ASDATA2 [ADI]

4 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec; 4 ADC / DAC 8与PLL , 192千赫, 24位编解码器
ASDATA2
型号: ASDATA2
厂家: ADI    ADI
描述:

4 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
4 ADC / DAC 8与PLL , 192千赫, 24位编解码器

解码器 编解码器
文件: 总32页 (文件大小:485K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4 ADC/8 DAC with PLL,  
192 kHz, 24-Bit Codec  
AD1939  
Data Sheet  
FEATURES  
GENERAL DESCRIPTION  
PLL generated or direct master clock  
Low EMI design  
112 dB DAC/107 dB ADC dynamic range and SNR  
−94 dB THD + N  
Single 3.3 V supply  
Tolerance for 5 V logic inputs  
Supports 24-bits and 8 kHz to 192 kHz sample rates  
Differential ADC input  
Differential DAC output  
Log volume control with autoramp function  
SPI controllable for flexibility  
Software-controllable clickless mute  
Software power-down  
The AD1939 is a high performance, single-chip codec that  
provides four analog-to-digital converters (ADCs) with  
differential input, and eight digital-to-analog converters (DACs)  
with differential output using the Analog Devices, Inc. patented  
multibit sigma-delta (Σ-Δ) architecture. An SPI port is included,  
allowing a microcontroller to adjust volume and many other  
parameters. The AD1939 operates from 3.3 V digital and analog  
supplies. The AD1939 is available in a 64-lead (differential  
output) LQFP package.  
The AD1939 is designed for low EMI. This consideration is  
apparent in both the system and circuit design architectures.  
By using the on-board PLL to derive the master clock from the  
LR clock or from an external crystal, the AD1939 eliminates  
the need for a separate high frequency master clock and can  
also be used with a suppressed bit clock. The DACs and ADCs  
are designed using the latest Analog Devices continuous time  
architectures to further minimize EMI. By using 3.3 V supplies,  
power consumption is minimized, further reducing emissions.  
Right-justified, left-justified, I2S, and TDM modes  
Master and slave modes up to 16-channel input/output  
64-lead LQFP package  
Qualified for automotive applications  
APPLICATIONS  
Automotive audio systems  
Home Theater Systems  
Set-top boxes  
Digital audio effects processors  
FUNCTIONAL BLOCK DIAGRAM  
DIGITAL AUDIO  
INPUT/OUTPUT  
AD1939  
SERIAL DATA PORT  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
SDATA  
OUT  
SDATA  
IN  
ADC  
ADC  
ADC  
ADC  
DIGITAL  
FILTER  
AND  
VOLUME  
CONTROL  
ANALOG  
AUDIO  
INPUTS  
CLOCKS  
ANALOG  
AUDIO  
OUTPUTS  
DIGITAL  
FILTER  
TIMING MANAGEMENT  
AND CONTROL  
(CLOCK AND PLL)  
SPI  
PRECISION  
VOLTAGE  
REFERENCE  
CONTROL PORT  
CONTROL DATA  
INPUT/OUTPUT  
Figure 1.  
Rev. E  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2006–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD1939  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Test Conditions............................................................................. 3  
Analog Performance Specifications ........................................... 3  
Crystal Oscillator Specifications................................................. 4  
Digital Input/Output Specifications........................................... 5  
Power Supply Specifications........................................................ 5  
Digital Filters................................................................................. 6  
Timing Specifications .................................................................. 6  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 11  
Theory of Operation ...................................................................... 13  
Analog-to-Digital Converters (ADCs).................................... 13  
Digital-to-Analog Converters (DACs).................................... 13  
Clock Signals............................................................................... 13  
Reset and Power-Down ............................................................. 14  
Serial Control Port ..................................................................... 14  
Power Supply and Voltage Reference....................................... 15  
Serial Data Ports—Data Format............................................... 15  
Time-Division Multiplexed (TDM) Modes............................ 15  
Daisy-Chain Mode..................................................................... 19  
Control Registers ............................................................................ 24  
Definitions................................................................................... 24  
PLL and Clock Control Registers............................................. 24  
DAC Control Registers.............................................................. 25  
ADC Control Registers.............................................................. 27  
Additional Modes....................................................................... 29  
Application Circuits ....................................................................... 30  
Outline Dimensions....................................................................... 31  
Ordering Guide .......................................................................... 31  
Automotive Products................................................................. 31  
REVISION HISTORY  
2/13—Rev. D to Rev. E  
Changes to Ordering Guide.......................................................... 31  
6/07—Rev. 0 to Rev. A  
Change to tCLH Parameter, Table 7 ...................................................7  
Changes to Serial Control Port Section........................................14  
Deleted I2C References.......................................................Universal  
Change to Figure 1 ............................................................................1  
Changes to Figure 2...........................................................................9  
Changes to Table 10 ..........................................................................9  
Changes to Table 11 ....................................................................... 14  
Changes to Table 12 ....................................................................... 16  
Changes to Figure 24 and Figure 25............................................. 22  
Changes to Table 13 ....................................................................... 23  
Change to Figure 26 ....................................................................... 23  
Changes to Table 15 and Table 16 ................................................ 24  
Changes to Figure 27 and Figure 28............................................. 29  
Change to Figure 30 ....................................................................... 30  
Updated Outline Dimensions....................................................... 31  
Changes to Ordering Guide.......................................................... 31  
7/11—Rev. C to Rev. D  
Changes to Pin 15, Pin 18, Pin 19, and Pin 20 Descriptions ...... 9  
Changes to Pin 26 and Pin 27 Descriptions................................ 10  
9/10—Rev. B to Rev. C  
Added Qualified for Automotive Applications to the Features  
Section................................................................................................ 1  
Changed Case Temperature from 130°C to 125°C ...................... 4  
Changed TA from −40°C to +130°C to −40°C to +105°C ........... 5  
Changed TA from −40°C to +130°C to −40°C to +105°C ........... 7  
Changes to Ordering Guide .......................................................... 31  
Added Automotive Products Section .......................................... 31  
7/06—Revision 0: Initial Version  
3/10—Rev. A to Rev. B  
Rev. E | Page 2 of 32  
 
Data Sheet  
AD1939  
SPECIFICATIONS  
TEST CONDITIONS  
Performance of all channels is identical, exclusive of the interchannel gain mismatch and interchannel phase deviation specifications.  
Supply voltages (AVDD, DVDD)  
Temperature range1  
3.3 V  
As specified in Table 1 and Table 2  
Master clock  
12.288 MHz (48 kHz fS, 256 × fS mode)  
Input sample rate  
48 kHz  
Measurement bandwidth  
Word width  
20 Hz to 20 kHz  
24 bits  
Load capacitance (digital output)  
Load current (digital output)  
Input voltage high  
20 pF  
1 mA or 1.5 kΩ to ½ DVDD supply  
2.0 V  
0.8 V  
Input voltage low  
1 Functionally guaranteed at −40°C to +125°C case temperature.  
ANALOG PERFORMANCE SPECIFICATIONS  
Specifications guaranteed at an ambient temperature of 25°C.  
Table 1.  
Parameter  
Conditions/Comments  
Min  
Typ  
Max  
Unit  
ANALOG-TO-DIGITAL CONVERTERS  
ADC Resolution  
All ADCs  
24  
Bits  
Dynamic Range  
20 Hz to 20 kHz, −60 dB input  
No Filter (RMS)  
96  
98  
102  
105  
−96  
1.9  
dB  
dB  
dB  
V rms  
%
With A-Weighted Filter (RMS)  
Total Harmonic Distortion + Noise  
Full-Scale Input Voltage (Differential)  
Gain Error  
−1 dBFS  
−87  
−10  
+10  
Interchannel Gain Mismatch  
Offset Error  
Gain Drift  
Interchannel Isolation  
CMRR  
−0.25  
−10  
+0.25  
+10  
dB  
0
mV  
ppm/°C  
dB  
dB  
dB  
100  
−110  
55  
100 mV rms, 1 kHz  
100 mV rms, 20 kHz  
55  
Input Resistance  
14  
kΩ  
Input Capacitance  
10  
pF  
Input Common-Mode Bias Voltage  
DIGITAL-TO-ANALOG CONVERTERS  
Dynamic Range  
1.5  
V
20 Hz to 20 kHz, −60 dB input  
No Filter (RMS)  
102  
105  
107  
110  
112  
dB  
dB  
dB  
With A-Weighted Filter (RMS)  
With A-Weighted Filter (Average)  
Total Harmonic Distortion + Noise  
0 dBFS  
Two channels running  
Eight channels running  
−94  
−86  
dB  
dB  
−76  
Full-Scale Output Voltage  
Gain Error  
Interchannel Gain Mismatch  
Offset Error  
Gain Drift  
Interchannel Isolation  
1.76 (4.96)  
V rms (V p-p)  
%
dB  
mV  
ppm/°C  
dB  
−10  
−0.2  
−25  
−30  
+10  
+0.2  
+25  
+30  
−6  
100  
Rev. E | Page 3 of 32  
 
 
 
 
AD1939  
Data Sheet  
Parameter  
Conditions/Comments  
Min  
Typ  
0
0.375  
95  
Max  
0.6  
Unit  
Degrees  
dB  
dB  
dB  
Interchannel Phase Deviation  
Volume Control Step  
Volume Control Range  
De-emphasis Gain Error  
Output Resistance at Each Pin  
REFERENCE  
100  
Internal Reference Voltage  
External Reference Voltage  
Common-Mode Reference Output  
REGULATOR  
FILTR pin  
FILTR pin  
CM pin  
1.50  
1.50  
1.50  
V
V
V
1.32  
1.68  
Input Supply Voltage  
Regulated Output Voltage  
VSUPPLY pin  
VSENSE pin  
4.5  
3.19  
5
3.37  
5.5  
3.55  
V
V
Specifications measured at a case temperature of 125°C.  
Table 2.  
Parameter  
Conditions/Comments  
Min  
Typ  
Max  
Unit  
ANALOG-TO-DIGITAL CONVERTERS  
ADC Resolution  
All ADCs  
24  
Bits  
Dynamic Range  
20 Hz to 20 kHz, −60 dB input  
No Filter (RMS)  
93  
96  
102  
104  
−96  
1.9  
dB  
dB  
dB  
V rms  
%
With A-Weighted Filter (RMS)  
Total Harmonic Distortion + Noise  
Full-Scale Input Voltage (Differential)  
Gain Error  
−1 dBFS  
−87  
−10  
+10  
Interchannel Gain Mismatch  
Offset Error  
−0.25  
−10  
+0.25  
+10  
dB  
mV  
0
DIGITAL-TO-ANALOG CONVERTERS  
Dynamic Range  
20 Hz to 20 kHz, −60 dB input  
No Filter (RMS)  
101  
104  
107  
110  
112  
dB  
dB  
dB  
With A-Weighted Filter (RMS)  
With A-Weighted Filter (Average)  
Total Harmonic Distortion + Noise  
0 dBFS  
Two channels running  
Eight channels running  
−94  
−86  
dB  
dB  
−70  
Full-Scale Output Voltage  
Gain Error  
Interchannel Gain Mismatch  
Offset Error  
1.76 (4.96)  
V rms (V p-p)  
%
dB  
mV  
−10  
−0.2  
−25  
−30  
+10  
+0.2  
+25  
+30  
−6  
Gain Drift  
ppm/°C  
REFERENCE  
Internal Reference Voltage  
External Reference Voltage  
Common-Mode Reference Output  
REGULATOR  
FILTR pin  
FILTR pin  
CM pin  
1.50  
1.50  
1.50  
V
V
V
1.32  
1.68  
Input Supply Voltage  
Regulated Output Voltage  
VSUPPLY pin  
VSENSE pin  
4.5  
3.2  
5
3.43  
5.5  
3.65  
V
V
CRYSTAL OSCILLATOR SPECIFICATIONS  
Table 3.  
Parameter  
Min  
Typ  
Max  
Unit  
Transconductance  
3.5  
mmhos  
Rev. E | Page 4 of 32  
 
 
 
Data Sheet  
AD1939  
DIGITAL INPUT/OUTPUT SPECIFICATIONS  
−40°C < TA < +105°C, DVDD = 3.3 V 10%.  
Table 4.  
Parameter  
Conditions/Comments  
Min  
2.0  
Typ  
Max  
Unit  
V
High Level Input Voltage (VIH)  
MCLKI/XI pin  
2.2  
V
Low Level Input Voltage (VIL)  
Input Leakage  
0.8  
10  
10  
V
IIH @ VIH = 2.4 V  
IIL @ VIL = 0.8 V  
IOH = 1 mA  
µA  
µA  
V
V
pF  
High Level Output Voltage (VOH)  
Low Level Output Voltage (VOL)  
Input Capacitance  
DVDD − 0.60  
IOL = 1 mA  
0.4  
5
POWER SUPPLY SPECIFICATIONS  
Table 5.  
Parameter  
SUPPLIES  
Voltage  
Conditions/Comments  
Min  
Typ  
Max  
Unit  
DVDD  
AVDD  
VSUPPLY  
3.0  
3.0  
4.5  
3.3  
3.3  
5.0  
3.6  
3.6  
5.5  
V
V
V
Digital Current  
Normal Operation  
Master clock = 256 fS  
fS = 48 kHz  
56  
65  
95  
2.0  
mA  
mA  
mA  
mA  
fS = 96 kHz  
fS = 192 kHz  
fS = 48 kHz to 192 kHz  
Power-Down  
Analog Current  
Normal Operation  
Power-Down  
74  
23  
mA  
mA  
DISSIPATION  
Operation  
Master clock = 256 fS, 48 kHz  
All Supplies  
Digital Supply  
Analog Supply  
429  
185  
244  
83  
mW  
mW  
mW  
mW  
Power-Down, All Supplies  
POWER SUPPLY REJECTION RATIO  
Signal at Analog Supply Pins  
1 kHz, 200 mV p-p  
20 kHz, 200 mV p-p  
50  
50  
dB  
dB  
Rev. E | Page 5 of 32  
 
 
AD1939  
Data Sheet  
DIGITAL FILTERS  
Table 6.  
Parameter  
Mode  
Factor  
Min  
Typ  
Max  
Unit  
ADC DECIMATION FILTER  
Pass Band  
All modes, typical @ 48 kHz  
0.4375 fS  
21  
0.015  
kHz  
dB  
Pass-Band Ripple  
Transition Band  
Stop Band  
Stop-Band Attenuation  
Group Delay  
0.5 fS  
0.5625 fS  
24  
27  
kHz  
kHz  
dB  
79  
35  
22.9844/fS  
479  
22  
µs  
DAC INTERPOLATION FILTER  
Pass Band  
48 kHz mode, typical @ 48 kHz  
96 kHz mode, typical @ 96 kHz  
192 kHz mode, typical @ 192 kHz  
48 kHz mode, typical @ 48 kHz  
96 kHz mode, typical @ 96 kHz  
192 kHz mode, typical @ 192 kHz  
48 kHz mode, typical @ 48 kHz  
96 kHz mode, typical @ 96 kHz  
192 kHz mode, typical @ 192 kHz  
48 kHz mode, typical @ 48 kHz  
96 kHz mode, typical @ 96 kHz  
192 kHz mode, typical @ 192 kHz  
48 kHz mode, typical @ 48 kHz  
96 kHz mode, typical @ 96 kHz  
192 kHz mode, typical @ 192 kHz  
48 kHz mode, typical @ 48 kHz  
96 kHz mode, typical @ 96 kHz  
192 kHz mode, typical @ 192 kHz  
0.4535 fS  
0.3646 fS  
0.3646 fS  
kHz  
kHz  
kHz  
dB  
dB  
dB  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
dB  
70  
Pass-Band Ripple  
Transition Band  
Stop Band  
0.01  
0.05  
0.1  
0.5 fS  
0.5 fS  
0.5 fS  
0.5465 fS  
0.6354 fS  
0.6354 fS  
24  
48  
96  
26  
61  
122  
Stop-Band Attenuation  
Group Delay  
70  
70  
70  
dB  
dB  
µs  
µs  
25/fS  
11/fS  
8/fS  
521  
115  
42  
µs  
TIMING SPECIFICATIONS  
−40°C < TA < +105°C, DVDD = 3.3 V 10%.  
Table 7.  
Parameter  
Condition  
Comments  
Min  
Max Unit  
INPUT MASTER CLOCK (MCLK) AND  
RESET  
tMH  
MCLK duty cycle  
MCLK frequency  
DAC/ADC clock source = PLL clock @ 256 fS, 384 40  
fS, 512 fS, and 768 fS  
60  
60  
%
%
tMH  
DAC/ADC clock source = direct MCLK @ 512 fS  
(bypass on-chip PLL)  
40  
fMCLK  
fMCLK  
tPDR  
PLL mode, 256 fS reference  
Direct 512 fS mode  
6.9  
13.8 MHz  
27.6 MHz  
ns  
Low  
15  
tPDRR  
Recovery  
Reset to active output  
4096  
40  
tMCLK  
PLL  
Lock Time  
256 fS VCO Clock, Output Duty Cycle,  
MCLKO/XO Pin  
MCLK and LRCLK input  
10  
60  
ms  
%
Rev. E | Page 6 of 32  
 
 
Data Sheet  
AD1939  
Parameter  
Condition  
Comments  
Min  
Max Unit  
SPI PORT  
See Figure 11  
tCCH  
tCCL  
CCLK high  
CCLK low  
35  
35  
ns  
ns  
fCCLK  
tCDS  
tCDH  
tCLS  
CCLK frequency  
CIN setup  
CIN hold  
CLATCH setup  
CLATCH hold  
CLATCH high  
COUT enable  
COUT delay  
COUT hold  
COUT tristate  
fCCLK = 1/tCCP; only tCCP shown in Figure 11  
To CCLK rising  
From CCLK rising  
10  
MHz  
ns  
ns  
10  
10  
10  
10  
10  
To CCLK rising  
ns  
tCLH  
From CCLK falling  
ns  
tCLHIGH  
Not shown in Figure 11  
From CCLK falling  
From CCLK falling  
From CCLK falling, not shown in Figure 11  
From CCLK falling  
ns  
tCOE  
tCOD  
tCOH  
tCOTS  
30  
30  
ns  
ns  
ns  
ns  
30  
30  
DAC SERIAL PORT  
See Figure 24  
tDBH  
tDBL  
tDLS  
tDLH  
tDLS  
tDDS  
tDDH  
DBCLK high  
DBCLK low  
Slave mode  
Slave mode  
To DBCLK rising, slave mode  
From DBCLK rising, slave mode  
From DBCLK falling, master mode  
To DBCLK rising  
10  
10  
10  
5
−8  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DLRCLK setup  
DLRCLK hold  
DLRCLK skew  
DSDATA setup  
DSDATA hold  
+8  
From DBCLK rising  
ADC SERIAL PORT  
See Figure 25  
tABH  
tABL  
tALS  
tALH  
tALS  
tABDD  
ABCLK high  
ABCLK low  
ALRCLK setup  
ALRCLK hold  
ALRCLK skew  
ASDATA delay  
Slave mode  
Slave mode  
To ABCLK rising, slave mode  
From ABCLK rising, slave mode  
From ABCLK falling, master mode  
From ABCLK falling  
10  
10  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
−8  
+8  
18  
AUXILIARY INTERFACE  
tAXDS  
tAXDH  
tDXDD  
tXBH  
tXBL  
tDLS  
AAUXDATA setup  
AAUXDATA hold  
DAUXDATA delay  
AUXBCLK high  
AUXBCLK low  
To AUXBCLK rising  
From AUXBCLK rising  
From AUXBCLK falling  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
18  
10  
10  
10  
5
AUXLRCLK setup  
AUXLRCLK hold  
To AUXBCLK rising  
From AUXBCLK rising  
tDLH  
Rev. E | Page 7 of 32  
AD1939  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 8.  
THERMAL RESISTANCE  
Parameter  
Rating  
θJA represents thermal resistance, junction-to-ambient;  
θJC represents the thermal resistance, junction-to-case.  
All characteristics are for a 4-layer board.  
Analog (AVDD)  
Digital (DVDD)  
VSUPPLY  
Input Current (Except Supply Pins)  
Analog Input Voltage (Signal Pins)  
Digital Input Voltage (Signal Pins)  
−0.3 V to +3.6 V  
−0.3 V to +3.6 V  
−0.3 V to +6.0 V  
20 mA  
–0.3 V to AVDD + 0.3 V  
−0.3 V to DVDD + 0.3 V  
Table 9. Thermal Resistance  
Package Type  
64-Lead LQFP  
θJA  
θJC  
Unit  
47  
11.1  
°C/W  
Operating Temperature Range (Case) −40°C to +125°C  
Storage Temperature Range −65°C to +150°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. E | Page 8 of 32  
 
 
 
Data Sheet  
AD1939  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
AGND  
MCLKI/XI  
MCLKO/XO  
AGND  
AGND  
FILTR  
AGND  
AVDD  
AGND  
OR2N  
OR2P  
OL2N  
OL2P  
OR1N  
OR1P  
OL1N  
OL1P  
CLATCH  
CCLK  
DGND  
3
4
5
AVDD  
6
OL3P  
7
OL3N  
AD1939  
8
OR3P  
TOP VIEW  
(Not to Scale)  
9
OR3N  
DIFFERENTIAL  
OUTPUT  
10  
11  
12  
13  
14  
15  
16  
OL4P  
OL4N  
OR4P  
OR4N  
PD/RST  
DSDATA4  
DGND  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NC = NO CONNECT  
Figure 2. 64-Lead LQFP, Differential Output, Pin Configuration  
Table 10. Pin Function Descriptions  
Pin No.  
In/Out  
Mnemonic  
Description  
1
I
AGND  
Analog Ground.  
2
3
4
I
O
I
MCLKI/XI  
MCLKO/XO  
AGND  
Master Clock Input/Crystal Oscillator Input.  
Master Clock Output/Crystal Oscillator Output.  
Analog Ground.  
5
6
7
8
I
AVDD  
OL3P  
OL3N  
OR3P  
OR3N  
OL4P  
OL4N  
OR4P  
Analog Power Supply. Connect to analog 3.3 V supply.  
DAC 3 Left Positive Output.  
DAC 3 Left Negative Output.  
DAC 3 Right Positive Output.  
DAC 3 Right Negative Output.  
DAC 4 Left Positive Output.  
O
O
O
O
O
O
O
O
I
9
10  
11  
12  
13  
14  
15  
DAC 4 Left Negative Output.  
DAC 4 Right Positive Output.  
DAC 4 Right Negative Output  
Power-Down Reset (Active Low).  
OR4N  
PD/RST  
DSDATA4  
I/O  
DAC Serial Data Input 4. Data input to DAC4 data in/TDM DAC2 data out (dual-line  
mode)/AUX DAC2 data out (to external DAC2).  
16  
17  
18  
I
I
DGND  
DVDD  
DSDATA3  
Digital Ground.  
Digital Power Supply. Connect to digital 3.3 V supply.  
DAC Serial Data Input 3. Data input to DAC3 data in/TDM DAC2 data in (dual-line  
mode)/AUX ADC2 data in (from external ADC2).  
I/O  
19  
I/O  
DSDATA2  
DAC Serial Data Input 2. Data input to DAC2 data in/TDM DAC data out/AUX ADC1  
data in (from external ADC1).  
20  
21  
22  
I
DSDATA1  
DBCLK  
DLRCLK  
DAC Serial Data Input 1. Data input to DAC1 data in/TDM DAC data in/TDM data in.  
Bit Clock for DACs.  
LR Clock for DACs.  
I/O  
I/O  
Rev. E | Page 9 of 32  
 
AD1939  
Data Sheet  
Pin No.  
23  
24  
25  
26  
In/Out  
Mnemonic  
VSUPPLY  
VSENSE  
VDRIVE  
ASDATA2  
Description  
I
I
5 V Input to Regulator, Emitter of Pass Transistor.  
3.3 V Output of Regulator, Collector of Pass Transistor.  
Drive for Base of Pass Transistor.  
ADC Serial Data Output 2. Data Output from ADC2/TDM ADC data in/AUX DAC1 data  
out (to external DAC1).  
O
I/O  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
O
I/O  
I/O  
I
I/O  
I
I
I
I
ASDATA1  
ABCLK  
ALRCLK  
CIN  
ADC Serial Data Output 1. Data Output from ADC1/TDM ADC data out/TDM data out.  
Bit Clock for ADCs.  
LR Clock for ADCs.  
Control Data Input (SPI).  
Control Data Output (SPI).  
Digital Power Supply. Connect to digital 3.3 V supply.  
Digital Ground.  
Control Clock Input (SPI).  
Latch Input for Control Data (SPI).  
DAC 1 Left Positive Output.  
DAC 1 Left Negative Output.  
DAC 1 Right Positive Output.  
DAC 1 Right Negative Output.  
DAC 2 Left Positive Output.  
DAC 2 Left Negative Output.  
DAC 2 Right Positive Output.  
DAC 2 Right Negative Output.  
Analog Ground.  
Analog Power Supply. Connect to analog 3.3 V supply.  
Analog Ground.  
Voltage Reference Filter Capacitor Connection. Bypass with 10 µF||100 nF to AGND.  
Analog Ground.  
No Connect.  
COUT  
DVDD  
DGND  
CCLK  
CLATCH  
OL1P  
OL1N  
OR1P  
OR1N  
OL2P  
OL2N  
OR2P  
OR2N  
AGND  
AVDD  
AGND  
FILTR  
AGND  
NC  
O
O
O
O
O
O
O
O
I
I
I
O
I
NC  
AVDD  
CM  
No Connect.  
I
O
Analog Power Supply. Connect to analog 3.3 V supply.  
Common-Mode Reference Filter Capacitor Connection. Bypass with  
47 µF||100 nF to AGND.  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
I
I
I
I
I
I
I
I
ADC1LP  
ADC1LN  
ADC1RP  
ADC1RN  
ADC2LP  
ADC2LN  
ADC2RP  
ADC2RN  
LF  
ADC1 Left Positive Input.  
ADC1 Left Negative Input.  
ADC1 Right Positive Input.  
ADC1 Right Negative Input.  
ADC2 Left Positive Input.  
ADC2 Left Negative Input.  
ADC2 Right Positive Input.  
ADC2 Right Negative Input.  
PLL Loop Filter, Return to AVDD.  
Analog Power Supply. Connect to analog 3.3 V supply.  
No Connect.  
O
I
AVDD  
NC  
NC  
No Connect.  
Rev. E | Page 10 of 32  
Data Sheet  
AD1939  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0
–50  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–100  
–150  
0
12  
24  
36  
48  
0
2
4
6
8
10  
12  
14  
16  
18  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 3. ADC Pass-Band Filter Response, 48 kHz  
Figure 6. DAC Stop-Band Filter Response, 48 kHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0.10  
0.05  
0
–0.05  
–0.10  
0
5
10  
15  
20  
25  
30  
35  
40  
0
24  
48  
72  
96  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 4. ADC Stop-Band Filter Response, 48 kHz  
Figure 7. DAC Pass-Band Filter Response, 96 kHz  
0.06  
0.04  
0.02  
0
0
–50  
–0.02  
–0.04  
–0.06  
–100  
–150  
0
24  
48  
72  
96  
0
8
16  
FREQUENCY (kHz)  
24  
FREQUENCY (kHz)  
Figure 5. DAC Pass-Band Filter Response, 48 kHz  
Figure 8. DAC Stop-Band Filter Response, 96 kHz  
Rev. E | Page 11 of 32  
 
AD1939  
Data Sheet  
0.5  
0.4  
0
–2  
0.3  
0.2  
0.1  
–4  
0
–0.1  
–0.2  
–0.3  
–0.4  
–6  
–8  
–10  
48  
–0.5  
0
64  
80  
96  
8
16  
32  
64  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 10. DAC Stop-Band Filter Response, 192 kHz  
Figure 9. DAC Pass-Band Filter Response, 192 kHz  
Rev. E | Page 12 of 32  
Data Sheet  
AD1939  
THEORY OF OPERATION  
slew rate or low bandwidth can cause high frequency noise and  
tones to fold down into the audio band; exercise care in  
selecting these components.  
ANALOG-TO-DIGITAL CONVERTERS (ADCS)  
There are four analog-to-digital converter (ADC) channels in  
the AD1939 configured as two stereo pairs with differential  
inputs. The ADCs can operate at a nominal sample rate of 48 kHz,  
96 kHz, or 192 kHz. The ADCs include on-board digital anti-  
aliasing filters with 79 dB stop-band attenuation and linear  
phase response, operating at an oversampling ratio of 128  
(48 kHz, 96 kHz, and 192 kHz modes). Digital outputs are  
supplied through two serial data output pins (one for each  
stereo pair) and a common frame clock (ALRCLK) and bit  
clock (ABCLK). Alternatively, one of the TDM modes can be  
used to access up to 16 channels on a single TDM data line.  
The voltage at CM, the common-mode reference pin, can be  
used to bias the external op amps that buffer the output signals  
(see the Power Supply and Voltage Reference section).  
CLOCK SIGNALS  
The on-chip phase-locked loop (PLL) can be selected to  
reference the input sample rate from either of the LRCLK pins  
or 256, 384, 512, or 768 times the sample rate, referenced to the  
48 kHz mode from the MCLKI/XI pin. The default at power-up  
is 256 × fS from the MCLKI/XI pin. In 96 kHz mode, the master  
clock frequency stays at the same absolute frequency; therefore,  
the actual multiplication rate is divided by 2. In 192 kHz mode,  
the actual multiplication rate is divided by 4. For example, if a  
device in the AD1939 family is programmed in 256 × fS mode, the  
frequency of the master clock input is 256 × 48 kHz = 12.288 MHz.  
If the AD1939 is then switched to 96 kHz operation (by writing  
to the SPI port), the frequency of the master clock should  
remain at 12.288 MHz, which is 128 × fS in this example. In  
192 kHz mode, this becomes 64 × fS.  
The ADCs must be driven from a differential signal source for  
best performance. The input pins of the ADCs connect to internal  
switched capacitors. To isolate the external driving op amp from  
the glitches caused by the internal switched capacitors, each in-  
put pin should be isolated by using a series-connected external  
100 Ω resistor together with a 1 nF capacitor connected from  
each input to ground. This capacitor must be of high quality, for  
example, ceramic NP0 or polypropylene film.  
The differential inputs have a nominal common-mode voltage  
of 1.5 V. The voltage at the common-mode reference pin (CM)  
can be used to bias external op amps to buffer the input signals  
(see the Power Supply and Voltage Reference section). The  
inputs can also be ac-coupled and do not need an external dc  
bias to CM.  
The internal clock for the ADCs is 256 × fS for all clock modes.  
The internal clock for the DACs varies by mode: 512 × fS (48 kHz  
mode), 256 × fS (96 kHz mode), or 128 × fS (192 kHz mode). By  
default, the on-board PLL generates this internal master clock  
from an external clock. A direct 512 × fS (referenced to 48 kHz  
mode) master clock can be used for either the ADCs or DACs if  
selected in the PLL and Clock Control 1 register.  
A digital high-pass filter can be switched in line with the ADCs  
under serial control to remove residual dc offsets. It has a 1.4 Hz,  
6 dB per octave cutoff at a 48 kHz sample rate. The cutoff fre-  
quency scales directly with sample frequency.  
Note that it is not possible to use a direct clock for the ADCs set  
to the 192 kHz mode. It is required that the on-chip PLL be  
used in this mode.  
DIGITAL-TO-ANALOG CONVERTERS (DACS)  
The AD1939 digital-to-analog converter (DAC) channels are  
arranged as differential, four stereo pairs giving eight analog  
outputs for improved noise and distortion performance. The  
DACs include on-board digital reconstruction filters with 70 dB  
stop-band attenuation and linear phase response, operating at an  
oversampling ratio of 4 (48 kHz or 96 kHz modes) or 2 (192 kHz  
mode). Each channel has its own independently programmable  
attenuator, adjustable in 255 steps in increments of 0.375 dB.  
Digital inputs are supplied through four serial data input pins  
(one for each stereo pair) and a common frame clock (DLRCLK)  
and bit clock (DBCLK). Alternatively, one of the TDM modes can  
be used to access up to 16 channels on a single TDM data line.  
The PLL can be powered down in the PLL and Clock Control 0  
register. To ensure reliable locking when changing PLL modes,  
or if the reference clock is unstable at power-on, power down  
the PLL and then power it back up when the reference clock  
stabilizes.  
The internal master clock (MCLK) can be disabled in the PLL  
and Clock Control 0 register to reduce power dissipation when  
the AD1939 is idle. The clock should be stable before it is  
enabled. Unless a standalone mode is selected (see the Serial  
Control Port section), the clock is disabled by reset and must be  
enabled by writing to the SPI port for normal operation.  
To maintain the highest performance possible, limit the clock  
jitter of the internal master clock signal to less than a 300 ps rms  
time interval error (TIE). Even at these levels, extra noise or  
tones can appear in the DAC outputs if the jitter spectrum  
contains large spectral peaks. If the internal PLL is not used, it is  
best to use an independent crystal oscillator to generate the  
Each output pin has a nominal common-mode dc level of 1.5 V  
and swings 1.27 V for a 0 dBFS digital input signal. A single op  
amp, third-order, external, low-pass filter is recommended to  
remove high frequency noise present on the output pins, as well  
as to provide differential-to-single-ended conversion in the case  
of the differential output. Note that the use of op amps with low  
Rev. E | Page 13 of 32  
 
 
 
 
AD1939  
Data Sheet  
master clock. In addition, it is especially important that the  
clock signal not pass through an FPGA, CPLD, or other large  
digital chip (such as a DSP) before being applied to the  
AD1939. In most cases, this induces clock jitter due to the  
sharing of common power and ground connections with other  
unrelated digital output signals. When the PLL is used, jitter in  
the reference clock is attenuated above a certain frequency  
depending on the loop filter.  
for operation without serial control; standalone is configured at  
CLATCH  
reset by connecting CIN, CCLK, and  
to ground. In  
standalone mode, all registers are set to default, except the  
internal MCLK enable, which is set to 1. The ADC, ABCLK, and  
ALRCLK clock ports are set to master/slave by the connecting  
the COUT pin to either DVDD or ground. Standalone mode  
only supports stereo mode with an I2S data format and 256 fS  
MCLK rate. Refer to Table 11 for details. If CIN, CCLK, and  
CLATCH  
are not grounded, the AD1939 SPI port is active. It is  
RESET AND POWER-DOWN  
CLATCH  
recommended to use a weak pull-up resistor on  
in  
RST  
The function of the  
default settings. To avoid pops, reset does not power down the  
RST  
pin sets all the control registers to their  
applications that have a microcontroller. This pull-up resistor  
ensures that the AD1939 recognizes the presence of a  
microcontroller.  
analog outputs. After  
is deasserted and the PLL acquires  
lock condition, an initialization routine runs inside the  
AD1939. This initialization lasts for approximately 256 master  
clock cycles.  
The SPI control port of the AD1939 is a 4-wire serial control  
port. The format is similar to the Motorola SPI format except  
the input data-word is 24 bits wide. The serial bit clock and  
latch can be completely asynchronous to the sample rate of the  
ADCs and DACs. Figure 11 shows the format of the SPI signal.  
The first byte is a global address with a read/write bit. For the  
The power-down bits in the PLL and Clock Control 0, DAC  
Control 1, and ADC Control 1 registers power down the  
respective sections. All other register settings are retained. To  
RST  
guarantee proper startup, the  
an external resistor.  
pin should be pulled low by  
W
AD1939, the address is 0x04, shifted left one bit due to the R/  
bit. The second byte is the AD1939 register address and the  
third byte is the data.  
SERIAL CONTROL PORT  
The AD1939 has an SPI control port that permits programming  
and reading back of the internal control registers for the ADCs,  
DACs, and clock system. A standalone mode is also available  
Table 11. Standalone Mode Selection  
CLATCH  
ADC Clocks  
Slave  
Master  
CIN  
0
0
COUT  
CCLK  
0
1
0
0
0
0
tCLS  
tCLH  
tCCH tCCL  
tCCP  
CLATCH  
tCOTS  
CCLK  
tCDS tCDH  
CIN  
D23  
D22  
D9  
D8  
D8  
D0  
D0  
tCOE  
COUT  
D9  
tCOD  
Figure 11. Format of the SPI Signal  
Rev. E | Page 14 of 32  
 
 
 
 
Data Sheet  
AD1939  
polarity of DBCLK and DLRCLK is programmable according to  
the DAC Control 1 register. The ADC serial formats and serial  
clock polarity are programmable according to the ADC Control 1  
register. Both DAC and ADC serial ports are programmable to  
become the bus masters according to DAC Control 1 register  
and ADC Control 2 register. By default, both ADC and DAC  
serial ports are in the slave mode.  
POWER SUPPLY AND VOLTAGE REFERENCE  
The AD1939 is designed for 3.3 V supplies. Separate power  
supply pins are provided for the analog and digital sections.  
To minimize noise pickup, these pins should be bypassed with  
100 nF ceramic chip capacitors placed as close to the pins as  
possible. A bulk aluminum electrolytic capacitor of at least  
22 μF should also be provided on the same PC board as the  
codec. For critical applications, improved performance is  
obtained with separate supplies for the analog and digital sections.  
If this is not possible, it is recommended that the analog and  
digital supplies be isolated by means of a ferrite bead in series  
with each supply. It is important that the analog supply be as  
clean as possible.  
TIME-DIVISION MULTIPLEXED (TDM) MODES  
The AD1939 serial ports also have several different TDM serial  
data modes. The first and most commonly used configurations  
are shown in Figure 12 and Figure 13. In Figure 12, the ADC  
serial port outputs one data stream consisting of four on-chip  
ADCs followed by four unused slots. In Figure 13, the eight on-  
chip DAC data slots are packed into one TDM stream. In this  
mode, both DBCLK and ABCLK are 256 fS.  
The AD1939 includes a 3.3 V regulator driver that only requires  
an external pass transistor and bypass capacitors to make a 5 V  
to 3.3 V regulator. If the regulator driver is not used, connect  
VSUPPLY, VDRIVE, and VSENSE to DGND.  
LRCLK  
256 BCLKs  
BCLK  
32 BCLKs  
All digital inputs are compatible with TTL and CMOS levels.  
All outputs are driven from the 3.3 V DVDD supply and are  
compatible with TTL and 3.3 V CMOS levels.  
SLOT 1 SLOT 2 SLOT 3 SLOT 4  
SLOT 5 SLOT 6 SLOT 7 SLOT 8  
DATA  
LEFT 1 RIGHT 1 LEFT 2 RIGHT 2  
LRCLK  
BCLK  
The ADC and DAC internal voltage reference (VREF) is brought  
out on FILTR and should be bypassed as close as possible to the  
chip with a parallel combination of 10 μF and 100 nF. Any  
external current drawn should be limited to less than 50 μA.  
MSB  
MSB–1  
MSB–2  
DATA  
Figure 12. ADC TDM (8-Channel I2S Mode)  
The internal reference can be disabled in the PLL and Clock  
Control 1 register and FILTR can be driven from an external  
source. This can be used to scale the DAC output to the clipping  
level of a power amplifier based on its power supply voltage.  
The ADC input gain varies by the inverse ratio. The total gain  
from ADC input to DAC output remains constant.  
LRCLK  
BCLK  
256 BCLKs  
32 BCLKs  
SLOT 1 SLOT 2 SLOT 3 SLOT 4 SLOT 5 SLOT 6 SLOT 7 SLOT 8  
LEFT 1 RIGHT 1 LEFT 2 RIGHT 2 LEFT 3 RIGHT 3 LEFT 4 RIGHT 4  
DATA  
LRCLK  
BCLK  
The CM pin is the internal common-mode reference. It should  
be bypassed as close as possible to the chip, with a parallel  
combination of 47 μF and 100 nF. This voltage can be used to  
bias external op amps to the common-mode voltage of the input  
and output signal pins. The output current should be limited to  
less than 0.5 mA source and 2 mA sink.  
MSB  
MSB–1  
MSB–2  
DATA  
Figure 13. DAC TDM (8-Channel I2S Mode)  
The I/O pins of the serial ports are defined according to the  
serial mode that is selected. For a detailed description of the  
function of each pin in TDM and AUX modes, see Table 12.  
SERIAL DATA PORTS—DATA FORMAT  
The AD1939 allows systems with more than eight DAC channels  
to be easily configured by the use of an auxiliary serial data port.  
The DAC TDM-AUX mode is shown in Figure 14. In this mode,  
the AUX channels are the last four slots of the TDM data stream.  
These slots are extracted and output to the AUX serial port. It  
should be noted that due to the high DBCLK frequency, this mode  
is available only in the 48 kHz/44.1 kHz/32 kHz sample rate.  
The eight DAC channels use a common serial bit clock (DBCLK)  
and a common left-right framing clock (DLRCLK) in the serial  
data port. The four ADC channels use a common serial bit  
clock (ABCLK) and left-right framing clock (ALRCLK) in the  
serial data port. The clock signals are all synchronous with the  
sample rate. The normal stereo serial modes are shown in  
Figure 23.  
The AD1939 also allows system configurations with more than  
four ADC channels as shown in Figure 15 (using 8 ADCs) and  
Figure 16 (using 16 ADCs). Again, due to the high ABCLK fre-  
quency, this mode is available only in the 48 kHz/44.1 kHz/32 kHz  
sample rate.  
The ADC and DAC serial data modes default to I2S. The ports  
can also be programmed for left-justified, right-justified, and  
TDM modes. The word width is 24 bits by default and can be  
programmed for 16 or 20 bits. The DAC serial formats are  
programmable according to the DAC Control 0 register. The  
Rev. E | Page 15 of 32  
 
 
 
 
 
AD1939  
Data Sheet  
Combining the AUX ADC and DAC modes results in a system  
configuration of 8 ADCs and 12 DACs. The system, then, con-  
sists of two external stereo ADCs, two external stereo DACs,  
and one AD1939. This mode is shown in Figure 17 (combined  
AUX DAC and ADC modes).  
Table 12. Pin Function Changes in TDM and AUX Modes  
Pin Mnemonic Stereo Modes  
TDM Modes  
AUX Modes  
ASDATA1  
ASDATA2  
DSDATA1  
DSDATA2  
DSDATA3  
DSDATA4  
ALRCLK  
ABCLK  
ADC1 Data Out  
ADC2 Data Out  
DAC1 Data In  
DAC2 Data In  
DAC3 Data In  
DAC4 Data In  
ADC TDM Data Out  
ADC TDM Data In  
DAC TDM Data In  
DAC TDM Data Out  
DAC TDM Data In 2 (Dual-Line Mode)  
DAC TDM Data Out 2 (Dual-Line Mode)  
TDM Data Out  
AUX Data Out 1 (to Ext. DAC 1)  
TDM Data In  
AUX Data In 1 (from Ext. ADC 1)  
AUX Data In 2 (from Ext. ADC 2)  
AUX Data Out 2 (to Ext. DAC 2)  
ADC LRCLK In/ADC LRCLK Out ADC TDM Frame Sync In/ADCTDM Frame Sync Out TDM Frame Sync In/TDM Frame Sync Out  
ADC BCLK In/ADC BCLK Out ADC TDM BCLK In/ADC TDM BCLK Out TDM BCLK In/TDM BCLK Out  
DAC LRCLK In/DAC LRCLK Out DAC TDM Frame Sync In/DAC TDM Frame Sync Out AUX LRCLK In/AUX LRCLK Out  
DLRCLK  
DBCLK  
DAC BCLK In/DAC BCLK Out  
DAC TDM BCLK In/DAC TDM BCLK Out  
AUX BCLK In/AUX BCLK Out  
ALRCLK  
ABCLK  
AUXILIARY DAC CHANNELS  
APPEAR AT  
UNUSED SLOTS  
8 ON-CHIP DAC CHANNELS  
AUX DAC PORTS  
DSDATA1  
(TDM_IN)  
EMPTY EMPTY EMPTY EMPTY DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4 AUX L1 AUX R1 AUX L2 AUX R2  
32 BITS  
MSB  
DLRCLK  
(AUX PORT)  
LEFT  
RIGHT  
DBCLK  
(AUX PORT)  
ASDATA2  
MSB  
MSB  
MSB  
(AUX1_OUT)  
DSDATA4  
(AUX2_OUT)  
MSB  
Figure 14. 16-Channel DAC TDM-AUX Mode  
Rev. E | Page 16 of 32  
 
 
Data Sheet  
AD1939  
ALRCLK  
ABCLK  
8 ON-CHIP DAC CHANNELS  
DSDATA1  
(TDM_IN)  
DAC L1  
ADC L1  
DAC R1  
DAC L2  
DAC R2  
DAC L3  
DAC R3  
DAC L4  
DAC R4  
AUX R2  
4 ON-CHIP ADC CHANNELS  
ADC R1 ADC L2  
4 AUX ADC CHANNELS  
AUX R1 AUX L2  
ASDATA1  
(TDM_OUT)  
ADC R2  
AUX L1  
32 BITS  
MSB  
DLRCLK  
(AUX PORT)  
LEFT  
RIGHT  
DBCLK  
(AUX PORT)  
DSDATA2  
(AUX1_IN)  
MSB  
MSB  
MSB  
DSDATA3  
(AUX2_IN)  
MSB  
Figure 15. 8-Channel AUX ADC Mode  
ALRCLK  
ABCLK  
4 ON-CHIP ADC CHANNELS  
AUXILIARY ADC CHANNELS  
UNUSED SLOTS  
ASDATA1  
(TDM_OUT)  
ADC L1 ADC R1 ADC L2 ADC R2 AUX L1 AUX R1 AUX L2 AUX R2 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED  
32 BITS  
MSB  
DLRCLK  
(AUX PORT)  
LEFT  
RIGHT  
DBCLK  
(AUX PORT)  
DSDATA2  
(AUX1_IN)  
MSB  
MSB  
MSB  
DSDATA3  
(AUX2_IN)  
MSB  
Figure 16. 16-Channel AUX ADC Mode  
Rev. E | Page 17 of 32  
 
 
AD1939  
Data Sheet  
ALRCLK  
ABCLK  
AUXILIARY DAC CHANNELS  
APPEAR AT  
UNUSED SLOTS  
8 ON-CHIP DAC CHANNELS  
AUX DAC PORTS  
DSDATA1  
(TDM_IN)  
EMPTY EMPTY EMPTY EMPTY DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4 AUX L1 AUX R1 AUX L2 AUX R2  
4 ON-CHIP ADC CHANNELS  
AUXILIARY ADC CHANNELS  
UNUSED SLOTS  
ASDATA1  
(TDM_OUT)  
ADC L1 ADC R1 ADC L2 ADC R2 AUX L1 AUX R1 AUX L2 AUX R2 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED  
DLRCLK  
(AUX PORT)  
LEFT  
RIGHT  
DBCLK  
(AUX PORT)  
DSDATA2  
(AUX1_IN)  
MSB  
MSB  
MSB  
MSB  
MSB  
DSDATA3  
(AUX2_IN)  
MSB  
MSB  
MSB  
ASDATA2  
(AUX1_OUT)  
DSDATA4  
(AUX2_OUT)  
Figure 17. Combined AUX DAC and ADC Mode  
Rev. E | Page 18 of 32  
 
Data Sheet  
AD1939  
There are two configurations for the ADC port to work in  
DAISY-CHAIN MODE  
daisy-chain mode. The first one is with an ABCLK at 256 fS  
shown in Figure 21. The second configuration is shown in  
Figure 22. Note that in the 512 fS ABCLK mode, the ADC  
channels occupy the first eight slots; the second eight slots are  
empty. The TDM_IN of the first AD1939 must be grounded in  
all modes of operation.  
The AD1939 also allows a daisy-chain configuration to expand  
the system to 8 ADCs and 16 DACs (see Figure 18). In this  
mode, the DBCLK frequency is 512 fS. The first eight slots of the  
DAC TDM data stream belong to the first AD1939 in the chain  
and the last eight slots belong to the second AD1939. The second  
AD1939 is the device attached to the DSP TDM port.  
The I/O pins of the serial ports are defined according to the  
serial mode selected. See Table 13 for a detailed description of  
the function of each pin. See Figure 26 for a typical AD1939  
configuration with two external stereo DACs and two external  
stereo ADCs.  
To accommodate 16 channels at a 96 kHz sample rate, the  
AD1939 can be configured into a dual-line, TDM mode as  
shown in Figure 19. This mode allows a slower DBCLK than  
normally required by the one-line TDM mode.  
Again, the first four channels of each TDM input belong to the  
first AD1939 in the chain and the last four channels belong to  
the second AD1939.  
Figure 23 through Figure 25 show the serial mode formats. For  
maximum flexibility, the polarity of LRCLK and BCLK are  
programmable. In these figures, all of the clocks are shown with  
their normal polarity. The default mode is I2S.  
The dual-line TDM mode can also be used to send data at a  
192 kHz sample rate into the AD1939 as shown in Figure 20.  
DLRCLK  
DBCLK  
8 DAC CHANNELS OF THE FIRST IC IN THE CHAIN  
DSDATA1 (TDM_IN)  
8 DAC CHANNELS OF THE SECOND IC IN THE CHAIN  
DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4 DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4  
OF THE SECOND AD1939  
DSDATA2 (TDM_OUT)  
OF THE SECOND AD1939  
THIS IS THE TDM  
DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4  
TO THE FIRST AD1939  
8 UNUSED SLOTS  
32 BITS  
FIRST  
AD1939  
SECOND  
AD1939  
DSP  
MSB  
Figure 18. Single-Line DAC TDM Daisy-Chain Mode (Applicable to 48 kHz Sample Rate, 16-Channel, Two-AD1939 Daisy Chain)  
Rev. E | Page 19 of 32  
 
 
AD1939  
Data Sheet  
DLRCLK  
DBCLK  
8 DAC CHANNELS OF THE FIRST IC IN THE CHAIN  
8 DAC CHANNELS OF THE SECOND IC IN THE CHAIN  
DSDATA1  
(IN)  
DAC L1  
DAC R1  
DAC L2  
DAC R2  
DAC L1  
DAC L1  
DAC L3  
DAC L3  
DAC R1  
DAC R1  
DAC R3  
DAC R3  
DAC L2  
DAC L2  
DAC L4  
DAC L4  
DAC R2  
DAC R2  
DAC R4  
DAC R4  
DSDATA2  
(OUT)  
DSDATA3  
(IN)  
DAC L3  
DAC R3  
DAC L4  
DAC R4  
DSDATA4  
(OUT)  
32 BITS  
MSB  
FIRST  
AD1939  
SECOND  
AD1939  
DSP  
Figure 19. Dual-Line DAC TDM Mode (Applicable to 96 kHz Sample Rate, 16-Channel, Two-AD1939 Daisy Chain); DSDATA3 and DSDATA4 Are the Daisy Chain  
DLRCLK  
DBCLK  
DSDATA1  
DSDATA2  
DAC L1  
DAC L3  
DAC R1  
DAC R3  
DAC L2  
DAC L4  
DAC R2  
DAC R4  
32 BITS  
MSB  
Figure 20. Dual-Line DAC TDM Mode (Applicable to 192 kHz Sample Rate, 8-Channel Mode)  
ALRCLK  
ABCLK  
4 ADC CHANNELS OF SECOND IC IN THE CHAIN  
4 ADC CHANNELS OF FIRST IC IN THE CHAIN  
ADC L1 ADC R1 ADC L2 ADC R2  
ASDATA1 (TDM_OUT  
OF THE SECOND AD1939  
IN THE CHAIN)  
ADC L1  
ADC R1  
ADC L2  
ADC R2  
ASDATA2 (TDM_IN  
OF THE SECOND AD1939  
IN THE CHAIN)  
ADC L1  
ADC R1  
ADC L2  
ADC R2  
32 BITS  
FIRST  
AD1939  
SECOND  
AD1939  
DSP  
MSB  
Figure 21. ADC TDM Daisy-Chain Mode (256 fS ABCLK, Two-AD1939 Daisy Chain)  
Rev. E | Page 20 of 32  
 
 
 
Data Sheet  
AD1939  
ALRCLK  
ABCLK  
4 ADC CHANNELS OF  
SECOND IC IN THE CHAIN  
4 ADC CHANNELS OF  
FIRST IC IN THE CHAIN  
ASDATA1 (TDM_OUT  
OF THE SECOND AD1939  
IN THE CHAIN)  
ADC L1 ADC R1 ADC L2 ADC R2 ADC L1 ADC R1 ADC L2 ADC R2  
ASDATA2 (TDM_IN  
OF THE SECOND AD1939  
IN THE CHAIN)  
ADC L1 ADC R1 ADC L2 ADC R2  
32 BITS  
FIRST  
AD1939  
SECOND  
DSP  
AD1939  
MSB  
Figure 22. ADC TDM Daisy-Chain Mode (512 fS ABCLK, Two-AD1939 Daisy Chain)  
LEFT CHANNEL  
RIGHT CHANNEL  
LRCLK  
BCLK  
SDATA  
MSB  
LSB  
MSB  
LSB  
LEFT-JUSTIFIED MODE—16 BITS TO 24 BITS PER CHANNEL  
LEFT CHANNEL  
LRCLK  
RIGHT CHANNEL  
BCLK  
MSB  
I S-JUSTIFIED MODE—16 BITS TO 24 BITS PER CHANNEL  
LSB  
SDATA  
MSB  
LSB  
2
LEFT CHANNEL  
RIGHT CHANNEL  
LRCLK  
BCLK  
SDATA  
MSB  
LSB  
MSB  
LSB  
RIGHT-JUSTIFIED MODE—SELECT NUMBER OF BITS PER CHANNEL  
LRCLK  
BCLK  
SDATA  
MSB  
LSB  
MSB  
LSB  
DSP MODE—16 BITS TO 24 BITS PER CHANNEL  
1/fS  
NOTES  
1. DSP MODE DOES NOT IDENTIFY CHANNEL.  
2. LRCLK NORMALLY OPERATES AT fS EXCEPT FOR DSP MODE, WHICH IS 2 ×fS.  
3. BCLK FREQUENCY IS NORMALLY 64 × LRCLK BUT MAY BE OPERATED IN BURST MODE.  
Figure 23. Stereo Serial Modes  
Rev. E | Page 21 of 32  
 
 
AD1939  
Data Sheet  
tDBH  
DBCLK  
tDBL  
tDLS  
tDLH  
DLRCLK  
tDDS  
DSDATAx  
LEFT-JUSTIFIED  
MODE  
MSB  
MSB–1  
tDDH  
tDDS  
MSB  
DSDATAx  
I S-JUSTIFIED  
2
MODE  
tDDH  
tDDS  
MSB  
tDDS  
LSB  
tDDH  
DSDATAx  
RIGHT-JUSTIFIED  
MODE  
tDDH  
Figure 24. DAC Serial Timing  
tABH  
ABCLK  
tABL  
tALS  
tALH  
ALRCLK  
tABDD  
ASDATAx  
LEFT-JUSTIFIED  
MODE  
MSB  
MSB–1  
MSB  
tABDD  
ASDATAx  
I S-JUSTIFIED  
2
MODE  
tABDD  
ASDATAx  
RIGHT-JUSTIFIED  
MODE  
MSB  
LSB  
Figure 25. ADC Serial Timing  
Rev. E | Page 22 of 32  
 
 
Data Sheet  
AD1939  
Table 13. Pin Function Changes in TDM and AUX Modes (Replication of Table 12)  
Pin Mnemonic Stereo Modes  
TDM Modes  
AUX Modes  
ASDATA1  
ASDATA2  
DSDATA1  
DSDATA2  
DSDATA3  
DSDATA4  
ALRCLK  
ABCLK  
ADC1 Data Out  
ADC2 Data Out  
DAC1 Data In  
DAC2 Data In  
DAC3 Data In  
DAC4 Data In  
ADC TDM Data Out  
ADC TDM Data In  
DAC TDM Data In  
DAC TDM Data Out  
DAC TDM Data In 2 (Dual-Line Mode)  
DAC TDM Data Out 2 (Dual-Line Mode)  
TDM Data Out  
AUX Data Out 1 (to Ext. DAC 1)  
TDM Data In  
AUX Data In 1 (from Ext. ADC 1)  
AUX Data In 2 (from Ext. ADC 2)  
AUX Data Out 2 (to Ext. DAC 2)  
ADC LRCLK In/ADC LRCLK Out ADC TDM Frame Sync In/ADCTDM Frame Sync Out TDM Frame Sync In/TDM Frame Sync Out  
ADC BCLK In/ADC BCLK Out ADC TDM BCLK In/ADC TDM BCLK Out TDM BCLK In/TDM BCLK Out  
DAC LRCLK In/DAC LRCLK Out DAC TDM Frame Sync In/DAC TDM Frame Sync Out AUX LRCLK In/AUX LRCLK Out  
DLRCLK  
DBCLK  
DAC BCLK In/DAC BCLK Out  
DAC TDM BCLK In/DAC TDM BCLK Out  
AUX BCLK In/AUX BCLK Out  
SHARC IS RUNNING IN SLAVE MODE  
(INTERRUPT-DRIVEN)  
30MHz  
SHARC®  
12.288MHz  
LRCLK  
LRCLK  
BCLK  
BCLK  
AUX  
AUX  
DAC 1  
ADC 1  
DATA  
DATA  
MCLK  
ASDATA1 ALRCLK ABCLK DSDATA1  
DBCLK  
MCLK  
DLRCLK  
AD1939  
LRCLK  
BCLK  
LRCLK  
BCLK  
AUX  
ADC 2  
DATA  
ASDATA2  
DSDATA4  
DSDATA2  
DSDATA3  
MCLKI/XI  
TDM MASTER  
AUX MASTER  
AUX  
DATA DAC 2  
MCLK  
MCLK  
Figure 26. Example of AUX Mode Connection to SHARC (AD1939 as TDM Master/AUX Master Shown)  
Rev. E | Page 23 of 32  
 
 
AD1939  
Data Sheet  
CONTROL REGISTERS  
DEFINITIONS  
W
The global address for the AD1939 is 0x04, shifted left one bit due to the R/ bit. All registers are reset to 0, except for the DAC volume  
registers that are set to full volume.  
Note that the first setting in each control register parameter is the default setting.  
Table 14. Register Format  
Global Address  
R/W  
Register Address  
Data  
23:17  
16  
15:8  
7:0  
Bit  
Table 15. Register Addresses and Functions  
Address  
Function  
0
1
2
PLL and Clock Control 0  
PLL and Clock Control 1  
DAC Control 0  
3
DAC Control 1  
4
DAC Control 2  
5
6
7
8
DAC individual channel mutes  
DAC L1 volume control  
DAC R1 volume control  
DAC L2 volume control  
DAC R2 volume control  
DAC L3 volume control  
DAC R3 volume control  
DAC L4 volume control  
DAC R4 volume control  
ADC Control 0  
9
10  
11  
12  
13  
14  
15  
16  
ADC Control 1  
ADC Control 2  
PLL AND CLOCK CONTROL REGISTERS  
Table 16. PLL and Clock Control 0 Register  
Bit  
Value  
Function  
Description  
0
0
1
Normal operation  
Power-down  
PLL power-down  
2:1  
4:3  
6:5  
7
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
0
INPUT 256 (× 44.1 kHz or 48 kHz)  
INPUT 384 (× 44.1 kHz or 48 kHz)  
INPUT 512 (× 44.1 kHz or 48 kHz)  
INPUT 768 (× 44.1 kHz or 48 kHz)  
XTAL oscillator enabled  
256 × fS VCO output  
512 × fS VCO output  
Off  
MCLKI/XI pin functionality (PLL active), master clock rate setting  
MCLKO/XO pin, master clock rate setting  
PLL input  
MCLKI/XI  
DLRCLK  
ALRCLK  
Reserved  
Disable: ADC and DAC idle  
Enable: ADC and DAC active  
Internal master clock enable  
1
Rev. E | Page 24 of 32  
 
 
 
Data Sheet  
AD1939  
Table 17. PLL and Clock Control 1 Register  
Bit  
Value  
Function  
PLL clock  
MCLK  
Description  
0
0
1
DAC clock source select  
1
0
1
PLL clock  
MCLK  
ADC clock source select  
2
0
1
Enabled  
Disabled  
Not locked  
Locked  
On-chip voltage reference  
PLL lock indicator (read only)  
3
0
1
7:4  
0000  
Reserved  
DAC CONTROL REGISTERS  
Table 18. DAC Control 0 Register  
Bit  
Value  
Function  
Description  
0
0
Normal  
Power-down  
1
Power-down  
2:1  
5:3  
00  
01  
10  
11  
32 kHz/44.1 kHz/48 kHz  
64 kHz/88.2 kHz/96 kHz  
128 kHz/176.4 kHz/192 kHz  
Reserved  
Sample rate  
000  
001  
010  
011  
100  
101  
110  
111  
00  
1
0
8
12  
16  
Reserved  
Reserved  
Reserved  
SDATA delay (BCLK periods)  
7:6  
Stereo (normal)  
Serial format  
01  
10  
11  
TDM (daisy chain)  
DAC AUX mode (ADC-, DAC-, TDM-coupled)  
Dual-line TDM  
Table 19. DAC Control 1 Register  
Bit  
Value  
Function  
Description  
0
0
1
Latch in mid cycle (normal)  
Latch in at end of cycle (pipeline)  
64 (2 channels)  
128 (4 channels)  
256 (8 channels)  
512 (16 channels)  
Left low  
BCLK active edge (TDM in)  
2:1  
00  
01  
10  
11  
0
BCLKs per frame  
3
4
5
6
7
LRCLK polarity  
LRCLK master/slave  
BCLK master/slave  
BCLK source  
1
Left high  
0
1
Slave  
Master  
0
1
Slave  
Master  
0
1
DBCLK pin  
Internally generated  
Normal  
0
BCLK polarity  
1
Inverted  
Rev. E | Page 25 of 32  
 
AD1939  
Data Sheet  
Table 20. DAC Control 2 Register  
Bit  
Value  
Function  
Unmute  
Mute  
Description  
0
0
1
Master mute  
2:1  
4:3  
00  
01  
10  
11  
00  
01  
10  
11  
0
Flat  
De-emphasis (32 kHz/44.1 kHz/48 kHz mode only)  
48 kHz curve  
44.1 kHz curve  
32 kHz curve  
24  
20  
Reserved  
16  
Word width  
5
Noninverted  
Inverted  
Reserved  
DAC output polarity  
1
7:6  
00  
Table 21. DAC Individual Channel Mutes  
Bit  
Value  
Function  
Unmute  
Mute  
Description  
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
DAC 1 left mute  
1
2
3
4
5
6
7
Unmute  
Mute  
DAC 1 right mute  
DAC 2 left mute  
DAC 2 right mute  
DAC 3 left mute  
DAC 3 right mute  
DAC 4 left mute  
DAC 4 right mute  
Unmute  
Mute  
Unmute  
Mute  
Unmute  
Mute  
Unmute  
Mute  
Unmute  
Mute  
Unmute  
Mute  
Table 22. DAC Volume Controls  
Bit  
Value  
Function  
Description  
7:0  
0
No attenuation  
DAC volume control  
1 to 254 −3/8 dB per step  
255 Full attenuation  
Rev. E | Page 26 of 32  
Data Sheet  
AD1939  
ADC CONTROL REGISTERS  
Table 23. ADC Control 0 Register  
Bit  
Value  
Function  
Description  
0
0
Normal  
Power-down  
1
Power down  
1
0
1
Off  
On  
High-pass filter  
ADC 1L mute  
2
0
Unmute  
1
Mute  
3
0
1
Unmute  
Mute  
ADC 1R mute  
ADC 2L mute  
4
0
Unmute  
1
Mute  
5
0
1
Unmute  
Mute  
ADC 2R mute  
Output sample rate  
7:6  
00  
01  
10  
11  
32 kHz/44.1 kHz/48 kHz  
64 kHz/88.2 kHz/96 kHz  
128 kHz/176.4 kHz/192 kHz  
Reserved  
Table 24. ADC Control 1 Register  
Bit  
Value  
Function  
Description  
1:0  
00  
24  
Word width  
01  
20  
10  
Reserved  
11  
16  
4:2  
000  
001  
010  
011  
100  
101  
110  
111  
00  
1
0
8
12  
16  
Reserved  
Reserved  
Reserved  
SDATA delay (BCLK periods)  
6:5  
7
Stereo  
TDM (daisy chain)  
ADC AUX mode (ADC-, DAC-, TDM-coupled)  
Reserved  
Serial format  
01  
10  
11  
0
1
Latch in mid cycle (normal)  
Latch in at end of cycle (pipeline)  
BCLK active edge (TDM in)  
Rev. E | Page 27 of 32  
 
AD1939  
Data Sheet  
Table 25. ADC Control 2 Register  
Bit  
Value  
Function  
Description  
0
0
50/50 (allows 32, 24, 20, or 16 bit clocks (BCLKs)  
per channel)  
LRCLK format  
1
Pulse (32 BCLKs per channel)  
1
0
Drive out on falling edge (DEF)  
BCLK polarity  
1
Drive out on rising edge  
2
0
1
Left low  
Left high  
Slave  
Master  
64  
128  
256  
512  
LRCLK polarity  
LRCLK master/slave  
BCLKs per frame  
3
0
1
5:4  
00  
01  
10  
11  
0
6
7
Slave  
BCLK master/slave  
BCLK source  
1
Master  
ABCLK pin  
Internally generated  
0
1
Rev. E | Page 28 of 32  
Data Sheet  
AD1939  
To relax the requirement for the setup time of the AD1939 in  
ADDITIONAL MODES  
cases of high speed TDM data transmission, the AD1939 can  
latch in the data using the falling edge of DBCLK. This effec-  
tively dedicates the entire BCLK period to the setup time. This  
mode is useful in cases where the source has a large delay time  
in the serial data driver. Figure 28 shows this pipeline mode of  
data transmission.  
The AD1939 offers several additional modes for board level  
design enhancements. To reduce the EMI in board level design,  
serial data can be transmitted without an explicit BCLK. See  
Figure 27 for an example of a DAC TDM data transmission  
mode that does not require high speed DBCLK. This configura-  
tion is applicable when the AD1939 master clock is generated  
by the PLL with the DLRCLK as the PLL reference frequency.  
Both the BCLK-less and pipeline modes are available on the  
ADC serial data port.  
DLRCLK  
32 BITS  
INTERNAL  
DBCLK  
DSDATAx  
DLRCLK  
INTERNAL  
DBCLK  
TDM-DSDATAx  
Figure 27. Serial DAC Data Transmission in TDM Format Without DBCLK  
(Applicable Only If PLL Locks to DLRCLK, This Mode Is Also Available in the ADC Serial Data Port)  
DLRCLK  
DBCLK  
DATA MUST BE VALID  
AT THIS BCLK EDGE  
MSB  
DSDATAx  
Figure 28. I2S Pipeline Mode in DAC Serial Data Transmission  
(Applicable in Stereo and TDM, Useful for High Frequency TDM Transmission,  
This Mode Is Also Available in the ADC Serial Data Port)  
Rev. E | Page 29 of 32  
 
 
 
AD1939  
Data Sheet  
APPLICATION CIRCUITS  
Typical application circuits are shown in Figure 29 through Figure 32. Figure 29 shows a typical ADC input filter circuit. Recommended  
loop filters for LR clock and master clock as the PLL reference are shown in Figure 30. Output filters for the DAC outputs are shown in  
Figure 31 and a regulator circuit is shown in Figure 32.  
120pF  
600Z  
5.76kΩ  
5.76kΩ  
AUDIO  
INPUT  
68pF  
NPO  
2
3
11kΩ  
11kΩ  
100pF  
1
3.01kΩ  
OP275  
+
DAC  
OUTN  
2
270pF  
NPO  
604Ω  
1
AUDIO  
OUTPUT  
OP275  
3
560pF  
NPO  
4.7µF  
+
5.76kΩ  
237Ω  
+
2.2nF  
NPO  
ADCxN  
DAC  
OUTP  
1nF  
120pF  
NPO  
5.62kΩ  
5.62kΩ  
1.50kΩ  
100pF  
5.76kΩ  
1nF  
6
5
NPO  
237Ω  
4.7µF  
+
7
OP275  
+
ADCxP  
Figure 31. Typical DAC Output Filter Circuit (Differential)  
Figure 29. Typical ADC Input Filter Circuit  
100nF  
10µF  
E
+
LRCLK  
39nF  
MCLK  
5.6nF  
VSUPPLY  
5V  
LF  
LF  
1kΩ  
B
+
VDRIVE  
VSENSE  
FZT953  
2.2nF  
390pF  
C
3.32kΩ  
562Ω  
3.3V  
AVDD2  
AVDD2  
+
100nF  
10µF  
Figure 32. Recommended 3.3 V Regulator Circuit  
Figure 30. Recommended Loop Filters for LRCLK or MCLK PLL Reference  
Rev. E | Page 30 of 32  
 
 
 
 
 
Data Sheet  
AD1939  
OUTLINE DIMENSIONS  
12.20  
12.00 SQ  
11.80  
0.75  
0.60  
0.45  
1.60  
MAX  
64  
49  
1
48  
PIN 1  
10.20  
10.00 SQ  
9.80  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.08  
COPLANARITY  
16  
33  
0.15  
0.05  
SEATING  
17  
32  
PLANE  
VIEW A  
0.27  
0.22  
0.17  
0.50  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BCD  
Figure 33. 64-Lead Low Profile Quad Flat Package [LQFP]  
(ST-64-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
Temperature Range  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
Package Description  
Package Option  
AD1939YSTZ  
64-Lead LQFP  
64-Lead LQFP, 13”Tape and Reel  
64-Lead LQFP  
64-Lead LQFP, 13”Tape and Reel  
Evaluation Board  
ST-64-2  
ST-64-2  
ST-64-2  
ST-64-2  
AD1939YSTZRL  
AD1939WBSTZ  
AD1939WBSTZ-RL  
EVAL-AD1939AZ  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The AD1939W models are available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for these models.  
Rev. E | Page 31 of 32  
 
 
 
 
AD1939  
NOTES  
Data Sheet  
©2006–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06071-0-2/13(E)  
Rev. E | Page 32 of 32  

相关型号:

ASDB1-3.999MHZ-I

Series - Fundamental Quartz Crystal, 3.999MHz Nom, HC-49/U, 2 PIN
ILSI

ASDB1-40.000MHZ-I

Series - Fundamental Quartz Crystal, 40MHz Nom, HC-49/U, 2 PIN
ILSI

ASDB1-40.000MHZ-L

Series - Fundamental Quartz Crystal, 40MHz Nom, HC-49/U, 3 PIN
ILSI

ASDC3-75.000MHZ

Series - 3Rd Overtone Quartz Crystal, 75MHz Nom, HC-49/U, 2 PIN
ILSI

ASDFREQ1-E-C-S-T

LVHCMOS Output Clock Oscillator, 1MHz Min, 34.99MHz Max
ABRACON

ASDFREQ1-E-C-T

LVHCMOS Output Clock Oscillator, 1MHz Min, 34.99MHz Max
ABRACON

ASDFREQ1-E-H-S-T

LVHCMOS Output Clock Oscillator, 1MHz Min, 34.99MHz Max
ABRACON

ASDFREQ1-E-H-T

LVHCMOS Output Clock Oscillator, 1MHz Min, 34.99MHz Max
ABRACON

ASDFREQ1-E-K-S-T

LVHCMOS Output Clock Oscillator, 1MHz Min, 34.99MHz Max
ABRACON

ASDFREQ1-E-K-T

LVHCMOS Output Clock Oscillator, 1MHz Min, 34.99MHz Max
ABRACON

ASDFREQ1-F-C-S-T

LVHCMOS Output Clock Oscillator, 1MHz Min, 34.99MHz Max
ABRACON