DAC8043FSZ [ADI]

12-Bit Serial Input Multiplying CMOS Digital-to-Analog Converter; 12位串行输入乘法CMOS数位类比转换器
DAC8043FSZ
型号: DAC8043FSZ
厂家: ADI    ADI
描述:

12-Bit Serial Input Multiplying CMOS Digital-to-Analog Converter
12位串行输入乘法CMOS数位类比转换器

转换器 数模转换器 光电二极管
文件: 总16页 (文件大小:316K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit Serial Input Multiplying CMOS  
Digital-to-Analog Converter  
DAC8043  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
12-bit accuracy in an 8-lead PDIP and SOIC package  
Fast serial data input  
Double data buffers  
Low ½ LSB maximum INL and 1 LSB maximum DNL  
Maximum gain error: 2 LSB  
Low 5 ppm/°C maximum tempco  
ESD resistant  
DAC8043  
R
FB  
R
I
FB  
V
12-BIT DAC  
12  
REF  
OUT  
12-BIT  
DAC REGISTER  
LD  
Low cost  
Available in die form  
12  
V
DD  
CLK  
SRI  
12-BIT  
SHIFT REGISTER  
GND  
APPLICATIONS  
Autocalibration systems  
Process control and industrial automation  
Programmable amplifiers and attenuators  
Digitally controlled filters  
Figure 1.  
GENERAL DESCRIPTION  
The DAC8043 is a high accuracy 12-bit CMOS multiplying  
DAC in a space-saving 8-lead PDIP package. Featuring serial  
data input, double buffering, and excellent analog performance,  
the DAC8043 is ideal for applications where PC board space is  
at a premium. In addition, improved linearity and gain error  
performance permit reduced parts count through the elimination  
of trimming components. Separate input clock and load DAC  
control lines allow full user control of data loading and analog  
output.  
Data in the DAC register is converted to an output current by  
the digital-to-analog converter (DAC).  
The fast interface timing of the DAC8043 may reduce timing  
design considerations while minimizing microprocessor wait  
states. For applications requiring an asynchronous clear function  
or more versatile microprocessor interface logic, refer to the  
AD5443.  
Operating from a single 5 V power supply, the DAC8043 is the  
ideal low power, small size, high performance solution to many  
application problems. It is available in a PDIP package that is  
compatible with auto-insertion equipment. There is also a  
16-lead SOIC package available.  
The circuit consists of a 12-bit serial-in, parallel-out shift register,  
a 12-bit DAC register, a 12-bit CMOS DAC, and control logic.  
Serial data is clocked into the input register on the rising edge  
of the CLK pulse. When the new data word has been clocked  
LD  
in, it is loaded into the DAC register with the  
input pin.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
DAC8043  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Terminology.......................................................................................9  
Digital Section................................................................................. 10  
General Circuit Information..................................................... 10  
Equivalent Circuit Analysis ...................................................... 11  
Dynamic Performance............................................................... 11  
Applications Information .............................................................. 12  
Application Tips ......................................................................... 12  
Interfacing to the MC6800........................................................ 14  
DAC8043 Interface to the 8085................................................ 14  
DAC8043 to the 68000 Interface.............................................. 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Wafer Test Limits .......................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Caution .......................................................................................... 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
REVISION HISTORY  
1/11—Rev. D to Rev. E  
Updated Format..................................................................Universal  
Added SOIC_W Models....................................................Universal  
Added Table 5.................................................................................... 6  
Updated Outline Dimensions....................................................... 15  
Changes to Ordering Guide .......................................................... 15  
3/03—Data Sheet Changed from Rev. C to Rev. D.  
Deleted 8-Lead CIRDIP and 16-Lead Wide-Body SOL......Universal  
Figures renumbered ...........................................................Universal  
Changes to Absolute Maximum Ratings....................................... 4  
Changes to Ordering Guide ............................................................ 4  
Deleted to Dice Characteristics ...................................................... 4  
Updated Outline Dimensions....................................................... 11  
Rev. E | Page 2 of 16  
 
DAC8043  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VDD = 5 V; VREF = 10 V; IOUT = GND = 0 V; TA = full temperature range specified under the Absolute Maximum Ratings, unless otherwise  
noted.  
Table 1.  
Parameter  
Symbol Conditions  
Min Typ  
Max  
Unit  
STATIC ACCURACY  
Resolution  
N
INL  
12  
Bits  
LSB  
LSB  
LSB  
Nonlinearity1  
DAC8043G  
DAC8043F  
±±  
1
±1  
2
Differential Nonlinearity2  
Gain Error3  
DNL  
GFSE  
TA = 25°C  
LSB  
TA = full temperature range, all grades  
2
±5  
LSB  
ppm/°C  
Gain Tempco (ΔGain/∆Temp)4  
Power Supply Rejection Ratio  
(ΔGain/ΔVDD)  
Output Leakage Current5  
TCGFS  
PSRR  
ΔVDD = ±5%  
±0.0006 ±0.002 %/%  
ILKG  
IZSE  
RIN  
TA = 25°C  
TA = full temperature range  
TA = 25°C  
±5  
nA  
nA  
LSB  
LSB  
kΩ  
±25  
0.03  
0.15  
15  
Zero Scale Error6, 7  
TA = full temperature range  
Input Resistance8  
AC PERFORMANCE  
7
11  
Output Current  
Settling Time4, 9  
tS  
Q
TA = 25°C, VREF = 0 V  
IOUT load = 100 Ω, CEXT = 13 pF, DAC register loaded  
alternately with all 0s and all 1s  
VREF = 20 V p-p @ f = 10 kHz, digital input = 0000  
0000 0000  
0.25  
2
1
20  
μs  
nVs  
Digital-to-Analog Glitch Energy4, 10  
4, 11  
Feedthrough Error (VREF to IOUT  
)
FT  
0.7  
1
mV p-p  
TA = 25°C  
Total Harmonic Distortion4  
THD  
en  
VREF = 6 V rms @ 1 kHz, DAC register loaded with  
all 1s  
10 Hz to 100 kHz between RFB and IOUT  
–85  
dB  
Output Noise Voltage Density4, 12  
DIGITAL INPUTS  
Digital Input  
17  
nV/√Hz  
High  
Low  
VIN  
VIL  
IIL  
2.4  
V
V
μA  
pF  
0.8  
±1  
8
Input Leakage Current13  
Input Capacitance4, 11  
ANALOG OUTPUTS  
Output Capacitance4  
VIN = 0 V to +5 V  
VIN = 0 V  
CIN  
COUT  
Digital inputs = VIH  
Digital inputs = VIL  
110  
80  
pF  
pF  
TIMING CHARACTERISTICS4, 14  
Data Setup Time  
tDS  
tDH  
tCH  
tCL  
tLD  
tASB  
TA = full temperature range  
TA = full temperature range  
TA = full temperature range  
TA = full temperature range  
TA = full temperature range  
TA = full temperature range  
40  
80  
90  
120  
120  
0
ns  
ns  
ns  
ns  
ns  
ns  
Data Hold Time  
Clock Pulsewidth High  
Clock Pulsewidth Low  
Load Pulsewidth  
LSB Clock Into Input Register to  
Load DAC Register Time  
Rev. E | Page 3 of 16  
 
 
DAC8043  
Parameter  
Symbol Conditions  
Min Typ  
4.75  
Max  
Unit  
POWER SUPPLY  
Supply Voltage  
Supply Current  
VDD  
5
5.25  
500  
100  
V
μA  
μA  
IDD  
Digital inputs = VIH or VIL  
Digital inputs = 0 V or VDD  
1
1ꢀ2 LSB = 0.012% of full scale.  
2 All grades are monotonic to 12 bits over temperature.  
3 Using internal feedback resistor.  
4 Guaranteed by design and not tested.  
5 Applies to IOUT; all digital inputs = 0 V.  
6 VREF = 10 V; all digital inputs = 0 V.  
7 Calculated from worst-case RREF: IZSE (in LSBs) = (RREF × ILKG × 4096)ꢀVREF  
8 Absolute temperature coefficient is less than 300 ppmꢀ°C.  
.
9 IOUT load = 100 Ω , CEXT = 13 pF, digital input = 0 V to VDD or VDD to 0 V. Extrapolated to ½ LSB; tS = propagation delay (tPD) + 9τ  
where τ = measured time constant of the final RC decay.  
10  
V
= 0 V, all digital inputs = 0 V to VDD or VDD to 0 V.  
REF  
11 All digit inputs = 0 V.  
12 Calculations from en = √4K TRB  
where:  
K = Boltzmann constant, Jꢀ°K,  
R = resistance, Ω,  
T = resistor temperature, °K,  
B = bandwidth, Hz.  
13 Digital inputs are CMOS gates; IIN is typically 1 nA at 25°C.  
14 Tested at VIN = 0 V or VDD  
.
WAFER TEST LIMITS  
VDD = 5 V, VREF = 10 V; IOUT = GND = 0 V, TA = 25°C.  
Table 2.  
DAC8043GBC Limit  
Parameter1  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
STATIC ACCURACY  
Resolution  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
N
12  
Bits  
LSB  
LSB  
LSB  
%ꢀ%  
nA  
INL  
DNL  
GFSE  
PSRR  
ILKG  
1
1
2
Using internal feedback resistor  
ΔVDD = 5%  
Digital inputs = VIL  
Power Supply Rejection Ratio  
0.002  
5
Output Leakage Current (IOUT  
REFERENCE INPUT  
Input Resistance  
)
7
15  
RIN  
kΩ  
DIGITAL INPUTS  
Digital Input High  
Digital Input Low  
Input Leakage Current  
POWER SUPPLY  
VIH  
VIL  
IIL  
2.4  
V
V
μA  
0.8  
1
VIN = 0 V to VDD  
Supply Current  
IDD  
Digital inputs = VIN or VIL  
Digital inputs = 0 V or VDD  
500  
100  
μA  
μA  
1 Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed  
for standard product dice. Consult a factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.  
Rev. E | Page 4 of 16  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DAC8043  
ABSOLUTE MAXIMUM RATINGS  
CAUTION  
TA = 25°C, unless otherwise noted.  
1. Do not apply voltages higher than VDD or less than GND  
potential on any terminal except VREF and RFB.  
2. The digital control inputs are Zener-protected; however,  
permanent damage may occur on unprotected units from  
high energy electrostatic fields. Keep units in conductive  
foam at all times until ready to use.  
3. Use proper antistatic handling procedures.  
4. Absolute Maximum Ratings apply to both packaged devices  
and dice. Stresses above those listed under the Absolute  
Maximum Ratings may cause permanent damage to the  
device.  
Table 3.  
Parameter  
Rating  
VDD to GND  
VREF to GND  
VRFB to GND  
Digital Input Voltage Range  
VIOUT to GND  
Operating Temperature Range  
FP Version  
GP Version  
Junction Temperature  
Storage Temperature  
Lead Temperature (Soldering, 60 sec)  
−0.3 V to +8 V  
±18 V  
±18 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−40°C to +85°C  
0°C to 70°C  
150°C  
−65°C to +150°C  
300°C  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 4. Thermal Resistance  
Package Type  
θJA  
96  
92  
θJC  
37  
27  
Unit  
°C/W  
°C/W  
8-Lead PDIP  
16-Lead SOIC  
ESD CAUTION  
Rev. E | Page 5 of 16  
 
 
 
 
DAC8043  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NC  
NC  
1
2
3
4
5
6
7
8
16 NC  
15 NC  
V
14 V  
DD  
REF  
DAC8043  
R
13 CLK  
12 SRI  
11 LD  
FB  
TOP VIEW  
I
(Not to Scale)  
OUT  
GND  
1
8
V
V
DD  
REF  
GND  
NC  
10 NC  
DAC8043  
2
3
4
R
CLK  
SRI  
LD  
7
6
5
FB  
9
NC  
TOP VIEW  
I
OUT  
(Not to Scale)  
NC = NO CONNECT. DO NOT  
CONNECT TO THIS PIN.  
GND  
Figure 2. 8-Lead PDIP  
Figure 3. 16-Lead Wide-Body SOIC  
Table 5. Pin Function Descriptions  
Pin No.  
8-Lead PDIP 16-Lead SOIC  
Mnemonic Description  
1
2
3
4
VREF  
RFB  
DAC Reference Voltage Input Pin.  
DAC Feedback Resistor Pin. This pin establishes voltage output for the DAC by  
connecting to an external amplifier output.  
3
4
5
5
6, 7  
11  
IOUT  
GND  
LD  
DAC Current Output.  
Ground Pin.  
Load Strobe, Level-Sensitive Digital Input. Transfers shift-register data to DAC register  
while active low.  
6
12  
SRI  
12-Bit Serial Register Input. Data loads directly into the shift register MSB first. Extra  
leading bits are ignored.  
7
8
13  
14  
CLK  
VDD  
Serial Clock Input. Positive-edge clocks data into shift register.  
Positive Power Supply Input.  
1, 2, 8, 9, 10, 15, 16 NC  
Do Not Connect to These Pins.  
Rev. E | Page 6 of 16  
 
DAC8043  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
1.0  
0.8  
0.6  
DIGITAL INPUT =  
1111 1111 1111  
V
V
= 5V  
–12  
–24  
–36  
–48  
–60  
–72  
–84  
–96  
–108  
–120  
DD  
= 100mV  
REF  
T
= 25°C  
A
DIGITAL INPUT =  
0000 0000 0000  
0.4  
0.2  
0
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
0
1
2
3
4
V
(V)  
IN  
Figure 4. Gain vs. Frequency (Output Amplifier: OP42)  
Figure 6. Supply Current vs. Logic Input Voltage  
0
–20  
–40  
–60  
–80  
0.5  
0.4  
0.3  
0.2  
0.1  
V
V
= 5V  
DD  
= 6V rms  
IN  
OUTPUT AMPLIFIER: OP42  
= 25°C  
T
A
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–100  
–120  
10  
100  
1k  
10k  
100k  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4095  
FREQUENCY (Hz)  
DIGITAL INPUT CODE (Decimal)  
Figure 5. Total Harmonic Distortion vs. Frequency (Multiplying Mode)  
Figure 7. Linearity Error vs. Digital Input Code  
Rev. E | Page 7 of 16  
 
 
DAC8043  
0.50  
0.25  
0
0.50  
0.25  
0
–0.25  
–0.25  
–0.50  
–0.50  
2
4
6
8
10  
2
4
6
8
10  
V
(V)  
V
(V)  
REF  
REF  
Figure 10. DNL Error vs. Reference Voltage  
Figure 8. Linearity Error vs. Reference Voltage  
4.0  
3.0  
2.4  
2.0  
1.0  
–0.8  
1
3
5
7
9
11  
13  
15  
V
(V)  
DD  
Figure 9. Logic Threshold Voltage vs. Supply Voltage  
Rev. E | Page 8 of 16  
DAC8043  
TERMINOLOGY  
Interface Logic Information  
Integral Nonlinearity (INL)  
The DAC8043 has been designed for ease of operation. The  
timing diagram (see Figure 12) illustrates the input register  
loading sequence. Note that the most significant bit (MSB)  
is loaded first.  
This is the single most important DAC specification. Analog  
Devices, Inc., measures INL as the maximum deviation of  
the analog output (from the ideal) from a straight line drawn  
between the end points. It is expressed as a percent of full-scale  
range or in terms of LSBs.  
Once the input register is full, the data is transferred to the  
LD  
DAC register by taking  
momentarily low.  
Refer to the Analog Devices Glossary of EE Terms for  
additional digital-to-analog converter definitions.  
Rev. E | Page 9 of 16  
 
DAC8043  
DIGITAL SECTION  
LD  
, and CLK) are TTL  
The digital circuitry forms an interface in which serial data  
can be loaded under microprocessor control into a 12-bit shift  
register and then transferred, in parallel, to the 12-bit DAC  
register.  
The digital inputs of the DAC8043 (SRI,  
compatible. The input voltage levels affect the amount of current  
drawn from the supply; peak supply current occurs as the digital  
input (VIN) passes through the transition region (see Figure 6).  
Maintaining the digital input voltage levels as close as possible  
to the VDD and GND supplies minimizes supply current  
consumption.  
A simplified circuit of the DAC8043 is shown in Figure 13,  
which has an inverted R-2R ladder network consisting of silicon-  
chrome, highly stable (50 ppm/°C) thin-film resistors, and  
twelve pairs of NMOS current-steering switches.  
The digital inputs of the DAC8043 have been designed with  
ESD resistance incorporated through careful layout and the  
inclusion of input protection circuitry. Figure 11 shows the input  
protection diodes and series resistor; this input structure is  
duplicated on each digital input. High voltage static charges  
applied to the inputs are shunted to the supply and ground rails  
through forward biased diodes. These protection diodes were  
designed to clamp the inputs to well below dangerous levels  
during static discharge conditions.  
These switches steer binarily weighted currents into either IOUT  
or GND; this yields a constant current in each ladder leg, regardless  
of digital input code. This constant current results in a constant  
input resistance at VREF equal to R. The VREF input may be driven by  
any reference voltage or current, ac or dc, that is within the limits  
stated in the Absolute Maximum Ratings section.  
The twelve output current-steering NMOS FET switches are in  
series with each R-2R resistor; they can introduce bit errors if all  
are of the same RON resistance value. They were designed so that  
the switch on resistance is binarily scaled so that the voltage drop  
across each switch remains constant. If, for example, Switch S1 of  
Figure 13 was designed with an on resistance of 10 Ω, Switch S2 for  
20 Ω, and so on, a constant 5 mV drop would be maintained across  
each switch.  
GENERAL CIRCUIT INFORMATION  
The DAC8043 is a 12-bit multiplying digital-to-analog  
converter (DAC) with a very low temperature coefficient.  
It contains an R-2R resistor ladder network, data input,  
control logic, and two data registers.  
V
DD  
TL/TTL/CMOS  
INPUTS  
Figure 11. Digital Input Protection  
1
BIT 1 MSB  
BIT 2  
BIT 11  
BIT 12 LSB  
SRI  
tDS  
tDH  
tCL  
1
2
11  
CLK INPUT  
tCH  
tASB  
LOAD SERIAL DATA  
INTO INPUT REGISTER  
tLD  
LD  
LOAD INPUT REGISTER’S  
DATA INTO DAC REGISTER  
1
DATA LOADED MSB FIRST.  
Figure 12. Write Cycle Timing Diagram  
Rev. E | Page 10 of 16  
 
 
 
 
DAC8043  
To further ensure accuracy across the full temperature range,  
permanently on MOS switches were included in series with  
the feedback resistor and the terminating resistor of the R-2R  
ladder. The simplified DAC circuit, Figure 13, shows the location  
of the series switches. These series switches are equivalently  
scaled to two times Switch S1 (MSB) and to Switch S12 (LSB),  
respectively, to maintain constant relative voltage drops with  
varying temperature. During any testing of the resistor ladder  
or RFEEDBACK (such as incoming inspection), VDD must be present  
to turn on these series switches.  
affected by these variations. This variation is best illustrated by  
using the circuit of Figure 15 and the following equation:  
RFB  
RO  
VERROR = VOS 1 +  
where:  
RO is a function of the digital code and  
= 10 kΩ for more than four bits of Logic 1.  
= 30 kΩ for any single bit of Logic 1.  
Therefore, the offset gain varies as follows:  
At Code 0011 1111 1111,  
10k  
10kΩ  
10kΩ  
V
REF  
20kΩ  
S1  
20kΩ  
S2  
20kΩ  
20kΩ  
20kΩ  
S3  
S12  
10 kΩ  
10 kΩ  
*
VERROR = V 1 +  
= 2VOS  
OS   
1
GND  
At Code 0100 0000 0000,  
I
OUT  
10kΩ  
10 kΩ  
30 kΩ  
R
FEEDBACK  
VERROR = V 1 +  
= 4 /3VOS  
OS   
*
2
BIT 1 (MSB) BIT 2  
BIT 3  
BIT 12 (LSB)  
The error difference is 2/3 VOS.  
DIGITAL INPUTS  
(SWITCHES SHOWN FOR DIGITAL INPUTS (HIGH))  
Because one LSB has a weight (for VREF = 10 V) of 2.4 mV for  
the DAC8043, it is clearly important that VOS be minimized,  
either by using the amplifier’s nulling pins or an external nulling  
network or by selecting an amplifier with inherently low VOS.  
Amplifiers with sufficiently low VOS include OP77, OP07, OP27,  
and OP42.  
*THESE SWITCHES PERMANENTLY ON.  
Figure 13. Simplified DAC Circuit  
EQUIVALENT CIRCUIT ANALYSIS  
Figure 14 shows an equivalent analog circuit for the DAC8043.  
The (D × VREF)/R current source is code dependent and is the  
current generated by the DAC. The current source, ILKG, consists  
of surface and junction leakages and doubles approximately  
every 10°C. COUT is the output capacitance; it is the result of  
the N-channel MOS switches and varies from 80 pF to 110 pF,  
depending on the digital input code. RO is the equivalent out-  
put resistance that also varies with digital input code. R is the  
nominal R-2R resistor ladder resistance.  
R
R
R
V
ETC  
REF  
R
FB  
2R  
2R  
2R  
OP77  
V
OS  
R
Figure 15. Simplified Circuit  
R
FB  
I
The gain and phase stability of the output amplifier, board  
layout, and power supply decoupling all affect the dynamic  
performance. The use of a small compensation capacitor may  
be required when high speed operational amplifiers are used. It  
may be connected across the feedback resistor of the amplifier  
to provide the necessary phase compensation to critically damp  
the output. The output capacitance of the DAC8043 and the RFB  
resistor form a pole that must be outside the amplifiers unity  
gain crossover frequency.  
V
OUT  
REF  
D × V  
R
REF  
C
I
R
R
OUT  
LKG  
GND  
Figure 14. Equivalent Analog Circuit  
DYNAMIC PERFORMANCE  
Output Impedance  
The output resistance of the DAC8043, as in the case of the  
output capacitance, varies with the digital input code. This  
resistance, looking back into the IOUT terminal, may be between  
10 kΩ (the feedback resistor alone when all digital inputs are low)  
and 7.5 kΩ (the feedback resistor in parallel with approximately  
30 kΩ of the R-2R ladder network resistance when any single bit  
logic is high). Static accuracy and dynamic performance will be  
The considerations when using high speed amplifiers are:  
1. Phase compensation (see Figure 16 and Figure 17).  
2. Power supply decoupling at the device socket and the use  
of proper grounding techniques.  
Rev. E | Page 11 of 16  
 
 
 
 
 
DAC8043  
APPLICATIONS INFORMATION  
Gain error may be trimmed by adjusting R1, as shown in Figure 17.  
The DAC register must first be loaded with all 1s. R1 may then  
be adjusted until VOUT = −VREF (4095/4096). In the case of an  
adjustable VREF, R1 and R2 may be omitted, with VREF adjusted  
to yield the desired full-scale output.  
APPLICATION TIPS  
In most applications, linearity depends upon the potential  
of the IOUT and GND pins being equal to each other. In most  
applications, the DAC is connected to an external op amp  
with its noninverting input tied to ground (see Figure 16 and  
Figure 17). The amplifier selected should have a low input bias  
current and low drift over temperature. The amplifiers input offset  
voltage should be nulled to less than 200 μV (less than 10% of  
1 LSB).  
In most applications, the DAC8043’s negligible zero-scale error  
and very low gain error permit the elimination of the trimming  
components (R1 and the external R2) without adversely affecting  
on circuit performance.  
Table 6. Unipolar Code Table1, 2  
The noninverting input of the operational amplifier should have  
a minimum resistance connection to ground; the usual bias  
current compensation resistor should not be used. This resistor  
can cause a variable offset voltage appearing as a varying output  
error. All grounded pins should tie to a single common ground  
point, avoiding ground loops. The VDD power supply should  
have a low noise level with no transients greater than 17 V.  
Digital Input  
Nominal Analog Output  
MSB LSB  
(VOUT as Shown in Figure 16 and Figure 17)  
1111 1111 1111  
1000 0000 0001  
1000 0000 0000  
0111 1111 1111  
0000 0000 0001  
0000 0000 0000  
4095  
4096  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
2049  
4096  
Unipolar Operation (2-Quadrant)  
VREF  
2
2048  
4096  
The circuits shown in Figure 16 and Figure 17 may be used with  
an ac or dc reference voltage. The output of the circuit ranges  
between 0 V and approximately −VREF (4095/4096), depending  
upon the digital input code. The relationship between the  
digital input and the analog output is shown in Table 6. The  
limiting parameters for the VREF range are the maximum input  
voltage range of the op amp or 25 V, whichever is lowest.  
5V  
= −  
2047  
4096  
1
4096  
0
V
REF  
= 0  
10V  
4096  
V
V
DD  
REF  
SERIAL  
DATA  
INPUT  
1 Nominal full scale for Figure 16 and Figure 17 circuits is given by  
R
FB  
+15V  
7
4095  
4096  
REF   
15pF  
DAC8043  
FS = −V  
CLK  
LD  
2
3
I
OUT  
6
V
OUT  
OP77  
4
2 Nominal LSB magnitude for Figure 16 and Figure 17 circuits is given by  
GND  
1
REF   
LSB = V  
or V  
(
2n  
)
REF  
–15V  
4096  
Figure 16. Unipolar Operation with High Accuracy Op Amp (2-Quadrant)  
V
10V  
REF  
5V  
R
1
100  
V
V
DD  
R
50Ω  
REF  
2
SERIAL  
DATA  
INPUT  
R
FB  
+15V  
15pF  
DAC8043  
CLK  
LD  
2
7
OP42  
4
I
OUT  
6
V
OUT  
3
GND  
–15V  
Figure 17. Unipolar Operation with Fast Op Amp and Gain Error Trimming  
(2-Quadrant)  
Rev. E | Page 12 of 16  
 
 
 
 
 
 
 
DAC8043  
Bipolar Operation (4-Quadrant)  
scale can be adjusted by loading the DAC register with 1111  
1111 1111 and either adjusting the amplitude of VREF or the  
value of R5 until the desired VOUT is achieved.  
Figure 19 details a suggested circuit for bipolar, or offset binary,  
operation. Table 7 shows the digital input to analog output  
relationship. The circuit uses offset binary coding. Twos comple-  
ment code can be converted to offset binary by software  
inversion of the MSB or by the addition of an external inverter  
to the MSB input.  
Analog/Digital Division  
The transfer function for the DAC8043 connected in the  
multiplying mode, as shown in Figure 16, Figure 17, and  
Figure 19, is  
Table 7. Bipolar (Offset Binary) Code Table1, 2  
A
A2 A3  
A12  
IN   
VO V  
1   
...  
Digital Input  
Nominal Analog Output  
21 22 23  
212  
MSB  
LSB  
(VOUT as Shown in Figure 19)  
where AX assumes a value of 1 for an on bit and 0 for an off bit.  
1111 1111 1111  
2047  
2048  
The transfer function is modified when the DAC is connected  
in the feedback of an operational amplifier, as shown in Figure 18  
and becomes  
VREF  
VREF  
1000 0000 0001  
1
2048  
VIN  
1000 0000 0000  
0111 1111 1111  
0
VO   
A
A2 A3  
A12  
1   
...  
1
2048  
21 22 23  
24  
VREF  
VREF  
VREF  
The previous transfer function is the division of an analog  
voltage (VREF) by a digital word. The amplifier goes to the rails  
with all bits off because division by zero is infinity. With all bits  
on the gain is 1 ( 1 ꢀSB). The gain becomes 4096 with the ꢀSB,  
Bit 12, on.  
0000 0000 0001  
0000 0000 0000  
2047  
2048  
2048  
2048  
DIGITAL  
INPUT  
1 Nominal full scale for Figure 19 circuits is given by  
2047  
2048  
REF   
FS V  
LD SRI CLK  
2 Nominal LSB magnitude for Figure 19 circuits is given by  
V
R
V
DD  
IN  
5V  
FB  
1
2048  
REF   
LSB V  
DAC8043  
I
V
REF  
OUT  
Resistors R3, R4, and R5 must be selected to match within 0.01%,  
and they all must be of the same (preferably metal foil) type to  
ensure temperature coefficient matching. Mismatching between  
R3 and R4 causes offset and full-scale errors, while an R5 to R4  
and R3 mismatch results in full-scale error.  
GND  
2
3
6
V
OP42  
OUT  
Calibration is performed by loading the DAC register with 1000  
0000 0000 and adjusting R1 until VOUT = 0 V. R1 and R2 may be  
omitted, adjusting the ratio of R3 to R4 to yield VOUT = 0 V. Full  
Figure 18. Analog/Digital Divider  
R
50  
2
R
4
20kΩ  
5V  
C
1
R
20kΩ  
5
10.33pF  
V
R
FB  
DD  
R
10kΩ  
3
I
OUT  
1/2  
V
V
IN  
REF DAC8043  
OP200  
1/2  
R
100Ω  
A
1
1
V
GND  
OP200  
CONTROL  
BITS  
OUT  
A
2
SRI  
CONTROL SERIAL  
ANALOG  
COMMON  
INPUTS  
DATA  
INPUT  
Figure 19. Bipolar Operation (4-Quadrant, Offset Binary)  
Rev. E | Page 13 of 16  
 
 
 
 
DAC8043  
Serial data supplied to the DAC8043 must be present in  
the right-justified format in Register H and Register L of the  
microprocessor.  
INTERFACING TO THE MC6800  
As shown in Figure 20, the DAC8043 may be interfaced to the  
MC6800 by successively executing memory write instructions  
while manipulating the data between writes, so that each write  
presents the next bit.  
A
0
(8)  
ADDRESS BUS (16)  
A
15  
In this example, the most significant bits are found in the 0000  
and 0001 memory locations. The four MSBs are found in the  
lower half of 0000 and the eight LSBs in 0001. The data is taken  
from the DB7 line.  
8085  
A
A
2
0
E
E
E
1
3
2
8212  
ALE  
WR  
74LS138  
ADDRESS  
DECODER  
5V  
The serial data loading is triggered by the CLK pulse, which  
is asserted by a decoded memory write to the 2000 memory  
AD  
AD  
0
7
(8)  
DATA  
W
location, R/ , and Φ2. A write to address location 4000  
CLK  
LD  
SRI  
SOD  
transfers data from the input register to the DAC register.  
DAC8043*  
*ANALOG CIRCUITRY OMITTED FOR  
SIMPLICITY.  
A
0
16-BIT DATA BUS  
A
15  
Figure 21. DAC8043 to 8085 Interface  
DAC8043 TO THE 68000 INTERFACE  
R/W  
A
A
2
0
E
1
MC6800  
Φ2  
The interface of the DAC8043 to the 68000 microprocessor is  
shown in Figure 22. Serial data to the DAC is taken from one  
of the microprocessors data bus lines.  
74LS138  
E
3
2
ADDRESS  
DECODER  
E
DB  
DB  
0
7
8-BIT DATA BUS  
A
1
ADDRESS BUS  
A
23  
CLK  
LD  
DAC8043*  
SRI  
ADDRESS  
DECODE  
*ANALOG CIRCUITRY OMITTED  
FOR SIMPLICITY.  
CS  
AS  
68000  
MICRO-  
Figure 20. DAC8043 to MC6800 Interface  
PROCESSOR  
VMA  
+
DAC8043 INTERFACE TO THE 8085  
CLK  
LD  
The interface of the DAC8043 to the 8085 microprocessor  
is shown in Figure 21. Note that the SOD line of the micro-  
processor is used to present data serially to the DAC.  
VPA  
UDS  
1/4 74HC125  
DAC8043*  
SRI  
DB  
15  
Data is clocked into the DAC8043 by executing memory write  
instructions. The clock input is generated by decoding Address  
DATA BUS  
*ANALOG CIRCUITRY OMITTED FOR SIMPLICITY.  
DB  
0
WR  
8000 and  
memory write instruction to Address A000.  
. Data is loaded into the DAC register with a  
Figure 22. DAC8043 to 68000 Microprocessor Interface  
Rev. E | Page 14 of 16  
 
 
 
 
 
 
DAC8043  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 23. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-8)  
Dimensions shown in inches and (millimeters)  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 24. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (RW-16)  
Dimensions shown in millimeters and (inches)  
Rev. E | Page 15 of 16  
 
DAC8043  
ORDERING GUIDE  
Model1, 2  
Relative Accuracy  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
0°C to 70°C  
Package Description  
8-Lead PDIP  
8-Lead PDIP  
16-Lead SOIC_W  
8-Lead PDIP  
8-Lead PDIP  
Package Option  
DAC8043FP  
DAC8043FPZ  
DAC8043FSZ  
DAC8043GP  
DAC8043GPZ  
±1 LSB  
±1 LSB  
±1 LSB  
±± LSB  
±± LSB  
N-8  
N-8  
RW-16  
N-8  
N-8  
0°C to 70°C  
1 Z = RoHS Compliant Part.  
2 All commercial and industrial temperature range parts are available with burn-in.  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00271-0-1/11(E)  
Rev. E | Page 16 of 16  
 
 
 

相关型号:

DAC8043FZ

12-Bit Serial Input Multiplying CMOS D/A Converter
ADI

DAC8043GP

12-Bit Serial Input Multiplying CMOS D/A Converter
ADI

DAC8043GPZ

12-Bit Serial Input Multiplying CMOS Digital-to-Analog Converter
ADI

DAC8043HP

12-Bit Serial Input Multiplying CMOS D/A Converter
ADI

DAC8043P

D/A Converter, 1 Func, Serial Input Loading, 0.25us Settling Time, PDIP8,
BB

DAC8043PC

D/A Converter, 1 Func, Serial Input Loading, 0.25us Settling Time, PDIP8,
BB

DAC8043U

CMOS 12-Bit Serial Input Multiplying DIGITAL-TO-ANALOG CONVERTER
BB

DAC8043U

CMOS 12-Bit Serial Input Multiplying DIGITAL-TO-ANALOG CONVERTER
TI

DAC8043U/2K5

CMOS 12 位串行输入乘法数模转换器 | D | 8 | -40 to 85
TI

DAC8043U/2K5

D/A Converter, 1 Func, Serial Input Loading, 0.25us Settling Time, PDSO8, GREEN, SOIC-8
BB

DAC8043U/2K5G4

CMOS 12-Bit Serial Input Mulitplying Digital-to-Analog Converter 8-SOIC -40 to 85
TI

DAC8043U2K5

CMOS 12-Bit Serial Input Multiplying DIGITAL-TO-ANALOG CONVERTER
TI