AN-358 [ADI]

Low Cost, Dual/Triple Video Amplifiers; 低成本,双通道/三通道视频放大器
AN-358
型号: AN-358
厂家: ADI    ADI
描述:

Low Cost, Dual/Triple Video Amplifiers
低成本,双通道/三通道视频放大器

视频放大器
文件: 总13页 (文件大小:369K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, Dual/Triple  
Video Amplifiers  
a
AD8072/AD8073  
FEATURES  
PIN CONFIGURATIONS  
Very Low Cost  
8-Lead Plastic (N), SOIC (R), and SOIC (RM) Packages  
Good Video Specifications (RL = 150 )  
Gain Flatness of 0.1 dB to 10 MHz  
0.05% Differential Gain Error  
0.1؇ Differential Phase Error  
Low Power  
3.5 mA/Amplifier Supply Current  
Operates on Single 5 V to 12 V Supply  
High Speed  
100 MHz, –3 dB Bandwidth (G = +2)  
500 V/s Slew Rate  
Fast Settling Time of 25 ns (0.1%)  
Easy to Use  
1
2
3
4
8
7
6
5
OUT1  
–IN1  
+IN1  
+V  
S
OUT2  
–IN2  
+IN2  
–V  
S
AD8072  
TOP VIEW  
(Not to Scale)  
14-Lead Plastic (N), and SOIC (R) Packages  
30 mA Output Current  
Output Swing to 1.3 V of Rails on Single 5 V Supply  
NC  
NC  
NC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT2  
IN2  
+IN2  
APPLICATIONS  
Video Line Driver  
Computer Video Plug-In Boards  
RGB or S-Video Amplifier in Component Systems  
AD8073  
TOP VIEW  
(Not to Scale)  
+V  
V  
S
S
+IN1  
+IN3  
IN3  
OUT3  
IN1  
8
OUT1  
PRODUCT DESCRIPTION  
NC = NO CONNECT  
The AD8072 (dual) and AD8073 (triple) are low cost, current  
feedback amplifiers intended for high volume, cost sensitive  
applications. In addition to being low cost, these amplifiers  
deliver solid video performance into a 150 load while consuming  
only 3.5 mA per amplifier of supply current. Furthermore, the  
AD8073 is three amplifiers in a single 14-lead narrow-body  
SOIC package. This makes it ideal for applications where small  
size is essential. Each amplifier’s inputs and output are acces-  
sible providing added gain setting flexibility.  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
7
6
5
4
3
2
1
0
These devices provide 30 mA of output current per amplifier,  
and are optimized for driving one back terminated video load  
(150 ) each. These current feedback amplifiers feature gain  
flatness of 0.1 dB to 10 MHz while offering differential gain and  
phase error of 0.05% and 0.1°. This makes the AD8072 and  
AD8073 ideal for business and consumer video electronics.  
V
V
R
R
A
= ؎5V  
= 2V p-p  
S
1 dB  
DIV  
O
= R = 1k⍀  
F
L
V
G
= 150⍀  
= ؉2  
0.1 dB  
DIV  
5.4  
5.3  
Both will operate from a single 5 V to 12 V power supply. The  
outputs of each amplifier swing to within 1.3 volts of either sup-  
ply rail to accommodate video signals on a single 5 V supply.  
1  
0.1  
1
10  
100  
500  
FREQUENCY MHz  
The high bandwidth of 100 MHz, 500 V/µs of slew rate, along  
with settling to 0.1% in 25 ns, make the AD8072 and AD8073  
useful in many general purpose, high speed applications where a  
single 5 V or dual power supplies up to 6 V are needed. The  
AD8072 is available in 8-lead plastic DIP, SOIC, and µSOIC  
packages while the AD8073 is available in 14-lead plastic DIP and  
SOIC packages. Both operate over the commercial temperature  
range of 0°C to 70°C. Additionally, the AD8072ARM operates  
over the industrial temperature range of –40°C to +85°C.  
Figure 1. Large Signal Frequency Response  
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
IMPORTANT LINKS for the AD8072_8073*  
Last content update 08/21/2013 05:55 pm  
PARAMETRIC SELECTION TABLES  
DESIGN TOOLS, MODELS, DRIVERS & SOFTWARE  
Analog Filter Wizard 2.0  
Find Similar Products By Operating Parameters  
High Speed Amplifiers Selection Table  
AD8072JN SPICE Macro-Model  
DOCUMENTATION  
DESIGN COLLABORATION COMMUNITY  
AN-692: Universal Precision Op Amp Evaluation Board  
AN-649: Using the Analog Devices Active Filter Design Tool  
MT-051: Current Feedback Op Amp Noise Considerations  
Collaborate Online with the ADI support team and other designers  
about select ADI products.  
MT-059: Compensating for the Effects of Input Capacitance on VFB  
and CFB Op Amps Used in Current-to-Voltage Converters  
Follow us on Twitter: www.twitter.com/ADI_News  
Like us on Facebook: www.facebook.com/AnalogDevicesInc  
A Stress-Free Method for Choosing High-Speed Op Amps  
Current Feedback Amplifiers Part 1: Ask The Applications Engineer-22  
Current Feedback Amplifiers Part 2: Ask The Applications Engineer-23  
Two-Stage Current-Feedback Amplifier  
DESIGN SUPPORT  
FOR THE AD8072  
Submit your support request here:  
Linear and Data Converters  
AN-357: Operational Integrators  
Embedded Processing and DSP  
AN-358: Noise and Operational Amplifier Circuits  
UG-129: Evaluation Board User Guide  
Telephone our Customer Interaction Centers toll free:  
Americas:  
Europe:  
China:  
1-800-262-5643  
00800-266-822-82  
4006-100-006  
1800-419-0108  
8-800-555-45-90  
UG-128: Universal Evaluation Board for Dual High Speed Op Amps in  
SOIC Packages  
FOR THE AD8073  
India:  
Russia:  
MT-057: High Speed Current Feedback Op Amps  
MT-034: Current Feedback (CFB) Op Amps  
Quality and Reliability  
Lead(Pb)-Free Data  
UG-114: Universal Evaluation Board for Triple, High Speed Op Amps  
Offered in 14-Lead SOIC Packages  
Analog Devices in Advanced TV  
Advantiv™ Advanced Television Solutions  
SAMPLE & BUY  
AD8072  
AD8073  
EVALUATION KITS & SYMBOLS & FOOTPRINTS  
View Price & Packaging  
View the Evaluation Boards and Kits page for the AD8072  
Request Evaluation Board  
Request Samples  
View the Evaluation Boards and Kits page for the AD8073  
Symbols and Footprints for the AD8072  
Check Inventory & Purchase  
Find Local Distributors  
Symbols and Footprints for the AD8073  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet.  
Note: Dynamic changes to the content on this page (labeled 'Important Links') does not  
constitute a change to the revision number of the product data sheet.  
This content may be frequently modified.  
AD8072/AD8073–SPECIFICATIONS  
(@ T = 25؇C, V = ؎5 V, R = 150 , unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
A
S
L
AD8072/AD8073  
Typ  
Parameter  
Conditions  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth, Small Signal  
0.1 dB Bandwidth, Small Signal  
Slew Rate  
RF = 1 kΩ  
No Peaking, G = +2  
No Peaking, G = +2  
VO = 4 V Step  
80  
8
100  
10  
500  
MHz  
MHz  
V/µs  
ns  
Settling Time to 0.1%  
VO = 2 V Step  
25  
DISTORTION/NOISE PERFORMANCE RF = 1 kΩ  
Differential Gain  
Differential Phase  
Crosstalk  
f = 3.58 MHz, G = +2  
0.05  
0.1  
60  
3
0.15  
0.3  
%
Degrees  
dB  
nV/Hz  
pA/Hz  
f = 3.58 MHz, G = +2  
f = 5 MHz  
Input Voltage Noise  
Input Current Noise  
f = 10 kHz  
f = 10 kHz ( IIN)  
6
DC PERFORMANCE  
Transimpedance  
Input Offset Voltage  
0.3  
2
MΩ  
mV  
mV  
6
8
TMIN to TMAX  
Offset Drift  
Input Bias Current ( )  
Input Bias Current Drift ( )  
11  
4
12  
µV/°C  
12  
µA  
nA/°C  
INPUT CHARACTERISTICS  
–Input Resistance  
+Input Resistance  
Input Capacitance  
Common-Mode Rejection Ratio  
Input Common-Mode Voltage Range  
120  
1
1.6  
56  
MΩ  
pF  
dB  
V
VCM = –3.8 V to +3.8 V  
3.8  
OUTPUT CHARACTERISTICS  
+Output Voltage Swing  
–Output Voltage Swing  
Output Current  
3
2.25  
3.3  
3
30  
V
V
mA  
mA  
RL = 10 Ω  
Short Circuit Current  
80  
POWER SUPPLY  
Operating Range  
Power Supply Rejection Ratio  
Quiescent Current per Amplifier  
2.5 to  
70  
3.5  
6
V
dB  
mA  
VS = 4 V to 6 V  
5
OPERATING TEMPERATURE RANGE  
0
70  
°C  
Specifications subject to change without notice.  
–2–  
REV. D  
AD8072/AD8073  
(@ T = 25؇C, V = 5 V, R = 150 to 2.5 V, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
A
S
L
AD8072/AD8073  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth, Small Signal  
0.1 dB Bandwidth, Small Signal  
Slew Rate  
RF = 1 kΩ  
No Peaking, G = +2  
No Peaking, G = +2  
VO = 2 V Step  
78  
7.8  
100  
10  
350  
25  
MHz  
MHz  
V/µs  
ns  
Settling Time to 0.1%  
VO = 2 V Step  
DISTORTION/NOISE PERFORMANCE RF = 1 kΩ  
Differential Gain  
Differential Phase  
Crosstalk  
Input Voltage Noise  
Input Current Noise  
f = 3.58 MHz, G = +2, RL to 1.5 V  
f = 3.58 MHz, G = +2, RL to 1.5 V  
f = 5 MHz  
0.1  
0.1  
60  
3
%
Degrees  
dB  
nV/Hz  
pA/Hz  
f = 10 kHz  
f = 10 kHz ( IIN)  
6
DC PERFORMANCE  
Transimpedance  
Input Offset Voltage  
0.25  
1.5  
MΩ  
mV  
4
TMIN to TMAX  
6
mV  
Offset Drift  
Input Bias Current ( )  
Input Bias Current Drift ( )  
9
3
10  
µV/°C  
10  
µA  
nA/°C  
INPUT CHARACTERISTICS  
–Input Resistance  
+Input Resistance  
Input Capacitance  
Common-Mode Rejection Ratio  
Input Common-Mode Voltage Range  
120  
1
1.6  
54  
MΩ  
pF  
dB  
V
VCM = 1.2 V to 3.8 V  
1.2 to 3.8  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Output Voltage Swing  
Output Current  
RL = 150 Ω  
RL = 1 kTMIN to TMAX  
RL = 10 Ω  
1.5 to 3.5  
1.3 to 3.7  
1.3 to 3.7  
1.1 to 3.9  
20  
V
V
mA  
mA  
Short Circuit Current  
60  
POWER SUPPLY  
Operating Range  
Power Supply Rejection Ratio  
Quiescent Current per Amplifier  
2.5 to  
64  
3
6
V
dB  
mA  
VS = 4 V to 6 V  
4.5  
70  
OPERATING TEMPERATURE RANGE  
0
°C  
Specifications subject to change without notice.  
–3–  
REV. D  
AD8072/AD8073  
ABSOLUTE MAXIMUM RATINGS1  
MAXIMUM POWER DISSIPATION  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13.2 V  
The maximum power that can be safely dissipated by the AD8072  
and AD8073 is limited by the associated rise in junction tem-  
perature. The maximum safe junction temperature for plastic  
encapsulated devices is determined by the glass transition tem-  
perature of the plastic, approximately 150°C. Exceeding this  
limit temporarily may cause a shift in parametric performance  
due to a change in the stresses exerted on the die by the package.  
Exceeding a junction temperature of 175°C for an extended  
period can result in device failure.  
Internal Power Dissipation2  
AD8072 8-Lead Plastic (N) . . . . . . . . . . . . . . . . . . 1.3 Watts  
AD8072 8-Lead Small Outline (SO-8) . . . . . . . . . 0.9 Watts  
AD8072 8-Lead µSOIC (RM) . . . . . . . . . . . . . . . . 0.6 Watts  
AD8073 14-Lead Plastic (N) . . . . . . . . . . . . . . . . . 1.6 Watts  
AD8073 14-Lead Small Outline (R) . . . . . . . . . . . 1.0 Watts  
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . . VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . 1.25 V  
Output Short Circuit Duration . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . Observe Power Derating Curves  
Storage Temperature Range  
While the AD8072 and AD8073 are internally short circuit pro-  
tected, this may not be sufficient to guarantee that the maximum  
junction temperature (150°C) is not exceeded under all condi-  
tions. To ensure proper operation, it is necessary to observe the  
maximum power derating curves shown in Figures 2 and 3.  
N, R, RM Packages . . . . . . . . . . . . . . . . . . –65°C to +125°C  
Lead Temperature Range (Soldering 10 sec) . . . . . . . . . 300°C  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Specification is for device in free air:  
2.0  
8-LEAD MINI-DIP PACKAGE  
T
= 150؇C  
J
1.5  
8-Lead Plastic Package: θJA = 90°C/W  
8-LEAD SOIC PACKAGE  
8-Lead SOIC Package: θJA = 140°C/W  
1.0  
0.5  
0
8-Lead µSOIC Package: θJA = 214°C/W  
14-Lead Plastic Package: θJA = 75°C/W  
14-Lead SOIC Package: θJA = 120°C/W  
SOIC  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
50 40 30 20 10  
0
10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE –  
؇C  
*AD8072ARM  
–40°C to +85°C 8-Lead µSOIC  
RM-8  
*AD8072ARM-REEL –40°C to +85°C 13" Reel 8-Lead µSOIC RM-8  
*AD8072ARM-REEL7 –40°C to +85°C 7" Reel 8-Lead µSOIC RM-8  
Figure 2. AD8072 Maximum Power Dissipation vs.  
Temperature  
AD8072JN  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
8-Lead Plastic DIP  
8-Lead SOIC  
13" Reel 8-Lead SOIC SO-8  
7" Reel 8-Lead SOIC SO-8  
N-8  
AD8072JR  
SO-8  
2.5  
AD8072JR-REEL  
AD8072JR-REEL7  
AD8073JN  
AD8073JR  
AD8073JR-REEL  
AD8073JR-REEL7  
T
= 150؇C  
J
14-Lead Plastic DIP  
N-14  
2.0  
14-Lead Narrow SOIC R-14  
13" Reel 14-Lead SOIC R-14  
7" Reel 14-Lead SOIC R-14  
14-LEAD DIP PACKAGE  
1.5  
1.0  
0.5  
*Brand Code: HLA  
14-LEAD SOIC  
50 40 30 20 10  
0
10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE –  
؇C  
Figure 3. AD8073 Maximum Power Dissipation vs.  
Temperature  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD8072/AD8073 feature proprietary ESD protection circuitry, permanent damage  
may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. D  
Typical Performance CharacteristicsAD8072/AD8073  
7
6
5
4
3
2
1
6.1  
6.0  
5.9  
5.8  
0؇C, 25؇C  
V
= ؎5V  
70؇C  
5.7  
5.6  
5.5  
S
R
R
A
= 1k⍀  
F
L
V
= 5V  
= 1k⍀  
= 150TO 2.5V  
= 2  
S
= 150⍀  
= 2  
= 100mV p-p  
R
R
A
F
L
V
0؇C  
V
IN  
V
V
= 100mV p-p  
IN  
70؇C  
0
5.4  
5.3  
25؇C  
0.1  
0.1  
1.0  
10  
FREQUENCY MHz  
100  
1000  
0.1  
1.0  
10  
FREQUENCY MHz  
100  
500  
TPC 1. Frequency Response Over Temperature; VS = 5 V  
TPC 4. 0.1 dB Flatness vs. Frequency Over Temperature;  
VS = 5 V  
MIN = 0.00  
0.00 0.03 0.07 0.08 0.08 0.08 0.09 0.08 0.08 0.07 0.06  
= 5V, R = 1k, R = 150TO 1.5V, A = 2  
MAX = 0.09  
p-p/MAX = 0.09  
7
6
5
4
3
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0.02  
V
S
F
L
V
MIN = 0.00  
MAX = 0.10  
p-p = 0.10  
V
= ؎5V  
= 1k⍀  
= 150⍀  
= 2  
= 100mV p-p  
0.00 0.05 0.09 0.10 0.09 0.08 0.06 0.06 0.05 0.04 0.02  
S
0؇C  
2
1
R
R
A
F
L
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0.02  
V
= 5V, R = 1k, R = 150TO 1.5V, A = 2  
S
F
L
V
70؇C  
V
25؇C  
V
IN  
0
0.1  
0.1  
6TH  
1.0  
10  
FREQUENCY MHz  
100  
1000  
1ST  
2ND  
3RD  
4TH  
5TH  
7TH  
8TH  
9TH 10TH 11TH  
MODULATING RAMP LEVEL IRE  
TPC 2. Frequency Response Over Temperature; VS = 5 V  
TPC 5. Differential Gain and Phase, VS = 5 V  
MIN = 0.03  
MAX = 0.00  
p-p/MAX = 0.03  
6.1  
6.0  
5.9  
5.8  
0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.03 0.03  
0.00  
0.01  
0.02  
V
= ؎5V  
= 1k⍀  
= 150⍀  
= 2  
S
R
R
A
F
L
V
0.03  
5.7  
5.6  
5.5  
V
= 5V  
= 1k⍀  
= 150TO 2.5V  
= 2  
= 100mV p-p  
S
MIN = 0.10  
MAX = 0.00  
p-p = 0.10  
R
R
A
F
L
0.00 0.00 0.00 0.02 0.03 0.05 0.07 0.08 0.10 0.10 0.10  
0.02  
0.00  
V
0؇C, 25؇C  
V
IN  
0.02  
0.04  
0.06  
0.08  
0.10  
0.12  
V
= ؎5V  
= 1k⍀  
= 150⍀  
= 2  
S
70؇C  
R
R
A
F
L
V
5.4  
5.3  
6TH  
1ST  
2ND  
3RD  
4TH  
5TH  
7TH  
8TH  
9TH 10TH 11TH  
0.1  
1.0  
10  
100  
500  
MODULATING RAMP LEVEL IRE  
FREQUENCY MHz  
TPC 3. 0.1 dB Flatness vs. Frequency Over Temperature;  
VS = 5 V  
TPC 6. Differential Gain and Phase, VS = 5 V  
–5–  
REV. D  
AD8072/AD8073  
0
0
1M  
100k  
10k  
AMP 2 OUTPUT  
10  
20  
SOIC PACKAGE  
DRIVE AMP 2  
RECEIVE AMPS 1, 3 AD8073  
RECEIVE AMP 1 AD8072  
OHMS ()  
20  
30  
40  
50  
60  
40  
60  
V
R
A
= 5V, ؎5V  
S
F
V
DEGREES  
= 1k, R = 150⍀  
L
= 2  
80  
V
= 1V p-p  
IN  
100  
120  
140  
160  
180  
1k  
70  
80  
100  
90  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
0.1  
1.0  
10  
FREQUENCY MHz  
100  
500  
FREQUENCY Hz  
TPC 7. Crosstalk vs. Frequency  
TPC 10. Open-Loop Transimpedance vs. Frequency  
40  
3
2
V
= ؎5V  
= 1k⍀  
= 150⍀  
= 2  
S
R
R
A
F
L
V
50  
60  
70  
80  
A
= 1  
V
1
0
V
= 2V p-p  
OUT  
3RD  
HARMONIC  
1  
2  
3  
V
= ؎5V  
= 1k⍀  
= 150⍀  
S
A
= 2  
V
A
= 10  
V
R
R
2ND  
HARMONIC  
F
L
V
= 200mV p-p  
OUT  
4  
5  
6  
90  
A
= 5  
V
100  
0.1  
1
10  
0.1  
1
10  
100  
1k  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 8. Distortion vs. Frequency; VS = 5 V  
TPC 11. Normalized Frequency Response; VS = 5 V  
40  
50  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
7
6
5
4
3
2
1
0
V
= 5V  
= 1k⍀  
= 150TO 2.5V  
= 2  
S
R
R
A
F
3RD  
L
HARMONIC  
V
V
= 2V p-p  
OUT  
60  
70  
80  
V
V
= 5V  
= 2V p-p  
S
1 dB  
DIV  
O
2ND  
R
R
A
= R = 1k  
F
L
V
G
HARMONIC  
0.1 dB  
DIV  
= 150TO 2.5V  
= 2  
90  
5.4  
5.3  
100  
1  
500  
0.1  
1
10  
0.1  
1
10  
100  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 12. Large Signal Frequency Response  
TPC 9. Distortion vs. Frequency; VS = 5 V  
–6–  
REV. D  
AD8072/AD8073  
100  
80  
V
= ؎5V  
= 1k⍀  
= 2  
S
100  
R
A
F
V
60  
10  
1
40  
20  
0
0.1  
0.1  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
500  
FREQUENCY Hz  
FREQUENCY MHz  
TPC 13. Output Resistance vs. Frequency; VS = 5 V  
TPC 15. Noise vs. Frequency; VS = 5 V  
50  
40  
30  
20  
10  
0
V
= ؎5V  
= 1k⍀  
= 150⍀  
= 2  
S
R
R
A
F
L
V
10  
20  
30  
40  
50  
PSRR  
100mV p-p ON TOP  
OF V  
S
؉PSRR  
10  
0
60  
70  
1
10  
100  
1k  
10k  
100k  
0.1  
1
10  
100  
500  
0.02  
FREQUENCY Hz  
FREQUENCY MHz  
TPC 14. Noise vs. Frequency; VS = 5 V  
TPC 16. PSRR vs. Frequency  
5  
1k  
1k⍀  
V
IN  
10  
15  
20  
25  
30  
35  
40  
45  
50  
2V p-p  
V
154⍀  
OUT  
60.4⍀  
150⍀  
154⍀  
55  
0.02  
0.1  
1
10  
100  
500  
FREQUENCY MHz  
TPC 17. CMRR vs. Frequency; VS = 5 V  
–7–  
REV. D  
AD8072/AD8073  
1k  
1k⍀  
V
OUT  
R
L
150⍀  
V
IN  
؉V  
S
+
50⍀  
0.1F  
0.1F  
0.001F  
0.001F  
10F  
10F  
+
V  
S
TPC 18. Test Circuit; Gain = +2  
20ns  
250mV  
250mV  
10ns  
TPC 19. 2 V Step Response; G = +2, VS = 5 V  
TPC 22. 2 V Step Response; G = +2, VS = 2.5 V*  
50mV  
50mV  
20ns  
20ns  
TPC 20. 200 mV Step Response; G = +2, VS = 5 V  
TPC 23. 200 mV Step Response; G = +2, VS = 2.5 V*  
1V  
250mV  
20ns  
20ns  
TPC 21. Sine Response; G = +2, VS = 5 V  
TPC 24. Sine Response; G = +2, VS = 2.5 V*  
*
VS = 2.5 V operation is identical to VS = 5 V single supply operation.  
–8–  
REV. D  
AD8072/AD8073  
APPLICATIONS  
Overdrive Recovery  
On the other hand, the bandwidth of a current feedback ampli-  
fier can be decreased by increasing the feedback resistance. This  
can sometimes be useful where it is desired to reduce the noise  
bandwidth of a system. As a practical matter, the maximum  
value of feedback resistor was found to be 2 k. Figure 5 shows  
the frequency response of an AD8072/AD8073 at a gain of two  
with both feedback and gain resistors equal to 2 k.  
Overdrive of an amplifier occurs when the output and/or input  
range are exceeded. The amplifier must recover from this overdrive  
condition and resume normal operation. As shown in Figure 4,  
the AD8072 and AD8073 recover within 75 ns from positive  
overdrive and 30 ns from negative overdrive.  
Capacitive Load Drive  
When an op amp output drives a capacitive load, extra phase shift  
due to the pole formed by the op amp’s output impedance and  
the capacitor can cause peaking or even oscillation. The top trace  
of Figure 6, RS = 0 , shows the output of one of the amplifiers of  
the AD8072/AD8073 when driving a 50 pF capacitor as shown in  
the schematic of Figure 7.  
V
IN  
V
OUT  
The amount of peaking can be significantly reduced by adding  
a resistor in series with the capacitor. The lower trace of Figure 6  
shows the same capacitor being driven with a 25 resistor  
in series with it. In general, the resistor value will have to be  
experimentally determined, but 10 to 50 is a practical range  
of values to experiment with for capacitive loads of up to a few  
hundred pF.  
1V  
25ns  
Figure 4. Overload Recovery; VS = 5 V, VIN = 8 V p-p,  
RF = 1 k, RL = 150 , G = +2  
R
= 0  
S
Bandwidth vs. Feedback Resistor Value  
R
= 25Ω  
S
The closed-loop frequency response of a current feedback amplifier  
is a function of the feedback resistor. A smaller feedback resistor  
will produce a wider bandwidth response. However, if the feed-  
back resistance becomes too small, the gain flatness can be  
affected. As a practical consideration, the minimum value of  
feedback resistance for the AD8072/AD8073 was found to be  
649 . For resistances below this value, the gain flatness will be  
affected and more significant lot-to-lot variations in device per-  
formance will be noticed. Figure 5 shows a plot of the frequency  
response of an AD8072/AD8073 at a gain of two with both feed-  
back and gain resistors equal to 649 .  
50mV  
20ns  
Figure 6. Capacitive Low Drive  
6.1  
6.0  
5.9  
5.8  
5.7  
7
1k  
1k⍀  
6
R
S
5
4
3
2
R
= 649⍀  
F
V
= 100mV p-p  
C
R
L
1k⍀  
IN  
L
50pF  
50⍀  
0.1 dB  
DIV  
V
A
R
= ؎5V  
= 2  
= 150⍀  
= 0.2V p-p  
S
Figure 7. Capacitive Load Drive Circuit  
V
L
5.6  
5.5  
5.4  
1 dB  
DIV  
V
O
1
0
R
= 2k⍀  
F
0.1  
1
10  
FREQUENCY MHz  
100  
500  
Figure 5. Frequency Response vs. RF  
–9–  
REV. D  
AD8072/AD8073  
Crosstalk  
Layout Considerations  
Crosstalk between internal amplifiers may vary depending on  
which amplifier is being driven and how many amplifiers are  
being driven. This variation typically stems from pin location on  
the package and the internal layout of the IC itself. Table I  
illustrates the typical crosstalk results for a combination of  
conditions.  
The specified high speed performance of the AD8072 and  
AD8073 require careful attention to board layout and compo-  
nent selection. Proper RF design techniques and low parasitic  
component selection are mandatory.  
The PCB should have a ground plane covering all unused portions  
of the component side of the board to provide a low impedance  
ground path. The ground plane should be removed from the  
area near the input pins to reduce stray capacitance.  
Table I. AD8073JR Crosstalk Table (dB)  
Chip capacitors should be used for supply bypassing. One end  
of the capacitor should be connected to the ground plane and  
the other within 1/8 inches of each power pin. An additional  
large (4.7 µF–10 µF) tantalum electrolytic capacitor should be  
connected in parallel, but not necessarily as close to the supply  
pins, to provide current for fast large-signal changes at the  
device’s output.  
Receive Amplifier  
AD8073JR  
1
2
3
1
X
–60  
–56  
2
–60  
–54  
–53  
X
–60  
X
Drive  
Amplifier  
3
–60  
–55  
All Hostile  
–54  
The feedback resistor should be located close to the inverting  
input pin in order to keep the stray capacitance at this node to a  
minimum. Capacitance variations of less than 1 pF at the invert-  
ing input will affect high speed performance.  
CONDITIONS  
VS = 5 V  
RF = 1 k, RL = 150 Ω  
Stripline design techniques should be used for long signal traces  
(greater than approximately 1 inch). These should be designed  
with a characteristic impedance of 50 or 75 and be properly  
terminated at each end.  
AV = 2  
V
OUT = 2 V p-p on Drive Amplifier  
–10–  
REV. D  
AD8072/AD8073  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Plastic DIP  
(N-8)  
14-Lead Plastic DIP  
(N-14)  
0.430 (10.92)  
0.348 (8.84)  
0.795 (20.19)  
0.725 (18.42)  
8
5
14  
1
8
0.280 (7.11)  
0.240 (6.10)  
0.280 (7.11)  
0.240 (6.10)  
7
0.325 (8.25)  
0.300 (7.62)  
1
4
0.325 (8.25)  
0.300 (7.62)  
0.195 (4.95)  
0.115 (2.93)  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
0.210 (5.33)  
MAX  
0.195 (4.95)  
0.115 (2.93)  
0.210 (5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.022 (0.558)  
0.014 (0.356)  
0.100 0.070 (1.77)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
(2.54)  
BSC  
0.045 (1.15)  
8-Lead Plastic SOIC  
(R-8)  
14-Lead SOIC  
(R-14)  
0.1968 (5.00)  
0.1890 (4.80)  
0.3444 (8.75)  
0.3367 (8.55)  
8
1
5
4
14  
8
7
0.1574 (4.00)  
0.1497 (3.80)  
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
0.2440 (6.20)  
0.2284 (5.80)  
1
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.0688 (1.75)  
0.0532 (1.35)  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
0.0196 (0.50)  
0.0099 (0.25)  
x 45°  
x 45°  
0.0098 (0.25)  
0.0040 (0.10)  
0.0098 (0.25)  
0.0040 (0.10)  
8°  
0°  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
SEATING  
PLANE  
0.0098 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0160 (0.41)  
0.0500 (1.27)  
0.0160 (0.41)  
0.0099 (0.25)  
0.0075 (0.19)  
8-Lead SOIC  
(RM-8)  
0.122 (3.10)  
0.114 (2.90)  
8
5
4
0.122 (3.10)  
0.114 (2.90)  
0.199 (5.05)  
0.187 (4.75)  
1
PIN 1  
0.0256 (0.65) BSC  
0.120 (3.05)  
0.112 (2.84)  
0.120 (3.05)  
0.112 (2.84)  
0.043 (1.09)  
0.037 (0.94)  
0.006 (0.15)  
0.002 (0.05)  
33؇  
0.018 (0.46)  
0.008 (0.20)  
27؇  
0.028 (0.71)  
0.016 (0.41)  
0.011 (0.28)  
0.003 (0.08)  
SEATING  
PLANE  
–11–  
REV. D  
AD8072/AD8073  
Revision History  
Location  
Page  
3/02—Data Sheet changed from REV. C to REV. D.  
Edits to Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
10/01—Data Sheet changed from REV. B to REV. C.  
Edits to ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
–12–  
REV. D  

相关型号:

AN-37

LinkSwitch-TN Design Guide
ETC

AN-388

USING SIGMA-DELTA CONVERTERS-PART1
ADI

AN-40

Application Note 40
MICREL

AN-4003

PC POWER SUPPLY DESIGN WITH KA3511
FAIRCHILD

AN-4005

MAFL-009272 Improved rejection circuit 5 - 1002 / 1125 - 1550 MHz
TE

AN-400A

Low-Power Green-Mode PWM Flyback Power Controller
FAIRCHILD

AN-402

Quad 150 MHz Rail-to-Rail Amplifier
ADI

AN-414

Quad 150 MHz Rail-to-Rail Amplifier
ADI

AN-4150

Design Guidelines for Flyback Converters
FAIRCHILD

AN-4151

Half-bridge LLC Resonant Converter
FAIRCHILD

AN-4153

Designing Asymmetric PWM Half-Bridge Converters
FAIRCHILD

AN-417

Quad 150 MHz Rail-to-Rail Amplifier
ADI