DAC10 [ADI]

10-Bit High Speed Multiplying D/A Converter Universal Digital Logic Interface; 10位高速乘法D / A转换器通用数字逻辑接口
DAC10
型号: DAC10
厂家: ADI    ADI
描述:

10-Bit High Speed Multiplying D/A Converter Universal Digital Logic Interface
10位高速乘法D / A转换器通用数字逻辑接口

转换器
文件: 总10页 (文件大小:302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a 10-Bit High Speed Multiplying D/A Converter  
(Universal Digital Logic Interface)  
DAC10*  
All DAC10 series models guarantee full 10-bit monotonicity,  
and nonlinearities as tight as +0.05% over the entire operating  
temperature range are available. Device performance is essen-  
tially unchanged over the ±18 V power supply range, with  
85 mW power consumption attainable at lower supplies.  
FEATURES  
Fast Settling: 85 ns  
Low Full-Scale Drift: 10 ppm/؇C  
Nonlinearity to 0.05% Max Over Temperature Range  
Complementary Current Outputs: 0 mA to 4 mA  
Wide Range Multiplying Capability: 1 MHz Bandwidth  
Wide Power Supply Range: +5, –7.5 Min to ؎18 V Max  
Direct Interface to TTL, CMOS, ECL, PMOS, NMOS  
Availability in Die Form  
A highly stable, unique trim method is used, which selectively  
shorts Zener diodes, to provide 1/2 LSB full-scale accuracy  
without the need for laser trimming.  
Single-chip reliability, coupled with low cost and outstanding  
flexibility, make the DAC10 device an ideal building block for  
A/D converters, Data Acquisition systems, CRT displays, pro-  
grammable test equipment and other applications where low  
power consumption, input/output versatility and long-term  
stability are required.  
GENERAL DESCRIPTION  
The DAC10 series of 10-bit monolithic multiplying digital-to-  
analog converters provide high speed performance and full-scale  
accuracy.  
Advanced circuit design achieves 85 ns settling times with very  
low “glitch” energy and low power consumption. Direct inter-  
face to all popular logic families with full noise immunity is  
provided by the high swing, adjustable threshold logic inputs.  
SIMPLIFIED SCHEMATIC  
MSB  
LSB  
V
B
B
B
B
B
B
B
B
B
B
V+  
LC  
1
1
2
3
4
5
6
7
8
9
10  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
BIAS NETWORK  
4
2
I
I
OUT  
OUT  
CURRENT SWITCHES  
16  
17  
V
V
(+)  
(–)  
REF  
REFERENCE  
AMPLIFIER  
REF  
18  
3
COMP  
V–  
*Protected by Patent Nos. 4,055,770, 4,056,740 and 4,092,639.  
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
DAC10–SPECIFICATIONS  
(@ VS = ؎15 V; IREF = 2 mA; 0؇C TA +70؇C for DAC10F and G, unless otherwise noted.  
Output characteristics apply to both IOUT and IOUT.)  
ELECTRICAL CHARACTERISTICS  
DAC10F  
Typ  
DAC10G  
Typ  
Parameter  
Symbol  
Conditions  
Min  
Max  
Min  
Max  
Units  
Bits  
MONOTONICITY  
NONLINEARITY  
10  
10  
NL  
0.3  
0.3  
0.5  
1
0.6  
0.7  
1
LSB  
DIFFERENTIAL  
NONLINEARITY  
DNL  
tS  
LSB  
SETTLING TIME  
All Bits Switched ON or OFF  
Settle to 0.05% of FS (See Note)  
85  
18  
135  
85  
18  
150  
ns  
OUTPUT CAPACITANCE  
PROPAGATION DELAY  
CO  
pF  
tPLH  
tPHL  
All Bits Switched RL = 5 k  
RL = 0 kΩ  
50  
50  
50  
50  
ns  
ns  
OUTPUT VOLTAGE  
COMPLIANCE  
Full-Scale Current Change  
<1 LSB  
–5.5  
+10  
–5.5  
+10  
V
V
VOC  
GAIN TEMPCO  
TCIFS  
(See Note)  
IFR–IFR  
±10  
0.1  
±25  
4
±10  
0.1  
±50  
4
ppm/°C  
µA  
FULL-SCALE SYMMETRY IFSS  
ZERO-SCALE CURRENT  
FULL-SCALE CURRENT  
IZS  
IFR  
0.01  
0.5  
0.01  
0.5  
µA  
(See Note)  
3.960 3.996 4.032  
3.920 3.996 4.072  
mA  
REFERENCE INPUT  
SLEW RATE  
DI/dt  
IB  
6
6
mA/µs  
µA  
REFERENCE BIAS  
CURRENT  
–1  
–3  
–1  
–3  
POWER SUPPLY  
SENSITIVITY  
PPS/FS  
PPS/FS  
+
4.5 V V+ –18 V  
–18 V V– –10 V  
0.001 0.01  
0.0012 0.01  
0.001 0.01  
0.0012 0.01  
%IFS/%V  
%IFS/%V  
POWER SUPPLY CURRENT I+  
VS = ±15 V; IREF = 2 mA  
2.3  
–9  
1.8  
–5.9  
4
–15  
4
2.3  
–9  
1.8  
–5.9  
4
–15  
4
mA  
mA  
mA  
mA  
I–  
I+  
I–  
VS = +5 V; –7.5 V; IREF = 1 mA  
–9  
–9  
POWER DISSIPATION  
LOGIC INPUT LEVELS  
PD  
PD  
VS = ±15 V; IREF = 2 mA  
VS = +5 V; –7.5 V; IREF = 1 mA  
231  
85  
285  
88  
231  
85  
285  
88  
mW  
mW  
VIL  
VIH  
VLC = 0  
VLC = 0  
0.8  
0.8  
V
V
2
2
LOGIC INPUT CURRENTS IIL  
IIH  
VLC = 0; VIN = 0.8 V  
VIN = 2.0 V  
–10  
–5  
–10  
–5  
µA  
µA  
0.001 10  
0.001 10  
(@ VS = ؎15 V; IREF = 2 mA; TA = +25؇C, unless otherwise noted. Output characteristics  
apply to both IOUT and IOUT.)  
ELECTRICAL CHARACTERISTICS  
DAC10F  
Typ  
DAC10G  
Typ  
Parameter  
Symbol Conditions  
Min  
Max  
Min  
Max Units  
MONOTONICITY  
NONLINEARITY  
10  
10  
Bits  
NL  
0.3  
0.3  
0.5  
1
0.6  
0.7  
1
LSB  
LSB  
V
DIFFERENTIAL  
NONLINEARITY  
DNL  
OUTPUT VOLTAGE  
COMPLIANCE  
VOC  
IFS  
Full-Scale Current Change, <1 LSB  
–5  
–6/+18 +10  
–5  
–6/+15 +10  
FULL-SCALE CURRENT  
VREF = 10.000 V,  
R14 = R15 = 5.000 kΩ  
3.978 3.996 4.014  
3.956 3.996 4.036 mA  
FULL-SCALE SYMMETRY IFSS  
IFR–IFR  
0.1  
4
0.1  
0.4  
0.5  
µA  
µA  
ZERO-SCALE CURRENT  
NOTE: Guaranteed by design.  
IZS  
0.01  
0.5  
0.01  
–2–  
REV. D  
DAC10  
(@ VS = ؎15 V, IREF = 2 mA, TA = +25؇C, unless otherwise noted. Output characteristics refer to both  
IOUT and IOUT).  
WAFER TEST LIMITS  
DAC10N  
Limit  
Parameter  
Symbol  
Conditions  
Units  
RESOLUTION  
MONOTONICITY  
NONLINEARITY  
10  
Bits min  
Bits min  
LSB max  
10  
NL  
±0.5  
OUTPUT VOLTAGE COMPLIANCE  
VOC  
True 1 LSB  
+10  
–5  
V max  
V min  
OUTPUT CURRENT RANGE  
ZERO-SCALE CURRENT  
LOGIC INPUT “1”  
I
FS ±3.996 mA  
±18  
0.5  
2
µA max  
µA max  
V min  
IZS  
All Bits OFF  
IIN = 100 nA  
VIH  
VIL  
LOGIC INPUT “0”  
VLC @ Ground  
0.8  
V max  
IIN = –100 µA  
POSITIVE SUPPLY CURRENT  
NEGATIVE SUPPLY CURRENT  
I+  
I–  
V+ = 15 V  
4
mA max  
mA max  
V+ = –15 V  
–15  
NOTE: Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not  
guaranteed for standard produce dice.  
(@ VS = ؎15 V, IREF = 2 mA, unless otherwise noted. Output characteristics  
refer to both IOUT and IOUT).  
TYPICAL ELECTRICAL CHARACTERISTICS  
DAC10F  
Parameter  
Symbol  
Conditions  
Typ  
Units  
SETTLING TIME  
tS  
To ±1/2 LSB When Output Is Switched from 0 to FS  
85  
ns  
GAIN TEMPERATURE  
COEFFICIENT (TC)  
VREF Tempco Excluded  
±10  
18  
ppm FS/°C  
pF  
OUTPUT CAPACITANCE  
OUTPUT RESISTANCE  
10  
MΩ  
DICE CHARACTERISTICS  
DIE SIZE 0.091 
؋
 0.087 inch, 7,917 sq. mils  
(2.311 
؋
 2.210 mm, 5.107 sq. mm)  
REV. D  
–3–  
DAC10  
ABSOLUTE MAXIMUM RATINGS1  
ORDERING GUIDE  
Operating Temperature  
INL  
(LSB) Range  
Temperature Package  
Package  
DAC10FX, GX, GS, GP . . . . . . . . . . . . . . . . 0°C to +70°C  
Junction Temperature (TJ) . . . . . . . . . . . . . –65°C to +150°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering, 60 sec) . . . . . . . . . . . +300°C  
V+ Supply to V– Supply . . . . . . . . . . . . . . . . . . . . . . . . . 36 V  
Logic Inputs . . . . . . . . . . . . . . . . . . . . . . V– to V– plus 36 V  
VLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V– to V+  
Analog Current Outputs . . . . . . . . . . . . . . . . +18 V to –18 V  
Reference Inputs (V16 to V17) . . . . . . . . . . . . . . . . . V– to V+  
Reference Input Differential Voltage (V16 to V17) . . . . ±18 V  
Reference Input Current (I16) . . . . . . . . . . . . . . . . . . 2.5 mA  
Model  
Description Options  
DAC10FX 0.5  
0°C to +70°C Cerdip  
0°C to +70°C Cerdip  
0°C to +70°C SOIC  
Q-18  
Q-18  
R-18  
DAC10GX  
DAC10GS  
DAC10GP  
1
1
1
0°C to +70°C Plastic DIP N-18  
PIN CONNECTIONS  
18-Lead Hermetic DIP  
18-Lead Plastic DIP  
18-Lead SOIC  
2
Package Type  
JC  
Units  
JA  
18-Lead Hermetic DIP (X)  
18-Lead SOIC (S)  
18-Lead Plastic DIP (P)  
48  
89  
74  
15  
28  
33  
°C/W  
°C/W  
°C/W  
V
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
COMP  
LC  
I
V
V
(–)  
O
REF  
NOTES  
V–  
(+)  
REF  
1Absolute maximum ratings apply to both DICE and packaged parts, unless  
otherwise noted.  
I
V+  
O
DAC10  
TOP VIEW  
(Not to Scale)  
2θJA is specified for worst case mounting conditions, i.e., θJA is specified for device  
in socket for Cerdip packages.  
B10 (LSB)  
(MSB) B1  
B2  
B3  
B4  
B5  
B9  
B8  
B7  
B6  
–4–  
REV. D  
Typical Performance Characteristics–DAC10  
8.0  
7.2  
6.4  
5.6  
4.8  
4.0  
3.2  
+28  
T
= T  
TO T  
A
MIN MAX  
+24  
+20  
+16  
+12  
+8  
ALL BITS ON  
SHADED AREA INDICATES  
PERMISSABLE OUTPUT  
VOLTAGE RANGE  
I
0mA  
OUT  
FOR V– = –15V  
I
I
= 2mA  
V– = –15V, V– = –10V  
REF  
REF  
I
Յ 2.0mA  
REF  
1.0mA  
+4  
FOR OTHER V– OR I  
REF  
SEE OUTPUT CURRENT  
vs. OUTPUT VOLTAGE  
CURVE  
I
= 2mA  
REF  
= 1mA  
2.4  
1.6  
0
2.0mA  
I
OUT  
–4  
I
= 0.2mA  
REF  
–8  
0.8  
0
(0000000000)  
(11111111111)  
–12  
0
–14 –10 –6  
–2  
2
6
10 14  
18  
–50  
+50 +100 +150  
OUTPUT VOLTAGE – Volts  
TEMPERATURE – ؇C  
Figure 1. True and Complementary  
Output Operations  
Figure 2. Output Current vs. Output  
Voltage (Output Voltage Compliance)  
Figure 3. Output Voltage Compliance  
vs. Temperature  
10  
10  
10  
BITS MAY BE HIGH OR LOW  
I–  
V– = –15V  
= 2.0mA  
9
9
8
7
6
5
4
3
2
1
0
9
I–  
I – WITH I  
= 2mA  
= 1mA  
REF  
REF  
I
REF  
8
7
8
7
6
5
4
6
I – WITH I  
ALL BITS "HIGH" OR "LOW"  
ALL BITS MAY BE "HIGH" OR "LOW"  
5
4
3
I – WITH I  
= 0.2mA  
REF  
3
2
I+  
V+ = +15V  
2
1
0
I+  
I – WITH I  
–12  
= 0.2mA  
–16  
REF  
1
0
0
2
4
6
8
10 12 14 16 18 20  
V+, POSITIVE POWER SUPPLY – V  
0
–4  
–8  
–20  
–50  
0
+50 +100 +150  
DC  
V–, NEGATIVE POWER SUPPLY – V  
DC  
TEMPERATURE – ؇C  
Figure 4. Power Supply Current  
vs. V+  
Figure 5. Power Supply Current  
vs. V–  
Figure 6. Power Supply Current vs.  
Temperature  
BASIC CONNECTIONS  
+V  
REF  
+V  
R
1023  
1024  
REF  
REF  
I
=
؋
؋
 2  
FR  
R
I
REF  
REF  
MSB  
LSB  
I
+ I = I FOR ALL  
FR  
O
O
I
IN  
LOGIC STATES  
B
B
B
B
B
B
B
B
B
B
9
1
2
3
4
5
6
7
8
10  
16  
17  
V
IN  
R
REF  
5
6
7
8
9
10 11 12 13 14  
R
IN  
DAC10  
(R16)  
16  
17  
4
2
+V  
I
REF  
O
I
REF  
DAC10  
I
O
I
PEAK NEGATIVE SWING OF I  
REF  
IN  
R17  
3
18  
15  
1
R
REF  
16  
17  
FOR FIXED REFERENCE,  
TTL OPERATION,  
TYPICAL VALUES ARE:  
C
+V  
C
R
R17  
REF  
REF  
R17  
(OPTIONAL)  
DAC10  
COMP  
V
= +10.000V  
REF  
V
IN  
R
= 5.000k⍀  
0.1F  
0.01F  
REF  
R15 = R  
HIGH INPUT  
IMPEDANCE  
REF  
= 0.01F  
= 0V (GROUND)  
V
C
V
V+  
V–  
LC  
C
+V  
MUST BE ABOVE PEAK POSITIVE SWING OF V  
IN  
REF  
LC  
Figure 7. Basic Positive Reference Operation  
Figure 8. Accommodating Bipolar References  
CAUTION  
WARNING!  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
ESD SENSITIVE DEVICE  
REV. D  
–5–  
DAC10  
LOW T.C.  
4.5k⍀  
V
REF  
+10V  
R
REF  
16  
17  
16  
17  
39k⍀  
4
2
I
I
O
O
I
(+) 2mA  
1V  
REF  
DAC10  
DAC10  
R17  
10k⍀  
POT  
–V  
REF  
APPROXIMATELY  
–V  
R
5k⍀  
REF  
REF  
NOTE: R  
SETS I ; R17 IS FOR BIAS  
FS  
I
؋
 2  
REF  
FS  
CURRENT CANCELLATION  
Figure 9. Basic Negative Reference Operation  
Figure 10. Recommended Full-Scale Adjustment Circuit  
B
B
B
B
B
B
B B B B  
6 7 8 9 10  
MSB  
I
mA  
I
mA  
E
E
O
LSB  
1
2
3
4
5
O
O
O
B
B
B
B
B
B
B
B
B
B
1
1
1
1
1
1
1
1
1
1
FULL RANGE  
3.996  
2.004  
2.000  
1.996  
0.004  
0.000  
0.000  
1.992  
1.996  
2.000  
3.992  
3.996  
–4.995  
–2.505  
–2.500  
–2.495  
–0.005  
0.000  
–0.000  
–2.490  
–2.495  
–2.500  
–4.990  
–4.995  
1
2
3
4
5
6
7
8
9
10  
E
O
1
1
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
1
0
1
1
0
HALF-SCALE +LSB  
HALF-SCALE  
1.25k⍀  
4
I
I
O
O
I
=
16  
REF  
HALF-SCALE –LSB  
HALF-SCALE +LSB  
ZERO SCALE +LSB  
DAC10  
1.25k⍀  
2.000mA  
2
E
O
Figure 11. Basic Unipolar Negative Operation  
B
B
B
B
B
B
B B B B  
E
E
O
1
2
3
4
5
6 7 8 9 10  
O
+5V  
MSB  
LSB  
–4.990  
–4.980  
–0.010  
0.000  
+5.000  
+4.990  
+0.020  
+0.010  
0.000  
POSITIVE FULL RANGE  
1
1
1
0
0
1
0
1
1
0
0
1
0
1
1
1
1
1
1 1  
B
B
B
B
B
B
B
B
B
B
1
2
3
4
5
6
7
8
9 10  
POSITIVE FULL RANGE –LSB  
1
1
1
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
0
1
0
1
1
2.5k  
2.5k⍀  
ZERO-SCALE +LSB  
ZERO-SCALE  
E
E
O
O
4
2
I
I
O
I
=
16  
REF (+)  
DAC10  
ZERO-SCALE –LSB  
+0.010  
+4.990  
+5.000  
2.000mA  
O
–4.980  
–4.990  
NEGATIVE FULL-SCALE +LSB  
NEGATIVE FULL-SCALE  
0
0
0
0
0
0
0
0
0 0  
Figure 12. Basic Bipolar Output Operation  
5k⍀  
+15V  
2
MSB  
LSB  
2.5k⍀  
B
B
B
B
B
B
B
B
B
B
1
2
3
4
5
6
7
8
9
10  
B
B
B
B
B
B
B B B B  
6 7 8 9 10  
E
V
1
2
3
4
5
O
IN  
+15V  
–15V  
5.000  
k⍀  
POSITIVE FULL RANGE  
ZERO-SCALE  
+4.990  
0.00  
1
1
0
0
0
1
0
0
0
1
1
0
0
0
1
0
0
0
1
0
0
0
1
1
0
0
0
1
6
4
2
I
V
O
O
1
0
0
0
0
0
0
0
0
0
1
0
E
DAC10  
O
5k⍀  
I
–4.990  
–5.000  
REF01  
NEGATIVE FULL-SCALE +LSB  
NEGATIVE FULL-SCALE  
O
C
V
LC  
C
GND  
4
V+  
V–  
Figure 13. Offset Binary Operation  
–6–  
REV. D  
DAC10  
LOW-TO-HIGH SETTLING V = 16.500V ؎0.001V  
L
HIGH-TO-LOW SETTLING V = 0.500V ؎0.001V  
L
V
+15V  
0.500V ؎0.001V  
L
51⍀  
0.1F  
10F  
0.1F  
10F  
0.01F  
4.7F  
IN5711  
4k⍀  
14  
5
D.U.T.  
3
4
2N918  
15 16 18  
17  
1
2
175mV  
2N918  
V
O
0.01F  
2k⍀  
1F  
1k⍀  
499k⍀  
1/4W, 5% CARBON  
+15V  
1M⍀  
1F  
1/4W, 5%  
CARBON  
–15V  
–15V  
–15V  
2.5k⍀  
+15V  
1/2 LSB SETTLING = 7.8mV  
0.01F  
4.7F  
0.01F  
2
REF-01  
4
2.5k⍀  
10k⍀  
6
5
–15V  
NOTES:  
1. CASE OF 2N918s MUST BE GROUNDED.  
2. RESISTORS ARE 1/4W MF, 1% UNLESS OTHERWISE SPECIFIED.  
3. USE FET PROBE (7A11 SCOPE PLUGIN).  
Figure 14. Settling Time Measurement  
R
+15V  
V
L
= V +1.4V  
TTL  
TH  
LC  
V
= +1.4V  
+15V CMOS  
= +7.6V  
TH  
V
TH  
9.1k⍀  
I
I
4
2
O
O
DAC10  
E
V
DAC10  
OP01  
O
LC  
V
LC  
1
0 TO +I 
؋
 R  
FR  
L
6.2k⍀  
0.1F  
1023  
=
1024  
I
؋
 2 
؋
 I  
FR  
REF  
FOR COMPLEMENTARY OUTPUT (OPERATION AS A NEGATIVE  
LOGIC DAC), CONNECT INVERTING INPUT OF OP AMP TO  
I
(PIN 2); CONNECT I (PIN 4) TO GROUND.  
O
O
ECL  
Figure 15. Positive Low Impedance Output Operation  
13k⍀  
2N3904  
"A"  
2N3904  
3k⍀  
E
OP15  
O
TO PIN 1  
I
I
4
2
O
O
39k⍀  
V
LC  
DAC10  
R
0 TO –I 
؋
 R  
L
FR  
L
6.2k⍀  
1023  
=
1024  
I
؋
 2 
؋
 I  
FR  
REF  
FOR COMPLEMENTARY OUTPUT (OPERATION AS A NEGATIVE  
LOGIC DAC), CONNECT NOINVERTING INPUT OF OP AMP TO  
–5.2V  
I
PIN 2); CONNECT I (PIN 4) TO GROUND.  
O
O
Figure 16. Negative Low Impedance Output Operation  
Figure 17. Interfacing with Various Logic Families  
–7–  
REV. D  
DAC10  
APPLICATIONS  
Multiplying Operation  
The DAC10 provides excellent multiplying performance with an  
extremely linear relationship between IFS and IREF over a range  
of 4 mA to 4 µA. Monotonic operation is maintained over a  
typical range of IREF from 100 µA to 2 mA.  
+V  
REF  
OPTIONAL RESISTOR  
FOR OFFSET INPUTS  
R
REF  
R
R
R
L
IN  
16  
4
2
Reference Amplifier Compensation for Multiplying Applications  
AC reference applications will require the reference amplifier to  
be compensated using a capacitor from Pin 18 to V–. The value  
of this capacitor depends on the impedance presented to Pin 16  
for R16 values of 1.0 k, 2.5 kand 5.0 k, minimum values  
of CC are 15 pF, 37 pF and 75 pF. Larger values of R16 require  
proportionately increased values of CC for proper phase margin.  
R
= 800⍀  
EQ  
DAC10  
0V  
L
17  
R
P
TYPICAL VALUES:  
= 1k⍀  
R
IN  
NO CAP  
+V = 2V  
IN  
1
1
1
R
1
REF  
+
+
R
=
EQ  
R
R
IN  
P
For fastest response to a pulse, low values of R16 enabling small  
CC values should be used. If Pin 16 is driven by a high imped-  
ance such as a transistor current source, none of the above val-  
ues will suffice and the amplifier must be heavily compensated,  
which will decrease overall bandwidth and slew rate. For R16 =  
1 kand CC = 15 pF, the reference amplifier slews at 4 mA/µs  
enabling a transition from IREF = 0 to IREF = 2 mA in 500 ns.  
Figure 18. Pulsed Reference Operation  
Reference Amplifier Setup  
The DAC10 is a multiplying D/A converter in which the output  
current is the product of a digital number and the input refer-  
ence current. The reference current may be fixed or may vary  
from nearly zero to 2 mA. The full-scale output current is a  
linear function of the reference current and is given by:  
Operation with pulse inputs to the reference amplifier may be  
accommodated by an alternate compensation scheme. This  
technique provides lowest full-scale transition times. An internal  
clamp allows quick recovery of the reference amplifier from a  
cutoff (IREF = 0) condition. Full-scale transition (0 mA to 2 mA)  
occurs in 120 ns when the equivalent impedance at Pin 16 is  
200 and CC = 0. This yields a reference slew rate of 16 mA/  
µs, which is relatively independent of RIN and VIN values.  
1023  
1024  
IFR  
=
× 2 × IREF  
where IREF equals current flowing into Pin 16.  
In positive reference applications, an external positive reference  
voltage forces current through R16 into the VREF (+) terminal  
(Pin 16) of the reference amplifier. Alternatively, a negative  
reference may be applied to VREF (–) at Pin 17; reference current  
flows from ground through R16 into V(+) as in the positive  
reference case. This negative reference connection has the ad-  
vantage of a very high impedance presented at Pin 17. R17  
(nominally equal to R16) is used to cancel bias current errors;  
R17 may be eliminated with only a minor increase in error.  
LOGIC INPUTS  
The DAC10 design incorporates a unique logic input circuit  
that enables direct interface to all popular logic families and  
provides maximum noise immunity. This feature is made pos-  
sible by the large input swing capability, 2 µA logic input current  
and completely adjustable logic threshold voltage. For V– = –15 V,  
the logic inputs may swing between –5 and +18 V. This enables  
direct interface with +15 V CMOS logic, even when the DAC10  
is powered from a +5 V supply. Minimum input logic swing and  
Bipolar references may be accommodated by offsetting VREF or  
Pin 17. The negative common-mode range of the reference  
amplifier is given by: VCM– = V– plus (IREF × 2 k) plus 2 V.  
The positive common-mode range is V+ less 1.8 V.  
minimum logic threshold voltage are given by: V– plus (lREF  
×
2 k) plus 3 V. The logic threshold may be adjusted over a wide  
range by placing an appropriate voltage at the logic threshold  
control Pin (Pin 1, VLC). The appropriate graph shows the  
relationship between VLC and VTH over the temperature range,  
with VTH nominally 1.4 V above VLC. For TTL interface, simply  
ground Pin 1. When interfacing ECL, an IREF = 1 mA is recom-  
mended. For interfacing other logic families, see Figure 17. For  
general setup of the logic control circuit, it should be noted that  
Pin 1 will sink 1.1 mA typical; external circuitry should be de-  
signed to accommodate this current.  
When a dc reference is used, a reference bypass capacitor is  
recommended. A 5 V TTL logic supply is not recommended as  
a reference. If a regulated power supply is used as a reference,  
R16 should be split into two resistors with the junction bypassed  
to ground with a 0.1 µF capacitor.  
For most applications, the tight relationship between IREF and  
I
FS will eliminate the need for trimming IREF. If required, full-  
scale trimming may be accomplished by adjusting the value of  
R16, or by using a potentiometer for R16. An improved method  
of full-scale trimming that eliminates potentiometer TC effect is  
shown in the Recommended Full-Scale Adjustment circuit.  
Fastest settling times are obtained when Pin 1 sees a low imped-  
ance. If Pin 1 is connected to a 1 kdivider, for example, it  
should be bypassed to ground by a 0.01 µF capacitor.  
The reference amplifier must be compensated by using a capaci-  
tor from Pin 18 to V–. For fixed reference operation, a 0.01 µF  
capacitor is recommended. For variable reference applications,  
see section entitled Reference Amplifier Compensation for Mul-  
tiplying Applications.  
–8–  
REV. D  
DAC10  
ANALOG OUTPUT CURRENTS  
Both true and complemented output sink currents are provided  
The temperature coefficient of the reference resistor, R14,  
should match and track that of the output resistor for minimum  
overall full-scale drift. Settling times of the DAC10 decrease  
approximately 10% at –55°C; an increase of about 15% is typi-  
cal at +125°C.  
where  
. Current appears at the “true” output  
IO + IO = IFS  
when a “1” is applied to each logic input. As the binary count  
increases, the sink current at Pin 4 increases proportionally, in  
the fashion of a “positive logic” D/A converter. When a “0” is  
applied to any input bit, that current is turned off at Pin 4 and  
turned on at Pin 2. A decreasing logic count increases IO as in  
a negative or inverted logic D/A converter. Both outputs may be  
used simultaneously. If one of the outputs is not required, it  
must still be connected to ground or to a point capable of sourc-  
ing IFS. DO NOT LEAVE AN UNUSED OUTPUT PIN OPEN.  
SETTLING TIME  
The DAC10 is capable of extremely fast settling times; typically  
85 ns at IREF = 2 mA. Judicious circuit design and careful board  
layout must be employed to obtain full performance potential  
during testing and application. The logic switch design enables  
propagation delays of only 35 ns for each of the 10 bits. Settling  
time to within 1/2 LSB of the LSB is therefore 35 ns, with each  
progressively larger bit taking successively longer. The MSB  
settles in 85 ns, thus determining the overall settling time of  
130 ns. Settling to 8-bit accuracy requires about 60 ns to 78 ns.  
The output capacitance of the DAC10, including the package, is  
approximately 18 pF; therefore, the output RC time constant  
dominates settling time if RL > 500 .  
Both outputs have an extremely wide voltage compliance en-  
abling fast direct current-to-voltage conversion through a resis-  
tor tied to ground or other voltage source. Positive compliance  
is 36 V above V– and is independent of the positive supply.  
Negative compliance is +10 V above V–.  
The dual outputs enable double the usual peak-to-peak load  
swing when driving loads in quasi-differential fashion. This  
feature is especially useful in cable driving, CRT deflection and  
in other balanced applications such as driving center-tapped  
coils and transformers.  
Settling time and propagation delay are relatively insensitive to  
logic input amplitude and rise and fall times, due to the high  
gain of the logic switches. Settling time also remains essentially  
constant for IREF values down to 1 mA, with gradual increases  
for lower IREF values. The principal advantage of higher IREF  
values lies in the ability to attain a given output level with lower  
load resistors, thus reducing the output RC time constant.  
POWER SUPPLIES  
The DAC10 operates over a wide range of power supply volt-  
ages from a total supply of 9 V to 36 V. When operating with V–  
supplies of –10 V or less, IREF 1 mA is recommended. Low  
reference current operation decreases power consumption and  
increases negative compliance, reference amplifier negative  
common-mode range, negative logic input range and negative  
logic threshold range; consult the various figures for guidance.  
For example, operation at –9 V with IREF = 2 mA is not recom-  
mended because negative output compliance would be reduced  
to near zero. Operation from lower supplies is possible, however  
at least 8 V total must be applied to ensure turn-on of the inter-  
nal bias network.  
Measurement of settling time requires the ability to accurately  
resolve ±2 µA; therefore, a 4 kload is needed to provide ad-  
equate drive for most oscilloscopes. The settling time fixture of  
schematic titled “Settling Time Measurement” uses a cascode  
design to permit driving a 4 kload with less than 5 pF of para-  
sitic capacitance at the measurement node. At IREF values of less  
than 1 mA, excessive RC damping of the output is difficult to  
prevent while maintaining adequate sensitivity. However, the  
major carry from 0111111111 to 1000000000 provides an accu-  
rate indicator of settling time. This code change does not re-  
quire the normal 6.2 time constants to settle to within ±0.2% of  
the final value, and thus settling times may be observed at lower  
Symmetrical supplies are not required, as the DAC10 is quite  
insensitive to variations in supply voltage. Battery operation is  
feasible as no ground connection is required; however, an artifi-  
cial ground may be used to ensure that logic swings, etc., remain  
within acceptable limits.  
values of IREF  
.
DAC10 switching transients or “glitches” are very low and may  
be further reduced by small capacitive loads at the output with a  
minor sacrifice in settling time.  
TEMPERATURE PERFORMANCE  
Fastest operation can be obtained by using short leads, minimiz-  
ing output capacitance and load resistor values, and by adequate  
bypassing at the supply, reference and VLC terminals. Supplies  
do not require large electrolytic bypass capacitors as the supply  
current drain is independent of input logic states; 0.1 µF capaci-  
tors at the supply pins provide full transient protection.  
The nonlinearity and monotonicity specifications of the DAC10  
are guaranteed to apply over the entire rated operating tempera-  
ture range. Full-scale output current drift is tight, typically  
+10 ppm/°C, with zero-scale output current and drift essentially  
negligible compared to 1/2 LSB.  
–9–  
REV. D  
DAC10  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
18-Lead Cerdip  
(Q-18)  
0.005 (0.13) MIN  
0.098 (2.49) MAX  
18  
10  
0.310 (7.87)  
0.220 (5.59)  
1
9
0.320 (8.13)  
0.290 (7.37)  
PIN 1  
0.960 (24.38) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
0.023 (0.58)  
0.014 (0.36)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.070 (1.78)  
0.030 (0.76)  
15°  
0°  
18-Lead Plastic DIP  
(N-18)  
0.925 (23.49)  
0.845 (21.47)  
18  
1
10  
9
0.280 (7.11)  
0.240 (6.10)  
0.325 (8.25)  
0.300 (7.62)  
0.195 (4.95)  
0.115 (2.93)  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
0.210  
(5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.070 (1.77)  
0.045 (1.15)  
0.022 (0.558)  
0.014 (0.356)  
18-Lead Wide Body SOL  
(R-18)  
0.4625 (11.75)  
0.4469 (11.35)  
18  
10  
0.2992 (7.60)  
0.2914 (7.40)  
0.4193 (10.65)  
0.3937 (10.00)  
1
9
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
x 45°  
0.0098 (0.25)  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
0.0138 (0.35)  
–10–  
REV. D  

相关型号:

DAC1000

DOUBLE-BUFFERED D TO A CONVERTERS
NSC

DAC1000LCD

IC,D/A CONVERTER,SINGLE,10-BIT,CMOS,DIP,24PIN
TI

DAC1000LCJ

DOUBLE-BUFFERED D TO A CONVERTERS
NSC

DAC1000LCJ

PARALLEL, WORD INPUT LOADING, 0.5us SETTLING TIME, 10-BIT DAC, CDIP24, 0.600 INCH, CERAMIC, DIP-24
TI

DAC1000LCN

DOUBLE-BUFFERED D TO A CONVERTERS
NSC

DAC1000LCN

PARALLEL, WORD INPUT LOADING, 0.5us SETTLING TIME, 10-BIT DAC, PDIP24, 0.600 INCH, PLASTIC, DIP-24
TI

DAC1000LCN/A+

10-Bit Digital-to-Analog Converter
ETC

DAC1000LD/883

IC,D/A CONVERTER,SINGLE,10-BIT,CMOS,DIP,24PIN
TI

DAC1000LD/883B

IC,D/A CONVERTER,SINGLE,10-BIT,CMOS,DIP,24PIN
TI

DAC1000LD/883C

IC,D/A CONVERTER,SINGLE,10-BIT,CMOS,DIP,24PIN
TI

DAC1000LJ

DOUBLE-BUFFERED D TO A CONVERTERS
NSC

DAC1000LJ

PARALLEL, WORD INPUT LOADING, 0.5us SETTLING TIME, 10-BIT DAC, CDIP24, 0.600 INCH, CERAMIC, DIP-24
TI