DAC08BIHP [ADI]

IC PARALLEL, 8 BITS INPUT LOADING, 0.085 us SETTLING TIME, 8-BIT DAC, PDIP16, PLASTIC, DIP-16, Digital to Analog Converter;
DAC08BIHP
型号: DAC08BIHP
厂家: ADI    ADI
描述:

IC PARALLEL, 8 BITS INPUT LOADING, 0.085 us SETTLING TIME, 8-BIT DAC, PDIP16, PLASTIC, DIP-16, Digital to Analog Converter

输入元件 光电二极管 转换器
文件: 总20页 (文件大小:378K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-Bit, High Speed, Multiplying D/A Converter  
(Universal Digital Logic Interface)  
DAC08  
scale trimming in most applications. Direct interface to all  
popular logic families with full noise immunity is provided by  
the high swing, adjustable threshold logic input.  
FEATURES  
Fast settling output current: 85 ns  
Full-scale current prematched to 1 ꢀSB  
Direct interface to TTꢀ, CMOS, ECꢀ, HTꢀ, PMOS  
Nonlinearity to 0.1% maximum over temperature range  
High output impedance and compliance: −10 V to +18 V  
Complementary current outputs  
Wide range multiplying capability: 1 MHz bandwidth  
ꢀow FS current drift: 10 ppmꢁ/C  
Wide power supply range: 4.5 V to 18 V  
ꢀow power consumption: 33 mW @ 5 V  
ꢀow cost  
High voltage compliance complementary current outputs are  
provided, increasing versatility and enabling differential  
operation to effectively double the peak-to-peak output swing.  
In many applications, the outputs can be directly converted to  
voltage without the need for an external op amp. All DAC08  
series models guarantee full 8-bit monotonicity, and nonlineari-  
ties as tight as ±0.1% over the entire operating temperature  
range are available. Device performance is essentially unchanged  
over the ±±.5 V to ±18 V power supply range, with 33 mW  
power consumption attainable at ±5 V supplies.  
GENERAꢀ DESCRIPTION  
The compact size and low power consumption make the DAC08  
attractive for portable and military/aerospace applications;  
devices processed to MIL-STD-883, Level B are available.  
The DAC08 series of 8-bit monolithic digital-to-analog convert-  
ers provide very high speed performance coupled with low cost  
and outstanding applications flexibility.  
DAC08 applications include 8-bit, 1 µs A/D converters, servo  
motor and pen drivers, waveform generators, audio encoders  
and attenuators, analog meter drivers, programmable power  
supplies, LCD display drivers, high speed modems, and other  
applications where low cost, high speed, and complete  
input/output versatility are required.  
Advanced circuit design achieves 85 ns settling times with very  
low “glitch” energy and at low power consumption. Monotonic  
multiplying performance is attained over a wide 20-to-1  
reference current range. Matching to within 1 LSB between  
reference and full-scale currents eliminates the need for full-  
FUNCTIONAꢀ BꢀOCK DIAGRAM  
(MSB)  
B1  
(LSB)  
B8  
V+  
13  
V
LC  
B2  
B3  
B4  
B5  
B6  
10  
B7  
11  
1
5
6
7
8
9
12  
DAC08  
I
I
OUT  
BIAS  
NETWORK  
CURRENT  
SWITCHES  
4
2
14  
15  
OUT  
V
V
(+)  
(–)  
REF  
REF  
REFERENCE  
AMPLIFIER  
16  
COMP  
3
V–  
Figure 1.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
DAC08  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Reference Amplifier Compensation for Multiplying  
Applications ................................................................................ 13  
Electrical Characteristics............................................................. 3  
Typical Electrical Characteristics ............................................... ±  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Connections ............................................................................... 6  
Test and Burn-In Circuits................................................................ 7  
Typical Performance Characteristics ............................................. 8  
Basic Connections .......................................................................... 11  
Application Information................................................................ 13  
Reference Amplifier Setup ........................................................ 13  
Logic Inputs................................................................................. 13  
Analog Output Currents ........................................................... 1±  
Power Supplies............................................................................ 1±  
Temperature Performance......................................................... 1±  
Multiplying Operation............................................................... 1±  
Settling Time............................................................................... 1±  
ADI Current Output DACs........................................................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 18  
REVISION HISTORY  
11/04—Rev. B to Rev. C  
Changed SO to SOIC .........................................................Universal  
Removed DIE......................................................................Universal  
Changes to Figure 30, Figure 31, Figure 32................................. 12  
Change to Figure 33 ....................................................................... 15  
Added Table ±.................................................................................. 16  
Updated Outline Dimensions....................................................... 17  
Changes to Ordering Guide .......................................................... 18  
2/02—Rev. A to Rev. B  
Edits to SPECIFICATIONS............................................................. 2  
Edits to ABSOLUTE MAXIMUM RATING ................................ 3  
Edits to ORDERING GUIDE.......................................................... 3  
Edits to WAFER TEST LIMITS...................................................... 5  
Edit to Figure 13 ............................................................................... 8  
Edits to Figures 1± and 15 ............................................................... 9  
Rev. C | Page 2 of 20  
DAC08  
SPECIFICATIONS  
EꢀECTRICAꢀ CHARACTERISTICS  
VS = ±15 V, IREF = 2.0 mA, –55°C ≤ TA ≤ +125°C for DAC08/DAC08A, 0°C ≤ TA ≤ +70°C for DAC08E and DAC08H, −±0°C to +85°C for  
IOUT  
DAC08C, unless otherwise noted. Output characteristics refer to both IOUT and  
.
Table 1.  
DAC08AꢁDAC08H  
DAC08E  
Min Typ  
DAC08C  
Min Typ  
8
8
Symbol  
Parameter  
Resolution  
Monotonicity  
Nonlinearity  
Settling Time  
Conditions  
Min Typ  
Max  
Max  
Max  
Unit  
Bits  
8
8
8
8
Bits  
0.39 %FS  
NL  
tS  
0.1  
0.19  
150  
To 1ꢀ2 LSB, all bits  
switched on or off,  
TA = 25°C1  
85  
135  
85  
85  
150  
ns  
Propagation Delay  
Each Bit  
All Bits Switched  
1
tPLH  
tPHL  
TCIFS  
TA = 25°C  
35  
35  
10  
60  
60  
50  
35  
35  
10  
60  
60  
80  
50  
35  
35  
10  
60  
60  
80  
ns  
ns  
ppmꢀ°C  
1
Full-Scale Tempco  
DAC08E  
Output Voltage  
Compliance  
(True Compliance)  
VOC  
Full-scale current  
Change <1ꢀ2 LSB, ROUT  
20 MΩ typ  
>
−10  
+18  
−10  
+18  
2.04  
–10  
+18  
2.04  
V
Full Range Current  
IFR4  
VREF = 10.000 V R14, R15 =  
5.000 kΩ TA = 25°C  
IFR4 − IFR2  
1.984 1.992  
2.000  
1.94  
1.99  
1.94  
1.99  
mA  
Full Range Symmetry  
Zero-Scale Current  
Output Current  
Range  
IFRS  
IZS  
IOR1  
0.5  
0.1  
2.1  
4
1
1
0.2  
8
2
2
0.2  
16  
4
µA  
µA  
mA  
R14, R15 = 5.000 kΩ  
2.1  
2.1  
4.2  
IOR2  
VREF = +15.0 V,  
V− = −10 V  
VREF = +25.0 V,  
V− = −12 V  
IREF = 2 mA  
4.2  
4.2  
mA  
nA  
Output Current  
Noise  
25  
25  
25  
Logic Input Levels  
Logic 0  
Logic 1  
VIL  
VIL  
VLC = 0 V  
0.8  
0.8  
0.8  
V
V
2
2
2
Logic Input Current  
Logic 0  
Logic 1  
Logic Input Swing  
Logic Threshold  
Range  
VLC = 0 V  
IIL  
IIH  
VIS  
VTHR  
VIN = −10 V to +0.8 V  
VIN = 2.0 V to 18 V  
V− = −15 V  
−2  
0.002  
−10  
10  
+18  
+13.5  
−2  
0.002  
−10  
10  
+18  
+13.5  
−2  
0.002  
−10  
10  
+18  
+13.5  
µA  
µA  
V
−10  
−10  
−10  
−10  
−10  
−10  
1
VS = 15 V  
V
Reference Bias  
Current  
Reference Input  
Slew Rate  
I15  
−1  
−3  
−1  
8
−3  
−1  
8
−3  
µA  
dIꢀdt  
REQ = 200 Ω  
RL = 100 Ω  
4
8
4
4
mAꢀµs  
CC = 0 pF. See Figure 7.1  
V+ = 4.5 V to 18 V  
Power Supply  
Sensitivity  
PSSIFS+  
PSSIFS–  
0.0003  
0.002  
0.01  
0.01  
0.0003  
0.002  
0.01  
0.01  
0.0003  
0.002  
0.01 %∆IOꢀ%∆V+  
0.01 %∆IOꢀ%∆V−  
V− = −4.5 V to −18 V  
IREF = 1.0 mA  
Rev. C | Page 3 of 20  
 
 
DAC08  
DAC08AꢁDAC08H  
DAC08E  
Min Typ  
DAC08C  
Min Typ  
Symbol  
Power Supply Current I+  
Parameter  
Conditions  
VS = 5 V, IREF = 1.0 mA  
Min Typ  
Max  
Max  
3.8  
Max  
3.8  
−5.8  
3.8  
−7.8  
3.8  
−7.8  
48  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
2.3  
3.8  
2.3  
2.3  
I−  
I+  
I−  
I+  
I−  
−4.3  
2.4  
−6.4  
2.5  
−6.5  
33  
−5.8  
3.8  
−7.8  
3.8  
−7.8  
48  
−4.3  
2.4  
−6.4  
2.5  
−6.5  
33  
−5.8  
3.8  
−7.8  
3.8  
−7.8  
48  
−4.3  
2.4  
−6.4  
2.5  
−6.5  
33  
VS = +5 V, −15 V,  
IREF = 2.0 mA  
VS = 15 V,  
IREF = 2.0 mA  
5 V, IREF = 1.0 mA +5 V,  
−15 V,  
Power Dissipation  
PD  
IREF = 2.0 mA 15 V, IREF  
2.0 mA  
=
108  
135  
136  
174  
103  
135  
136  
174  
108  
135  
136  
174  
mW  
mW  
1 Guaranteed by design.  
TYPICAꢀ EꢀECTRICAꢀ CHARACTERISTICS  
IOUT  
VS = ±15 V, and IREF = 2.0 mA, unless otherwise noted. Output characteristics apply to both IOUT and  
.
Table 2.  
Parameter  
Symbol  
dIꢀdt  
tPLH, tPHL  
tS  
Conditions  
All Grades Typical  
Unit  
Reference Input Slew Rate  
Propagation Delay  
Settling Time  
8
35  
85  
mAꢀµs  
ns  
ns  
TA = 25°C, any bit  
To 1ꢀ2 LSB, all bits switched on or  
off, TA = 25°C  
Rev. C | Page 4 of 20  
 
DAC08  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Parameter  
1
Rating  
Package Type  
θJA  
θJC  
16  
39  
36  
35  
Unit  
°CꢀW  
°CꢀW  
°CꢀW  
°CꢀW  
Operating Temperature  
DAC08AQ, DAC08Q  
DAC08HQ, DAC08EQ, DAC08CQ,  
DAC08HP, DAC08EP  
16-Lead CERDIP (Q)  
16-Lead PDIP (P)  
20-Terminal LCC (RC)  
16-Lead SOIC (S)  
100  
82  
76  
−55°C to +125°C  
0°C to +70°C  
111  
DAC08CP, DAC08CS  
−40°C to +85°C  
−65°C to +150°C  
−65°C to +150°C  
−65°C to +125°C  
300°C  
36 V  
V− to V− + 36 V  
V− to V+  
Junction Temperature (TJ)  
Storage Temperature Q Package  
Storage Temperature P Package  
Lead Temperature (Soldering, 60 sec)  
V+ Supply to V− Supply  
Logic Inputs  
1 θJA is specified for worst-case mounting conditions, that is, θJA is specified for  
device in socket for CERDIP, PDIP, and LCC packages; θJA is specified for  
device soldered to printed circuit board for SOIC package.  
Stresses greater than those listed under Absolute Maximum  
Ratings may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
VLC  
Analog Current Outputs (at VS− = 15 V)  
Reference Input (V14 to V15)  
Reference Input Differential Voltage  
(V14 to V15)  
4.25 mA  
V− to V+  
18 V  
5.0 mA  
Reference Input Current (I14)  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. C | Page 5 of 20  
 
DAC08  
PIN CONNECTIONS  
1
2
3
4
5
6
7
8
16  
B8 (LSB)  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
V+  
(+)  
(–)  
V
COMP  
LC  
V
V
15 B7  
14 B6  
I
V
V
(–)  
REF  
OUT  
V–  
REF  
REF  
3
2
1
20 19  
(+)  
REF  
4
5
6
7
8
18  
17  
V
(+)  
V–  
REF  
V+  
DAC08  
DAC08  
TOP VIEW  
(Not To Scale)  
COMP  
B5  
13  
I
I
V+  
OUT  
NC  
OUT  
DAC08  
TOP VIEW  
TOP VIEW  
(Not To Scale)  
16 NC  
(Not To Scale)  
V
12 B4  
11 B3  
10 B2  
(MSB) B1  
12 B8 (LSB)  
11 B7  
LC  
(MSB) B1  
B2  
15  
B8 (LSB)  
I
B2  
B3  
B4  
OUT  
14 B7  
V–  
10 B6  
10 11 12 13  
9
9
B1 (MSB)  
9
I
B5  
OUT  
NC = NO CONNECT  
Figure 2. 16-Lead Dual In-Line Package  
(Q and P Suffixes)  
Figure 3. 16-Lead SOIC  
(S Suffix)  
Figure 4. DAC08RC/883 20-Lead LCC  
(RC Suffix)  
Rev. C | Page 6 of 20  
 
DAC08  
TEST AND BURN-IN CIRCUITS  
+V  
C2  
REF  
R1 = 9k  
+18V  
R1  
C1 = 0.001µF  
C2, C3 = 0.01µF  
OPTIONAL RESISTOR  
FOR OFFSET INPUTS  
R
REF  
R
R
R
L
IN  
14  
4
2
C1  
R
200  
EQ  
0V  
TYPICAL VALUES:  
=5kΩ  
16 15 14 13 12 11 10  
9
8
R
P
L
15  
16  
R
DAC08  
IN  
+V = 10V  
IN  
1
2
3
4
5
6
7
NO CAP  
Figure 5. Pulsed Reference Operation  
C3  
–18V MIN  
Figure 6. Burn-In Circuit  
Rev. C | Page 7 of 20  
 
DAC08  
TYPICAL PERFORMANCE CHARACTERISTICS  
ALL BITS SWITCHED ON  
1V  
1V  
2.4V  
0.4V  
2.5V  
0.5V  
–1/2LSB  
0V  
+1/2LSB  
OUTPUT  
SETTLING  
–0.5mA  
I
OUT  
–2.5mA  
100mV  
200Ω  
= 100Ω  
= 0  
200ns  
50ns  
10mV  
200ns/DIVISION  
R
R
C
50ns/DIVISION  
SETTLINGTIMEFIXTURE  
=2mA,R =1k  
EQ  
I
FS  
L
L
1/2LSB=4µA  
C
Figure 10. Full-Scale Settling Time  
Figure 7. Fast Pulsed Reference Operation  
5
T
= T TO T  
MIN  
LIMIT FOR  
V– = –15V  
A
MAX  
ALL BITS HIGH  
4
0mA  
I
OUT  
3
2
1
1.0mA  
2.0mA  
LIMIT FOR  
V– = –5V  
I
OUT  
0
0
1
2
3
4
5
(0000|0000)  
(1111|1111)  
I
= 2mA  
REF  
I
, REFERENCE CURRENT (mA)  
REF  
Figure 8. True and Complementary Output Operation  
Figure 11. Full-Scale Current vs. Reference Current  
500  
400  
300  
200  
100  
5mV  
2V  
2.4V  
0.4V  
0V  
1LSB = 7.8µA  
8µA  
0
1LSB = 61nA  
50ns  
100mV  
0
0.005 0.01 0.02 0.05 0.10 0.20 0.50 1.00 2.00 5.00 10.00  
50ns/DIVISION  
I
, OUTPUT FULL-SCALE CURRENT (mA)  
FS  
Figure 9. LSB Switching  
Figure 12. LSB Propagation Delay vs. IFS  
Rev. C | Page 8 of 20  
 
 
DAC08  
10  
8
2.0  
1.6  
1.2  
R14 = R15 = 1kΩ  
500V  
ALL BITS ON  
= 0V  
R
L
6
4
2
V
R15  
2
0
–2  
–4  
–6  
–8  
1
0.8  
0.4  
C
= 15pF, V = 2.0V p-p  
IN  
C
CENTERED AT +1.0V  
LARGE SIGNAL  
–10  
–12  
–14  
C
= 15pF, V = 50mV p-p  
IN  
C
CENTERED AT +200mV  
SMALL SIGNAL  
0
0.1  
0.5  
2.0  
5.0  
10.0  
–50  
0
50  
100  
150  
0.2  
1.0  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
Figure 16. VTH − VLC vs. Temperature  
Figure 13. Reference Input Frequency Response  
4.0  
4.0  
3.6  
3.2  
T
= T  
TO T  
MAX  
ALL BITS ON  
ALL BITS ON  
A
MIN  
T
= T  
TO T  
MIN MAX  
A
3.6  
3.2  
NOTE: POSITIVE COMMON-MODE  
RANGE IS ALWAYS (V+) –1.5V  
2.8  
2.8  
2.4  
2.4  
2.0  
1.6  
1.2  
V– = –15V  
V– = –5V  
I
= 2mA  
V– = –15V  
V– = –5V  
V+ = +15V  
REF  
2.0  
1.6  
1.2  
0.8  
I
= 2mA  
REF  
I
= 1mA  
I
= 1mA  
REF  
REF  
0.8  
0.4  
I
= 0.2mA  
10  
REF  
I
= 0.2mA  
10  
0.4  
0
REF  
0
–14  
–10  
–6  
–2  
2
6
14  
18  
–14  
–10  
–6  
18  
–2  
2
6
14  
OUTPUT VOLTAGE (V)  
V
, REFERENCE COMMON-MODE VOLTAGE (V)  
15  
Figure 17. Output Current vs. Output Voltage (Output Voltage Compliance)  
Figure 14. Reference Amp Common-Mode Range  
28  
24  
20  
16  
10  
8
12  
6
SHADED AREA INDICATES PERMISSIBLE  
OUTPUT VOLTAGE RANGE FOR V– = –15V.  
8
I
2.0mA.  
REF  
4
0
4
FOR OTHER V– OR I  
SEE OUTPUT CURRENT VS. OUTPUT  
VOLTAGE CURVE.  
,
REF  
–4  
2
–8  
–12  
0
–12  
–50  
0
50  
100  
150  
–8  
–4  
0
4
8
12  
16  
TEMPERATURE (°C)  
LOGIC INPUT VOLTAGE (V)  
Figure 18. Output Voltage Compliance vs. Temperature  
Figure 15. Logic Input Current vs. Input Voltage  
Rev. C | Page 9 of 20  
 
 
 
DAC08  
1.8  
1.6  
1.4  
10  
9
BITS MAY BE HIGH OR LOW  
8
7
I– WITH I  
= 2mA  
= 1mA  
1.2  
1.0  
REF  
REF  
B1  
6
5
I
= 2.0mA  
REF  
I– WITH I  
0.8  
0.6  
4
3
B2  
B3  
I– WITH I  
= 0.2mA  
REF  
0.4  
0.2  
B4  
B5  
2
1
0
I+  
V– = –5V  
–4  
ꢀꢀꢀꢀ  
V– = –15V  
0
–12  
–8  
0
4
8
12  
16  
0
–2  
–4  
–6  
–8  
–10 –12 –14 –16 –18 –20  
LOGIC INPUT VOLTAGE (V)  
V–, NEGATIVE POWER SUPPLY (V dc)  
NOTE:  
B1 THROUGH B8 HAVE IDENTICAL TRANSFER  
CHARACTERISTICS. BITS ARE FULLY SWITCHED WITH LESS  
THAN 1/2 LSB ERROR, AT LESS THAN ±100mV FROM ACTUAL  
THRESHOLD. THESE SWITCHING POINTS ARE GUARANTEED  
TO LIE BETWEEN 0.8V AND 2.0V OVER THE OPERATING  
Figure 21. Power Supply Current vs. V−  
TEMPERATURE RANGE (V = 0.0V).  
LC  
Figure 19. Bit Transfer Characteristics  
10  
9
10  
9
ALL BITS HIGH OR LOW  
ALL BITS HIGH OR LOW  
8
7
8
7
6
5
4
3
2
V– = –15V  
= 2.0mA  
I–  
I–  
6
5
4
3
2
1
I
REF  
I+  
I+  
V+ = +15V  
1
0
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
–50  
0
50  
TEMPERATURE (°C)  
100  
150  
V+, POSITIVE POWER SUPPLY (V dc)  
Figure 20. Power Supply vs. V+  
Figure 22. Power Supply Current vs. Temperature  
Rev. C | Page 10 of 20  
DAC08  
BASIC CONNECTIONS  
+V  
REF  
R
IN  
REF  
I
MSB  
LSB  
REF  
I
B1 B2 B3 B4 B5 B6 B7 B8  
V
I
REF  
14  
IN  
V
(+)  
(–)  
R
I
I
REF  
IN  
O
O
5
6
7
8
9
10 11 12  
+V  
14  
15  
REF  
4
2
R
REF  
(R14)  
15  
V
REF  
3
16  
13  
1
I
PEAK NEGATIVE SWING OF I  
IN  
REF  
R15  
V–  
C
V+  
R
REF  
FOR FIXED REFERENCE,  
TTL OPERATION,  
TYPICAL VALUES ARE:  
R
R15  
+V  
REF  
REF  
14  
15  
C
R15  
(OPTIONAL)  
COMP  
0.1µF  
V
R
= 10.000V  
= 5.000kΩ  
R15 = R  
REF  
= 0.01µF  
REF  
V
REF  
IN  
0.1µF  
+V  
255  
REF  
I
=
×
FR  
HIGH INPUT  
IMPEDANCE  
R
REF  
256  
C
V
C
I
+ I = I FOR  
O
O
FR  
= 0V (GROUND)  
LC  
+V  
REF  
MUST BE ABOVE PEAK POSITIVE SWING OF V  
IN  
ALL LOGIC STATES  
V
V+  
V–  
LC  
Figure 23. Accommodating Bipolar References  
Figure 24. Basic Positive Reference Operation  
MSB  
LSB  
B1 B2 B3 B4 B5 B6 B7 B8  
E
O
B1 B2 B3 B4 B5 B6 B7 B8  
I
I
E
E
O
O
O
O
I
5.000k  
5.000kΩ  
FULL RANGE  
HALF SCALE +LSB  
HALF SCALE  
HALF SCALE –LSB  
ZERO SCALE +LSB  
ZERO SCALE  
1
1
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
0
1
1
0
1.992 0.000 –9.960 –0.000  
1.008 0.984 –5.040 –4.920  
1.000 0.992 –5.000 –4.960  
0.992 1.000 –4.960 –5.000  
0.008 1.984 –0.040 –9.920  
0.000 1.992 0.000 –9.960  
O
4
2
I
= 2.000mA  
REF  
14  
I
O
E
O
Figure 25. Basic Unipolar Negative Operation  
10V  
MSB  
LSB  
B1 B2 B3 B4 B5 B6 B7 B8  
B1 B2 B3 B4 B5 B6 B7 B8  
E
E
O
10k  
10kΩ  
O
1
1
1
1
0
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
0
1
0
1
1
0
–9.920 +10.000  
–9.840 +9.920  
–0.080 +0.160  
0.000 +0.080  
+0.080 0.000  
+9.920 –9.840  
+10.000 –9.920  
POS. FULL RANGE  
POS. FULL RANGE –LSB  
ZERO SCALE +LSB  
ZERO SCALE  
ZERO SCALE –LSB  
NEG. FULL SCALE +LSB  
NEG. FULL SCALE  
I
O
O
4
I
= 2.000mA  
REF  
E
O
14  
2
I
E
O
Figure 26. Basic Bipolar Output Operation  
LOW T.C.  
4.5kΩ  
R
REF  
I
I
O
O
14  
V
REF  
10V  
4
2
14  
15  
I
(+) 2mA  
REF  
39kΩ  
R15  
–V  
REF  
15  
1V  
10kΩ  
POT  
NOTE  
–V  
APPROX  
5kΩ  
REF  
I
R
SETS I ; R15 IS FOR  
FS  
REF  
FS  
R
REF  
BIAS CURRENT CANCELLATION.  
Figure 28. Basic Negative Reference Operation  
Figure 27. Recommended Full-Scale Adjustment Circuit  
Rev. C | Page 11 of 20  
 
 
DAC08  
10k  
5.0kΩ  
15V  
MSB  
LSB  
B1 B2 B3 B4 B5 B6 B7 B8  
+15V  
2
5.000kΩ  
5.0kΩ  
10V  
6
5
B1 B2 B3 B4 B5 B6 B7 B8  
E
O
I
V
O
O
4
2
POS. FULL RANGE  
O
ZERO SCALE  
NEG. FULL SCALE +1LSB  
NEG. FULL SCALE  
1
1
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
1
0
0
1
0
0
0
1
0
0
0
1
0
1
0
+4.960  
0.000  
–4.960  
–5.000  
E
AD8671  
REF01*  
I
V
C
V+ –V  
O
LC  
C
4
*OR ADR01  
+15V –15V  
–15V  
Figure 29. Offset Binary Operation  
R
L
I
O
E
AD8671  
0 TO –I  
O
4
2
I
O
E
4
2
AD8671  
O
I
O
×
R
L
FR  
I
R
O
L
0 TO –I  
FR  
×
R
L
255  
256  
I
=
I
REF  
FR  
255  
256  
I
=
I
REF  
FR  
FOR COMPLEMENTARY OUTPUT (OPERATION AS A NEGATIVE LOGIC DAC).  
CONNECT NONINVERTING INPUT OF OP AMP TO I (PIN 2): CONNECT I (PIN 4)  
TO GROUND.  
FOR COMPLEMENTARY OUTPUT (OPERATION AS A NEGATIVE LOGIC DAC).  
CONNECT INVERTING INPUT OF OP AMP TO I (PIN 2): CONNECT I (PIN 4)  
TO GROUND.  
O
O
O
O
Figure 31. Negative Low Impedance Output Operation  
Figure 30. Positive Low Impedance Output Operation  
CMOS, HTL, NMOS  
V+  
V
= V 1.4V  
LC  
ECL  
TH  
15V CMOS  
= 7.6V  
V
15V  
TH  
TTL, DTL,  
= 1.4V  
V
TH  
20kΩ  
13k  
9.1k  
V
LC  
2N3904  
2N3904  
2N3904  
"A"  
"A"  
2N3904  
V
LC  
6.2kΩ  
0.1  
µ
F
3kΩ  
3kΩ  
TO PIN 1  
TO PIN 1  
1
39k  
20kΩ  
V
V
LC  
LC  
R3  
400  
6.2kΩ  
µA  
–5.2V  
TEMPERATURE COMPENSATING V CIRCUITS  
LC  
Figure 32. Interfacing with Various Logic Families  
Rev. C | Page 12 of 20  
 
DAC08  
APPLICATION INFORMATION  
REFERENCE AMPꢀIFIER SETUP  
REFERENCE AMPꢀIFIER COMPENSATION FOR  
MUꢀTIPꢀYING APPꢀICATIONS  
The DAC08 is a multiplying D/A converter in which the output  
current is the product of a digital number and the input  
reference current. The reference current may be fixed or may  
vary from nearly zero to ±.0 mA. The full-scale output current  
is a linear function of the reference current and is given by  
AC reference applications require the reference amplifier to be  
compensated using a capacitor from Pin 16 to V−. The value of  
this capacitor depends on the impedance presented to Pin 1±;  
for R1± values of 1.0 kΩ, 2.5 kΩ, and 5.0 kΩ, minimum values  
of CC are 15 pF, 37 pF, and 75 pF. Larger values of R1± require  
proportionately increased values of CC for proper phase margin,  
so the ratio of CC (pF) to R1± (kΩ) = 15.  
255  
IFR  
=
× IREF  
256  
where IREF = I1±  
For fastest response to a pulse, low values of R1± enabling small  
CC values should be used. If Pin 1± is driven by a high impedance  
such as a transistor current source, none of the preceding values  
suffice, and the amplifier must be heavily compensated, which  
decreases overall bandwidth and slew rate. For R1± = 1 kΩ and  
CC = 15 pF, the reference amplifier slews at ± mA/µs, enabling a  
transition from IREF = 0 to IREF = 2 mA in 500 ns.  
In positive reference applications, an external positive reference  
voltage forces current through R1± into the VREF(+) terminal  
(Pin 1±) of the reference amplifier. Alternatively, a negative  
reference may be applied to VREF(–) at Pin 15; reference current  
flows from ground through R1± into VREF(+) as in the positive  
reference case. This negative reference connection has the  
advantage of a very high impedance presented at Pin 15. The  
voltage at Pin 1± is equal to and tracks the voltage at Pin 15 due  
to the high gain of the internal reference amplifier. R15 (nomi-  
nally equal to R1±) is used to cancel bias current errors; R15  
may be eliminated with only a minor increase in error.  
Operation with pulse inputs to the reference amplifier can be  
accommodated by an alternate compensation scheme. This  
technique provides lowest full-scale transition times. An internal  
clamp allows quick recovery of the reference amplifier from a  
cutoff (IREF = 0) condition. Full-scale transition (0 mA to 2 mA)  
occurs in 120 ns when the equivalent impedance at Pin 1± is  
200 Ω and CC = 0. This yields a reference slew rate of 16 mA/µs,  
which is relatively independent of the RIN and VIN values.  
Bipolar references may be accommodated by offsetting VREF or  
Pin 15. The negative common-mode range of the reference  
amplifier is given by VCM – = V− plus (IREF × 1 kΩ) plus 2.5 V.  
The positive common-mode range is V+ less 1.5 V.  
ꢀOGIC INPUTS  
The DAC08 design incorporates a unique logic input circuit  
that enables direct interface to all popular logic families and  
provides maximum noise immunity. This feature is made  
possible by the large input swing capability, 2 µA logic input  
current, and completely adjustable logic threshold voltage. For  
V− = −15 V, the logic inputs may swing between −10 V and  
+18 V. This enables direct interface with 15 V CMOS logic, even  
when the DAC08 is powered from a 5 V supply. Minimum  
input logic swing and minimum logic threshold voltage are  
given by  
When a dc reference is used, a reference bypass capacitor is  
recommended. A 5.0 V TTL logic supply is not recommended  
as a reference. If a regulated power supply is used as a reference,  
R1± should be split into two resistors with the junction bypas-  
sed to ground with a 0.1 µF capacitor.  
For most applications, the tight relationship between IREF and IFS  
eliminates the need for trimming IREF. If required, full-scale  
trimming can be accomplished by adjusting the value of R1±, or  
by using a potentiometer for R1±. An improved method of full-  
scale trimming that eliminates potentiometer T.C. effects is  
shown in the recommended full-scale adjustment circuit  
(Figure 27).  
V− + (IREF × 1 kΩ) + 2.5 V  
The logic threshold may be adjusted over a wide range by placing  
an appropriate voltage at the logic threshold control pin (Pin 1,  
VLC). Figure 16 shows the relationship between VLC and VTH  
over the temperature range, with VTH nominally 1.± above VLC.  
For TTL and DTL interface, simply ground Pin 1. When  
interfacing ECL, an IREF = 1 mA is recommended. For interfacing  
other logic families, see Figure 32. For general set-up of the  
logic control circuit, note that Pin 1 sources 100 µA typical;  
external circuitry should be designed to accommodate this  
current.  
Using lower values of reference current reduces negative power  
supply current and increases reference amplifier negative  
common-mode range. The recommended range for operation  
with a dc reference current is 0.2 mA to ±.0 mA.  
Rev. C | Page 13 of 20  
 
 
DAC08  
Fastest settling times are obtained when Pin 1 sees a low  
impedance. If Pin 1 is connected to a 1 kΩ divider, for example,  
it should be bypassed to ground by a 0.01 µF capacitor.  
cryptographic applications and further reduces the size of the  
power supply bypass capacitors.  
TEMPERATURE PERFORMANCE  
ANAꢀOG OUTPUT CURRENTS  
The nonlinearity and monotonicity specifications of the DAC08  
are guaranteed to apply over the entire rated operating tempera-  
ture range. Full-scale output current drift is low, typically  
±10 ppm/°C, with zero-scale output current and drift essentially  
negligible compared to 1/2 LSB.  
Both true and complemented output sink currents are provided  
IO  
where IO + = IFS. Current appears at the true (IO) output when  
a 1 (logic high) is applied to each logic input. As the binary  
count increases, the sink current at Pin ± increases proportionally,  
in the fashion of a positive logic DAC. When a 0 is applied to  
any input bit, that current is turned off at Pin ± and turned on at  
The temperature coefficient of the reference resistor R1± should  
match and track that of the output resistor for minimum overall  
full-scale drift. Settling times of the DAC08 decrease approxi-  
mately 10% at –55°C. At +125°C, an increase of about 15% is  
typical.  
IO  
Pin 2. A decreasing logic count increases as in a negative or  
inverted logic DAC. Both outputs may be used simultaneously.  
If one of the outputs is not required, it must be connected to  
ground or to a point capable of sourcing IFS; do not leave an  
unused output pin open.  
The reference amplifier must be compensated by using a  
capacitor from Pin 16 to V−. For fixed reference operation, a  
0.01 µF capacitor is recommended. For variable reference  
applications, refer to the Reference Amplifier Compensation for  
Multiplying Applications section.  
Both outputs have an extremely wide voltage compliance  
enabling fast direct current-to-voltage conversion through a  
resistor tied to ground or other voltage source. Positive compli-  
ance is 36 V above V− and is independent of the positive supply.  
Negative compliance is given by  
MUꢀTIPꢀYING OPERATION  
The DAC08 provides excellent multiplying performance with  
an extremely linear relationship between IFS and IREF over a  
range of ± µA to ± mA. Monotonic operation is maintained over  
a typical range of IREF from 100 µA to ±.0 mA.  
V− + (IREF × 1 kΩ) + 2.5 V  
The dual outputs enable double the usual peak-to-peak load  
swing when driving loads in quasi-differential fashion. This  
feature is especially useful in cable driving, CRT deflection and  
in other balanced applications such as driving center-tapped  
coils and transformers.  
SETTꢀING TIME  
The DAC08 is capable of extremely fast settling times, typically  
85 ns at IREF = 2.0 mA. Judicious circuit design and careful  
board layout must be used to obtain full performance potential  
during testing and application. The logic switch design enables  
propagation delays of only 35 ns for each of the 8 bits. Settling  
time to within 1/2 LSB of the LSB is therefore 35 ns, with each  
progressively larger bit taking successively longer. The MSB  
settles in 85 ns, thus determining the overall settling time of  
85 ns. Settling to 6-bit accuracy requires about 65 ns to 70 ns.  
The output capacitance of the DAC08, including the package, is  
approximately 15 pF; therefore the output RC time constant  
dominates settling time if RL > 500 Ω.  
POWER SUPPꢀIES  
The DAC08 operates over a wide range of power supply  
voltages from a total supply of 9 V to 36 V. When operating at  
supplies of ±5 V or lower, IREF ≤ 1 mA is recommended. Low  
reference current operation decreases power consumption and  
increases negative compliance (Figure 11), reference amplifier  
negative common-mode range (Figure 1±), negative logic input  
range (Figure 15), and negative logic threshold range (Figure 16).  
For example, operation at −±.5 V with IREF = 2 mA is not  
recommended because negative output compliance would be  
reduced to near zero. Operation from lower supplies is possible;  
however, at least 8 V total must be applied to ensure turn-on of  
the internal bias network.  
Settling time and propagation delay are relatively insensitive to  
logic input amplitude and rise and fall times, due to the high  
gain of the logic switches. Settling time also remains essentially  
constant for IREF values. The principal advantage of higher IREF  
values lies in the ability to attain a given output level with lower  
load resistors, thus reducing the output RC time constant.  
Symmetrical supplies are not required, as the DAC08 is quite  
insensitive to variations in supply voltage. Battery operation is  
feasible because no ground connection is required: however, an  
artificial ground may be used to ensure logic swings, etc., remain  
between acceptable limits. Power consumption is calculated as  
follows:  
Measuring the settling time requires the ability to accurately  
resolve ±± µA; therefore a 1 kΩ load is needed to provide  
adequate drive for most oscilloscopes. The settling time fixture  
shown in Figure 33 uses a cascade design to permit driving a  
1 kΩ load with less than 5 pF of parasitic capacitance at the  
measurement node. At IREF values of less than 1.0 mA, excessive  
PD = (I +)(V +) + (I )(V )  
A useful feature of the DAC08 design is that supply current is  
constant and independent of input logic states. This is useful in  
Rev. C | Page 14 of 20  
 
DAC08  
RC damping of the output is difficult to prevent while main-  
taining adequate sensitivity. However, the major carry from  
01111111 to 10000000 provides an accurate indicator of settling  
time. This code change does not require the normal 6.2 time  
constants to settle to within ±0.2% of the final value, and thus  
minor sacrifice in settling time. Fastest operation can be  
obtained by using short leads, minimizing output capacitance  
and load resistor values, and by adequate bypassing at the  
supply, reference, and VLC terminals. Supplies do not require  
large electrolytic bypass capacitors because the supply current  
drain is independent of input logic states; 0.1 µF capacitors at  
the supply pins provide full transient protection.  
settling time is observed at lower values of IREF  
.
DAC08 switching transients or “glitches” are very low and can  
be further reduced by small capacitive loads at the output at a  
V
+5V  
L
FORTURN-ON, V =2.7V  
L
FORTURN-OFF, V =0.7V  
L
1µF  
1kΩ  
50µF  
1µF  
MINIMUM  
CAPACITANCE  
Q2  
1kΩ  
V
1×  
OUT  
PROBE  
V
CL  
0.7V  
+0.4V  
0V  
0V  
Q1  
V
8
0.1µF  
IN  
–0.4V  
0.1µF  
15kΩ  
R
REF  
100kΩ  
2kΩ  
5
6
9 10 11 12  
7
+V  
REF  
14  
15  
4
I
OUT  
DAC08  
R15  
2
13  
3
16  
–15V  
0.01µF  
0.1µF  
0.1µF  
+15V –15V  
Figure 33. Settling Time Measurement  
Rev. C | Page 15 of 20  
DAC08  
ADI CURRENT OUTPUT DACS  
Table ± lists the latest DACS available from Analog Devices.  
Table 4.  
Model  
Bits Outputs  
Interface  
SPI, 8-bit load  
SPI  
SPI  
Parallel  
SPI  
Parallel  
SPI  
SPI  
Parallel  
SPI  
Parallel  
SPI  
SPI  
Parallel  
SPI  
SPI  
SPI  
Parallel  
Parallel  
SPI  
SPI  
Parallel  
SPI  
Package  
MSOP-10  
MSOP-10  
SOT23-8  
TSSOP-16  
TSSOP-16  
TSSOP-20  
MSOP-10  
SOT23-8  
TSSOP-20  
TSSOP-16  
TSSOP-24  
MSOP-10  
SOT23-8  
TSSOP-20  
MSOP-10  
TSSOP-16  
TSSOP-24  
TSSOP-24  
LFCSP-40  
SOT23-8  
MSOP-8  
Comments  
AD5425  
AD5426  
AD5450  
AD5424  
AD5429  
AD5428  
AD5432  
AD5451  
AD5433  
AD5439  
AD5440  
AD5443  
AD5452  
AD5445  
AD5444  
AD5449  
AD5415  
AD5447  
AD5405  
AD5453  
AD5553  
AD5556  
AD5446  
AD5555  
AD5557  
AD5543  
AD5546  
AD5545  
AD5547  
8
1
1
1
1
2
2
1
1
1
2
2
1
1
1
1
2
2
2
2
1
1
1
1
2
2
1
1
2
2
Fast 8-bit load; see also AD5426  
See also AD5425 fast load  
See also AD5425 fast load  
8
8
8
8
8
10  
10  
10  
10  
10  
12  
12  
12  
12  
12  
12  
12  
12  
14  
14  
14  
14  
14  
14  
16  
16  
16  
16  
See also AD5452 and AD5444  
Higher accuracy version of AD5443; see also AD5444  
Higher accuracy version of AD5443; see also AD5452  
Uncommitted resistors  
Uncommitted resistors  
TSSOP-28  
MSOP-10  
TSSOP-16  
TSSOP-38  
MSOP-8  
TSSOP-28  
TSSOP-16  
TSSOP-38  
MSOP version of AD5453; compatible with AD5443, AD5432, AD5426  
SPI  
Parallel  
SPI  
Parallel  
SPI  
Parallel  
Rev. C | Page 16 of 20  
 
DAC08  
OUTLINE DIMENSIONS  
0.785 (19.94)  
0.765 (19.43)  
0.745 (18.92)  
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.99)  
16  
1
9
8
0.005  
(0.13)  
MIN  
0.098 (2.49)  
MAX  
0.310 (7.87)  
0.220 (5.59)  
16  
9
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
PIN 1  
1
8
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.015 (0.38)  
MIN  
0.060 (1.52)  
0.015 (0.38)  
0.320 (8.13)  
0.290 (7.37)  
0.180 (4.57)  
MAX  
0.200 (5.08)  
0.840 (21.34) MAX  
MAX  
0.150 (3.81)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.015 (0.38)  
0.008 (0.20)  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
SEATING  
PLANE  
0.060 (1.52)  
0.050 (1.27)  
0.045 (1.14)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.200 (5.08)  
0.125 (3.18)  
15°  
0°  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
COMPLIANT TO JEDEC STANDARDS MO-095AC  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 34. 16-Lead PDIP (N-16)  
Figure 35. 16-Lead CERDIP (Q-16)  
Dimensions shown in inches and (mm)  
Dimensions shown in inches and (mm)  
10.00 (0.3937)  
9.80 (0.3858)  
0.200 (5.08)  
0.075 (1.91)  
REF  
16  
1
9
8
REF  
0.100 (2.54)  
0.064 (1.63)  
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
0.100 (2.54) REF  
0.095 (2.41)  
0.015 (0.38)  
MIN  
0.075 (1.90)  
3
19  
18  
20  
4
8
1.75 (0.0689)  
1.35 (0.0531)  
0.028 (0.71)  
0.022 (0.56)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
1
0.358 (9.09)  
0.342 (8.69)  
SQ  
0.358  
× 45°  
0.011 (0.28)  
0.007 (0.18)  
R TYP  
(9.09)  
MAX  
SQ  
BOTTOM  
VIEW  
0.25 (0.0098)  
0.10 (0.0039)  
0.050 (1.27)  
BSC  
14  
0.075 (1.91)  
8°  
0°  
13  
9
REF  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
45° TYP  
0.088 (2.24)  
0.054 (1.37)  
0.055 (1.40)  
0.045 (1.14)  
0.150 (3.81)  
BSC  
COMPLIANT TO JEDEC STANDARDS MS-012AC  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 36. 16-Lead SOIC (R-16A)  
Dimensions shown in inches and (mm)  
Figure 37. 20-Terminal Leadless Chip Carrier (E-20)  
Dimensions shown in inches and (mm)  
Rev. C | Page 17 of 20  
 
DAC08  
ORDERING GUIDE  
Model1  
Nꢀ  
Temperature Range  
55°C to +125°C  
55°C to +125°C  
0°C to 70°C  
Package Description  
CERDIP-16  
CERDIP-16  
PDIP-16  
CERDIP-16  
CERDIP-16  
LCC-20  
Package Option  
Q-16  
No. Parts Per Container  
DAC08AQ  
0.10%  
25  
DAC08AQꢀ883C2  
0.10%  
0.10%  
0.10%  
0.19%  
0.19%  
0.19%  
0.19%  
0.19%  
0.19%  
0.19%  
0.19%  
0.39%  
0.39%  
0.39%  
0.39%  
0.39%  
0.39%  
Q-16  
25  
DAC08HP  
DAC08HQ  
DAC08Q  
DAC08RCꢀ883C2  
N-16  
Q-16  
Q-16  
25  
25  
25  
0°C to 70°C  
55°C to +125°C  
55°C to +125°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
E-20  
55  
DAC08EP  
DAC08EQ  
DAC08ES  
DAC08ES-REEL  
DAC08ESZ3  
DAC08ESZ-REEL3  
DAC08CP  
PDIP-16  
CERDIP-16  
SOIC-16  
SOIC-16  
SOIC-16  
N-16  
Q-16  
25  
25  
47  
2500  
47  
R-16A (Narrow Body)  
R-16A (Narrow Body)  
R-16A (Narrow Body)  
R-16A (Narrow Body)  
N-16  
SOIC-16  
PDIP-16  
2500  
25  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
DAC08CPZ3  
PDIP-16  
N-16  
25  
DAC08CS  
SOIC-16  
R-16A (Narrow Body)  
R-16A (Narrow Body)  
R-16A (Narrow Body)  
R-16A (Narrow Body)  
47  
DAC08CS-REEL  
DAC08CSZ3  
DAC08CSZ-REEL3  
SOIC-16  
2500  
47  
SOIC-16  
SOIC-16  
2500  
1 Devices processed in total compliance to MIL-STD-883. Consult the factory for the 883 data sheet.  
2 For availability and burn-in information on the SOIC and PLCC packages, contact your local sales office.  
3 Z = Pb-free part.  
Rev. C | Page 18 of 20  
 
 
 
 
DAC08  
NOTES  
Rev. C | Page 19 of 20  
DAC08  
NOTES  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00268–0–11ꢁ04(C)  
Rev. C | Page 20 of 20  

相关型号:

DAC08BIHQ

IC PARALLEL, 8 BITS INPUT LOADING, 0.085 us SETTLING TIME, 8-BIT DAC, CDIP16, HERMETIC SEALED, DIP-16, Digital to Analog Converter
ADI

DAC08BIHQ

PARALLEL, 8 BITS INPUT LOADING, 0.085 us SETTLING TIME, 8-BIT DAC, CDIP16, HERMETIC SEALED, DIP-16
ROCHESTER

DAC08C

8-Bit high-speed multiplying D/A converter
NXP

DAC08CF

8-Bit high-speed multiplying D/A converter
NXP

DAC08CN

8-Bit high-speed multiplying D/A converter
NXP

DAC08CP

8-Bit, High-Speed, Multiplying D/A Converter (Universal Digital Logic Interface)
ADI

DAC08CPC

D/A Converter, 1 Func, PDIP16,
FAIRCHILD

DAC08CPZ

8-Bit, High Speed, Multiplying D/A Converter (Universal Digital Logic Interface)
ADI

DAC08CPZ3

8-Bit, High Speed, Multiplying D/A Converter (Universal Digital Logic Interface)
ADI

DAC08CQ

8-Bit, High Speed, Multiplying D/A Converter (Universal Digital Logic Interface)
ADI

DAC08CS

8-Bit, High-Speed, Multiplying D/A Converter (Universal Digital Logic Interface)
ADI

DAC08CS-REEL

8-Bit, High-Speed, Multiplying D/A Converter (Universal Digital Logic Interface)
ADI