BUF04 [ADI]

Closed-Loop High Speed Buffer; 闭环高速缓存
BUF04
型号: BUF04
厂家: ADI    ADI
描述:

Closed-Loop High Speed Buffer
闭环高速缓存

文件: 总16页 (文件大小:440K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Closed-Loop  
High Speed Buffer  
a
BUF04*  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
Bandwidth – 110 MHz  
Slew Rate – 3000 V/s  
Plastic DIP  
8-Lead and Cerdip  
(P, Z Suffix)  
8-Lead Narrow-Body SO  
(S Suffix)  
Low Offset Voltage – <1 mV  
Very Low Noise – < 4 nV/Hz  
Low Supply Current – 8.5 mA Mux  
Wide Supply Range – ؎5 V to ؎15 V  
Drives Capacitive Loads  
Pin Compatible with BUF03  
1
8
7
6
5
NULL  
NC  
IN  
1
NULL  
V+  
BUF04  
Top View  
BUF04  
2
3
4
OUT  
NC  
APPLICATIONS  
V–  
Instrumentation Buffer  
RF Buffer  
NC = NO CONNECT  
Line Driver  
High Speed Current Source  
Op Amp Output Current Booster  
High Performance Audio  
High Speed AD/DA  
GENERAL DESCRIPTION  
High slew rate and very low noise and THD, coupled with wide  
input and output dynamic range, make the BUF04 an excellent  
choice for video and high performance audio circuits.  
The BUF04 is a wideband, closed-loop buffer that combines  
state of the art dynamic performance with excellent dc  
performance. This combination enables designers to maximize  
system performance without any speed versus dc accuracy  
compromises.  
The BUF04’s inherent ability to drive capacitive loads over a  
wide voltage and temperature range makes it extremely useful  
for a wide variety of applications in military, industrial, and  
commercial equipment.  
Built on a high speed Complementary Bipolar (CB) process for  
better power performance ratio, the BUF04 consumes less than  
8.5 mA operating from ±5 V or ±15 V supplies. With a 2000 V/µs  
min slew rate, and 100 MHz gain bandwidth product, the  
BUF04 is ideally suited for use in high speed applications where  
low power dissipation is critical.  
The BUF04 is specified over the extended industrial (–40°C to  
+85°C) and military (–55°C to +125°C) temperature range.  
BUF04s are available in plastic and ceramic DIP plus SO-8  
surface mount packages.  
Contact your local sales office for MIL-STD-883 data sheet and  
availability.  
Full ±10 V output swing over the extended temperature range  
along with outstanding ac performance and high loop gain  
accuracy makes the device useful in high speed data acquisition  
systems.  
*Patent pending.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
BUF04–SPECIFICATIONS  
(@ V = ؎15.0 V, T = +25؇C unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
S
A
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
0.3  
1.3  
0.7  
2.2  
±13  
30  
1
4
5
10  
mV  
mV  
µA  
µA  
V
–40°C TA +85°C  
VCM = 0  
–40°C TA +85°C  
Input Bias Current  
Input Voltage Range  
Offset Voltage Drift  
Offset Null Range  
VCM  
VOS/T  
µV/°C  
mV  
±25  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
VO  
RL = 150 ,  
±10.5 ±11.1  
V
–40°C TA +85°C  
RL = 2 k,  
–40°C TA +85°C  
±10  
±13  
±13  
±50  
±11  
V
V
V
mA  
mA  
±13.5  
±13.15  
±65  
Output Current – Continuous  
Peak Output Current  
IOUT  
IOUTP  
Note 2  
±80  
TRANSFER CHARACTERISTICS  
Gain  
AVCL  
NL  
RL = 2 kΩ  
0.995  
0.995  
0.9985 1.005  
0.9980 1.005  
0.005  
V/V  
V/V  
%
–40°C TA +85°C  
RL = 1 k, VO = ±10 V  
RL = 150 kΩ  
Gain Linearity  
0.008  
%
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = ±4.5 V to ±18 V  
–40°C TA +85°C  
VO = 0 V, RL = ∞  
76  
76  
93  
93  
6.9  
6.9  
dB  
dB  
mA  
mA  
Supply Current  
8.5  
8.5  
–40°C TA +85°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Bandwidth  
Bandwidth  
Bandwidth  
SR  
RL = 2 k, CL = 70 pF  
2000  
3000  
110  
110  
110  
60  
V/µs  
MHz  
MHz  
MHz  
ns  
BW  
BW  
BW  
–3 dB, CL = 20 pF, RL = ∞  
–3 dB, CL = 20 pF, RL = 1 kΩ  
–3 dB, CL = 20 pF, RL = 150 Ω  
Settling Time  
VIN = ±10 V Step to 0.1%  
Differential Phase  
f = 3.58 MHz, RL = 150 Ω  
f = 4.43 MHz, RL = 150 Ω  
f = 3.58 MHz, RL = 150 Ω  
f = 4.43 MHz, RL = 150 Ω  
0.02  
0.03  
0.014  
0.008  
3
Degrees  
Degrees  
%
%
pF  
Differential Gain  
Input Capacitance  
NOISE PERFORMANCE  
Voltage Noise Density  
Current Noise Density  
en  
in  
f = 1 kHz  
f = 1 kHz  
4
2
nV/Hz  
pA/Hz  
NOTE  
1Long term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at +125°C with an LTPD of 1.3.  
Specifications subject to change without notice.  
–2–  
REV. 0  
BUF04  
ELECTRICAL CHARACTERISTICS (@ VS = ؎5.0 V, TA = +25؇C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
0.8  
1.0  
0.15  
1.6  
2.0  
4
5
mV  
mV  
µA  
–40°C TA +85°C  
VCM = 0 V  
–40°C TA +85°C  
Input Bias Current  
10  
µA  
Input Voltage Range  
Offset Voltage Drift  
Offset Null Range  
VCM  
VOS/T  
±3.0  
30  
±25  
V
µV/°C  
mV  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
VO  
RL = 150 ,  
±3.0  
V
–40°C TA +85°C  
RL = 2 k,  
–40°C TA +85°C  
±2.75 ±3.00  
V
V
V
mA  
mA  
±3.0  
±3.0  
±40  
±3.6  
±3.35  
Output Current - Continuous  
Peak Output Current  
IOUT  
IOUTP  
Note 2  
±75  
TRANSFER CHARACTERISTICS  
Gain  
AVCL  
NL  
RL = 2 k,  
–40°C TA +85°C  
RL = 1 kΩ  
0.995  
0.995  
0.9977 1.005  
1.005  
0.005  
V/V  
V/V  
%
Gain Linearity  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = ±4.5 V to ±18 V  
–40°C TA +85°C  
VO = 0 V, RL = ∞  
76  
76  
93  
93  
6.60  
6.70  
dB  
dB  
mA  
mA  
Supply Current  
8
8
–40°C TA +85°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Bandwidth  
Bandwidth  
Bandwidth  
SR  
RL = 2 k, CL = 70 pF  
2000  
100  
100  
V/µs  
BW  
BW  
BW  
–3 dB, CL = 20 pF, RL = ∞  
–3 dB, CL = 20 pF, RL = 1 kΩ  
–3 dB, CL = 20 pF, RL = 150 Ω  
f = 3.58 MHz, RL = 150 Ω  
f = 4.43 MHz, RL = 150 Ω  
f = 3.58 MHz, RL = 150 Ω  
f = 4.43 MHz, RL = 150 Ω  
MHz  
MHz  
MHz  
Degrees  
Degrees  
%
100  
Differential Phase  
0.13  
0.15  
0.04  
0.06  
Differential Gain  
%
NOISE PERFORMANCE  
Voltage Noise Density  
Current Noise Density  
en  
in  
f = 1 kHz  
f = 1 kHz  
4
2
nV/Hz  
pA/Hz  
NOTE  
1Long term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at +125 °C, with an LTPD of 1.3.  
Specifications subject to change without notice.  
REV. 0  
–3–  
BUF04  
WAFER TEST LIMITS  
Parameter  
(@ VS = ؎15.0 V, TA = +25؇C unless otherwise noted)  
Symbol  
Conditions  
Limit  
Units  
Offset Voltage  
VOS  
VOS  
IB  
PSRR  
VO  
VS = ±15 V  
VS = ±5 V  
VCM = 0 V  
V = ±4.5 V to ±18 V  
RL = 150 Ω  
1
2
5
76  
±10.5  
8.5  
1 ± 0.005  
mV max  
mV max  
µA max  
dB  
V min  
mA max  
V/V  
Input Bias Current  
Power Supply Rejection Ratio  
Output Voltage Range  
Supply Current  
ISY  
AVCL  
VO = 0 V, RL = 2 kΩ  
VO = ±10 V, RL = 2 kΩ  
Gain  
NOTE  
Electrical tests and wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard  
product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.  
ABSOLUTE MAXIMUM RATINGS1  
DICE CHARACTERISTICS  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Maximum Power Dissipation . . . . . . . . . . . . . . . See Figure 16  
Storage Temperature Range  
Z Package . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +175°C  
P, S Package . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
BUF04Z . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
BUF04S, P . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Junction Temperature Range  
Z Package . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
P, S Package . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering 60 sec) . . . . . . . . +300°C  
2
BUF04 Die Size 0.075 x 0.064 inch, 5,280 Sq. Mils  
Substrate (Die Backside) Is Connected to V+  
Transistor Count 45.  
Package Type  
θJA  
θJC  
Units  
8-Pin Cerdip (Z)  
8-Pin Plastic DIP (P)  
8-Pin SOIC (S)  
148  
103  
158  
16  
43  
43  
°C/W  
°C/W  
°C/W  
NOTES  
1Absolute maximum ratings apply to both DICE and packaged parts, unless  
otherwise noted.  
2θJA is specified for the worst case conditions, i.e., θJA is specified for device in socket  
for cerdip, P-DIP, and LCC packages; θJA is specified for device soldered in circuit  
board for SOIC package.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
BUF04AZ/883  
BUF04GP  
BUF04GS  
–55°C to +125°C Cerdip  
Q-8  
N-8  
SO-8  
DICE  
–40°C to +85°C  
–40°C to +85°C  
+25°C  
Plastic DIP  
SO  
DICE  
BUF04GBC  
–4–  
REV. 0  
Typical Performance Characteristics–  
BUF04  
200  
150  
120  
V = ±15V  
S
V
= ±15V  
S
315 CERDIPS  
315 PLASTIC DIPS  
= +25°C  
160  
T
= +25°C  
T
A
A
120  
80  
90  
60  
40  
30  
0
–0.1  
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
–0.15  
–0.1  
–0.5  
0
0.5  
0.1  
0.15  
0.2  
OFFSET – mV  
OFFSET – mV  
Figure 1. Input Offset Voltage (VOS) Distribution @  
Figure 4. Input Offset Voltage (VOS) Distribution @  
±15 V, P-DIP  
±15 V, Cerdip  
125  
125  
V
= ±5V  
V = ±5V  
S
S
315 PLASTIC DIPS  
= +25°C  
315 CERDIPS  
T = +25°C  
A
100  
100  
T
A
75  
50  
75  
50  
25  
0
25  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
OFFSET – mV  
OFFSET – mV  
Figure 2. Input Offset Voltage (VOS) Distribution @  
Figure 5. Input Offset Voltage (VOS) Distribution @  
±5 V, P-DIP  
±5 V, Cerdip  
2.0  
0
V
= ±5V  
S
1.0  
–1.0  
±5V  
V
= ±15V  
S
0
±15V  
–2.0  
–3.0  
–4.0  
–1.0  
–2.0  
–3.0  
–4.0  
–5.0  
–5.0  
–6.0  
–6.0  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE – °C  
TEMPERATURE – °C  
Figure 3. Input Offset Voltage (VOS) vs. Temperature  
Figure 6. Input Bias Current vs. Temperature  
REV. 0  
–5–  
BUF04  
8.0  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
T
= +25°C  
A
7.5  
7.0  
V
= ±18V  
S
V
= ±5V  
S
V
= ±15V  
S
6.5  
6.0  
V
= ±5V  
S
V
= ±15V  
S
0
5.5  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
TEMPERATURE – °C  
Figure 10. Output Impedance vs. Frequency  
Figure 7. Supply Current vs. Temperature  
5.0  
15  
V
= ±15V  
V
= ±5V  
R
R
= 2k Ω  
= 1k Ω  
4.5  
4.0  
S
14  
13  
S
L
= 2k , 1kΩ  
R
L
L
3.5  
3.0  
12  
11  
= 150  
R
L
R
= 150  
L
R
= 150Ω  
L
= 150  
R
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
–11  
–12  
–13  
–14  
–15  
L
R
0
= 2k , 1kΩ  
L
R
= 1k Ω  
L
R
= 2k  
25  
L
0
–75  
–50  
–25  
25  
50  
75  
100  
125  
–75  
–50  
–25  
50  
75  
100  
125  
TEMPERATURE – °C  
TEMPERATURE – °C  
Figure 8. Output Voltage Swing vs. Temperature @ ±15 V  
Figure 11. Output Voltage Swing vs. Temperature @ ±5 V  
16  
14  
5
4
12  
POSITIVE  
SWING  
10  
POSITIVE  
SWING  
3
8
ABS NEGATIVE  
SWING  
ABS NEGATIVE  
SWING  
2
6
V
T
= ±15V  
= +25°C  
S
4
2
0
V
T
= ±5V  
= +25°C  
S
A
1
0
A
10  
100  
1k  
10k  
10  
100  
1k  
10k  
100k  
1M  
LOAD RESISTANCE – Ω  
LOAD RESISTANCE – Ω  
Figure 9. Maximum VOUT Swing vs. Load @ ±5 V  
Figure 12. Maximum VOUT Swing vs. Load @ ±15 V  
–6–  
REV. 0  
BUF04  
1.5  
1.0  
0.5  
0
0.5  
0
T
MAX = 150°C  
FREE AIR  
NO HEAT SINK  
P DIP  
= 103°C/W  
J
Θ
JA  
T
= +25°C  
A
CERDIP  
= 148°C/W  
Θ
JA  
–0.5  
–1.0  
SOIC  
= 158°C/W  
Θ
JA  
–1.5  
–2.0  
0
25  
50  
75 85  
100  
125  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
TEMPERATURE –  
°C  
COMMON MODE VOLTAGE – Volts  
Figure 13. Bias Current vs. Input Voltage  
Figure 16. Maximum Power Dissipation vs.  
Ambient Temperature  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
V
= +25°C  
= ±5, ±15V  
A
S
– PSRR  
10  
+PSRR  
0
1
10  
100  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 14. Power Supply Rejection vs. Frequency  
Figure 17. Input Noise Voltage vs. Frequency  
6000  
6000  
V
= ±15V  
S
V = ±15V  
S
5000  
5000  
4000  
3000  
2000  
1000  
0
SWING = ±10V  
= +25°C  
T
A
+EDGE  
–EDGE  
POSITIVE  
SLEW RATE  
4000  
3000  
2000  
1000  
0
NEGATIVE  
SLEW RATE  
0
50  
100  
150  
200  
250  
–75  
–50  
–25  
25  
50  
75  
100  
125  
0
CAPACITIVE LOAD – pF  
TEMPERATURE – °C  
Figure 15. Slew Rate vs. Temperature  
Figure 18. Slew Rate vs. Capacitive Loads  
REV. 0  
–7–  
BUF04  
–45  
–45  
150  
150  
125  
T
V
= +25°C  
= ±5V  
T
V
= +25°C  
= ±15V  
A
A
S
–67.5  
–90  
S
–67.5  
–90  
125  
BANDWIDTH  
100  
75  
100  
75  
R = 150  
L
PHASE @  
= 150  
R
L
–112.5  
–112.5  
R
= 2kΩ  
L
PHASE @  
= 2k  
R
–135  
–135  
–157.5  
–180  
50  
25  
50  
25  
L
BANDWIDTH  
PHASE  
100  
–157.5  
–180  
250  
0
0
0
50  
100  
150  
200  
0
50  
150  
200  
250  
CAPACITANCE – pF  
CAPACITANCE – pF  
Figure 19. Bandwidth and Phase vs.  
Figure 22. Bandwidth & Phase vs.  
Capacitive Loads @ ±5 V  
Capacitive Loads @ ±15 V  
140  
200  
150  
R = 2kΩ  
L
T
= +25°C  
A
130  
V
= ±15V  
S
–55°C  
120  
+25°C  
110  
100  
50  
0
+125°C  
100  
90  
80  
±5  
±10  
±15  
100  
1k  
10k  
SUPPLY VOLTAGE –Volts  
RESISTIVE LOAD – Ω  
Figure 20. Bandwidth vs. Supply Voltage and  
Temperature  
Figure 23. Bandwidth vs. Loads  
1.5  
0.075  
0.050  
0.025  
0
1.5  
6
4
2
0
V
V
= ±15V  
V
V
= ±15V  
= 0.1V  
S
S
= 0.1V  
IN  
RMS  
IN  
RMS  
1.0  
0.5  
0
FREQUENCY = 10MHz  
= 2kΩ  
1.0  
0.5  
0
FREQUENCY = 10MHz  
R
R
= 150  
L
PHASE  
L
GAIN  
GAIN  
–0.025  
–0.050  
–0.5  
–1.0  
–0.5  
–1.0  
–2  
–4  
PHASE  
–0.075  
–1.5  
–1.5  
–6  
–10  
–8  
–6  
–4  
–2  
2
4
6
8
10  
–10  
–8  
–6  
–4  
–2  
2
4
6
8
10  
0
0
OUTPUT VOLTAGE – Volts  
OUTPUT VOLTAGE – Volts  
Figure 24. Gain and Phase Deviation, RL = 2 kΩ  
Figure 21. Gain and Phase Deviation, RL = 150 Ω  
–8–  
REV. 0  
BUF04  
DLY  
375.0ns  
100  
90  
100  
90  
INPUT  
INPUT  
(50mV/DIV)  
(2V/DIV)  
OUTPUT  
(50mV/DIV)  
OUTPUT  
(2V/DIV)  
10  
10  
0%  
0%  
50mV  
50mV  
10ns  
2V  
2V  
50ns  
V
= ±15V, R = 2k, C = 15pF  
L L  
S
V
= ±15V, R = 2k, C = 15pF  
L L  
S
Figure 25. Small-Signal Transient Response  
Figure 26. Large-Signal Transient Response  
AUDIO PRECISION BUF04 THD+N (%) vs FREQ (Hz)  
0.1  
07 MAR 93 21:31:53  
12  
V
T
= ±15V  
S
9
6
3
= +25°C  
A
A
: V = 7.75V  
IN  
R
R
= 150W  
= 600W  
: V = 0.775V  
IN  
R
R
= 150W  
= 600W  
C
D
V
= ±15V  
rms,  
L
rms,  
L
S
R
= 150  
L
LPF=80kHz  
B
: V = 7.75V  
IN  
: V = 0.775V  
IN  
rms,  
L
rms,  
L
A
C
= 100pF  
L
0.010  
C
= 50pF  
C
L
C
= 0pF  
0
L
B
C
D
–3  
–6  
150  
10  
0.001  
D
BUF04  
C
L
–9  
T
–12  
10k  
0.0001  
20  
100  
1k  
10k  
20k  
100k  
1M  
10M  
100M  
1000M  
FREQUENCY – Hz  
Figure 27. THD + Noise vs. Amplitude  
FUNCTIONAL DESCRIPTION  
Figure 28. Bandwidth vs. Frequency  
The BUF04 is a closed-loop voltage buffer based on a current  
feedback architecture. Its high open-loop transimpedance, high  
output current drive capability, and its low input offset voltage  
makes it useful in a variety of applications, such as buffering the  
inputs of sampling and flash A/D converters, audio and video  
line drivers, active filters, and precision op amp hoosters.  
Q11  
Q13  
Q5  
Q7  
Q3  
C1  
Q9  
R
100Ω  
FB  
D1  
D2  
A transistor-level equivalent circuit for the BUF04 is illustrated  
in Figure 29. The input stage consists of a pair of emitter  
follower transistors, Q1 and Q2, whose outputs drive a second  
set of transistors, Q3 and Q4. The emitters of Q3 and Q4 are  
connected together through diodes, D1 and D2, to form a low  
impedance input for the feedback signal (in current mode) from  
the output stage. The outputs of Q3 and Q4 are then  
“mirrored” to Q5 and Q6 which form the gain stage of the  
BUF04. The signal is taken from the collectors of Q5 and Q6  
which drive a “Darlington-connected” output stage made up of  
transistors Q7-Q10. Three R-C networks (R1–C1, R2–C2, and  
R3–C3) form feed-forward paths which bypass certain sections  
of the BUF04 for improved high frequency performance and  
capacitive load drive capability. Since the signal conveyed  
internally in the BUF04 is a current, the frequency response  
and slew rate of the BUF04 are insensitive to supply voltage  
variations.  
20  
C3  
R3  
Q2  
V
IN  
V
OUT  
Q1  
R2  
20  
Q10  
Q4  
C2  
Q8  
Q14  
Q6  
Q12  
Figure 29. Transistor-Level Equivalent Circuit  
An interesting feature of the BUF04 architecture is the use of  
“slew-enhancement” transistors, Q11–Q14. Under normal small  
signal (VIN < 2 Vbes) conditions, these transistors are normally  
“OFF.” In large signals, high speed transient applications where  
the input signal is > 2 Vbes, these transistors turn on and literally  
“brute-force” the output to follow the input. When the input  
signal drops below 2 Vbes, the transistors return to their  
normally “OFF” state.  
REV. 0  
–9–  
BUF04  
A two-terminal equivalent circuit of the BUF04 is shown in  
Figure 30 where the transistor-level equivalent circuit is reduced  
to its essential elements. The input stage develops a signal  
current, IIN, that is replicated by an internal current conveyor so  
as to flow through Rt, the transimpedance of the BUF04. The  
voltage developed across Rt is buffered by a unity-gain output  
voltage follower. With an open-loop Rt of 400 kand an RIN of  
30 , the voltage gain of the BUF04, given by the ratio Rt/RIN is  
approximately 13,000—accurate to approximately 13.5 bits.  
The BUF04’s open-loop ac transimpedance response is  
determined by the open-loop pole formed by Rt and Ct. Since  
Ct is typically 8 pF, the open-loop pole occurs at approximately  
50 kHz.  
To minimize the effects of high-frequency coupling, circuits  
must be built with short interconnect leads, and large ground  
planes should he used whenever possible to provide a low  
resistance, low-inductance circuit path. Sockets should be  
avoided because the increased interlead capacitance can degrade  
bandwidth and stability. If sockets are necessary, individual pin  
sockets (oftentimes called “cage jacks,” AMP Part No.  
5-330808-3 or 5-330808-6) should be used. They contribute far  
less stray reactance than molded socket assemblies.  
Offset Voltage Nulling  
Although the offset voltage of the BUF04 is very low (1 mV,  
maximum) for such a high speed buffer, the circuit shown in  
Figure 32 can be used if additional offset voltage nulling is  
required. A potentiometer ranging from 1 k to 10 k can be used  
for VOS nulling; with a 10 kpotentiometer, the trim range is  
±30 mV.  
V
X1  
IN  
R
t
V
I
C
XI  
OUT  
IN  
t
I
V+  
IN  
10µF  
R
IN  
TRIM RANGE  
±30mV  
0.1µF  
R
FB  
1
10k  
8
R
= 30Ω  
IN  
7
3
R = 400 k  
V
V
OUT  
t
IN  
BUF04  
6
C = 8pF  
t
RFB = 100Ω  
0.1µF  
4
Figure 30. Current-Feedback Functional Equivalent  
Circuit of the BUF04  
10µF  
Grounding and Bypassing Considerations  
V–  
To take full advantage of the BUF04’s very wide bandwidth,  
high slew rates, and dynamic range capabilities requires due  
diligence with regard to supply bypassing. In high speed circuits,  
the supply bypassing network must provide a very low impedance  
return path for currents flowing to and from the load network.  
As with any high speed application, multiple bypassing is always  
recommended. A 10 µF tantalum electrolytic in parallel with a  
0.1 µF ceramic capacitor is sufficient for most applications. For  
those high speed applications where output load currents  
approach 50 mA, small valued resistors (1.1 to 4.7 ) in  
series with the tantalum capacitors may improve circuit  
transient response by damping out the capacitor’s self-  
inductance. Figure 31 illustrates bypassing recommendations.  
Figure 32. Optional Offset Voltage Nulling Scheme  
APPLICATIONS  
Output Short-Circuit Protection  
To optimize the transient response and output voltage swing of  
the BUF04, internal output short-circuit current limiting was  
omitted. Although the BUF04 can provide continuous output  
currents of 50 mA without protection, direct connection of the  
BUF04’s output to ground or to the supplies will destroy the  
device. An active current limit technique, illustrated in Figure  
33, provides the necessary short-circuit protection while  
retaining full dc output voltage swing to the load.  
+15V  
10µF  
V+  
10µF  
R1  
RSC1  
10Ω  
0.1µF  
2N2905  
KELVIN RETURN  
FOR LOAD CURRENT  
2N2905  
SET ISC +(ISC–) <60mA,  
CONTINUOUS  
0.1µF  
7
0.6V  
RSC1 (RSC2) =  
6
3
ISC + (ISC–)  
V
7
V
IN  
BUF04  
4
OUT  
6
3
V
V
OUT  
R
IN  
R
BUF04  
S
L
0.1µF  
0.1µF  
6.2k  
0.01µF  
4
10µF  
R2  
2N2219  
KELVIN RETURN  
FOR LOAD CURRENT  
2N2219  
10µF  
V–  
RSC2  
10Ω  
NOTE  
USE SHORT LEAD LENGTHS (<5mm)  
Figure 31. Recommended Power-Supply Bypassing  
–15V  
Figure 33. Short-Circuit Current Limiting Using  
Current Sources  
–10–  
REV. 0  
BUF04  
Output Current Transient Recovery  
t
59.00ns  
Settling characteristics of high speed buffers also include the  
buffer’s ability to recover, i.e., settle, from a transient output  
current load condition. When driving the input of an A/D  
converter, especially the successive-approximation converter  
types, the buffer must maintain a constant output voltage under  
dynamically changing load current conditions. In these types of  
converters, the comparison point is usually diode-clamped, but  
it may deviate several hundred millivolts resulting in high  
frequency modulation of the A/D input current. Open-loop and  
closed-loop buffers (also, op amps configured as followers) that  
exhibit high closed-loop output impedances and/or low unity  
gain crossover frequencies recover very slowly from output load  
current transients. This slow recovery leads to linearity errors or  
missing codes because of errors in the instantaneous input volt-  
age. Therefore, the buffer (or op amp) chosen for this type of  
application should exhibit low output impedance and high unity  
gain bandwidth so that its output has had a chance to settle to  
its nominal value before the converter makes its comparison.  
25mA  
I
SOURCE  
100  
90  
(4mA/DIV)  
35mA  
10  
V
OUT  
0%  
(5mV/DIV)  
100mV  
5mV  
20ns  
Figure 35. BUF04’s Output Load Current Recovery Time  
Terminated Line Drivers  
The BUF04’s high output current, large slew rate, and wide  
bandwidth all combine to make it an ideal device for high speed  
line driver applications. As shown in Figure 36, the BUF04 can  
be configured for driving doubly terminated 50 and 75 Ω  
cables. To optimize the circuit’s pulse response, a capacitor, CT  
(CX + CTRIM), is connected across the series back termination.  
The BUF04 can drive a 50 line to ±2.5 V and a 75 line to  
±3.75 V when operating on ±15 V supplies.  
The circuit in Figure 34 illustrates a settling measurement  
circuit for evaluating the recovery time of high speed buffers  
from an output load current transient. The input to the buffer is  
grounded for ease of measuring the recovery time, and two  
resistors are used to sum steady-state and transient load currents  
at the output. As a worst-case condition, R1, was chosen such  
that the BUF04 would source (or sink) a steady-state current of  
25 mA. R2 was then chosen to add a 10 mA transient current  
upon the steady-state value. To set accurately the nodal voltages  
internal to the BUF04, the supply voltages were offset by the  
voltage applied to R1. Because of its high transimpedance, wide  
bandwidth, and low output impedance, the BUF04 exhibits an  
extremely fast recovery time of 60 ns to 0.01%, as shown in  
Figure 34. Results were identical regardless whether the BUF04  
was sourcing or sinking current.  
C
T
C
X
6'  
COAX  
R
X
6
3
V
IN  
BUF04  
R
R
L
S
Z
COAX  
R , R  
S
50Ω  
75Ω  
R
C
C
T
O
L
X
X
50RG-58  
75RG-59  
50  
75  
91pF 3–15pF  
62pF 3–15pF  
Figure 36. Line Driver Configuration  
Low-Pass Active Filter  
In many signal-conditioning applications, filters are required to  
band-limit noise or altogether eliminate other unwanted signals  
prior to conversion. Often, high frequency filters are needed for  
these applications; however, there are few op amps that exhibit  
the high open-loop gain and wide unity-gain crossover  
frequency required for these applications. As illustrated in  
Figure 37, the BUF04 and a handful of passive components can  
be configured as a high frequency, low-pass active filter. Since  
the filter configuration is a unity-gain Sallen-Key topology, the  
BUF04 is particularly well suited for this application. In this  
circuit, an additional resistor, R3, was added to prevent  
interaction between C2 and the BUF04’s input capacitance.  
V+  
10µF  
0.1µF  
TP2  
TP1  
7
R2  
250Ω  
6
3
V
BUF04  
IN  
R1  
200Ω  
SOURCE: 0–2.5 V  
SINK: 0+2.5V  
0.1µF  
4
V
LOAD  
10µF  
SOURCE: –5V  
SINK: +5V  
V–  
Figure 34. Transient Output Load Current Test Circuit  
C1*  
44pF (22pF x 2)  
R1  
R2  
R3  
499Ω  
499Ω  
47Ω  
6
3
V
V
IN  
OUT  
BUF04  
C2*  
22pF  
* SILVERED MICA OR  
DIPPED CERAMIC  
1
C1  
;
Q =  
4 · C2  
W
=
R1 · R2 · C1 · C2  
O
Figure 37. A 10 MHz Low-Pass Active Filter  
REV. 0  
–11–  
BUF04  
Paralleling BUF04s for Increased Load Drive Capability  
In applications where continuous output currents greater than  
50 mA are required or where heat management is an issue, a  
number of BUF04s can be connected in parallel to reduce the  
drive requirement of any one buffer. An example of one such  
application is illustrated in Figure 39. In this circuit, the  
BUF04s are required to drive a doubly terminated 50 line to  
±5 V. This type of a load for a single BUF04 would certainly  
cause a power dissipation problem. Parallel operation results in  
lower input and output impedances and increased bias currents;  
on the other hand, input equivalent noise voltage is reduced and  
input offset voltage remains unchanged.  
Operation Within an Op Amp Feedback Loop  
The BUF04 is well suited as a current booster or isolation  
buffer within the closed loop of precision op amps such as the  
OP177, the OP97, the OP27, or the OP77. Since the BUF04 is  
a closed loop voltage buffer, no interstage coupling resistor  
between the op amp and the buffer’s input is required for circuit  
stability. The wide bandwidth and high slew rate of the BUF04  
assure that the loop has the characteristics of the op amp; hence,  
no additional rolloff is required.  
R1  
100  
R2  
2
3
6
6
R1  
3
R3  
OP177  
BUF04  
V
OUT  
47Ω  
100Ω  
3
6
V
R
500Ω  
BUF04  
BUF04  
IN  
C
L
L
1000pF  
±5V  
GAIN  
10  
100  
R2 (k)  
V
IN  
V
OUT  
1
10  
100  
±10V  
R
R
50Ω  
L
S
R2  
47Ω  
R4  
100Ω  
50Ω  
3
6
1000  
Figure 38. BUF04 as Booster Stage for a Precision Op Amp  
Figure 39. Paralleling BUF04s for High Output Currents  
Overdrive Recovery and Phase Reversal  
In applications where the inputs could be driven to the supply  
rails, the BUF04 recovers in 10 ns from positive or negative  
overdrive. The BUF04 does not exhibit any output voltage  
phase reversal when the input signal exceeds its input voltage  
range.  
–12–  
REV. 0  
BUF04  
* BUF04 SPICE Macro-model  
*
7/93, Rev. A  
JCB / PMI  
* POLE AT 200 MHz  
*
*
R11  
C7  
G7  
*
20  
20  
97  
97  
97  
20  
1E6  
0.759E-15  
12 22 1E-6  
* Copyright 1993 by Analog Devices, Inc.  
*
*
* Node assignments  
*
*
*
*
*
* POLE AT 200 MHz  
*
noninverting input  
positive supply  
R12  
C8  
G8  
*
21  
21  
97  
97  
97  
21  
1E6  
0.759E-15  
20 22 1E-6  
negative supply  
output  
*
* OUTPU T STAGE  
*
.SUBCKT BUF04  
1
99  
50  
6
*
FSY  
R13  
R14  
R15  
R16  
L2  
G11  
G12  
V5  
99  
22  
22  
27  
27  
27  
27  
50  
23  
27  
21  
24  
97  
70  
72  
71  
97  
50  
99  
50  
99  
50  
6
99  
27  
27  
24  
23  
21  
70  
71  
70  
97  
72  
POLY(2) V7 V8 1.85E-3 1 1  
16.67E3  
16.67E3  
80  
80  
10E-9  
99 21 12.5E-3  
21 50 12.5E-3  
3.3  
3.3  
DX  
DX  
27 21 12.5E-3  
DX  
DX  
DC 0  
DC 0  
* INPUT STAGE  
*
R1  
R2  
V1  
D1  
V2  
D2  
I1  
99  
10  
99  
9
11  
10  
99  
4
50  
99  
8
10  
5
8
50  
9
200  
200  
4.4  
DX  
4.4  
8
50  
11  
5
50  
3
3
61  
7
61  
7
99  
50  
2
DX  
1.8E-3  
1.8E-3  
5
4
30  
V6  
I2  
D5  
D6  
G10  
D7  
D8  
V7  
Q1  
Q2  
Q3  
Q4  
R3  
R4  
CP1  
CP2  
RFB  
*
QP  
QN  
QN  
QP  
30  
50E3  
50E3  
14E-15  
14E-15  
100  
4
61  
7
V8  
*
* MODELS USED  
*
.MODEL QN NPN(BF= 1000 IS= 1E-15)  
.MODEL QP PNP(BF= 1000 IS= 1E-15)  
.MODEL DX D(IS= 1E-15)  
6
* INPUT ERROR SOURCES  
*
IB1  
VOS  
LS1  
CS1  
CS2  
*
99  
3
30  
99  
99  
1
1
2
2
1
0.7E-6  
0.7E-6  
1E-9  
2.0E-12  
3.0E-12  
.ENDS BUF04  
EREF 97  
*
0
22 0 1  
* TRANSCONDUCTANCE STAGE  
*
R5  
C3  
G1  
G2  
E3  
E4  
D3  
D4  
R6  
C2  
*
12  
12  
97  
12  
13  
97  
12  
14  
12  
15  
97  
97  
12  
97  
97  
14  
13  
12  
15  
6
365E3  
8E-12  
99 8 SE-3  
10 50 SE-3  
POLY(1)  
POLY(1)  
DX  
DX  
200  
20E-12  
99  
97  
97 –2.5 1.1  
50 –2.5 1.1  
REV. 0  
–13–  
BUF04  
BUF04 SPICE  
99  
C2  
13  
R6  
15  
6
V1  
12  
CP1  
I1  
R1  
9
D1  
CS1  
D3  
E3  
D4  
E4  
IB1  
14  
G1  
97  
G2  
R5  
C3  
12  
8
R3  
5
Q3  
CS2  
61  
Q1  
V
LS1  
OS  
1
30  
+IN  
Q2  
3
R4  
7
2
4
Q4  
10  
6
RFB  
D2  
11  
V2  
I2  
CP2  
R2  
50  
20  
21  
C8  
C7  
G8  
R12  
R11  
G7  
97  
99  
G11  
FSY  
R13  
R14  
R15  
L2  
V5  
70  
D5  
23  
21  
27  
22  
D8  
72  
D7  
71  
V6  
D6  
24  
6
G10  
R16  
V7  
V8  
G12  
97  
50  
–14–  
REV. 0  
BUF04  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Plastic DIP (N-8)  
8
5
0.280 (7.11)  
0.240 (6.10)  
PIN 1  
1
4
0.325 (8.25)  
0.300 (7.62)  
0.430 (10.92)  
0.348 (8.84)  
0.015  
0.195 (4.95)  
0.115 (2.93)  
0.210  
(5.33)  
MAX  
(0.381) TYP  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.100  
(2.54)  
0.070 (1.77)  
0.045 (1.15)  
0.022 (0.558)  
0.014 (0.356)  
BSC  
8-Lead Cerdip (Q-8)  
8-Lead Narrow-Body SO (R-8)  
0.005 (0.13) MIN  
0.055 (1.4) MAX  
8
1
5
4
8
5
0.1574 (4.00)  
0.1497 (3.80)  
0.310 (7.87)  
0.220 (5.59)  
PIN 1  
PIN 1  
0.2440 (6.20)  
0.2284 (5.80)  
1
4
0.320 (8.13)  
0.290 (7.37)  
0.405 (10.29) MAX  
0.1968 (5.00)  
0.1890 (4.80)  
0.0196 (0.50)  
0.0099 (0.25)  
0.102 (2.59)  
0.094 (2.39)  
x 45°  
0.060 (1.52)  
0.015 (0.38)  
0.200  
(5.08)  
MAX  
0.0098 (0.25)  
0.0040 (0.10)  
8
0
°
°
0.150  
(3.81)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0500  
(1.27)  
BSC  
0.0098 (0.25)  
0.0075 (0.19)  
0.200 (5.08)  
0.125 (3.18)  
15°  
0°  
0.070 (1.78)  
0.100  
(2.54)  
BSC  
0.023 (0.58)  
0.014 (0.36)  
SEATING  
PLANE  
0.030 (0.76)  
REV. 0  
–15–  
–16–  

相关型号:

BUF04*

Closed-Loop High Speed Buffer
ETC

BUF04701

4-Channel, Rail-to-Rail, CMOS BUFFER AMPLIFIER
TI

BUF04701AIDGS

4-Channel, Rail-to-Rail, CMOS BUFFER AMPLIFIER
TI

BUF04701AIDGSR

4-Channel, Rail-to-Rail, CMOS BUFFER AMPLIFIER
TI

BUF04701AIDGSRG4

QUAD BUFFER AMPLIFIER, PDSO10, GREEN, PLASTIC, MSOP-10
TI

BUF04701AIPW

QUAD BUFFER AMPLIFIER, PDSO14, PLASTIC, TSSOP-14
TI

BUF04701AIPWR

4-Channel, Rail-to-Rail, CMOS BUFFER AMPLIFIER
TI

BUF04701AIPWRG4

4-Channel, Rail-to-Rail, CMOS BUFFER AMPLIFIER
TI

BUF04AZ/883

Closed-Loop High Speed Buffer
ADI

BUF04GBC

Closed-Loop High Speed Buffer
ADI

BUF04GP

Closed-Loop High Speed Buffer
ADI

BUF04GS

Closed-Loop High Speed Buffer
ADI