-Lead Shrink Small Outline Package [SSOP]  
(RS-20)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Number  
Number  
Maximum Maximum  
Maximum  
of Inputs, of Inputs, Data Rate Propagation  
Pulse Width  
Temperature Package  
Delay, 5 V (ns) Distortion (ns) Range (°C) Description  
Package  
Option  
Model1, 2  
VDDP Side  
VISO Side  
(Mbps)  
ADuM6210ARSZ  
ADuM6210ARSZ-RL7  
ADuM6210BRSZ  
ADuM6210BRSZ-RL7  
ADuM6210CRSZ  
ADuM6210CRSZ-RL7  
ADuM6211ARSZ  
ADuM6211ARSZ-RL7  
ADuM6211BRSZ  
ADuM6211BRSZ-RL7  
ADuM6211CRSZ  
ADuM6211CRSZ-RL7  
ADuM6212ARSZ  
ADuM6212ARSZ-RL7  
ADuM6212BRSZ  
ADuM6212BRSZ-RL7  
ADuM6212CRSZ  
ADuM6212CRSZ-RL7  
2
2
2
2
2
2
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
2
2
2
2
2
2
1
1
75  
75  
40  
40  
15  
15  
75  
75  
40  
40  
15  
15  
75  
75  
40  
40  
15  
15  
40  
40  
3
3
2
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
25  
25  
100  
100  
1
2
40  
40  
3
3
2
1
25  
25  
100  
100  
1
2
40  
40  
3
3
2
1
25  
25  
100  
100  
2
1 The addition of an RL7 suffix designates a 7” tape and reel option.  
2 Z = RoHS Compliant Part.  
Rev. 0 | Page 23 of 24  
 
 
 
 
ADuM6210/ADuM6211/ADuM6212  
NOTES  
Data Sheet  
©2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11042-0-1/13(0)  
Rev. 0 | Page 24 of 24  

相关型号:

ADuM6210BRSZ-RL7

Dual-Channel Isolators with Integrated DC-to-DC Converters
ADI

ADuM6210CRSZ

Dual-Channel Isolators with Integrated DC-to-DC Converters
ADI

ADuM6210CRSZ-RL7

Dual-Channel Isolators with Integrated DC-to-DC Converters
ADI

ADuM6211

Dual-Channel Isolators with Integrated DC-to-DC Converters
ADI

ADuM6211ARSZ

Dual-Channel Isolators with Integrated DC-to-DC Converters
ADI

ADuM6211ARSZ-RL7

Dual-Channel Isolators with Integrated DC-to-DC Converters
ADI

ADuM6211BRSZ

Dual-Channel Isolators with Integrated DC-to-DC Converters
ADI

ADuM6211BRSZ-RL7

Dual-Channel Isolators with Integrated DC-to-DC Converters
ADI

ADuM6211CRSZ

Dual-Channel Isolators with Integrated DC-to-DC Converters
ADI

ADuM6211CRSZ-RL7

Dual-Channel Isolators with Integrated DC-to-DC Converters
ADI

ADuM6212

Dual-Channel Isolators with Integrated DC-to-DC Converters
ADI

ADuM6212ARSZ

Dual-Channel Isolators with Integrated DC-to-DC Converters
ADI