DAC8248FW [ADI]

Dual 12-Bit 8-Bit Byte Double-Buffered CMOS D/A Converter; 双12位8位字节双缓冲CMOS D / A转换器
DAC8248FW
型号: DAC8248FW
厂家: ADI    ADI
描述:

Dual 12-Bit 8-Bit Byte Double-Buffered CMOS D/A Converter
双12位8位字节双缓冲CMOS D / A转换器

转换器
文件: 总16页 (文件大小:351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 12-Bit (8-Bit Byte)  
Double-Buffered CMOS D/A Converter  
a
DAC8248  
P IN CO NNECTIO NS  
FEATURES  
Tw o Matched 12-Bit DACs on One Chip  
12-Bit Resolution w ith an 8-Bit Data Bus  
Direct Interface w ith 8-Bit Microprocessors  
Double-Buffered Digital Inputs  
RESET to Zero Pin  
24-P in 0.3" Cer dip (W Suffix),  
24-P in Epoxy D IP (P Suffix),  
24-P in SO L (S Suffix)  
12-Bit Endpoint Linearity (؎1/ 2 LSB) Over Tem perature  
؉5 V to ؉15 V Single Supply Operation  
Latch-Up Resistant  
Im proved ESD Resistance  
Packaged in a Narrow 0.3" 24-Pin DIP and 0.3" 24-Pin  
SOL Package  
Available in Die Form  
APPLICATIONS  
Multichannel Microprocessor-Controlled System s  
Robotics/ Process Control/ Autom ation  
Autom atic Test Equipm ent  
Program m able Attenuator, Pow er Supplies, Window  
Com parators  
Instrum entation Equipm ent  
T he DAC8248s double-buffered digital inputs allow both  
DACs analog output to be updated simultaneously. T his is par-  
ticularly useful in multiple DAC systems where a common  
LDAC signal updates all DACs at the same time. A single  
RESET pin resets both outputs to zero.  
Battery Operated Equipm ent  
GENERAL D ESCRIP TIO N  
T he DAC8248s monolithic construction offers excellent DAC-  
to-DAC matching and tracking over the full operating tempera-  
ture range. T he DAC consists of two thin-film R-2R resistor  
ladder networks, two 12-bit, two 8-bit, and two 4-bit data regis-  
ters, and control logic circuitry. Separate reference input and  
feedback resistors are provided for each DAC. T he DAC8248  
(continued on page 4)  
T he DAC8248 is a dual 12-bit, double-buffered, CMOS digital-  
to-analog converter. It has an 8-bit wide input data port that inter-  
faces directly with 8-bit microprocessors. It loads a 12-bit word in  
two bytes using a single control; it can accept either a least signifi-  
cant byte or most significant byte first. For designs with a 12-bit or  
16-bit wide data path, choose the DAC8222 or DAC8221.  
FUNCTIO NAL BLO CK D IAGRAM  
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
DAC8248–SPECIFICATIONS  
(@ V = +5 V or +15 V; VREF A = VREF B = +10 V; VOUTA = VOUT B = 0 V; AGND = DGND = 0 V;  
DD  
ELECTRICAL CHARACTERlSTICS  
T = Full Temp Range specified in Absolute Maximum Ratings; unless otherwise noted. Specifications apply for DAC A and DAC B.)  
A
D AC8248  
P aram eter  
Sym bol  
Conditions  
Min  
Typ  
Max  
Units  
ST AT IC ACCURACY  
Resolution  
N
12  
Bits  
Relative Accuracy  
INL  
DAC8248A/E/G  
DAC8248F/H  
All Grades are Guaranteed Monotonic  
DAC8248A/E  
DAC8248G  
DAC8248F/H  
±1/2  
±1  
±1  
±1  
±2  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Differential Nonlinearity  
Full-Scale Gain Error1  
DNL  
GFSE  
±4  
Gain T emperature Coefficient  
(Gain/T emperature)  
T CGFS  
ILKG  
(Notes 2, 3)  
All Digital Inputs = 0s  
TA = +25°C  
TA = Full T emperature Range  
(Note 4)  
±2  
±5  
ppm/°C  
Output Leakage Current  
±5  
±10  
±50  
15  
I
OUT A (Pin 2), IOUT B (Pin 24)  
nA  
kΩ  
Input Resistance (VREF A  
,
)
RREF  
8
11  
REF B  
RREF  
RREF  
Input Resistance Match  
±0.2  
±1  
%
DIGIT AL INPUT S  
Digital Input High  
VINH  
VINL  
VDD = +5 V  
VDD = +15 V  
VDD = +5 V  
VDD = +15 V  
2.4  
13.5  
V
V
V
V
Digital Input Low  
0.8  
1.5  
Input Current (VIN = 0 V  
TA = +25°C  
TA = Full T emperature Range  
DB0–DB11  
WR, LDAC, DAC A/DAC B,  
LSB/MSB, RESET  
±0.001 ±1  
±10  
µA  
µA  
pF  
or VDD and VINL or VINH  
Input Capacitance  
(Note 2)  
)
IIN  
CIN  
10  
15  
pF  
POWER SUPPLY  
Supply Current  
IDD  
Digital Inputs = VINL or VINH  
Digital Inputs = 0 V or VDD  
VDD = ±5%  
2
100  
mA  
µA  
10  
DC Power Supply Rejection Ratio  
(Gain/VDD  
PSRR  
)
0.002  
%/%  
AC PERFORMANCE CHARACTERIST ICS2  
Propagation Delay5, 6  
tPD  
tS  
CO  
TA = +25°C  
TA = +25°C  
Digital Inputs = All 0s  
350  
1
ns  
µs  
Output Current Setting T ime6, 7  
Output Capacitance  
C
OUT A, COUT B  
Digital Inputs = All 1s  
OUT A, COUT B  
90  
pF  
pF  
dB  
dB  
C
120  
–70  
–70  
AC Feedthrough at  
FTA  
FTB  
VREF A to IOUT A; VREF A = 20 V p-p  
f = 100 kHz; TA = +25°C  
VREF B to IOUT B; VREF B = 20 V p-p  
f = 100 kHz; TA = +25°C  
I
OUT A or IOUT B  
–2–  
REV. B  
DAC8248  
P aram eter  
Sym bol  
Conditions  
D AC8248  
Units  
VD D = +5 V  
VD D = +15 V  
Switching Characteristics  
(Notes 2, 8)  
+25؇C –40؇C to +85؇C –55؇C to +125؇C All Tem ps  
(Note 9)  
(Note 10)  
LSB/MSB Select to  
Write Set-Up T ime  
LSB/MSB Select to  
Write Hold T ime  
DAC Select to  
Write Set-Up T ime  
DAC Select to  
Write Hold T ime  
LDAC to  
Write Set-Up T ime  
LDAC to  
Write Hold T ime  
Data Valid to  
Write Set-Up T ime  
Data Valid to  
tCBS  
tCBH  
tAS  
130  
0
170  
0
180  
0
80  
0
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
180  
0
210  
0
220  
0
80  
0
tAH  
tLS  
tLH  
tDS  
120  
0
150  
0
160  
0
80  
0
160  
210  
220  
70  
Write Hold T ime  
Write Pulse Width  
LDAC Pulse Width  
Reset Pulse Width  
tDH  
tWR  
tLWD  
tRWD  
0
0
0
10  
90  
60  
60  
ns min  
ns min  
ns min  
ns min  
130  
100  
80  
150  
110  
90  
170  
130  
90  
NOT ES  
11Measured using internal RFB A and RFB B. Both DAC digital inputs = 1111 1111 1111.  
12Guaranteed and not tested.  
13Gain T C is measured from +25°C to T MIN or from +25°C to T MAX  
14Absolute T emperature Coefficient is approximately +50 ppm/°C.  
.
15From 50% of digital input to 90% of final analog output current. VREF A = VREF B = +10 V; OUT A, OUT B load = 100 , CEXT = 13 pF.  
16WR, LDAC = 0 V; DB0–DB7 = 0 V to VDD or VDD to 0 V.  
17Settling time is measured from 50% of the digital input change to where the output settles within 1/2 LSB of full scale.  
18See T iming Diagram.  
19T hese limits apply for the commercial and industrial grade products.  
10T hese limits also apply as typical values for VDD = +12 V with +5 V CMOS logic levels and T A = +25°C.  
Specifications subject to change without notice.  
Burn-In Circuit  
REV. B  
–3–  
DAC8248  
(continued from page 1)  
1
P ackage Type  
Units  
JA  
JC  
operates on a single supply from +5 V to +15 V, and it dissi-  
pates less than 0.5 mW at +5 V (using zero or VDD logic levels).  
T he device is packaged in a space-saving 0.3", 24-pin DIP.  
24-Pin Hermetic DIP (W)  
24-Pin Plastic DIP (P)  
24-Pin SOL (S)  
69  
62  
72  
10  
32  
24  
°C/W  
°C/W  
°C/W  
T he DAC8248 is manufactured with PMI’s highly stable thin-  
film resistors on an advanced oxide-isolated, silicon-gate,  
CMOS technology. PMIs improved latch-up resistant design  
eliminates the need for external protective Schottky diodes.  
NOT E  
1
JA specified for worst case mounting conditions, i.e., JA is specified for device in  
socket for cerdip and P-DIP packages; JA is specified for device soldered to printed  
circuit board for SOL package.  
CAUTIO N  
ABSO LUTE MAXIMUM RATINGS  
(T A = +25°C, unless otherwise noted.)  
1. Do not apply voltages higher than VDD or less than GND  
potential on any terminal except VREF and RFB  
.
VDD to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V, +17 V  
VDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V, +17 V  
AGND to DGND . . . . . . . . . . . . . . . . . . 0.3 V, VDD +0.3 V  
Digital Input Voltage to DGND . . . . . . . 0.3 V, VDD +0.3 V  
2. T he digital control inputs are Zener-protected; however,  
permanent damage may occur on unprotected units from  
high energy electrostatic fields. Keep units in conductive  
foam at all times until ready to use.  
I
OUT A, IOUT B to AGND . . . . . . . . . . . . . . –0.3 V, VDD +0.3 V  
V
V
REF A, VREF B to AGND . . . . . . . . . . . . . . . . . . . . . . . . ±25 V  
RFB A, VRFB B to AGND . . . . . . . . . . . . . . . . . . . . . . . . ±25 V  
3. Do not insert this device into powered sockets; remove  
power before insertion or removal.  
Operating T emperature Range  
AW Version . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
EW, FW, FP Versions . . . . . . . . . . . . . . . . –40°C to +85°C  
GP, HP, HS Versions . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
Junction T emperature . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
Storage T emperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature (Soldering, 60 sec) . . . . . . . . . . . . +300°C  
4. Use proper antistatic handling procedures.  
5. Devices can suffer permanent damage and/or reliability deg-  
radation if stressed above the limits listed under Absolute  
Maximum Ratings for extended periods. T his is a stress rat-  
ing only and functional operation at or above this specifica-  
tion is not implied.  
O RD ERING GUID E 1  
Relative  
Accuracy  
(+5 V or +15 V)  
Gain Error  
(+5 V or +15 V)  
Tem perature  
Range  
P ackage  
D escription  
Model  
DAC8248AW2 ±1/2 LSB  
±1 LSB  
±1 LSB  
±2 LSB  
±4 LSB  
±4 LSB  
±4 LSB  
±4 LSB  
–55°C to +125°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
24-Pin Cerdip  
24-Pin Cerdip  
DAC8248EW  
DAC8248GP  
DAC8248FW  
DAC8248HP  
DAC8248FP  
±1/2 LSB  
±1/2 LSB  
±1 LSB  
±1 LSB  
±1 LSB  
24-Pin Plastic DIP  
24-Pin Cerdip  
24-Pin Plastic DIP  
24-Pin Plastic DIP  
24-Pin SOL  
–40°C to +85°C  
0°C to +70°C  
DAC8248HS3 ±1 LSB  
NOT ES  
1Burn-in is available on commercial and industrial temperature range parts in cerdip, plastic DIP, and T O-can packages.  
2For devices processed in total compliance to MIL-ST D-883, add/883 after part number. Consult factory for 883 data sheet.  
3For availability and burn-in information on SO and PLCC packages, contact your local sales office.  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the DAC8248 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–4–  
DAC8248  
D ICE CH ARACTERISTICS  
11. AGND  
12. IOUTA  
13. RFB A  
13. NC  
14. DB1  
15. DB0(LSB)  
16. RESET  
17. LSB/ MSB  
14. VREF A  
15. DGND  
16. DB7(MSB)  
18. DAC A/ DAC B  
19. LDAC  
20. WR  
17. DB6  
18. DB5  
19. DB4  
10. DB3  
11. DB2  
12. NC  
21. VDD  
22. VREF B  
23. RFB B  
24. IOUT B  
SUBSTRATE (DIE BACKSIDE) IS INTERNALLY  
CONNECTED TO VDD  
.
Die Size 0.124 × 0.132 inch, 16,368 sq. m ils  
(3.15 × 3.55 m m , 10.56 sq. m m )  
WAFER TEST LIMITS @ V = +5 V or +15 V, VREF A = VREF B = +10 V, VOUT A = VOUT B = 0 V; AGND = DGND = 0 V; T = 25؇C.  
DD  
A
D AC8248G  
Lim it  
P aram eter  
Sym bol  
Conditions  
Units  
Relative Accuracy  
INL  
DNL  
GFSE  
Endpoint Linearity Error  
±1  
±1  
±4  
LSB max  
LSB max  
LSB max  
Differential Nonlinearity  
Full-Scale Gain Error1  
Output Leakage  
All Grades are Guaranteed Monotonic  
Digital Inputs = 1111 1111 1111  
Digital Inputs = 0000 0000 0000  
Pads 2 and 24  
(IOUT A, IOUT B  
)
ILKG  
±50  
nA max  
Input Resistance  
(VREF A, VREF B  
REF A, VREF B Input  
Resistance Match  
)
RREF  
RREF  
RREF  
VINH  
Pads 4 and 22  
8/15  
kmin/kmax  
V
±1  
2.4  
13.5  
0.8  
1.5  
±1  
2
% max  
V min  
V min  
V max  
V max  
µA max  
mA max  
mA max  
Digital Input High  
VDD = +5 V  
VDD = +15 V  
VDD = +5 V  
VDD = +15 V  
VIN = 0 V or VDD; VINL or VINH  
All Digital Inputs VINL or VINH  
All Digital Inputs 0 V or VDD  
Digital Input Low  
VINL  
Digital Input Current  
Supply Current  
IIN  
IDD  
0.1  
DC Supply Rejection  
(Gain/VDD  
)
PSR  
VDD = ±5%  
0.002  
%/% max  
NOT ES  
1Measured using internal RFB A and RFB B  
.
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed  
for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.  
REV. B  
–5–  
DAC8248Typical Performance Characteristics  
Channel-to-Channel Matching (DAC  
A & B are Superim posed)  
Differential Nonlinearity vs. VREF  
Differential Nonlinearity vs. VREF  
Nonlinearity vs. VREF  
Nonlinearity vs. VREF  
Nonlinearity vs. VDD  
Absolute Gain Error Change vs. VREF  
Nonlinearity vs. Code (DAC A & B  
are Superim posed)  
Nonlinearity vs. Code at TA = –55°C,  
+25°C, +125°C for DAC A & B  
(All Superim posed)  
REV. B  
–6–  
DAC8248  
Full-Scale Gain Error vs. Tem perature  
Logic Input Threshold Voltage  
vs. Supply Voltage (VDD  
Supply Current vs. Tem perature  
)
Supply Current vs. Logic Input Voltage  
Multiplying Mode Frequency Response vs. Digital Code  
Output Leakage Current vs. Tem perature  
Analog Crosstalk vs. Frequency  
REV. B  
–7–  
DAC8248  
Four Cycle Update  
Five Cycle Update  
Write Tim ing Cycle Diagram  
P ARAMETER D EFINITIO NS  
GENERAL CIRCUIT D ESCRIP TIO N  
RESO LUTIO N (N)  
CO NVERTER SECTIO N  
T he resolution of a DAC is the number of states (2n) that the  
full-scale range (FSR) is divided (or resolved) into; where n is  
equal to the number of bits.  
T he DAC8248 incorporates two multiplying 12-bit current out-  
put CMOS digital-to-analog converters on one monolithic chip.  
It contains two highly stable thin-film R-2R resistor ladder net-  
works, two 12-bit DAC registers, two 8-bit input registers, and  
two 4-bit input registers. It also contains the DAC control logic  
circuitry and 24 single-pole, double-throw NMOS transistor  
current switches.  
RELATIVE ACCURACY (INL)  
Relative accuracy, or integral nonlinearity, is the maximum de-  
viation of the analog output (from the ideal) from a straight line  
drawn between the end points. It is expressed in terms of least  
significant bit (LSB), or as a percent of full scale.  
Figure 1 shows a simplified circuit for the R-2R ladder and tran-  
sistor switches for a single DAC. R is typically 11 k. T he tran-  
sistor switches are binarily scaled in size to maintain a constant  
voltage drop across each switch. Figure 2 shows a single NMOS  
transistor switch.  
D IFFERENTIAL NO NLINEARITY (D NL)  
Differential nonlinearity is the worst case deviation of any adja-  
cent analog output from the ideal 1 LSB step size. T he devia-  
tion of the actual “step size” from the ideal step size of 1 LSB is  
called the differential nonlinearity error or DNL. DACs with  
DNL greater than ±1 LSB may be nonmonotonic. ±1/2 LSB  
INL guarantees monotonicity and ±1 LSB maximum DNL.  
GAIN ERRO R (G FSE  
)
Gain error is the difference between the actual and the ideal  
analog output range, expressed as a percent of full-scale or in  
terms of LSB value. It is the deviation in slope of the DAC  
transfer characteristic from ideal.  
Refer to PMI 1990/91 Data Book, Section 11, for additional  
digital-to-analog converter definitions.  
Figure 1. Sim plified Single DAC Circuit Configuration.  
(Switches Are Shown For All Digital Inputs at Zero)  
REV. B  
–8–  
DAC8248  
D IGITAL SECTIO N  
The DAC8248s digital inputs are TTL compatible at VDD = +5 V  
and CMOS compatible at VDD = +15 V. They were designed to  
convert TTL and CMOS input logic levels into voltage levels that  
will drive the internal circuitry. The DAC8248 can use +5 V  
CMOS logic levels with VDD = +12 V; however, supply current  
will increase to approximately 5 mA–6 mA.  
Figure 3 shows the DAC’s digital input structure for one bit.  
T his circuitry drives the DAC registers. Digital controls, φ and  
φ, shown are generated from the DAC’s input control logic  
circuitry.  
Figure 2. N-Channel Current Steering Switch  
T he binary-weighted currents are switched between IOUT and  
AGND by the transistor switches. Selection between IOUT and  
AGND is determined by the digital input code. It is important  
to keep the voltage difference between IOUT and AGND termi-  
nals as close to zero as practical to preserve data sheet limits. It  
is easily accomplished by connecting the DAC’s AGND to the  
noninverting input of an operational amplifier and IOUT to the  
inverting input. T he amplifier’s feedback resistor can be elimi-  
nated by connecting the op amp’s output directly to the DAC’s  
RFB terminal (by using the DACs internal feedback resistor,  
R
FB). T he amplifier also provides the current-to-voltage conver-  
sion for the DACs output current.  
Figure 3. Digital Input Structure For One Bit  
T he output voltage is dependent on the DAC’s digital input  
code and VREF, and is given by:  
T he digital inputs are electrostatic-discharge (ESD) protected  
with two internal distributed diodes as shown in Figure 3; they  
are connected between VDD and DGND. Each input has a typi-  
cal input current of less than 1 nA.  
VOUT = VREF × D/4096  
where D is the digital input code integer number that is between  
0 and 4095.  
T he digital inputs are CMOS inverters and draw supply current  
when operating in their linear region. Using a +5 V supply, the  
linear region is between +1.2 V to +2.8 V with current peaking  
at +1.8 V. Using a +15 V supply, the linear region is from  
+1.2 V to +12 V (current peaking at +3.9 V). It is recom-  
mended that the digital inputs be operated as close to the power  
supply voltage and DGND as is practically possible; this will  
keep supply currents to a minimum. T he DAC8248 may be  
operated with any supply voltage between the range of +5 V to  
+15 V and still perform to data sheet limits.  
T he DACs input resistance, RREF, is always equal to a constant  
value, R. T his means that VREF can be driven by a reference  
voltage or current, ac or dc (positive or negative). It is recom-  
mended that a low temperature-coefficient external RFB resistor  
be used if a current source is employed.  
T he DACs output capacitance (COUT ) is code dependent and  
varies from 90 pF (all digital inputs low) to 120 pF (all digital  
inputs high).  
T o ensure accuracy over the full operating temperature range,  
permanently turned “ON” MOS transistor switches were in-  
cluded in series with the feedback resistor (RFB) and the R-2R  
ladder’s terminating resistor (see Figure 1). T he gates of these  
NMOS transistors are internally connected to VDD and will be  
turned “OFF” (open) if VDD is not applied. If an op amp is us-  
ing the DACs RFB resistor to close its feedback loop, then VDD  
must be applied before or at the same time as the op amp’s sup-  
ply; this will prevent the op amp’s output from becoming “open  
circuited” and swinging to either rail. In addition, some applica-  
tions require the DAC’s ladder resistance to fall within a certain  
range and are measured at incoming inspection; VDD must be  
applied before these measurements can be made.  
T he DAC8248s 8-bit wide data port loads a 12-bit word in two  
bytes: 8-bits then 4-bits (or 4-bits first then 8-bits, at users dis-  
cretion) in a right justified data format. T his data is loaded into  
the input registers with the LSB/MSB and WR control pins.  
Data transfer from the input registers to the DAC registers can  
be automatic. It can occur upon loading of the second data byte  
into the input register, or can occur at a later time through a  
strobed transfer using the LDAC control pin.  
REV. B  
–9–  
DAC8248  
Figure 4. Four Cycle Update Tim ing Diagram  
Figure 5. Five Cycle Update Tim ing Diagram  
REV. B  
–10–  
DAC8248  
AUTO MATIC D ATA TRANSFER MO D E  
Strobed data transfer separating data loading and transfer op-  
erations serves two functions: the DAC output updating may be  
more precisely controlled, and multiple DACs in a multiple  
DAC system can be updated simultaneously.  
Data may be transferred automatically from the input register to  
the DAC register. T he first cycle loads the first data byte into  
the input register; the second cycle loads the second data byte  
and simultaneously transfers the full 12-bit data word to the  
DAC register. It takes four cycles to load and transfer two com-  
plete digital words for both DAC’s, see Figure 4 (Four Cycle  
Update T iming Diagram) and the Mode Selection T able.  
RESET  
T he DAC8248 comes with a RESET pin that is useful in system  
calibration cycles and/or during system power-up. All registers  
are reset to zero when RESET is low, and latched at zero on the  
rising edge of the RESET signal when WRITE is high.  
STRO BED D ATA TRANSFER MO D E  
Strobed data transfer allows the full 12-bit digital word to be  
loaded into the input registers and transferred to the DAC regis-  
ters at a later time. T his transfer mode requires five cycles: four  
to load two new data words into both DACs, and the fifth to  
transfer all data into the DAC registers. See Figure 5 (Five Cycle  
Update T iming Diagram) and the Mode Selection T able.  
INTERFACE CO NTRO L LO GIC  
T he DAC8248s control logic is shown in Figure 6. T his cir-  
cuitry interfaces with the system bus and controls the DAC  
functions.  
Figure 6. Input Control Logic  
MO D E SELECTIO N TABLE  
D IGITAL INP UTS  
REGISTER STATUS  
D AC A  
Input Register  
D AC B  
Input Register  
D AC  
D AC  
DAC A/B WR  
LSB/MSB RESET LDAC LSB  
MSB  
Register  
LSB  
MSB  
Register  
L
L
L
L
H
H
H
H
X
X
X
X
L
L
L
H
H
L
H
H
H
H
H
H
H
H
H
H
L
H
L
H
L
H
L
H
L
H
L
X
X
WR  
WR  
LAT  
LAT  
WR  
LAT  
WR  
LAT  
WR  
LAT  
WR  
LAT  
WR  
LAT  
LAT  
LAT  
LAT  
WR  
LAT  
LAT  
LAT  
LAT  
LAT  
LAT  
WR  
WR  
LAT  
LAT  
LAT  
WR  
LAT  
WR  
LAT  
WR  
LAT  
WR  
L
L
L
L
L
L
L
H
H
X
H
LAT  
LAT  
LAT  
LAT  
LAT  
LAT  
LAT  
LAT  
WR  
LAT  
LAT  
LAT  
LAT  
LAT  
LAT  
L
WR  
H
H
X
X
X
X
LAT  
LAT  
LAT  
LAT  
LAT  
WR  
LAT  
WR  
ALL REGIST ERS ARE RESET T O ZEROS  
ZEROS ARE LAT CHED IN ALL REGIST ERS  
g
L = Low, H = High, X = Dont Care, WR = Registers Being Loaded, LAT = Registers Latched.  
REV. B  
–11–  
DAC8248  
Table I. Unipolar Binary Code Table (Refer to Figure 7)  
Binary Num ber in  
INTERFACE CO NTRO L LO GIC P IN FUNCTIO NS  
LSB/MSB – (P IN 17) LEAST SIGNIFICANT BIT (Active  
Low)/ MO ST SIGNIFICANT BIT (Active H igh). Selects  
lower 8-bits (LSBs) or upper 4-bits (MSBs); either can be  
loaded first. It is used with the WR signal to load data into the  
input registers. Data is loaded in a right justified format.  
D AC Register  
Analog O utput, VO UT  
(D AC A or D AC B)  
MSB  
LSB  
4095  
1111 1111 1111  
1000 0000 0000  
–VREF  
DAC A/D AC B – (P IN 18) D AC SELECTIO N. Active low  
for DAC A and Active High for DAC B.  
4096  
2048  
4096  
1
–VREF  
= – VREF  
WR – (P IN 20) WRITE – Active Low. Used with the LSB/  
MSB signal to load data into the input registers, or Active High  
to latch data into the input registers.  
2
1
0000 0000 0001  
0000 0000 0000  
–VREF  
0 V  
4096  
LDAC – (P IN 19) LO AD D AC. Used to transfer data sim-  
ultaneously from DAC A and DAC B input registers to both  
DAC output registers. T he DAC register becomes transparent  
(activity on the digital inputs appear at the analog output) when  
both WR and LDAC are low. Data is latched into the output  
registers on the rising edge of LDAC.  
NOT E  
1 LSB = (2-12) (VREF)=  
1
(VREF)  
4096  
Low temperature-coefficient (approximately 50 ppm/°C) resis-  
tors or trimmers should be used. Maximum full-scale error  
RESET – (P IN 16) – Active Low. Functions as a zero over-  
ride; all registers are forced to zero when the RESET signal is  
low. All registers are latched to zeros when the write signal is  
high and RESET goes high.  
without these resistors for the top grade device and VREF  
=
±10 V is 0.024%, and 0.049% for the low grade. Capacitors C1  
and C2 provide phase compensation to reduce overshoot and  
ringing when high-speed op amps are used.  
AP P LICATIO NS INFO RMATIO N  
UNIP O LAR O P ERATIO N  
Full-scale adjustment is achieved by loading the appropriate  
DACs digital inputs with 1111 1111 1111 and adjusting R1 (or  
R3 for DAC B) so that:  
Figure 7 shows a simple unipolar (2-quadrant multiplication)  
circuit using the DAC8248 and OP270 dual op amp (use two  
OP42s for applications requiring higher speeds), and T able I  
shows the corresponding code table. Resistors R1, R2, and R3,  
R4 are used only if full-scale gain adjustments are required.  
4095  
VOUT = VREF  
×
4096  
Full-scale can also be adjusted by varying VREF voltage and  
eliminating R1, R2, R3, and R4. Zero adjustment is performed by  
Figure 7. Unipolar Configuration (2-Ouadrant Multiplication)  
REV. B  
–12–  
DAC8248  
Table II. Bipolar (O ffset Binary) Code Table  
(Refer to Figure 8)  
loading the appropriate DAC’s digital inputs with 0000 0000  
0000 and adjusting the op amp’s offset voltage to 0 V. It is rec-  
ommended that the op amp offset voltage be adjusted to less  
than 10% of 1 LSB (244 µV), and over the operating tempera-  
ture range of interest. T his will ensure the DAC’s monotonicity  
and minimize gain and linearity errors.  
Binary Num ber in  
D AC Register  
Analog O utput, VO UT  
(D AC A or D AC B)  
MSB  
LSB  
2047  
BIP O LAR O P ERATIO N  
1111 1111 1111  
+VREF  
2048  
T he bipolar (offset binary) 4-quadrant configuration using the  
DAC8248 is shown in Figure 8, and the corresponding code is  
shown in T able II. T he circuit makes use of the OP470, a quad  
op amp (use four OP42s for applications requiring higher  
speeds).  
1
1000 0000 0001  
1000 0000 0000  
+VREF  
2048  
0 V  
1
The full-scale output voltage may be adjusted by varying VREF or  
the value of R5 and R8, and thus eliminating resistors R1, R2,  
R3, and R4. If resistors R1 through R4 are omitted, then R5, R6,  
R7 (R8, R9, and R10 for DAC B) should be ratio-matched to  
0.01% to keep gain error within data sheet specifications. The re-  
sistors should have identical temperature-coefficients if operating  
over the full temperature range.  
0111 1111 1111  
0000 0000 0000  
–VREF  
2048  
2048  
–VREF  
2048  
NOT E:  
1
1 LSB=(2–11)(VREF) =  
(VREF)  
2048  
Zero and full-scale are adjusted in one of two ways and are at  
the users discretion. Zero-output is adjusted by loading the ap-  
propriate DACs digital inputs with 1000 0000 0000 and vary-  
ing R1 (R3 for DAC B) so that VOUT A (or VOUT B) equals 0 V.  
If R1, R2 (R3, R4 for DAC B) are omitted, then zero output  
can be adjusted by varying R6, R7 ratios (R9, R10 for DAC B).  
Full-scale is adjusted by loading the appropriate DAC’s digital  
inputs with 1111 1111 1111 and varying R5 (R8 for DAC B).  
SINGLE SUP P LY O P ERATIO N  
CURRENT STEERING MO D E  
Because the DAC8248’s R-2R resistor ladder terminating resis-  
tor is internally connected to AGND, it lends itself well for  
single supply operation in the current steering mode configura-  
tion. T his means that AGND can be raised above system  
Figure 8. Bipolar Configuration (4-Quadrant Multiplication)  
–13–  
REV. B  
DAC8248  
ground as shown in Figure 9. T he output voltage will be be-  
tween +5 V and +10 V depending on the digital input code.  
T he output expression is given by:  
AP P LICATIO NS TIP S  
GENERAL GRO UND MANAGEMENT  
Grounding techniques should be tailored to each individual sys-  
tem. Ground loops should be avoided, and ground current paths  
should be as short as possible and have a low impedance.  
VOUT = VOS × (D/4096)(VOS  
)
where VOS = Offset Reference Voltage (+5 V in Figure 9)  
D = Decimal Equivalent of the Digital Input Word  
T he DAC8248s AGND and DGND pins should be tied to-  
gether at the device socket to prevent digital transients from ap-  
pearing at the analog output. T his common point then becomes  
the single ground point connection. AGND and DGND is then  
brought out separately and tied to their respective power supply  
grounds. Ground loops can be created if both grounds are tied  
together at more than one location, i.e., tied together at the de-  
vice and at the digital and analog power supplies.  
VO LTAGE SWITCH ING MO D E  
Figure 10 shows the DAC8248 in another single supply configu-  
ration. T he R-2R ladder is used in the voltage switching mode  
and functions as a voltage divider. T he output voltage (at the  
VREF pin) exhibits a constant impedance R (typically 11 k) and  
must be buffered by an op amp. T he RFB pins are not used and  
are left open. T he reference input voltage must be maintained  
within +1.25 V of AGND, and VDD between +12 V and +15 V;  
this ensures that device accuracy is preserved.  
PC board ground plane can be used for the single point ground  
connection should the connections not be practical at the device  
socket. If neither of these connections are practical or allowed,  
then the device should be placed as close as possible to the sys-  
tems single point ground connection. Back-to-back Schottky di-  
odes should then be connected between AGND and DGND.  
T he output voltage expression is given by:  
VOUT = VREF (D/4096)  
where D = Decimal Equivalent of the Digital Input Word  
P O WER SUP P LY D ECO UP LING  
Power supplies used with the DAC8248 should be well filtered  
and regulated. Local supply decoupling consisting of a 1 µF to  
10 µF tantalum capacitor in parallel with a 0.1 µF ceramic is  
highly recommended. T he capacitors should be connected be-  
tween the VDD and DGND pins and at the device socket.  
Figure 9. Single Supply Operation (Current Switching Mode)  
REV. B  
–14–  
DAC8248  
Figure 10. Single Supply Operation (Voltage Switching Mode)  
Figure 11. Digitally-Program m able Window Detector (Upper/Lower Lim it Detector)  
MICRO P RO CESSO R INTERFACE CIRCUITS  
T he DAC8248s versatile loading structure allows direct inter-  
face to an 8-bit microprocessor. Its simplicity reduces the num-  
ber of required glue logic components. Figures 12 and 13 show  
the DAC8248 interface configurations with the MC6809 and  
MC68008 microprocessors.  
REV. B  
–15–  
Figure 13. DAC8248 to MC68008 Interface  
Figure 12. DAC8248 to MC6809 Interface  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
24-Lead Cerdip  
(Q-24)  
0.005 (0.13) MIN  
0.098 (2.49) MAX  
24  
13  
0.310 (7.87)  
0.220 (5.59)  
1
12  
0.320 (8.13)  
0.290 (7.37)  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
1.280 (32.51) MAX  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.023 (0.58)  
0.014 (0.36)  
0.070 (1.78)  
0.030 (0.76)  
0.100 (2.54)  
BSC  
15°  
0°  
24 Lead SO L  
24-Lead P lastic D IP  
(N-24)  
(R-24)  
0.6141 (15.60)  
0.5985 (15.20)  
1.275 (32.30)  
1.125 (28.60)  
24  
1
13  
12  
0.280 (7.11)  
0.240 (6.10)  
24  
13  
12  
0.325 (8.25)  
0.300 (7.62)  
0.195 (4.95)  
0.115 (2.93)  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
0.210  
(5.33)  
MAX  
1
0.150  
(3.81)  
MIN  
0.200 (5.05)  
0.125 (3.18)  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.015 (0.381)  
0.008 (0.204)  
0.0291 (0.74)  
0.0098 (0.25)  
x 45°  
0.100 (2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77) SEATING  
PLANE  
0.045 (1.15)  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0138 (0.35)  
0.0091 (0.23)  
–16–  

相关型号:

DAC8248G

PARALLEL, 8 BITS INPUT LOADING, 12-BIT DAC, UUC24, 0.124 X 0.132 INCH, DIE-24
ADI

DAC8248GBC

12-Bit Digital-to-Analog Converter
ETC

DAC8248GP

Dual 12-Bit 8-Bit Byte Double-Buffered CMOS D/A Converter
ADI

DAC8248GPZ

Dual 12-Bit (8-Bit Byte) Double-Buffered CMOS D/A Converter
ADI

DAC8248HP

Dual 12-Bit 8-Bit Byte Double-Buffered CMOS D/A Converter
ADI

DAC8248HP

PARALLEL, 8 BITS INPUT LOADING, 12-BIT DAC, PDIP24, PLASTIC, DIP-24
ROCHESTER

DAC8248HS

Dual 12-Bit 8-Bit Byte Double-Buffered CMOS D/A Converter
ADI

DAC8308

Converter IC
ETC

DAC830LCJ

PARALLEL, 8 BITS INPUT LOADING, 1us SETTLING TIME, 8-BIT DAC, CDIP20
TI

DAC830LCM

PARALLEL, 8 BITS INPUT LOADING, 1us SETTLING TIME, 8-BIT DAC, PDSO20
TI

DAC830LCN

PARALLEL, 8 BITS INPUT LOADING, 1 us SETTLING TIME, 8-BIT DAC, PDIP20
TI

DAC830LJ

PARALLEL, 8 BITS INPUT LOADING, 1us SETTLING TIME, 8-BIT DAC, CDIP20
TI