DAC08HP [ADI]

8-Bit, High-Speed, Multiplying D/A Converter (Universal Digital Logic Interface); 8位,高速,乘法D / A转换器(通用数字逻辑接口)
DAC08HP
型号: DAC08HP
厂家: ADI    ADI
描述:

8-Bit, High-Speed, Multiplying D/A Converter (Universal Digital Logic Interface)
8位,高速,乘法D / A转换器(通用数字逻辑接口)

转换器 数模转换器 光电二极管
文件: 总12页 (文件大小:219K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a 8-Bit, High-Speed, Multiplying D/A Converter  
(Universal Digital Logic Interface)  
DAC08  
full-scale currents eliminates the need for full-scale trimming in  
most applications. Direct interface to all popular logic families  
with full noise immunity is provided by the high swing, adjust-  
able threshold logic input.  
FEATURES  
Fast Settling Output Current: 85 ns  
Full-Scale Current Prematched to ؎1 LSB  
Direct Interface to TTL, CMOS, ECL, HTL, PMOS  
Nonlinearity to 0.1% Maximum over  
Temperature Range  
High voltage compliance complementary current outputs are  
provided, increasing versatility and enabling differential opera-  
tion to effectively double the peak-to-peak output swing. In  
many applications, the outputs can be directly converted to  
voltage without the need for an external op amp.  
High Output Impedance and Compliance:  
–10 V to +18 V  
Complementary Current Outputs  
Wide Range Multiplying Capability: 1 MHz Bandwidth  
Low FS Current Drift: ؎10 ppm/؇C  
Wide Power Supply Range: ؎4.5 V to ؎18 V  
Low Power Consumption: 33 mW @ ؎5 V  
Low Cost  
All DAC08 series models guarantee full 8-bit monotonicity,  
and nonlinearities as tight as 0.1% over the entire operating  
temperature range are available. Device performance is essen-  
tially unchanged over the 4.5 V to 18 V power supply range,  
with 33 mW power consumption attainable at 5 V supplies.  
Available in Die Form  
The compact size and low power consumption make the DAC08  
attractive for portable and military/aerospace applications;  
devices processed to MIL-STD-883, Level B are available.  
GENERAL DESCRIPTION  
The DAC08 series of 8-bit monolithic digital-to-analog convert-  
ers provide very high-speed performance coupled with low cost  
and outstanding applications flexibility.  
DAC08 applications include 8-bit, 1 µs A/D converters, servo  
motor and pen drivers, waveform generators, audio encoders  
and attenuators, analog meter drivers, programmable power  
supplies, CRT display drivers, high-speed modems and other  
applications where low cost, high speed and complete input/  
output versatility are required.  
Advanced circuit design achieves 85 ns settling times with very  
low “glitch” energy and at low power consumption. Monotonic  
multiplying performance is attained over a wide 20-to-1 reference  
current range. Matching to within 1 LSB between reference and  
FUNCTIONAL BLOCK DIAGRAM  
MSB  
B1  
LSB  
B8  
V+  
13  
V
B2  
B3  
B4  
B5  
B6  
10  
B7  
11  
LC  
1
5
6
7
8
9
12  
DAC08  
I
OUT  
BIAS  
NETWORK  
CURRENT  
SWITCHES  
4
2
14  
15  
I
OUT  
V
(+)  
(–)  
REF  
V
REF  
REFERENCE  
AMPLIFIER  
16  
COMP  
3
V–  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
DAC08–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
(@ VS = ؎15 V, IREF = 2.0 mA, –55؇C TA +125؇C for DAC08/08A, 0؇C TA +70؇C  
for DAC08E and DAC08H, –40؇C to +85؇C for DAC08C, unless otherwise noted. Output characteristics refer to both IOUT and OUT .)  
I
DAC08A/H  
DAC08E  
Typ  
DAC08C  
Typ  
Parameter  
Symbol Conditions  
Min Typ  
Max  
Min  
Max  
Min  
Max  
Unit  
Resolution  
8
8
8
8
8
8
Bits  
Bits  
0.39 % FS  
Monotonicity  
Nonlinearity  
Settling Time  
NL  
tS  
0.1  
135  
0.19  
150  
To 1/2 LSB,  
85  
85  
85  
150  
ns  
All Bits Switched ON  
or OFF, TA = 25°C1  
Propagation Delay  
Each Bit  
tPLH  
TA = 25°C1  
35  
35  
10  
60  
60  
50  
35  
35  
10  
60  
60  
80  
50  
35  
35  
10  
60  
60  
80  
ns  
ns  
ppm/°C  
All Bits Switched  
tPHL  
TCIFS  
Full-Scale Tempco1  
DAC08E  
Output Voltage  
Compliance  
(True Compliance)  
VOC  
Full-Scale Current  
Change <1/2 LSB,  
–10  
+18  
–10  
+18  
–10  
+18  
V
R
OUT > 20 Mtyp  
Full Range Current  
IFR4  
VREF = 10.000 V  
1.984 1.992  
2.000  
1.94  
1.99  
2.04  
1.94  
1.99  
2.04  
mA  
R14, R15 = 5.000 kΩ  
T
A = 25°C  
Full Range Symmetry  
Zero-Scale Current  
Output Current Range  
IFRS  
IZS  
IOR1  
IOR2  
IFR4 – IFR2  
0.5  
0.1  
2.1  
4
1
1
0.2  
8
2
2
0.2  
16  
4
µA  
µA  
mA  
R14, R15 = 5.000 kΩ  
VREF = +15.0 V,  
V– = –10 V  
2.1  
4.2  
2.1  
4.2  
V
REF = +25.0 V,  
V– = –12 V  
REF = 2 mA  
4.2  
mA  
nA  
Output Current Noise  
Logic Input Levels  
Logic “0”  
Logic Input “1”  
Logic Input Current  
Logic “0”  
Logic Input “1”  
Logic Input Swing  
Logic Threshold Range  
Reference Bias Current  
Reference Input  
Slew Rate  
I
25  
25  
25  
VIL  
VIL  
VLC = 0 V  
LC = 0 V  
0.8  
0.8  
0.8  
V
V
2
2
2
V
IIL  
IIH  
VIS  
VTHR  
I15  
VIN = –10 V to +0.8 V  
VIN = 2.0 V to 18 V  
V– = –15 V  
–2  
0.002  
–10  
–10  
10  
+18  
+13.5 –10  
–3  
–2  
0.002  
–10  
10  
+18  
+13.5 –10  
–3  
–2  
0.002  
–10  
10  
+18  
+13.5  
–3  
µA  
µA  
V
V
µA  
mA/µs  
–10  
–10  
VS  
=
15 V1  
–10  
–1  
–1  
8
–1  
8
dI/dt  
REQ = 200 Ω  
RL = 100 Ω  
CC = 0 pF  
4
8
4
4
See Fast Pulsed Ref. Info Following.1  
0.0003 0.01  
0.002 0.01  
Power Supply Sensitivity PSSIFS+ V+ = 4.5 V to 18 V  
PSSIFS– V– = –4.5 V to –18 V  
IREF = 1.0 mA  
0.0003 0.01  
0.002  
0.0003 0.01 %IO/%V+  
0.002 0.01 %IO/%V–  
0.01  
Power Supply Current  
I+  
I–  
I+  
I–  
I+  
I–  
VS = 5 V, IREF = 1.0 mA  
2.3  
–4.3  
2.4  
–6.4  
2.5  
–6.5  
3.8  
–5.8  
3.8  
–7.8  
3.8  
–7.8  
2.3  
–4.3  
2.4  
–6.4  
2.5  
–6.5  
3.8  
–5.8  
3.8  
–7.8  
3.8  
–7.8  
2.3  
–4.3  
2.4  
–6.4  
2.5  
–6.5  
3.8  
–5.8  
3.8  
–7.8  
3.8  
–7.8  
mA  
mA  
mA  
mA  
mA  
mA  
V
S = +5 V, –15 V,  
I
REF = 2.0 mA  
VS = 15 V,  
IREF = 2.0 mA  
Power Dissipation  
PD  
5 V, IREF = 1.0 mA  
+5 V, –15 V,  
33  
48  
33  
48  
33  
48  
mW  
I
REF = 2.0 mA  
15 V, IREF = 2.0 mA  
108  
135  
136  
174  
103  
135  
136  
174  
108  
135  
136  
174  
mW  
mW  
NOTES  
1Guaranteed by design.  
Specifications subject to change without notice.  
–2–  
REV. B  
DAC08  
(@ VS = ؎15 V, and IREF = 2.0 mA, unless otherwise noted. Output  
TYPICAL ELECTRICAL CHARACTERISTICS  
I
characteristics apply to both IOUT and OUT .)  
All Grades  
Parameter  
Symbol  
Conditions  
Typical  
Unit  
Reference Input Slew Rate  
Propagation Delay  
Settling Time  
dI/dt  
tPLH, tPHL  
tS  
8
35  
mA/µs  
TA = 25°C, Any Bit  
To 1/2 LSB, All Bits  
Switched ON or OFF,  
TA = 25°C  
ns  
85  
ns  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS1  
Operating Temperature  
2
Package Type  
Unit  
JA  
JC  
16-Lead Cerdip (Q)  
16-Lead Plastic DIP (P)  
20-Terminal LCC (RC)  
16-Lead SO (S)  
100  
82  
16  
39  
36  
35  
°C/W  
°C/W  
°C/W  
°C/W  
DAC08AQ, Q . . . . . . . . . . . . . . . . . . . . . 55°C to +125°C  
DAC08HQ, EQ, CQ, HP, EP . . . . . . . . . . . . 0°C to +70°C  
DAC08CP, CS . . . . . . . . . . . . . . . . . . . . . 40°C to +85°C  
Junction Temperature (TJ) . . . . . . . . . . . . . 65°C to +150°C  
Storage Temperature Q Package . . . . . . . . . 65°C to +150°C  
Storage Temperature P Package . . . . . . . . . 65°C to +125°C  
Lead Temperature (Soldering, 60 sec) . . . . . . . . . . . . . 300°C  
V+ Supply to VSupply . . . . . . . . . . . . . . . . . . . . . . . . . 36 V  
Logic Inputs . . . . . . . . . . . . . . . . . . . . . . . Vto Vplus 36 V  
VLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vto V+  
Analog Current Outputs (at VS= 15 V) . . . . . . . . . . 4.25 mA  
Reference Input (V14 to V15) . . . . . . . . . . . . . . . . . . . Vto V+  
Reference Input Differential Voltage  
76  
111  
NOTES  
1Absolute maximum ratings apply to both DICE and packaged parts, unless  
otherwise noted.  
2θJA is specified for worst-case mounting conditions, i.e., θJA is specified for device  
in socket for cerdip, Plastic DIP, and LCC packages; θJA is specified for device  
soldered to printed circuit board for SO package.  
(V14 to V15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Reference Input Current (I14) . . . . . . . . . . . . . . . . . . . 5.0 mA  
ORDERING GUIDE1  
Temperature  
Range  
Package  
Description  
Package  
Option  
# Parts Per  
Container  
Model  
NL  
0.10%  
DAC08AQ  
55°C to +125°C  
55°C to +125°C  
0°C to 70°C  
0°C to 70°C  
55°C to +125°C  
55°C to +125°C  
55°C to +125°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
40°C to +85°C  
0°C to 70°C  
40°C to +85°C  
40°C to +85°C  
25°C  
Cerdip-16  
Cerdip-16  
P-DIP-16  
Cerdip-16  
Cerdip-16  
Cerdip-16  
LCC-20  
P-DIP-16  
Cerdip-16  
SO-16  
Q-16  
Q-16  
N-16  
Q-16  
Q-16  
Q-16  
E-20  
N-16  
25  
25  
25  
25  
25  
25  
55  
25  
25  
47  
2500  
25  
25  
47  
2500  
DAC08AQ2/883C  
DAC08HP  
0.10%  
0.10%  
0.10%  
0.19%  
0.19%  
0.19%  
0.19%  
0.19%  
0.19%  
0.19%  
0.39%  
0.39%  
0.39%  
0.39%  
0.10%  
0.19%  
0.39%  
DAC08HQ  
DAC08Q  
DAC08Q2/883C  
DAC08RC/883C  
DAC08EP  
DAC08EQ  
DAC08ES  
DAC08ES-REEL  
DAC08CP  
DAC08CQ  
Q-16  
R-16A (Narrow Body)  
R-16A (Narrow Body)  
N-16  
SO-16  
P-DIP-16  
Cerdip-16  
SO-16  
SO-16  
DICE  
DICE  
DICE  
Q-16  
DAC08CS  
R-16A (Narrow Body)  
R-16A (Narrow Body)  
DAC08CS-REEL  
DAC08NBC  
DAC08GBC  
DAC08GRBC  
25°C  
25°C  
NOTES  
1Devices processed in total compliance to MIL-STD-883. Consult factory for 883 data sheet.  
2For availability and burn-in information on SO and PLCC packages, contact your local sales office.  
The DAC08 contains 84 transistors. Die size 63 mil x 87 mil = 5,481 square mils.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the DAC08 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–3–  
DAC08  
PIN CONNECTIONS  
16-Lead SO  
(S Suffix)  
DAC08RC/883 20-Lead LCC  
(RC Suffix)  
16-Lead Dual-In-Line Package  
(Q and P Suffix)  
V+  
(+)  
()  
1
2
3
4
5
6
7
8
16 B8 LSB  
15 B7  
V
1
2
3
4
5
6
7
8
16 COMPENSATION  
LC  
V
V
I
15  
14  
V
V
()  
REF  
OUT  
REF  
REF  
14 B6  
V–  
(+)  
REF  
3
2
1
20 19  
COMP  
13 B5  
I
13 V+  
V
(+)  
4
5
6
7
8
18  
17  
V–  
OUT  
REF  
V+  
I
12 B4  
OUT  
NC  
V
MSB B1  
B2  
12 B8 LSB  
11 B7  
LC  
16 NC  
I
11 B3  
OUT  
MSB B1  
B2  
B8 LSB  
15  
V–  
10 B2  
B3  
10 B6  
14 B7  
10 11 12 13  
9
I
9
B1 MSB  
B4  
9
B5  
OUT  
NC = NO CONNECT  
DICE CHARACTERISTICS  
(125°C Tested Dice Available)  
1. V  
LC  
2. I  
OUT  
3. V–  
4. I  
OUT  
5. BIT 1 (MSB)  
6. BIT 2  
7. BIT 3  
8. BIT 4  
9. BIT 5  
10. BIT 6  
11. BIT 7  
12. BIT 8 (LSB)  
13. V+  
14. V  
(+)  
REF  
15. V  
()  
REF  
16. COMP  
DIE SIZE 0.087 
؋
 0.063 inch, 5,270 sq. mils  
(2.209 
؋
 1.60 mm, 3.54 sq. mm)  
–4–  
REV. B  
DAC08  
(@ VS = ؎15 V, IREF = 2.0 mA; TA = 25؇C, unless otherwise noted. Output characteristics apply to both  
I
IOUT and OUT .)  
WAFER TEST LIMITS  
DAC08N  
Limit  
DAC08G  
Limit  
DAC08GR  
Limit  
Parameter  
Symbol  
Conditions  
Unit  
Resolution  
Monotonicity  
Nonlinearity  
Output Voltage  
Compliance  
Full-Scale Current  
8
8
8
8
8
8
Bits min  
Bits min  
% FS max  
V max  
NL  
VOC  
0.1  
+18  
10  
2.04  
1.94  
8
0.19  
+18  
10  
2.04  
1.94  
8
0.39  
+18  
10  
2.04  
1.94  
16  
Full-Scale Current  
Change < 1/2 LSB  
VREF = 10.000 V  
V min  
I
FS4 or  
mA max  
mA min  
µA max  
µA max  
IFS2  
IFSS  
IZS  
R14, R15 = 5.000 kΩ  
Full-Scale Symmetry  
Zero-Scale Current  
Output Current Range  
2
4
4
I
FS1 or  
V= 10 V,  
V
REF = +15 V  
2.1  
4.2  
2.1  
4.2  
2.1  
4.2  
mA min  
mA min  
V= 12 V,  
VREF = +25 V  
IFS2  
R
14, R15 = 5.000 kΩ  
Logic Input 0”  
Logic Input 1”  
Logic Input Current  
Logic 0”  
Logic 1”  
Logic Input Swing  
VIL  
VIH  
0.8  
2
0.8  
2
0.8  
2
V max  
V min  
V
LC = 0 V  
IIL  
IIH  
VIS  
VIN = 10 V to +0.8 V  
VIN = +2.0 V to +18 V  
V= 15 V  
10  
10  
+18  
10  
3  
10  
10  
+18  
10  
3  
10  
10  
+18  
10  
3  
µA max  
µA max  
V max  
V min  
µA max  
% FS/% V max  
Reference Bias Current  
Power Supply  
Sensitivity  
I15  
PSSIFS+  
PSSIFS–  
V+ = +4.5 V to +18 V  
V= 4.5 V to 18 V  
0.01  
0.01  
0.01  
I
REF = 1.0 mA  
Power Supply Current  
Power Dissipation  
I+  
VS = 15 V  
IREF 2.0 mA  
VS = 15 V  
IREF 2.0 mA  
3.8  
7.8  
174  
3.8  
7.8  
174  
3.8  
7.8  
174  
mA max  
µA max  
mW max  
PD  
NOTE  
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed  
for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.  
REV. B  
–5–  
DAC08  
+V  
REF  
0mA  
1.0mA  
2.0mA  
I
OPTIONAL RESISTOR  
FOR OFFSET INPUTS  
OUT  
R
REF  
R
R
L
IN  
14  
4
2
R
200  
EQ  
0V  
R
R
P
L
15  
16  
I
OUT  
TYPICALVALUES:  
= 5k⍀  
R
IN  
+V = 10V  
IN  
NO CAP  
(0000|0000)  
I
= 2mA  
(1111|1111)  
REF  
Figure 1. Pulsed Reference Operation  
Figure 4. True and Complementary Output Operation  
C2  
R1 = 9k  
+18V  
C1 = 0.001F  
C2, C3 = 0.01F  
5mV  
2V  
C1  
R1  
2.4V  
16 15 14 13 12 11 10  
9
8
DAC08  
0.4V  
0V  
1
2
3
4
5
6
7
8A  
0
50ns  
100mV  
C3  
50ns/DIVISION  
18V MIN  
Figure 2. Burn-in Circuit  
Figure 5. LSB Switching  
ALL BITS SWITCHED ON  
1V  
1V  
2.4V  
0.4V  
LOGIC INPUT  
2.5V  
0.5V  
OUTPUT 1/2LSB  
SETTLING 0V  
+1/2LSB  
0.5mA  
I
OUT  
2.5mA  
200ns  
100mV  
50ns  
10mV  
50ns/DIVISION  
SETTLINGTIME FIXTURE  
R
R
C
200  
= 100⍀  
200ns/DIVISION  
EQ  
I
= 2mA, R = 1k  
FS  
L
L
1/2LSB = 4A  
= 0  
C
Figure 3. Fast Pulsed Reference Operation  
Figure 6. Full-Scale Settling Time  
–6–  
REV. B  
Typical Performance CharacteristicsDAC08  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
500  
400  
300  
200  
100  
0
10  
R14 = R15 = 1k  
L
T
= T  
TO T  
MAX  
LIMIT FOR  
A
MIN  
R
500⍀  
8
6
V= 15V  
ALL BITS HIGH”  
ALL BITS ON”  
= 0V  
V
R15  
4
2
2
0
2  
4  
6  
8  
10  
12  
14  
1LSB = 7.8A  
1
1. C = 15pF, V = 2.0V pp  
IN  
C
LIMIT FOR  
V= 5V  
CENTERED AT +1.0V  
LARGE SIGNAL  
2.  
C
= 15pF, V = 50mV pp  
C
IN  
1LSB = 61nA  
CENTERED AT +200mV  
SMALL SIGNAL  
0.05  
0.02  
0.05  
0.1  
0.5  
2.0  
10  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
0.01  
0.2  
1.0  
5.0  
I
, REFERENCE CURRENT mA  
FREQUENCY MHz  
REF  
I
, OUTPUT FULL SCALE CURRENT mA  
FS  
TPC 1. Full-Scale Current vs.  
Reference Current  
TPC 2. LSB Propagation Delay vs. IFS  
TPC 3. Reference Input Frequency  
Response  
4.0  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
10.0  
8.0  
6.0  
4.0  
2.0  
0
2.0  
1.6  
1.2  
0.8  
0.4  
0
T
= T  
TO T  
MIN MAX  
ALL BITS ON  
A
NOTE: POSITIVE COMMON-MODE  
RANGE IS ALWAYS (V+) 1.5V  
V= 15V V= 5V V+ = +15V  
I
= 2mA  
REF  
I
= 1mA  
REF  
I
= 0.2mA  
REF  
14 10 6  
2  
2
6
10  
14  
18  
12.0 8.0 4.0  
0
4.0 8.0 12.0 16.0  
50  
0
50  
100  
150  
V
, REFERENCE COMMON-MODEVOLTAGE V  
LOGIC INPUTVOLTAGE V  
TEMPERATURE ؇C  
15  
TPC 5. Logic Input Current vs. Input  
Voltage  
TPC 6. VTH – VLC vs. Temperature  
TPC 4. Reference Amp Common-  
Mode Range  
1.8  
1.6  
1.4  
1.2  
28  
24  
20  
16  
4.0  
T
= T  
TO T  
MIN MAX  
ALL BITS ON  
A
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
12  
B1  
1.0  
SHADED AREA INDICATES  
V= 15V V= 5V  
I
= 2mA  
= 1mA  
REF  
I
= 2.0mA  
PERMISSIBLE OUTPUTVOLTAGE  
8
4
REF  
RANGE FOR V= 15V. I  
2.0mA.  
0.8  
0.6  
0.4  
0.2  
REF  
B2  
B3  
FOR OTHER VOR I  
.
REF  
I
0
REF  
SEE OUTPUT CURRENT VS. OUTPUT  
VOLTAGE CURVE.  
4
V= 5V  
B4  
B5  
I
= 0.2mA  
8
REF  
V= 15V  
0
12  
12 8  
4  
LOGIC INPUTVOLTAGE V  
NOTE: B1THROUGH B8 HAVE IDENTICAL  
0
4
8
12  
16  
50  
0
50  
100  
150  
14 10 6  
2  
2
6
10  
14  
18  
TEMPERATURE ؇C  
OUTPUTVOLTAGE V  
TRANSFER CHARACTERISTICS. BITS ARE FULLY  
SWITCHEDWITH LESSTHAN 1/2 LSB ERROR, AT  
LESSTHAN 100mV FROM ACTUALTHRESHOLD.  
THESE SWITCHING POINTS ARE GUARANTEED  
TO LIE BETWEEN 0.8V AND 2.0V OVERTHE  
OPERATINGTEMPERATURE RANGE (V = 0.0V).  
LC  
TPC 7. Output Current vs. Output  
Voltage (Output Voltage Compliance)  
TPC 8. Output Voltage Compliance  
vs. Temperature  
TPC 9. Bit Transfer Characteristics  
–7–  
REV. B  
DAC08  
10  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
ALL BITS HIGHOR LOW”  
BITS MAY BE HIGHOR LOW”  
IWITH I  
ALL BITS HIGHOR LOW”  
V= 15V  
9
8
7
6
5
4
3
2
1
0
= 2mA  
= 1mA  
I–  
REF  
I–  
I
= 2.0mA  
REF  
IWITH I  
IWITH I  
REF  
= 0.2mA  
REF  
I+  
V+ = +15V  
I+  
I+  
0
2
4
6
8
10 12 14 16 18 20  
0 2 4 6 8 10 12 14 16 18 20  
V, NEGATIVE POWER SUPPLY V dc  
50  
0
50  
100  
150  
TEMPERATURE ؇C  
V+, POSITIVE POWER SUPPLY V dc  
TPC 10. Power Supply Current vs. V+  
TPC 11. Power Supply Current vs. V–  
TPC 12. Power Supply Current vs.  
Temperature  
BASIC CONNECTIONS  
+V  
REF  
R
REF  
I
REF  
14  
MSB  
LSB  
I
IN  
B1 B2 B3 B4 B5 B6 B7 B8  
V
IN  
I
REF  
V
(+)  
R
REF  
I
I
IN  
5
6
7
8
9
10 11 12  
O
14  
15  
+V  
REF  
4
2
R
(R14)  
R15  
REF  
15  
V
()  
REF  
3
16  
13  
1
O
I
PEAK NEGATIVE SWING OF I  
14  
REF  
IN  
FOR FIXED REFERENCE,  
TTL OPERATION,  
TYPICALVALUES ARE:  
V+  
V–  
R
REF  
R
R15  
+V  
REF  
REF  
C
C
R15  
(OPTIONAL)  
COMP  
0.1F  
V
R
= 10.000V  
= 5.000k⍀  
REF  
REF  
V
15  
IN  
0.1F  
255  
R15 = R  
+V  
REF  
REF  
C = 0.01F  
C
I
=
؋
FR  
HIGH INPUT  
IMPEDANCE  
R
256  
REF  
V
= 0V (GROUND)  
LC  
I
+ I = I FOR  
O
ALL LOGIC STATES  
O
FR  
+V  
MUST BE ABOVE PEAK POSITIVE SWING OFV  
REF  
IN  
V–  
V+  
V
LC  
Figure 7. Accommodating Bipolar References  
Figure 8. Basic Positive Reference Operation  
MSB  
LSB  
B1 B2 B3 B4 B5 B6 B7 B8  
E
O
B1 B2 B3 B4 B5 B6 B7 B8  
I
mA  
I
mA  
E
E
O
O
O
O
FULL RANGE  
HALF-SCALE +LSB  
HALF-SCALE  
HALF-SCALE LSB  
ZERO-SCALE +LSB  
ZERO-SCALE  
1
1
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
0
1
1
0
1.992 0.000 9.960 0.000  
1.008 0.984 5.040 4.920  
1.000 0.992 5.000 4.960  
0.992 1.000 4.960 5.000  
0.008 1.984 0.040 9.920  
0.000 1.992 0.000 9.860  
I
5.000k⍀  
5.000k⍀  
O
4
2
I
= 2.000mA  
REF  
14  
I
O
E
O
Figure 9. Basic Unipolar Negative Operation  
–8–  
REV. B  
DAC08  
10.000V  
B1 B2 B3 B4 B5 B6 B7 B8  
E
E
O
O
MSB  
LSB  
POS. FULL RANGE  
POS. FULL RANGE LSB  
ZERO-SCALE +LSB  
ZERO-SCALE  
ZERO-SCALE LSB  
NEG. FULL-SCALE +LSB  
NEG. FULL-SCALE  
1
1
1
1
0
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
0
1
0
1
1
0
9.920 +10.000  
9.840 +9.920  
0.080 +0.160  
10.000k  
10.000k⍀  
B1 B2 B3 B4 B5 B6 B7 B8  
0.000  
+0.080  
I
E
E
O
O
O
4
2
I
(+) = 2.000mA  
+0.080 0.000  
+9.920 9.840  
+10.000 9.920  
REF  
14  
I
O
Figure 10. Basic Bipolar Output Operation  
LOW T.C.  
4.5k⍀  
R
REF  
I
I
O
14  
15  
V
REF  
10V  
4
2
14  
15  
I
(+) 2mA  
1V  
REF  
O
39k⍀  
R15  
V  
REF  
10k⍀  
POT  
NOTE  
V  
R
REF  
APPROX  
I
R
SETS I ; R15 IS FOR  
FS  
REF  
FS  
5k⍀  
REF  
BIAS CURRENT CANCELLATION.  
Figure 11. Recommended Full-Scale Adjustment Circuit  
Figure 12. Basic Negative Reference Operation  
10k  
5.0k⍀  
15V  
MSB  
LSB  
B1 B2 B3 B4 B5 B6 B7 B8  
+15V  
2
5.000k⍀  
5.0k⍀  
6
5
10V  
B1 B2 B3 B4 B5 B6 B7 B8  
E
O
I
I
O
O
V
O
4
2
POS. FULL RANGE  
ZERO-SCALE  
1
1
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1 +4.960  
0 0.000  
1 4.960  
0 5.000  
E
OP711  
O
REF01*  
NEG. FULL-SCALE +1 LSB 0  
NEG. FULL-SCALE 0  
V+ V–  
C
V
C
LC  
4
*OR ADR01  
+15V 15V  
15V  
Figure 13. Offset Binary Operation  
R
L
I
I
O
E
OP711  
O
L
4
I
I
O
4
2
E
O
OP711  
0TO I 
؋
 R  
O
FR  
2
R
O
L
255  
256  
0TO +I 
؋
 R  
FR  
L
I
=
I
REF  
FR  
255  
256  
I
=
I
REF  
FR  
FOR COMPLEMENTARY OUTPUT (OPERATION AS A NEGATIVE LOGIC DAC),  
CONNECT INVERTING INPUT OF OP AMPTO I (PIN 2); CONNECT I (PIN 4)TO  
FOR COMPLEMENTARY OUTPUT (OPERATION AS A NEGATIVE LOGIC DAC),  
CONNECT NONINVERTING INPUT OF OP AMPTO I (PIN 2); CONNECT I (PIN 4)  
O
O
O
O
GROUND.  
TO GROUND.  
Figure 14. Positive Low Impedance Output Operation  
Figure 15. Negative Low Impedance Output Operation  
CMOS, HTL, NMOS  
V
=V  
1.4V  
LC  
TH  
ECL  
15V CMOS  
= 7.6V  
V+  
V
TH  
15V  
TTL, DTL  
= 1.4V  
V
TH  
13k⍀  
20k⍀  
9.1k⍀  
6.2k⍀  
V
2N3904  
3k⍀  
2N3904  
LC  
A”  
A”  
2N3904  
2N3904  
V
LC  
0.1F  
3k⍀  
TO PIN 1  
TO PIN 1  
1
39k⍀  
20k⍀  
V
V
LC  
LC  
R3  
400A  
6.2k⍀  
5.2V  
TEMPERATURE COMPENSATINGV  
CIRCUITS  
LC  
Figure 16. Interfacing with Various Logic Families  
–9–  
REV. B  
DAC08  
APPLICATION INFORMATION  
REFERENCE AMPLIFIER SETUP  
technique provides lowest full-scale transition times. An internal  
clamp allows quick recovery of the reference amplifier from a  
cutoff (IREF = 0) condition. Full-scale transition (0 mA to 2 mA)  
occurs in 120 ns when the equivalent impedance at Pin 14 is  
200 and CC = 0. This yields a reference slew rate of 16 mA/µs,  
which is relatively independent of RIN and VIN values.  
The DAC08 is a multiplying D/A converter in which the output  
current is the product of a digital number and the input refer-  
ence current. The reference current may be fixed or may vary  
from nearly zero to 4.0 mA. The full-scale output current is a  
linear function of the reference current and is given by:  
LOGIC INPUTS  
255  
256  
The DAC08 design incorporates a unique logic input circuit  
that enables direct interface to all popular logic families and  
provides maximum noise immunity. This feature is made pos-  
sible by the large input swing capability, 2 µA logic input  
current and completely adjustable logic threshold voltage.  
For V= 15 V, the logic inputs may swing between 10 V  
and +18 V. This enables direct interface with 15 V CMOS  
logic, even when the DAC08 is powered from a 5 V supply.  
Minimum input logic swing and minimum logic threshold  
voltage are given by: Vplus (IREF × 1 k) plus 2.5 V. The  
logic threshold may be adjusted over a wide range by placing  
an appropriate voltage at the logic threshold control pin (Pin 1,  
VLC). The appropriate graph shows the relationship between  
VLC and VTH over the temperature range, with VTH nominally  
1.4 above VLC. For TTL and DTL interface, simply ground pin  
1. When interfacing ECL, an IREF = 1 mA is recommended. For  
interfacing other logic families, see preceding page. For general  
set-up of the logic control circuit, it should be noted that Pin 1  
will source 100 µA typical; external circuitry should be designed  
to accommodate this current.  
IFR  
=
× I  
REF , where IREF = I14  
In positive reference applications, an external positive reference  
voltage forces current through R14 into the VREF(+) terminal  
(Pin 14) of the reference amplifier. Alternatively, a negative  
reference may be applied to VREF() at Pin 15; reference current  
flows from ground through R14 into VREF(+) as in the positive  
reference case. This negative reference connection has the advan-  
tage of a very high impedance presented at Pin 15. The voltage  
at Pin 14 is equal to and tracks the voltage at Pin 15 due to the  
high gain of the internal reference amplifier. R15 (nominally equal  
to R14) is used to cancel bias current errors; R15 may be elimi-  
nated with only a minor increase in error.  
Bipolar references may be accommodated by offsetting VREF or  
Pin 15. The negative common-mode range of the reference  
amplifier is given by: VCM= Vplus (IREF × 1 k) plus 2.5 V.  
The positive common-mode range is V+ less 1.5 V.  
When a dc reference is used, a reference bypass capacitor is  
recommended. A 5.0 V TTL logic supply is not recommended  
as a reference. If a regulated power supply is used as a reference,  
R14 should be split into two resistors with the junction bypassed to  
ground with a 0.1 µF capacitor.  
Fastest settling times are obtained when Pin 1 sees a low imped-  
ance. If Pin 1 is connected to a 1 kdivider, for example, it  
should be bypassed to ground by a 0.01 µF capacitor.  
For most applications the tight relationship between IREF and IFS  
will eliminate the need for trimming IREF. If required, full-scale  
trimming may be accomplished by adjusting the value of R14, or  
by using a potentiometer for R14. An improved method of  
full-scale trimming which eliminates potentiometer T.C. effects  
is shown in the recommended full-scale adjustment circuit.  
ANALOG OUTPUT CURRENTS  
Both true and complemented output sink currents are provided  
where IO  
+
IO = IFS. Current appears at the true(IO) output  
when a 1(logic high) is applied to each logic input. As the  
binary count increases, the sink current at pin 4 increases pro-  
portionally, in the fashion of a positive logicD/A converter.  
When a 0is applied to any input bit, that current is turned  
off at Pin 4 and turned on at Pin 2. A decreasing logic count  
increases IO as in a negative or inverted logic D/A converter.  
Both outputs may be used simultaneously. If one of the outputs  
is not required, it must be connected to ground or to a point  
capable of sourcing IFS; do not leave an unused output pin open.  
Using lower values of reference current reduces negative power  
supply current and increases reference amplifier negative com-  
mon-mode range. The recommended range for operation with  
a dc reference current is 0.2 mA to 4.0 mA.  
REFERENCE AMPLIFIER COMPENSATION FOR  
MULTIPLYING APPLICATIONS  
Both outputs have an extremely wide voltage compliance enabling  
fast direct current-to-voltage conversion through a resistor tied  
to ground or other voltage source. Positive compliance is 36 V  
above Vand is independent of the positive supply. Negative  
compliance is given by Vplus (IREF × 1 k) plus 2.5 V.  
AC reference applications will require the reference amplifier to  
be compensated using a capacitor from Pin 16 to V. The value  
of this capacitor depends on the impedance presented to Pin 14:  
for R14 values of 1.0, 2.5 and 5.0 k, minimum values of CC  
are 15, 37 and 75 pF. Larger values of R14 require proportion-  
ately increased values of CC for proper phase margin, so the  
ratio of CC (pF) to R14 (k) = 15.  
The dual outputs enable double the usual peak-to-peak load  
swing when driving loads in quasi-differential fashion. This  
feature is especially useful in cable driving, CRT deflection and  
in other balanced applications such as driving center-tapped  
coils and transformers.  
For fastest response to a pulse, low values of R14 enabling  
small CC values should be used. If Pin 14 is driven by a high  
impedance such as a transistor current source, none of the  
above values will suffice and the amplifier must be heavily  
compensated which will decrease overall bandwidth and slew  
rate. For R14 = 1 kand CC = 15 pF, the reference amplifier  
POWER SUPPLIES  
The DAC08 operates over a wide range of power supply voltages  
from a total supply of 9 V to 36 V. When operating at supplies  
of 5 V or less, IREF 1 mA is recommended. Low reference  
current operation decreases power consumption and increases  
negative compliance, reference amplifier negative common-mode  
slews at 4 mA/µs enabling a transition from IREF = 0 to IREF  
2 mA in 500 ns.  
=
Operation with pulse inputs to the reference amplifier may be  
accommodated by an alternate compensation scheme. This  
–10–  
REV. B  
DAC08  
SETTLING TIME  
range, negative logic input range and negative logic threshold  
range; consult the various figures for guidance. For example,  
operation at 4.5 V with IREF = 2 mA is not recommended  
because negative output compliance would be reduced to near  
zero. Operation from lower supplies is possible; however, at  
least 8 V total must be applied to ensure turn-on of the internal  
bias network.  
The DAC08 is capable of extremely fast settling times, typically  
85 ns at IREF = 2.0 mA. Judicious circuit design and careful  
board layout must be employed to obtain full performance  
potential during testing and application. The logic switch design  
enables propagation delays of only 35 ns for each of the 8 bits.  
Settling time to within 1/2 LSB of the LSB is therefore 35 ns,  
with each progressively larger bit taking successively longer. The  
MSB settles in 85 ns, thus determining the overall settling time  
of 85 ns. Settling to 6-bit accuracy requires about 65 ns to 70 ns.  
The output capacitance of the DAC08 including the package is  
approximately 15 pF, therefore the output RC time constant  
dominates settling time if RL > 500 .  
Symmetrical supplies are not required, as the DAC08 is quite  
insensitive to variations in supply voltage. Battery operation is  
feasible as no ground connection is required: however, an artificial  
ground may be used to ensure logic swings, etc., remain  
between acceptable limits.  
Power consumption may be calculated as follows:  
Settling time and propagation delay are relatively insensitive to  
logic input amplitude and rise and fall times, due to the high  
gain of the logic switches. Settling time also remains essentially  
constant for IREF values. The principal advantage of higher IREF  
values lies in the ability to attain a given output level with lower  
load resistors, thus reducing the output RC time constant.  
PD = (I+) (V+) + (I–) (V–)  
A useful feature of the DAC08 design is that supply current is  
constant and independent of input logic states; this is useful in  
cryptographic applications and further serves to reduce the size  
of the power supply bypass capacitors.  
Measurement of settling time requires the ability to accurately  
resolve 4 µA, therefore a 1 kload is needed to provide  
adequate drive for most oscilloscopes. The settling time fix-  
ture shown in schematic labelled Settling Time Measurement”  
uses a cascade design to permit driving a 1 kload with less  
than 5 pF of parasitic capacitance at the measurement node. At  
IREF values of less than 1.0 mA, excessive RC damping of the  
output is difficult to prevent while maintaining adequate sensi-  
tivity. However, the major carry from 01111111 to 10000000  
provides an accurate indicator of settling time. This code change  
does not require the normal 6.2 time constants to settle to  
within 0.2% of the final value, and thus settling times may be  
TEMPERATURE PERFORMANCE  
The nonlinearity and monotonicity specifications of the DAC08  
are guaranteed to apply over the entire rated operating temperature  
range. Full-scale output current drift is low, typically 10 ppm/°C,  
with zero-scale output current and drift essentially negligible  
compared to 1/2 LSB.  
The temperature coefficient of the reference resistor R14 should  
match and track that of the output resistor for minimum overall  
full-scale drift. Settling times of the DAC08 decrease approxi-  
mately 10% at 55°C; at +125°C an increase of about 15%  
is typical.  
observed at lower values of IREF  
.
The reference amplifier must be compensated by using a capacitor  
from pin 16 to V. For fixed reference operation, a 0.01 µF  
capacitor is recommended. For variable reference applications,  
see Reference Amplifier Compensation for Multiplying Applica-  
tionssection.  
DAC08 switching transients or glitchesare very low and may  
be further reduced by small capacitive loads at the output at a  
minor sacrifice in settling time.  
Fastest operation can be obtained by using short leads, minimizing  
output capacitance and load resistor values, and by adequate  
bypassing at the supply, reference, and VLC terminals. Supplies  
do not require large electrolytic bypass capacitors as the supply  
current drain is independent of input logic states; 0.1 µF capacitors  
at the supply pins provide full transient protection.  
MULTIPLYING OPERATION  
The DAC08 provides excellent multiplying performance with an  
extremely linear relationship between IFS and IREF over a range  
of 4 µA to 4 mA. Monotonic operation is maintained over a  
typical range of IREF from 100 µA to 4.0 mA.  
V
+5V  
L
FORTURN-ON,V = 2.7V  
L
FORTURN-OFF,V = 0.7V  
L
1k⍀  
1F  
50F  
1F  
MINIMUM  
CAPACITANCE  
Q2  
1k⍀  
V
1X  
OUT  
V
0.7V  
+0.4V  
0V  
0V  
CL  
Q1  
PROBE  
0.1F  
V
IN  
0.4V  
0.1F  
15k⍀  
R
100k2k⍀  
REF  
5
6 7 8 9 10 11 12  
14  
15  
+V  
REF  
4
I
OUT  
DAC08  
R15  
2
13  
3
16  
15V  
0.01F  
0.1F  
0.1F  
+15V 15V  
Figure 17. Settling Time Measurement  
–11–  
REV. B  
DAC08  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
16-Lead Plastic DIP (N-16)  
16-Lead Cerdip (Q-16)  
0.080 (2.03) MAX  
0.005 (0.13) MIN  
0.840 (21.34)  
0.745 (18.92)  
16  
9
0.310 (7.87)  
16  
9
PIN 1  
0.280 (7.11)  
0.240 (6.10)  
0.220 (5.59)  
0.320 (8.13)  
0.290 (7.37)  
1
8
1
8
0.325 (8.25)  
0.300 (7.62)  
PIN 1  
0.840 (21.34) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
0.195 (4.95)  
0.115 (2.93)  
MAX  
0.210 (5.33)  
MAX  
0.160 (4.06)  
0.115 (2.93)  
0.150  
(3.81)  
MIN  
SEATING  
PLANE  
0.200 (5.08)  
0.125 (3.18)  
0.130  
(3.30)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
0.100 0.070 (1.78)  
(2.54)  
BSC  
0.023 (0.58)  
15°  
0°  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.030 (0.76)  
0.014 (0.36)  
0.070 (1.77)  
0.045 (1.15)  
0.022 (0.558)  
0.014 (0.356)  
16-Lead SO (R-16A)  
20-Terminal Leadless Chip Carrier (E-20)  
0.3937 (10.00)  
0.3859 (9.80)  
0.200 (5.08)  
0.075  
(1.91)  
REF  
BSC  
0.358 (9.09)  
0.342 (8.69)  
SQ  
0.100 (2.54)  
0.064 (1.63)  
0.100 (2.54) BSC  
0.015 (0.38)  
16  
1
9
8
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
0.095 (2.41)  
0.075 (1.90)  
3
MIN  
19  
20  
18  
4
0.028 (0.71)  
1
0.358  
0.011 (0.28)  
0.007 (0.18)  
R TYP  
TOP  
VIEW  
0.022 (0.56)  
(9.09)  
MAX  
SQ  
BOTTOM  
VIEW  
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.050 (1.27)  
BSC  
0.0196 (0.50)  
0.0099 (0.25)  
0.050 (1.27)  
BSC  
؋
 45؇  
8
14  
13  
0.075 (1.91)  
REF  
9
45° TYP  
0.150 (3.81)  
BSC  
8؇  
0؇  
0.088 (2.24)  
0.054 (1.37)  
0.055 (1.40)  
0.045 (1.14)  
0.0098 (0.25)  
0.0040 (0.10)  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0500 (1.27)  
0.0160 (0.41)  
0.0099 (0.25)  
0.0075 (0.19)  
Revision History  
Location  
Page  
Data Sheet changed from REV. A to REV. B.  
Edits to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Edit to Figure 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Edits to Figures 14 and 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Replacement of SO-16 with R-16A Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
–12–  
REV. B  

相关型号:

DAC08HPZ

PARALLEL, 8 BITS INPUT LOADING, 0.085 us SETTLING TIME, 8-BIT DAC, PDIP16, PLASTIC, DIP-16
ROCHESTER

DAC08HQ

8-Bit, High Speed, Multiplying D/A Converter (Universal Digital Logic Interface)
ADI

DAC08N

IC PARALLEL, 8 BITS INPUT LOADING, 0.085 us SETTLING TIME, 8-BIT DAC, UUC16, DIE-16, Digital to Analog Converter
ADI

DAC08NBC

8-Bit, High-Speed, Multiplying D/A Converter (Universal Digital Logic Interface)
ADI

DAC08Q

8-Bit, High Speed, Multiplying D/A Converter (Universal Digital Logic Interface)
ADI

DAC08Q-883C

8-Bit, High Speed, Multiplying D/A Converter (Universal Digital Logic Interface)
ADI

DAC08Q/883

IC PARALLEL, 8 BITS INPUT LOADING, 0.085 us SETTLING TIME, 8-BIT DAC, CDIP16, GLASS SEALED, CERDIP-16, Digital to Analog Converter
ADI

DAC08Q2/38510

IC PARALLEL, 8 BITS INPUT LOADING, 8-BIT DAC, CDIP16, 0.250 X 0.875 INCH, HERMETIC SEALED, CERAMIC, DIP-16, Digital to Analog Converter
ADI

DAC08Q2/883C

8-Bit, High-Speed, Multiplying D/A Converter (Universal Digital Logic Interface)
ADI

DAC08Q5/38510

IC PARALLEL, 8 BITS INPUT LOADING, 8-BIT DAC, CDIP16, 0.250 X 0.875 INCH, HERMETIC SEALED, CERAMIC, DIP-16, Digital to Analog Converter
ADI

DAC08R000C

Aerospace 8-Bit High Speed Multiplying DAC
ADI

DAC08R02

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading,
AMI