AN-940 [ADI]

Low Noise Amplifier Selection Guide for Optimal Noise Performance; 低噪声放大器选型指南最佳噪声性能
AN-940
型号: AN-940
厂家: ADI    ADI
描述:

Low Noise Amplifier Selection Guide for Optimal Noise Performance
低噪声放大器选型指南最佳噪声性能

放大器
文件: 总12页 (文件大小:169K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AN-940  
APPLICATION NOTE  
One Technology Way • P. O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com  
Low Noise Amplifier Selection Guide for Optimal Noise Performance  
by Paul Lee  
Noise from surrounding circuit components must be accounted  
for. At temperatures above absolute zero, all resistances act as  
noise sources due to thermal movement of charge carriers called  
Johnson noise or thermal noise. This noise increases with resis-  
tance, temperature, and bandwidth. Voltage noise is shown in  
Equation 1.  
INTRODUCTION  
When evaluating an amplifiers performance for a low noise  
application, both internal and external noise sources must be  
considered. This application note briefly discusses the funda-  
mentals of both internal and external noise and identifies the  
tradeoffs associated in selecting the optimal amplifier for low  
noise design.  
Vn 4kTBR  
where:  
(1)  
EXTERNAL NOISE SOURCES  
External noise includes any type of external influences, such  
as external components and electrical/electromagnetic interfer-  
ence. Interference is defined as any unwanted signals arriving  
as either voltage or current, at any of the amplifiers terminals  
or induced in its associated circuitry. It can appear as spikes,  
steps, sine waves, or random noise. Interference can come from  
anywhere: machinery, nearby power lines, RF transmitters or  
receivers, computers, or even circuitry within the same equip-  
ment (that is, digital circuits or switching-type power supplies).  
If all interference is eliminated by careful design and/or layout  
of the board, there can still be random noise associated with the  
amplifier and its circuit components.  
Vn is voltage noise.  
k is Boltzmann’s constant (1.38 × 10−23 J/K).  
T is the temperature in Kelvin (K).  
B is the bandwidth in hertz (Hz).  
R is the resistance in ohms (Ω).  
Current noise (noise associated with current flow) is shown in  
Equation 2  
4kTB  
R
In  
where:  
(2)  
In is current noise.  
k is Boltzmann’s constant (1.38 × 10−23 J/K).  
T is the temperature in Kelvin (K).  
B is the bandwidth in hertz (Hz).  
R is the resistance in ohms (Ω).  
Rev. D | Page 1 of 12  
AN-940  
Application Note  
TABLE OF CONTENTS  
Introduction ...................................................................................... 1  
Popcorn Noise ...............................................................................5  
Summing the Noise Sources ........................................................5  
Noise Gain......................................................................................6  
Selecting Low Noise Op Amp..........................................................7  
Conclusion..........................................................................................9  
References........................................................................................ 12  
External Noise Sources .................................................................... 1  
Internal Noise Sources ..................................................................... 3  
Input-Referred Voltage Noise ..................................................... 4  
Input-Referred Current Noise .................................................... 4  
Flicker Noise.................................................................................. 5  
Rev. D | Page 2 of 12  
Application Note  
AN-940  
Resistors  
INTERNAL NOISE SOURCES  
For the purposes of this application note, the resistor noise is  
limited to thermal (Johnson) noise. To keep a low level of this  
type of noise, resistance values should be as low as possible  
because RMS voltage of thermal (Johnson) noise is proportional  
to the square root of the resistor value. For example, a 1 kΩ  
resistor has a thermal noise of ~4 nV/√Hz at room temperature.  
Noise appearing at the amplifiers output is usually measured as  
a voltage. However, it is generated by both voltage and current  
sources. All internal sources are generally referred to the input,  
that is, treated as uncorrelated or independent random noise  
generators in series or in parallel with the inputs of an ideal  
noise-free amplifier (see Figure 1). Because these noise sources  
are considered random and/or exhibit Gaussian distribution  
behavior, it is important to take proper care when summing the  
noise sources as discussed in the Summing the Noise Sources  
section.  
For an in-depth analysis and low noise designs, other types of  
resistor noise should be accounted for, such as contact noise  
and shot noise. A few practical notes follow and they should  
be considered when selecting a resistor.  
If the same noise appears at two or more points in a circuit (that  
is, input bias current cancellation circuitry), the two noise sources  
are correlated noise sources and a correlation coefficient factor  
should be included in the noise analysis. Further analysis of  
correlated noise is limited in this application note as typical  
correlation noise sources are less than 10% to 15% and they  
can usually be disregarded.  
Choose the largest practical wattage resistors, as the contact  
noise is decreased with a larger volume of material.  
Choose low noise resistive element material  
Resistive elements composed of pure metals and/or  
metal alloys in bulk exhibits low noise characteristics.  
Such as Vishay Bulk Metal® foil technology resistors  
(such as, S102C, Z201)  
Wirewound technology resistors composed of metal  
alloys have similar noise characteristics as Bulk Metal  
foil technology, but are much more inductive.  
Metal film technology resistors as thin film are noisier  
than Bulk Metal foil or wirewound technology resistors  
because of significant noise contributions from occlusions,  
surface imperfections, and nonuniform depositions.  
Thick film and carbon composition resistors are the  
nosiest resistors.  
Internal amplifier noise falls into four categories:  
Input-referred voltage noise  
Input-referred current noise  
Flicker noise  
Popcorn noise  
Input-referred voltage noise and input-referred current noise  
are the most common specifications used for amplifier noise  
analysis. They are often specified as an input-referred spectral  
density function or the rms noise contained in Δf bandwidth  
and usually given in terms of nV/√Hz (for voltage noise) or  
pA/√Hz (for current noise). The /√Hz is needed because the  
noise power adds with (is cumulative over) bandwidth (Hz) or  
the voltage and current noise density adds with square root of  
the bandwidth (√Hz) (see Equation 1 and Equation 2).  
en  
Reactances  
Reactances, such as capacitors and inductors, do not generate  
noise, but the noise current through reactances develops noise  
voltage as well as the associated parasitic.  
Practical Tips  
Output noise from a circuit can be reduced by lowering the  
total component resistance or by limiting the circuit bandwidth.  
Temperature reduction is generally not very helpful unless a  
resistor can be made very cold, because noise power is propor-  
tional to the absolute temperature,  
+
+
in  
R
S
in  
T(x) in Kelvin = x°C + 273.15°  
(3)  
R
1
All resistors in a circuit generate noise. The effect of generated  
noise must always be considered. In practice, only resistors in  
the input and feedback paths (typically in high gain configu-  
rations) are likely to have an appreciable effect on total circuit  
noise. The noise can be considered as coming from either  
current sources or voltage sources (whichever is more conve-  
nient in a given circuit).  
R
2
Figure 1. Op Amp Noise Model  
Rev. D | Page 3 of 12  
AN-940  
Application Note  
INPUT-REFERRED VOLTAGE NOISE  
INPUT-REFERRED CURRENT NOISE  
Input-referred voltage noise (en) is typically viewed as a noise  
voltage source.  
Input-referred current noise (in) is typically seen as two noise  
current sources pumping currents through the two differential  
input terminals.  
Voltage noise is the noise specification that is usually empha-  
sized; however, if input impedance levels are high, current noise  
is often the limiting factor in system noise performance. It is  
analogous to offsets, where the input offset voltage often bears  
the blame for output offset, when in reality the bias current  
causes the output offset where input impedances are high.  
Shot noise (sometimes called Schottky noise) is current noise  
due to random distribution of charge carriers in the current flow  
through a potential barrier, such as a PN junction. The shot  
noise current, in, is obtained from the formula  
in 2IBqB  
(4)  
Note the following points about input-referred voltage noise:  
where:  
Op amp voltage noise can be lower than 1 nV/√Hz for the  
highest performance amplifiers.  
IB is the bias current in ampere (A).  
q is the electron charge in coulomb (1.6 × 10−19 C).  
B is the bandwidth in hertz (Hz).  
Although bipolar op amps traditionally have less voltage  
noise than FET op amps, they also have substantially  
greater current noise.  
The current noise of a simple bipolar and JFET op amp is typically  
within 1 dB or 2 dB of the shot noise of the input bias current.  
This specification is not always listed on data sheets.  
Bipolar amplifier noise characteristics are dependent on  
the quiescent current.  
Present day FET op amps are capable of obtaining both low  
current noise and voltage noise similar to bipolar amplifier  
performance, though not as low as the best bipolar input  
amplifiers.  
Note the following points regarding input-referred noise:  
The current noise of typical bipolar transistor op amps,  
such as the OP27, is about 400 fA/√Hz, where IB is 10 nA,  
and does not vary much with temperature except for bias,  
current-compensated amplifiers.  
The current noise of JFET input op amps (such as the  
AD8610: 5 fA/√Hz at IB = 10 pA) while lower, doubles  
for every 20°C chip temperature increase, because JFET  
op amp bias currents double for every 10°C increase.  
Traditional voltage feedback op amps with balanced inputs  
usually have equal (correlated and uncorrelated) current  
noise on both their inverting and noninverting inputs.  
Many amplifiers, especially those amps with input bias  
current cancellation circuits, have considerably larger  
correlated than uncorrelated noise components. Overall,  
noise can be improved by adding an impedance-balancing  
resistor (matching impedances on both positive and  
negative input pins).  
Rev. D | Page 4 of 12  
Application Note  
AN-940  
FLICKER NOISE  
POPCORN NOISE  
The noise of op amps is Gaussian with constant spectral density  
(white noise), over a wide range of frequencies. As frequency  
decreases, the spectral density starts to rise because of the fabri-  
cation process, the IC device layout, and the device type at a  
rate of about 3 dB per octave for CMOS amplifiers, 3.5 dB to  
4.5 dB per octave for bipolar amplifiers, or up to 5 dB per  
octave for JFET amplifiers.  
Popcorn noise (not specified or advertised) is an abrupt shift in  
offset voltage or current lasting for several milliseconds with  
amplitude from several microvolts to hundreds of microvolts.  
This burst or pop is random. Low temperatures and high source  
resistances usually produce the most favorable conditions for  
popcorn noise. Although the root cause of popcorn noise is  
not absolute, both metallic contamination and internal or  
surface defects in the silicon lattice can cause popcorn noise  
in ICs. Although considerable work has been done to reduce  
the sources of popcorn noise in modern wafer fabrication, it  
cannot be eliminated. Further analysis of popcorn noise is  
beyond the scope of this application note.  
This low frequency noise characteristic is known as flicker  
noise or 1/f noise because the noise power spectral density  
goes inversely with frequency (1/f). It has a −1 slope on a log  
plot. The frequency at which an extrapolated −3 dB per octave  
(for a CMOS-type amplifier) spectral density line intersects the  
broadband constant spectral density value is known as the 1/f  
corner frequency and is a figure of merit for the amplifier (see  
Figure 2). Bipolar and JFET amplifiers typically have lower 1/f  
corner frequency than CMOS amplifiers.  
SUMMING THE NOISE SOURCES  
If the noise sources are uncorrelated (that is, one noise signal  
cannot be transformed into the other), the resulting noise is  
not their arithmetic sum, but the square root of the sum of  
their squares.  
100  
2
Vni, TOTAL  
where:  
(en )2 (R in )2 Vn (REX  
)
(5)  
S
EXTRAPOLATED 1/f  
SPECTRAL NOISE DENSITY  
10  
V
ni, TOTAL is the total noise referred-to-input (RTI).  
en is input-referred voltage noise.  
in is input-referred current noise.  
RS is an equivalent source or input resistance to the amplifier.  
Vn (REX) is voltage noise from external circuitry.  
1
EXTRAPOLATED  
CONSTANT SPECTRAL  
NOISE DENSITY  
Note the following:  
1/f CORNER FREQUENCY  
0.1  
Any resistance in the noninverting input has Johnson noise  
and converts current noise to a voltage noise.  
Johnson noise in feedback resistors can be significant in  
high resistance circuits.  
0.1  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 2. Spectral Noise Density  
Figure 3 visually shows the Equation 5 as the summation of  
vectors by using the Pythagorean Theorem.  
V
ni, TOTAL  
V
(R )  
EX  
n
R
× in  
S
en  
Figure 3. Vector Summation of Noise Sources  
Rev. D | Page 5 of 12  
AN-940  
Application Note  
OP AMP  
NOISE MODEL  
COMBINED RTI NOISE  
(V  
)
ni, TOTAL  
en  
+
+
+
+
in  
RESISTOR  
NOISE  
R
S
in  
RESISTOR  
NOISE  
R
R
1
1
RESISTOR  
NOISE  
R
R
2
2
Figure 4. Simplifying the Amplifier Noise Circuit  
In some cases, the noise gain and the signal gain are not equiv-  
alent (see Figure 5). Note that the closed-loop bandwidth is  
determined by dividing the gain bandwidth product (or unity  
gain frequency) by the noise gain of the amplifier circuit.  
NOISE GAIN  
The noises previously discussed can be grouped into referred-  
to-input (RTI) noise of the amplifier circuit. To calculate the  
total output noise of the amplifier circuit, the total combined  
noise on the input must be multiplied by the amplifier circuits  
noise gain. Noise gain is the gain of the amplifiers circuit for  
referred-to-input noise and it is typically used to determine the  
stability of the amplifier circuit.  
NOISE  
SOURCE  
+
CASE 1:  
SIGNAL  
SOURCE  
To simplify the noise gain calculation, the noise sources in the  
simple amplifier circuit in Figure 1 can be reduced to a single  
total RTI noise source (Vni, TOTAL), as shown in Figure 4. It is a  
common practice to lump the total combined RTI noise to the  
noninverting input of the amplifier.  
R
1
R
2
CASE 2:  
SIGNAL  
SOURCE  
Vno, TOTAL GN Vni, TOTAL  
Figure 5. Signal Gain vs. Noise Gain  
where:  
Case 1: In a noninverting configuration, both the signal gain  
and the noise gain are equal to 1 + R1/R2.  
Vno, TOTAL is the total referred-to-output (RTO) noise.  
Vni, TOTAL is the total referred-to-input (RTI) noise  
Case 2: In an inverting configuration, signal gain is equal to  
−(R1/R2), but the noise gain is still equal to 1 + R1/R2.  
R1  
GN 1  
R2  
where:  
GN is the noise gain.  
R1 is the feedback equivalent impedance.  
R2 is the gain setting equivalent impedance.  
Rev. D | Page 6 of 12  
Application Note  
AN-940  
SELECTING LOW NOISE OP AMP  
If an op amp is driven with a source resistance, the equivalent  
noise input becomes the square root of the sum of the squares of  
the amplifiers voltage noise, the voltage generated by the source  
resistance, and the voltage caused by the amplifiers current  
noise flowing through the source impedance.  
An amplifier can be selected where its noise contribution is  
negligible compared to the source resistance by using a figure  
of merit, RS, OP, of an op amp. It can be calculated by using an  
amplifiers noise specification.  
en  
in  
(7)  
RS, OP  
For very low source resistances, the noise generated by the  
source resistance and amplifier current noise contribute  
insignificantly to the total. In this case, the noise at the  
input is effectively only the voltage noise of the op amp.  
where:  
en is input-referred voltage noise.  
in is input-referred current noise.  
If the source resistance is high, the Johnson noise of the source  
resistance may dominate both the op amp voltage noise and the  
voltage due to the current noise. However, note that, because the  
Johnson noise only increases with the square root of the resis-  
tance, while the noise voltage due to the current noise is directly  
proportional to the input impedance, the amplifiers current noise  
always dominates for a high enough value of input impedance.  
When an amplifiers voltage and current noise are high enough,  
there may be no value of input resistance for which Johnson  
noise dominates.  
Figure 6 shows a comparison of the voltage noise density of  
a number of high voltage (up to 44 V) op amps from Analog  
Devices, Inc., vs. RS, OP at 1 kHz. The diagonal line plots the  
Johnson noise associated with resistance.  
100  
f = 1kHz  
JOHNSON NOISE LINE  
OF SOURCE RESISTANCE  
AD8622/AD8624  
OP285  
OP467  
AD8610/  
AD8620  
OP271  
10  
OPx177  
OP275  
OP213  
OPx84  
OP27/OP37  
OP270  
AD743/AD745  
ADA4004  
ADA4075-2  
AD8597/AD8599  
1
AD797  
0.1  
10  
100  
1k  
10k  
100k  
1M  
SOURCE RESISTANCE ()  
Figure 6. Analog Devices Op Amp Noise Plot  
Rev. D | Page 7 of 12  
AN-940  
Application Note  
Similar types of graph can be constructed for a chosen frequency  
from the data in the op amp data sheet (see Figure 8). For example,  
the AD8599 has an input-referred voltage noise of 1.07 nV/√Hz  
and an input-referred current noise of 2.3 pA/√Hz at 1 kHz. The  
2. Locate the given source resistance, such as 1 kꢀ, on the  
Johnson noise line.  
3. Create a horizontal line from the point located in Step 2 to  
the right of the plot.  
R
S, OP is about ~465 ꢀ at 1 kHz. In addition, note the following:  
4. Create a line down and to the left from the point located in  
Step 2) by decreasing one decade of voltage noise per one  
decade of resistance.  
The Johnson noise associated with this device is equivalent  
to a source resistor of about 69.6 ꢀsee Figure 6).  
For a source resistance above ~465 ꢀ, the noise voltage  
produced by the amplifiers current noise exceeds that  
contributed by the source resistance; the amplifiers  
current noise becomes the dominant noise source.  
Any amplifiers below and to the right of the lines are good low  
noise op amps for the design as highlighted in the shade of gray  
in Figure 7.  
For the example shown in Figure 7, the following devices are  
good candidates for the design: AD8597, AD8599, AD797,  
ADA4075-2, ADA4004, OP270, OP27/OP37, AD743/AD745,  
and OP184.  
To use the graph (see Figure 7), follow Step 1 through Step 4.  
1. Typically, the source resistances are known (such as sensor  
impedances). If the resistances are not known, calculate them  
from the surrounding or preceding circuit components.  
100  
f = 1kHz  
JOHNSON NOISE LINE  
LOW NOISE BOUNDRY  
IDEAL OP AMPS FOR A  
LOW NOISE APPLICATION  
AD8622/AD8624  
OP285  
AD8610/  
AD8620  
OP467  
OP271  
10  
OPx177  
STEP 2  
STEP 3  
OP275  
OP213  
OPx84  
OP270  
OP27/OP37  
AD743/AD745  
ADA4004  
ADA4075-2  
AD8597/AD8599  
1
AD797  
STEP 4  
0.1  
10  
100  
1k  
10k  
100k  
1M  
SOURCE RESISTANCE ()  
Figure 7. Selecting Op Amp for Low Noise Design  
Rev. D | Page 8 of 12  
Application Note  
AN-940  
CONCLUSION  
Consider all potential noise sources when evaluating an  
amplifiers noise performance for low noise design.  
For resistive noise sources, use the following rules:  
Restrict bandwidth to only what is necessary.  
Reduce resistor value where possible.  
Use low noise resistors, such as bulk metal foil, wirewound,  
and metal film technology resistors.  
The key noise contribution of an op amp is dependent on  
source resistance as follows:  
RS >> RS, OP; input-referred current noise dominates.  
RS = RS, OP; amplifier noise and resistor noise are equal  
RS << RS, OP; input-referred voltage noise dominates.  
Reduce the number of resistive noise sources where  
possible.  
Use Figure 8 and Figure 9 to assist with the selection of  
an Analog Devices low noise amplifier using the criteria  
described in this application note.  
In summary, reduce or eliminate interference signals by  
Proper layout techniques to reduce parasitics.  
Proper ground techniques, such as isolating digital  
and analog ground.  
For more information on noise, see the article, “Noise Opti-  
mization in Sensor Signal Conditioning Circuit” available at  
http://www.analog.com/noiseoptimization.  
Proper shielding.  
Rev. D | Page 9 of 12  
AN-940  
Application Note  
V
MAX  
(µV)  
SLEW  
RATE  
(V/µs)  
I
/AMP  
MAX  
(mA)  
en  
@
1kHz  
in @  
R
@
1/f  
CORNER  
(Hz)  
I
B
MAX  
(nA)  
CMRR PSRR NUMBER  
OS  
SY  
S, OP  
1kHz  
()  
PART  
V
TCV  
(µV/°C)  
GBP  
(MHz)  
1kHz  
I
SC  
(mA)  
MIN  
(dB)  
MIN  
(dB)  
OF  
AMPS  
SY  
OS  
NUMBER  
(V)  
(nV/Hz) (pA/Hz)  
AD797  
10 TO 36  
9 TO 36  
40  
0.2  
0.8  
8
20  
15  
10.5  
5.7  
0.9  
2
450  
465  
60  
9
900  
200  
80  
52  
120  
120  
120  
120  
1
AD8597/  
AD8599  
120  
10  
1.07  
2.3  
1/  
2
ADA4004-1/  
ADA4004-2/  
ADA4004-4  
10 TO 36  
125  
0.7  
12  
2.7  
2.2  
1.8  
1.2  
1500  
5
90  
25  
110  
110  
1/  
2/  
4
AD8676  
AD8675  
10 TO 36  
10 TO 36  
10 TO 36  
50  
75  
75  
0.2  
0.2  
0.3  
10  
10  
10  
2.5  
2.5  
4
3.4  
2.9  
3.5  
2.8  
2.8  
2.8  
0.3*  
0.3*  
0.3*  
10  
10  
10  
2
2
40  
40  
30  
111  
114  
100  
106  
120  
110  
2
1
AD8671/  
AD8672/  
AD8674  
12  
1/  
2/  
4
ADA4075-2 ±4.5 TO ±18  
1000  
100  
100  
75  
0.3  
0.3  
0.3  
0.2  
6.5  
8
12  
2.8  
17  
2.25  
5.7  
2.8  
3.2  
3.2  
3.2  
1.2  
0.4  
0.4  
0.6  
2333  
8000  
8000  
5333  
5
100  
80  
40  
30  
30  
15  
110  
100  
100  
106  
106  
140  
140  
110  
2
1
1
OP27  
OP37  
8 TO 44  
8 TO 44  
9 TO 36  
2.7  
2.7  
5
40  
5
4.7  
75  
OP270  
OP470  
2.4  
3.25  
20  
2/  
4
AD743  
AD745  
9.6 TO 36  
9.6 TO 36  
3 TO 36  
1000  
500  
2
2
4.5  
20  
2.8  
12.5  
4
10  
10  
2
3.2  
3.2  
3.9  
0.0069  
0.0069  
0.4  
463,768  
463,768  
9750  
50  
50  
10  
0.4  
0.25  
450  
40  
40  
10  
80  
90  
86  
90  
100  
90  
1
1
OP184/  
OP284/  
OP484  
100  
0.2  
4.25  
1/  
2/  
4
AD8655/  
AD8656  
2.7 TO 5.5  
4 TO 36  
250  
150  
0.4  
0.2  
28  
11  
4.5  
3
4
3000  
10  
0.01  
600  
220  
40  
85  
96  
88  
1/  
2
OP113 /  
OP213/  
OP413  
3.4  
1.2  
4.7  
0.4  
11,750  
100  
1/  
2/  
4
SSM2135  
ADA4528-1  
OP285  
4 TO 36  
2.2 TO 5.5  
9 TO 36  
2000  
2.5  
0.002  
1
3.5  
4
0.9  
0.45  
22  
3
5.2  
5.6*  
6
0.5  
0.7*  
0.9  
10,400  
8000  
3
750  
0.4  
30  
30  
30  
65  
87  
135  
80  
90  
130  
85  
2
1
2
1.7  
2.5  
3.5  
NONE  
125  
250  
100  
9
6667  
350  
0.01  
AD8610/  
AD8620  
10 TO 27  
0.5  
25  
60  
6
0.005  
1,200,000  
1000  
90  
100  
1/  
2
OP275  
9 TO 44  
9 TO 36  
9 TO 36  
9 TO 36  
5 TO 36  
1000  
500  
200  
1800  
60  
2
3.5  
1
9
22  
170  
84  
2.5  
2.5  
6
1.5  
0.8  
4000  
7500  
2.24  
8
350  
600  
5
14  
40  
45  
10  
25  
80  
80  
85  
96  
2
4
1
4
OP467  
28  
19  
6.5  
1.3  
6
ADA4627-1  
OP471  
7.500  
2.75  
0.5  
6.1  
6.5  
7.9  
0.0016  
0.4  
3,812,500  
16,250  
39,500  
250  
5
106  
95  
106  
95  
4
8
60  
2
OP1177/  
OP2177/  
OP4177  
0.2  
0.7  
0.2  
10  
120  
120  
1/  
2/  
4
AD8510/  
AD8512/  
AD8513  
9 TO 36  
400  
1
8
20  
2.5  
8
100  
0.08  
70  
86  
86  
1/  
2/  
4
AD8651/  
AD8652  
2.7 TO 5.5  
2.7 TO 5.5  
350  
4
50  
24  
41  
11  
14  
8
8
0.025  
320,000  
10000  
1000  
0.01  
80  
80  
67  
76  
63  
1/  
2
AD8646/  
AD8647/  
AD8648  
2500  
1.8  
1.5  
0.001  
120  
1/  
2(SD)/  
4
AD8605/  
AD8606/  
AD8608  
2.7 TO 5.5  
2.7 TO 6  
300  
2000  
325  
1
1.3  
1
10  
10  
15  
5
5
1.2  
1.05  
0.8  
8
8
0.01  
0.05  
0.4  
800,000  
160,000  
23,750  
500  
3000  
10  
0.001  
0.001  
600  
80  
80  
30  
85  
70  
70  
80  
80  
60  
1/  
2/  
4
AD8691/  
AD8692/  
AD8694  
1(SD)/  
2(SD)/  
4(SD)  
OP162/  
OP262/  
OP462  
2.7 TO 12  
13  
9.5  
1/  
2/  
4
OP07  
6 TO 36  
8 TO 36  
75  
0.3  
0.5  
0.5  
1.5  
0.6  
0.6  
0.6  
24  
0.3  
0.2  
0.2  
12  
4
1.3  
1.3  
2
9.6  
10  
10  
10  
0.12  
0.074  
0.074  
0.05  
80,000  
135,135  
135,135  
200,000  
100  
8
4
1
30  
30  
106  
120  
120  
80  
94  
115  
115  
70  
1
1
1
OP07D  
AD8677  
150  
130  
500  
8 TO 36  
8
1
30  
AD8615/  
AD8616/  
AD8618  
2.7 TO 5.5  
1000  
0.001  
150  
1/  
2/  
4
AD8519/  
AD8529  
2.7 TO 12  
5 TO 16  
1100  
2500  
2
3
8
4
2.9  
3.5  
1.2  
10  
10  
0.4  
0.1  
25,000  
80  
300  
70  
63  
90  
60  
98  
1/  
2
AD8665/  
AD8666/  
AD8668  
1.55  
100,000  
1000  
0.001  
140  
1/  
2/  
4
AD8622/  
AD8624  
4 TO 36  
5 TO 16  
125  
160  
0.5  
4
0.56  
4
0.48  
3.5  
0.250  
1.55  
11  
12  
0.15  
0.1  
73,333  
20  
200  
40  
125  
90  
125  
95  
2/  
4
AD8661/  
AD8662/  
AD8664  
120,000  
1000  
0.001  
140  
1/  
2/  
4
OP97  
4 TO 40  
3 TO 36  
75  
0.3  
0.3  
0.9  
0.7  
0.2  
0.2  
0.38  
0.35  
14  
15  
0.02*  
0.13  
1,166,667  
115,384  
200  
20  
0.15  
11  
10  
30  
110  
110  
110  
120  
1/  
2/  
4
OP297  
OP497  
OP777/  
OP727/  
OP747  
100  
1/  
2/  
4
*REFER TO DEVICE DATA SHEET FOR SPECIFICATION CONDITIONS.  
Figure 8. Analog Devices Low Input Voltage Noise Amplifier Selection Table  
Rev. D | Page 10 of 12  
Application Note  
AN-940  
V
MAX  
(µV)  
SLEW  
RATE  
(V/µs)  
I
/AMP  
MAX  
(mA)  
en  
@
1kHz  
in @  
1kHz  
(fA/Hz)  
R
@
1/f  
CORNER  
(Hz)  
I
B
MAX  
(pA)  
CMRR PSRR NUMBER  
OS  
SY  
S, OP  
1kHz  
()  
PART  
V
TCV  
(µV/°C)  
GBP  
(MHz)  
I
OUT  
(mA)  
MIN  
(dB)  
MIN  
(dB)  
OF  
AMPS  
SY  
OS  
NUMBER  
(V)  
(nV/Hz)  
AD549  
10 TO 36  
10 TO 26  
500  
750  
10  
5
5
3
5
0.7  
35  
16  
0.22  
0.5  
159,090,909  
35,000,000  
100  
-
0.06  
1
20  
90  
76  
90  
80  
1
AD8627/  
AD8626/  
AD8625  
2.5  
0.850  
15*  
1/  
2/  
4
AD8641/  
AD8642  
AD8643  
5 TO 26  
5 TO 36  
750  
2.5  
2
3.5  
1.9  
3
0.290  
0.900  
27.5  
16  
0.5  
0.8  
57,000,000  
20,000,000  
250  
90  
1
12*  
15*  
90  
90  
70  
1/  
2/  
4
AD820/  
AD822/  
AD824  
1000  
3*  
10  
74*  
1/  
2/  
4
ADA4627-1  
AD548K/B  
8 TO 36  
9 TO 36  
10 TO 26  
200  
500  
100  
1
5
19  
1
84  
1.8  
60  
7.500  
0.2  
6.1  
30  
6
1.6  
1.8  
5
3,812,500  
16,666,666  
1,200,000  
250  
700  
5
45  
15  
45  
106  
82  
106  
86  
1
1
10  
10  
AD8610/  
AD8620  
0.5  
25  
3.500  
1000  
90  
100  
1/  
2
ADA4062-2  
ADA4062-4  
8 TO 36  
2500  
4
1.4  
3.3  
0.220  
36  
5
7,200,000  
30  
50  
20  
73  
74  
2/  
4
AD743  
AD745  
AD711C  
9.6 TO 36  
9.6 TO 36  
9 TO 36  
1000  
500  
250  
300  
2
2
5
1
4.5  
20  
4
2.8  
12.5  
20  
10  
10  
3.2  
3.2  
18  
8
6.9  
6.9  
10  
463,768  
463,768  
1,800,000  
800,000  
50  
50  
0.4  
0.25  
25  
40  
40  
25  
80  
80  
90  
86  
85  
90  
100  
86  
1
1
1
2.8  
1.2  
200  
500  
AD8605/  
AD8606/  
AD8608  
2.7 TO 6  
10  
5
10  
1
80  
1/  
2/  
4
OP282/  
OP482  
9 TO 36  
9 TO 36  
8 TO 36  
3000  
1000  
1700  
10  
10  
2
4
3.5  
5
9
9
0.250  
0.250  
1.650  
36  
36  
16  
10  
10  
10  
3,600,000  
3,600,000  
1,600,000  
40  
40  
100  
20  
10  
10  
28  
70  
70  
80  
110  
92  
2/  
4
AD8682  
AD8684  
2/  
4
ADA4000-1  
ADA4000-2  
ADA4000-4  
20  
100  
40  
82  
1/  
2/  
4
OP97/  
OP297/  
OP497  
4 TO 40  
75*  
0.3*  
0.9*  
0.2*  
0.38*  
14*  
20*  
1,166,667*  
200*  
150  
10  
110*  
110*  
1/  
2/  
4
AD8651/  
AD8652  
2.7 TO 5.5  
2.7 TO 6  
350  
500  
4
50  
24  
41  
12  
14  
8
25  
50  
320,000  
200,000  
10,000  
1000  
10  
1
80  
80  
80  
76  
70  
1/  
2
AD8615/  
AD8616/  
AD8618  
1.5  
1.3  
10  
150  
1/  
2/  
4
AD8691/  
AD8692/  
AD8694  
2.7 TO 6  
5 TO 6  
2000  
160  
1.3  
4
10  
4
5
1.05  
1.55  
8
50  
160,000  
120,000  
3000  
1000  
1
1
80  
70  
90  
80  
95  
1(SD)/  
2(SD)/  
4(SD)  
AD8661/  
AD8662/  
AD8664  
3.5  
12  
100  
140  
1/  
2/  
4
OP07  
6 TO 36  
5 TO 36  
75  
0.3  
0.5  
0.6  
0.3  
4
9.6  
11  
120  
150  
80,000  
73,333  
100  
20  
4000  
200  
30  
40  
106  
125  
94  
1
AD8622/  
AD8624  
125  
0.56  
0.48  
0.250  
125  
2/  
4
*REFER TO DEVICE DATA SHEET FOR SPECIFICATION CONDITIONS.  
Figure 9. Analog Devices Low Input Current Noise Amplifier Selection Table  
Rev. D | Page 11 of 12  
AN-940  
Application Note  
REFERENCES  
Analog Devices, Inc., AN-280 Application Note Mixed Signal Circuit Techniques.  
Barrow, J., and Paul Brokaw. 1989. “Grounding for Low- and High-Frequency Circuits.” Analog Dialogue. Analog Devices, Inc. (23-3).  
Bennett, W. R. 1960. Electrical Noise. New York: McGraw-Hill.  
Bowers, Derek F. 1989. “Minimizing Noise in Analog Bipolar Circuit Design.” IEEE Press.  
Brockman, Don and Arnold Williams. AN-214 Application Note Ground Rules for High-Speed Circuits. Analog Devices, Inc.  
Brokaw, Paul. 2000. AN-202 Application Note An IC Amplifier User’s Guide to Decoupling, Grounding, and Making Things Go Right for a  
Change. Analog Devices, Inc. (February).  
Brokaw, Paul and Jeff Barrow. AN-345 Application Note Grounding for Low- and High-Frequency Circuits. Analog Devices, Inc.  
Bryant, James Bryant and Lew Counts. 1990. “Op Amp Issues–Noise ” Analog Dialogue. Analog Devices Inc. (24–2).  
Freeman, J. J. 1958. Principles of Noise. New York: John Wiley & Sons, Inc.  
Gupta, Madhu S., ed., 1977. Electrical Noise: Fundamentals & Sources. New York: IEEE Press. Collection of classical reprints.  
Hernik, Yuval and Belman, Michael. Linearity and Noise Capabilities of Ultra High Precision Bulk Metal® Foil Resistors. Vishay Intertechnology,  
Inc. (February 2010).  
Johnson, J. B. 1928. “Thermal Agitation of Electricity in Conductors” (Physical Review 32): 97–109.  
Motchenbacher, C. D., and J. A. Connelly. 1993. Low-Noise Electronic Design. New York: John Wiley & Sons, Inc.  
Nyquist, H. 1928. “Thermal Agitation of Electric Charge in Conductors” (Physical Review 32): 110–113.  
Rice, S.O. 1944. “Math Analysis for Random Noise” Bell System Technical Journal (July): 282–332.  
Rich, Alan. 1982. “Understanding Interference-Type Noise.” Analog Dialogue. Analog Devices Inc., (16–3).  
Rich, Alan. 1983. “Shielding and Guarding.” Analog Dialogue. Analog Devices Inc. (17–1).  
Ryan, Al and Tim Scranton. 1984. “DC Amplifier Noise Revisited.” Analog Dialogue. Analog Devices, Inc., (18–1).  
Schottky, W. 1926. “Small-Shot Effect and Flicker Effect.” (Phys. Rev. 28): 74–103.  
Van Der Ziel, A. 1954. Noise. Englewood Cliffs, NJ: Prentice-Hall, Inc.  
Vishay Intertechnology, Inc. AN0003 Application Note Audio Noise Reduction Through the Use of Bulk Metal® Foil Resistors-“Hear the  
Difference”.  
©2007–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
AN07053-0-7/11(D)  
Rev. D | Page 12 of 12  

相关型号:

AN-960

RS-485/RS-422 CIRCUIT IMPLEMENTATION GUIDE
ADI

AN-9717

Dual BCM PFC Controller
FAIRCHILD

AN-9719

Power Switch (FPS?) FSL1x7 to Low- Power Supplies
FAIRCHILD

AN-9720

Power Path Implementation Tradeoffs
FAIRCHILD

AN-9721

Li-Ion Battery Charging Basics
FAIRCHILD

AN-9729

LED Application Design Guide Using Half-Bridge LLC Resonant Converter for 100W Street Lighting
FAIRCHILD

AN-9730

LED Application Design Guide Using Half-Bridge LLC Resonant Converter for 160W Street Lighting
FAIRCHILD

AN-9731

LED Application Design Guide Using BCM Power Factor Correction (PFC) Controller for 100W Lighting System
FAIRCHILD

AN-9732

LED Application Design Guide Using BCM Power Factor Correction (PFC) Controller for 200W Lighting System
FAIRCHILD

AN-9735

Design Guideline for LED Lamp Control Using Primary-Side Regulated Flyback Converter, FAN103 & FSEZ1317
FAIRCHILD

AN-9736

Design Guideline of AC-DC Converter Using FL6961, FL6300A for 70W LED Lighting
FAIRCHILD

AN-9737

Design Guideline for Single-Stage Flyback AC-DC Converter Using FL6961 for LED Lighting
FAIRCHILD