DAC8412 [ADI]

Quad, 12-Bit DAC Voltage Output with Readback; 四通道,12位DAC电压输出,回读
DAC8412
型号: DAC8412
厂家: ADI    ADI
描述:

Quad, 12-Bit DAC Voltage Output with Readback
四通道,12位DAC电压输出,回读

文件: 总14页 (文件大小:438K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, 12-Bit DAC  
Voltage Output with Readback  
a
DAC8412/DAC8413  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
+5 V to ؎15 V Operation  
Unipolar or Bipolar Operation  
True Voltage Output  
Double-Buffered Inputs  
Reset to Min (DAC8413) or Center Scale (DAC8412)  
Fast Bus Access Time  
V
V
V
REFH  
LOGIC  
DD  
12  
I/O  
DATA  
I/O  
INPUT  
REG A  
OUTPUT  
REG A  
DAC A  
DAC B  
V
V
V
V
PORT  
OUTA  
OUTB  
OUTC  
OUTD  
DGND  
INPUT  
REG B  
OUTPUT  
REG B  
A0  
A1  
Readback  
INPUT  
REG C  
OUTPUT  
REG C  
CONTROL  
LOGIC  
DAC C  
DAC D  
R/W  
APPLICATIONS  
Automatic Test Equipment  
Digitally Controlled Calibration  
Servo Controls  
CS  
INPUT  
REG D  
OUTPUT  
REG D  
RESET  
LDAC  
Process Control Equipment  
V
V
SS  
REFL  
GENERAL DESCRIPTION  
Digital controls allow the user to load or read back data from any  
DAC, load any DAC and transfer data to all DACs at one time.  
The DAC8412 and DAC8413 are quad, 12-bit voltage output  
DACs with readback capability. Built using a complementary  
BiCMOS process, these monolithic DACs offer the user very  
high package density.  
An active low RESET loads all DAC output registers to mid-  
scale for the DAC8412 and zero scale for the DAC8413.  
The DAC8412/DAC8413 are available in 28-lead plastic DIP,  
PLCC and LCC packages. They can be operated from a wide  
variety of supply and reference voltages with supplies ranging  
from single +5 V to 15 V, and references from +2.5 V to 10 V.  
Power dissipation is less than 330 mW with 15 V supplies and  
only 60 mW with a +5 V supply.  
Output voltage swing is set by the two reference inputs VREFH  
and VREFL. By setting the VREFL input to 0 V and VREFH to a  
positive voltage, the DAC will provide a unipolar positive output  
range. A similar configuration with VREFH at 0 V and VREFL at  
a negative voltage will provide a unipolar negative output range.  
Bipolar outputs are configured by connecting both VREFH and  
VREFL to nonzero voltages. This method of setting output voltage  
range has advantages over other bipolar offsetting methods because  
it is not dependent on internal and external resistors with different  
temperature coefficients.  
For MIL-STD-883 applications, contact your local ADI sales  
office for the DAC8412/DAC8413/883 data sheet which specifies  
operation over the –55°C to +125°C temperature range. All  
883 parts are also available on Standard Military Drawings  
5962-91 76401MXA through 76404M3A.  
0.500  
0.375  
+125؇C  
+25؇C  
0.250  
0.125  
0
–55؇C  
–0.125  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
–0.250  
–0.375  
–0.500  
= +10V  
= –10V  
REFH  
REFL  
T
= –55؇C, +25؇C, +125؇C  
A
0
512 1024  
1536  
2046  
2548 2560  
3072  
4096  
DIGITAL INPUT CODE – Decimal  
Figure 1. INL vs. Code Over Temperature  
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
DAC8412/DAC8413–SPECIFICATIONS  
(@ VDD = +15.0 V, VSS = –15.0 V, VLOGIC = +5.0 V, VREFH = +10.0 V, VREFL = –10.0 V,  
–40؇C TA +85؇C unless otherwise noted. See Note 1 for supply variations.)  
ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Integral Nonlinearity Error  
INL  
INL  
E Grade  
F Grade  
0.25  
0.5  
1
LSB  
LSB  
Differential Nonlinearity Error  
Min-Scale Error  
Full-Scale Error  
Min-Scale Tempco  
Full-Scale Tempco  
Linearity Matching  
DNL  
VZSE  
VFSE  
TCVZSE  
TCVFSE  
Monotonic Over Temperature  
RL = 2 kΩ  
–1  
LSB  
LSB  
LSB  
ppm/°C  
ppm/°C  
LSB  
2
2
RL = 2 kΩ  
RL = 2 kΩ  
RL = 2 kΩ  
Adjacent DAC Matching  
15  
20  
1
REFERENCE  
Positive Reference Input Voltage Range  
Negative Reference Input Voltage Range  
Reference High Input Current  
Reference Low Input Current  
Large Signal Bandwidth  
Note 2  
Note 2  
VREFL + 2.5  
VDD – 2.5  
V
V
mA  
mA  
kHz  
–10  
–2.75  
0
V
REFH – 2.5  
IREFH  
IREFL  
BW  
+1.5  
+2  
160  
+2.75  
+2.75  
–3 dB, VREFH = 0 V to +10 V p-p  
AMPLIFIER CHARACTERISTICS  
Output Current  
Settling Time  
Slew Rate  
Analog Crosstalk  
IOUT  
tS  
SR  
RL = 2 k, CL = 100 pF  
to 0.01%, 10 V Step, RL = 1 kΩ  
10% to 90%  
–5  
+5  
mA  
µs  
V/µs  
dB  
10  
2.2  
72  
LOGIC CHARACTERISTICS  
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Output High Voltage  
Logic Output Low Voltage  
Logic Input Current  
VINH  
VINL  
VOH  
VOL  
IIN  
TA = +25°C  
2.4  
2.4  
V
V
V
V
µA  
pF  
nV-s  
TA = +25°C  
0.8  
IOH = +0.4 mA  
IOL = –1.6 mA  
0.4  
1
Input Capacitance  
CIN  
8
5
Digital Feedthrough3  
VREFH = +2.5 V, VREFL = 0 V  
Note 4  
LOGIC TIMING CHARACTERISTICS3  
Chip Select Write Pulsewidth  
Write Setup  
Write Hold  
Address Setup  
Address Hold  
Load Setup  
Load Hold  
Write Data Setup  
Write Data Hold  
Load Data Pulsewidth  
Reset Pulsewidth  
Chip Select Read Pulsewidth  
Read Data Hold  
Read Data Setup  
Data to Hi Z  
Chip Select to Data  
tWCS  
tWS  
tWH  
tAS  
tAH  
tLS  
80  
0
0
0
0
70  
30  
20  
0
170  
140  
130  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWCS = 80 ns  
tWCS = 80 ns  
tLH  
tWDS  
tWDH  
tLDW  
tRESET  
tRCS  
tRDH  
tRDS  
tDZ  
tWCS = 80 ns  
tWCS = 80 ns  
tRCS = 130 ns  
tRCS = 130 ns  
CL = 10 pF  
0
200  
160  
tCSD  
CL = 100 pF  
SUPPLY CHARACTERISTICS  
Power Supply Sensitivity  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
PSS  
IDD  
ISS  
14.25 V VDD 15.75 V  
VREFH = +2.5 V  
150  
12  
ppm/V  
mA  
mA  
8.5  
–6.5  
–10  
PDISS  
330  
mW  
NOTES  
1All supplies can be varied 5%, and operation is guaranteed. Device is tested with nominal supplies.  
2Operation is guaranteed over this reference range, but linearity is neither tested nor guaranteed.  
3All parameters are guaranteed by design.  
4All input control signals are specified with tr = tf = 5 ns (10% to 90% of +5 V) and timed from a voltage level of 1.6 V.  
Specifications subject to change without notice.  
REV. D  
–2–  
DAC8412/DAC8413  
(@ VDD = VLOGIC = +5.0 V ؎ 5%, VSS = 0.0 V, VREFH = +2.5 V, VREFL = 0.0 V, and VSS = –5.0 V ؎ 5%,  
VREFL = –2.5 V, –40؇C TA +85؇C unless otherwise noted. See Note 1 for supply variations.)  
ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Integral Nonlinearity Error  
INL  
INL  
INL  
INL  
E Grade  
1/2  
1
2
2
4
LSB  
LSB  
LSB  
LSB  
F Grade  
VSS = 0.0 V; E Grade2  
V
SS = 0.0 V; F Grade2  
Differential Nonlinearity Error  
Min-Scale Error  
Full-Scale Error  
Min-Scale Error  
Full-Scale Error  
DNL  
VZSE  
VFSE  
VZSE  
VFSE  
Monotonic Over Temperature  
VSS = –5.0 V  
VSS = –5.0 V  
VSS = 0.0 V  
VSS = 0.0 V  
–1  
LSB  
LSB  
LSB  
LSB  
4
4
8
8
LSB  
Min-Scale Tempco  
Full-Scale Tempco  
Linearity Matching  
TCVZSE  
TCVFSE  
100  
100  
1
ppm/°C  
ppm/°C  
LSB  
Adjacent DAC Matching  
Note 3  
REFERENCE  
Positive Reference Input Voltage Range  
Negative Reference Input Voltage Range  
VREFL + 2.5  
0
–2.5  
–1.0  
VDD – 2.5  
VREFH – 2.5  
VREFH – 2.5  
+1.0  
V
V
V
mA  
kHz  
V
SS = 0.0 V  
VSS = –5.0 V  
Code 000H  
–3 dB, VREFH = 0 V to 2.5 V p-p  
Reference High Input Current  
Large Signal Bandwidth  
IREFH  
BW  
450  
AMPLIFIER CHARACTERISTICS  
Output Current  
Settling Time  
IOUT  
tS  
SR  
RL = 2 k, CL = 100 pF  
to 0.01%, 2.5 V Step, RL = 1 kΩ  
10% to 90%  
–1.25  
+1.25  
mA  
µs  
V/µs  
7
2.2  
Slew Rate  
LOGIC CHARACTERISTICS  
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Output High Voltage  
Logic Output Low Voltage  
Logic Input Current  
VINH  
VINL  
VOH  
VOL  
IIN  
TA = +25°C  
2.4  
2.4  
V
V
V
V
µA  
pF  
TA = +25°C  
0.8  
IOH = +0.4 mA  
IOL = –1.6 mA  
0.45  
1
Input Capacitance  
CIN  
8
LOGIC TIMING CHARACTERISTICS4  
Chip Select Write Pulsewidth  
Write Setup  
Write Hold  
Address Setup  
Address Hold  
Load Setup  
Load Hold  
Write Data Setup  
Write Data Hold  
Load Data Pulsewidth  
Reset Pulsewidth  
Chip Select Read Pulsewidth  
Read Data Hold  
Read Data Setup  
Data to Hi Z  
Note 5  
tWCS  
tWS  
tWH  
tAS  
tAH  
tLS  
150  
0
0
0
0
70  
50  
20  
0
180  
150  
170  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWCS = 150 ns  
tWCS = 150 ns  
tLH  
tWDS  
tWDH  
tLDW  
tRESET  
tRCS  
tRDH  
tRDS  
tDZ  
tWCS = 150 ns  
tWCS = 150 ns  
tRCS = 170 ns  
tRCS = 170 ns  
CL = 10 pF  
200  
320  
Chip Select to Data  
tCSD  
CL = 100 pF  
SUPPLY CHARACTERISTICS  
Power Supply Sensitivity  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
PSS  
IDD  
ISS  
100  
7
ppm/V  
mA  
mA  
mW  
mW  
12  
VSS = –5.0 V  
VSS = 0 V  
VSS = –5 V  
–10  
PDISS  
60  
110  
NOTES  
1All supplies can be varied 5%, and operation is guaranteed. Device is tested with VDD = +4.75 V.  
2For single supply operation only (VREFL = 0.0 V, VSS = 0.0 V): Due to internal offset errors, INL and DNL are measured beginning at code 2 (002H).  
3Operation is guaranteed over this reference range, but linearity is neither tested nor guaranteed.  
4All parameters are guaranteed by design.  
5All input control signals are specified with tr = tf = 5 ns (10% to 90% of +5 V) and timed from a voltage level of 1.6 V.  
Specifications subject to change without notice.  
REV. D  
–3–  
DAC8412/DAC8413  
tRCS  
80ns  
CS  
CS  
tRDH  
tRDS  
t
WH  
t
R/W  
WS  
R/W  
tAS  
tAH  
A0/A1  
t
AS  
ADDRESS  
ONE  
ADDRESS  
TWO  
ADDRESS  
THREE  
ADDRESS  
FOUR  
ADDRESS  
tDZ  
HI -Z  
HI-Z  
DATA  
OUT  
DATA VALID  
t
t
LS  
LH  
tCSD  
LDAC  
Figure 2. Data Output (Read Timing)  
t
LDW  
t
t
WDS  
WDH  
DATA1  
VALID  
DATA3  
VALID  
DATA4  
VALID  
DATA2  
VALID  
tWCS  
DATA IN  
CS  
tWH  
tWS  
Figure 5. Double Buffer Mode  
R/W  
V
DD  
tAH  
tAS  
V
V
REFH  
A0/A1  
REFL  
R1  
+
+
R2  
R2  
V
C1  
tLDW  
tLH  
D1  
C2  
tLS  
+
C1  
C1  
D1  
D1  
LDAC  
V
V
REFL  
REFH  
N/C  
N/C  
V
V
V
N/C  
OUTB  
OUTA  
SS  
tWDS  
OUTC  
OUTD  
tWDH  
R3  
R3  
R3  
V
C2  
N/C  
C2  
DATA IN  
V
DD  
V
tRESET  
DGND  
RESET  
LDAC  
DB0  
LOGIC  
CS  
C2  
RESET  
A0  
A1  
Figure 3. Data WRITE (Input and Output Registers) Timing  
R/W  
DB11  
DB1  
DB2  
80ns  
R6  
DB3  
DB10  
DB9  
CS  
DB4  
R4  
R5  
R4  
DB5  
DB8  
DB7  
R1  
t
t
WH  
WS  
DB6  
*
R/W  
ONCE PER PORT  
DGND  
+
t
AS  
D1  
C1  
V
ADDRESS  
ONE  
ADDRESS  
TWO  
ADDRESS  
THREE  
ADDRESS  
FOUR  
SS  
ADDRESS  
V
= +15V, V = 15V, V  
= +10V, V  
= 0V  
DD  
SS  
REFH  
REFL  
R1 = 10, R2 = 100, R3 = 5k, R4 = 10k, R5 = 100k,  
R6 = 47FOR LCC, R6 = 100FOR DIP  
t
t
LH  
LS  
C1 = 4.7F (ONCE PER PORT), C2 = 0.01F (EACH DEVICE)  
D1 = 1N4001 OR EQUIVALENT (ONCE PER PORT)  
LDAC  
Figure 6. Burn-In Diagram  
t
t
WDS  
WDH  
DATA1  
VALID  
DATA3  
VALID  
DATA4  
VALID  
DATA2  
VALID  
DATA IN  
Figure 4. Single Buffer Mode  
REV. D  
–4–  
DAC8412/DAC8413  
ABSOLUTE MAXIMUM RATINGS  
Thermal Resistance  
(
TA = +25°C unless otherwise noted)  
Package Type  
JA* ␪  
Units  
JC  
VSS to VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +33.0 V  
SS to VLOGIC . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +33.0 V  
VLOGIC to DGND . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +7.0 V  
28-Lead Plastic DIP (P)  
28-Lead Hermetic Leadless Chip Carrier (TC) 70 28 °C/W  
28-Lead Plastic Leaded Chip Carrier (PC) 63 25 °C/W  
48 22 °C/W  
V
V
V
SS to VREFL . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +VSS–2.0 V  
REFH to VDD . . . . . . . . . . . . . . . . . . . . . . . . . +2.0 V, +33.0 V  
*θJA is specified for worst-case mounting conditions, i. e., θJA is specified for device  
in socket.  
VREFH to VREFL . . . . . . . . . . . . . . . . . . . . . . . . +2.0 V, VSS–VDD  
Current into Any Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . 15 mA  
Digital Input Voltage to DGND . . . . . –0.3 V, VLOGIC +0.3 V  
Digital Output Voltage to DGND . . . . . . . . . . –0.3 V, +7.0 V  
Operating Temperature Range  
ET, FT, EP, FP, FPC . . . . . . . . . . . . . . . . –40°C to +85°C  
AT, BT, BTC . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Dice Junction Temperature . . . . . . . . . . . . . . . . . . . . . +150°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Power Dissipation Package . . . . . . . . . . . . . . . . . . . 1000 mW  
Lead Temperature (Soldering, 60 sec) . . . . . . . . . . . . +300°C  
ORDERING INFORMATION1, 2  
INL  
(LSB)  
Military3 Temperature  
–55؇C to +125؇C  
Extended Industrial3 Temperature  
–40؇C to +85؇C  
Package  
Description  
Package  
Option  
1
1.5  
0.5  
1
DAC8412FPC  
PLCC  
LCC  
Plastic DIP  
Plastic DIP  
PLCC  
LCC  
Plastic DIP  
Plastic DIP  
P-28A  
E-28A  
N-28  
DAC8412BTC/883  
DAC8413BTC/883  
DAC8412EP  
DAC8412FP  
DAC8413FPC  
N-28  
1
P-28A  
E-28A  
N-28  
1.5  
0.5  
1
DAC8413EP  
DAC8413FP  
N-28  
NOTES  
1Die Size 0.225 × 0.165 inches, 37,125 sq. mils (5.715 × 4.191 mm, 23.95 sq. mm). Substrate should be connected to VDD; Transistor Count = 2595.  
2Burn-in is available on extended industrial temperature range parts in cerdip.  
3A complete /883 data sheet is available. For availability and burn-in information, contact your local sales office.  
CAUTION  
1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the  
device. This is a stress rating only; functional operation at or above this specification is not implied.  
Exposure to the above maximum rating conditions for extended periods may affect  
device reliability.  
2. Digital inputsand outputs are protected, however, permanent damage may occur on unprotected units  
from high-energy electrostatic fields. Keep units in conductive foam or packaging at all times until  
ready to use. Use proper antistatic handling procedures.  
WARNING!  
ESD SENSITIVE DEVICE  
3. Remove power before inserting or removing units from their sockets.  
4. Analog outputs are protected from short circuit to ground or either supply.  
REV. D  
–5–  
DAC8412/DAC8413  
PIN FUNCTION DESCRIPTIONS  
PIN CONFIGURATIONS  
Plastic DIP  
Pin Name  
Description  
1
2
3
4
5
6
VREFH  
VOUTB  
VOUTA  
VSS  
DGND  
RESET  
High-Side DAC Reference Input  
DAC B Output  
DAC A Output  
Lower-Rail Power Supply  
Digital Ground  
Reset Input and Output Registers to all 0s,  
Enabled at Active Low  
Load Data to DAC, Enabled at Active Low  
Data Bit 0, LSB  
Data Bit 1  
Data Bit 2  
Data Bit 3  
Data Bit 4  
Data Bit 5  
Data Bit 6  
Data Bit 7  
Data Bit 8  
Data Bit 9  
Data Bit 10  
Data Bit 11, MSB  
V
1
2
REFH  
OUTB  
OUTA  
28  
27  
26  
25  
24  
23  
22  
V
V
V
V
V
REFL  
V
V
OUTC  
OUTD  
DD  
3
V
4
SS  
DAC8412  
DAC8413  
5
DGND  
LOGIC  
6
RESET  
CS  
TOP VIEW  
(NOT TO SCALE)  
A0  
7
LDAC  
7
8
9
LDAC  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB8  
DB9  
DB10  
DB11  
R/W  
DB0 (LSB)  
8
21 A1  
DB1  
DB2  
DB3  
DB4  
R/W  
9
20  
19  
18  
17  
16  
15  
DB11 (MSB)  
DB10  
10  
11  
12  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DB9  
DB8  
DB5 13  
DB6  
DB7  
14  
PLCC  
4
3
2
1
28 27 26  
Active Low to Write Data to DAC. Active  
High to Readback Previous Data at Data Bit  
Pins with VLOGIC Connected to +5 V  
Address Bit 1  
Address Bit 0  
Chip Select, Enabled at Active Low  
Voltage Supply for Readback Function. Can  
be Open Circuit If Not Used  
DGND  
25  
5
6
7
8
9
V
V
DD  
24  
23  
RESET  
LOGIC  
CS  
LDAC  
21  
22  
23  
24  
A1  
A0  
CS  
DAC8412PC  
DAC8413PC  
DB0 (LSB)  
22 A0  
21  
20  
DB1  
A1  
DB2 10  
DB3 11  
R/W  
TOP VIEW  
(NOT TO SCALE)  
VLOGIC  
19 DB11 (MSB)  
12 13 14 15 16 17 18  
25  
26  
27  
28  
VDD  
Upper-Rail Power Supply  
DAC D Output  
DAC C Output  
VOUTD  
VOUTC  
VREFL  
Low-Side DAC Reference Input  
LCC  
4
3
2
1
28 27 26  
DGND  
25  
5
6
V
V
DD  
24  
23  
22  
21  
20  
RESET  
LOGIC  
7
CS  
A0  
LDAC  
DAC8412TC  
DAC8413TC  
DB0 (LSB)  
8
9
DB1  
DB2  
A1  
TOP VIEW  
(NOT TO SCALE)  
10  
R/W  
DB3 11  
19 DB11 (MSB)  
12 13 14 15 16 17 18  
REV. D  
–6–  
Typical Performance Characteristics–  
DAC8412/DAC8413  
V
V
V
= +5V  
= 0V  
DD  
SS  
+2  
+1  
0
= 0V  
REFL  
0.3  
0.2  
0.1  
+1  
0
T
= +25؇C  
A
V
V
V
T
= +15V  
= 15V  
DD  
1  
2  
V
V
V
= +15V  
= 15V  
DD  
SS  
SS  
1  
= 0V  
REFL  
= 10.0V  
REFL  
= +25؇C  
A
T
= +25؇C  
A
6
8
10  
Volts  
12  
6
7
8
9
10  
11  
12  
1
2
3
V
V
Volts  
V
Volts  
REFH  
REFH  
REFH  
Figure 7. DNL vs. VREFH  
Figure 8. DNL vs. VREFH  
Figure 9. INL vs. VREFH  
0.3  
0.4  
V
V
V
V
= +15V  
= 15V  
DD  
SS  
X+3␴  
= +10V  
= 10V  
0.1  
0.2  
0
REFH  
REFL  
+1  
X
0.1  
0
X+3  
X3␴  
0.3  
0.5  
0.7  
0.2  
0.4  
0.6  
V
V
V
= +5V  
X
V
V
V
V
= +15V  
= 15V  
DD  
SS  
DD  
1  
= 0V  
= 0V  
SS  
= +10V  
= 10V  
REFL  
REFH  
REFL  
T
= +25؇C  
A
X3␴  
1
2
3
0
0
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
T = HOURS OF OPERATION AT +125؇C  
V
Volts  
T = HOURS OF OPERATION AT +125؇C  
REFH  
Figure 10. INL vs. VREFH  
Figure 11. Full-Scale Error vs.  
Time Accelerated by Burn-In  
Figure 12. Zero-Scale Error vs.  
Time Accelerated by Burn-In  
0.3  
0.2  
V
V
V
V
= +15V  
= 15V  
V
V
V
V
= +15V  
= 15V  
DD  
SS  
DD  
SS  
= +10V  
= 10V  
= +10V  
= 10V  
REFH  
REFL  
REFH  
REFL  
0.1  
0.1  
0.3  
0.5  
0
0.2  
0.4  
DAC A  
DAC C  
DAC A  
DAC D  
DAC D  
DAC B  
DAC C  
DAC B  
0.6  
75  
0
75  
150  
75  
0
75  
150  
TEMPERATURE ؇C  
TEMPERATURE ؇C  
Figure 13. Full-Scale Error vs.  
Temperature  
Figure 14. Zero-Scale Error vs.  
Temperature  
REV. D  
–7–  
DAC8412/DAC8413  
0.37500  
0.26125  
0.18750  
0.08375  
0.500  
0.375  
0.250  
0.125  
0
0.09375  
0.18750  
0
0.125  
0.250  
0.375  
0.500  
V
V
V
V
T
= +15V  
= 15V  
DD  
SS  
V
V
T
= +10V  
= 0V  
= +25؇C  
REFH  
REFL  
= +10V  
= 10V  
REFH  
REFL  
0.23125  
0.37500  
= 55؇C, +25؇C, +125؇C  
A
A
0
512  
1024 1536  
2048 2560  
3072  
3584  
4096  
0
512  
1024 1536  
2048  
2560  
3072  
3584 4096  
DIGITAL INPUT CODE Decimal  
DIGITAL INPUT CODE Decimal  
Figure 15. Channel-to-Channel Matching  
Figure 18. INL vs. Code  
(VSUPPLY  
=
15 V)  
1.00  
2.0  
1.5  
1.0  
V
= +15V  
= 15V  
= +10V  
= 10V  
DD  
SS  
V
V
V
= +5.0V  
= 0V  
DD  
SS  
V
V
V
0.75  
0.50  
0.25  
REFH  
REFL  
= +2.5V  
REFH  
T
= +25؇C  
A
T
= +25؇C  
A
0
0.25  
0.50  
0.75  
1.00  
0.5  
0
0.5  
0
512  
1024 1536  
2048 2560  
3072  
3584  
4096  
0
511  
1023  
1535  
2047 2559  
3071 3583  
4095  
DIGITAL INPUT CODE Decimal  
DIGITAL INPUT CODE Decimal  
Figure 16. Channel-to-Channel Matching  
(VSUPPLY = +5 V/GND)  
Figure 19. IVREFH vs. Code  
13  
V
V
V
= +15V  
= 15V  
DD  
SS  
= 10V  
REFL  
10  
7
4
7  
3  
1
5
9
13  
V
Volts  
REFH  
Figure 17. IDD vs. VREFH All DACs High  
REV. D  
–8–  
DAC8412/DAC8413  
10V  
32.5mV  
15.5mV  
V
V
V
V
= +15V  
= 15V  
DD  
SS  
0
INPUT  
5V  
+5V  
INPUT  
0
= +10V  
= 10V  
REFH  
REFL  
T
= +25؇C  
A
1V/  
DIV  
V
V
V
V
= +15V  
= 15V  
5mV/DIV  
2mV/DIV  
DD  
SS  
1 LSB ERROR BAND  
V
5
V
5
EA  
= +10V  
DIV  
REFH  
DIV  
= 10V  
REFL  
TRIG'D  
T = +25؇C  
TRIG'D  
TRIG'D  
A
V
V
V
V
= +15V  
= 15V  
DD  
SS  
= +10V  
= 10V  
REFH  
REFL  
T
= +25؇C  
A
0V  
580ns  
17.5mV  
4.5mV  
1s/DIV  
9.42s  
1.96s  
2s/DIV  
18.04s  
1.96s  
2s/DIV  
18.04s  
Figure 22. Positive Slew Rate  
Figure 20. Settling Time (Positive)  
Figure 21. Settling Time (Negative)  
10V  
12  
10  
8
1.0  
V
V
V
V
T
= +15V  
= 15V  
V
V
V
V
T
= +15V  
= 15V  
DD  
SS  
DD  
SS  
0.8  
0.6  
= +10V  
= 10V  
= +10V  
= 10V  
REFH  
REFL  
REFH  
REFL  
= +25؇C  
= +25؇C  
A
A
1V/  
DIV  
EA  
V
V
V
V
= +15V  
= 15V  
DD  
SS  
6
0.4  
= +10V  
= 10V  
REFH  
REFL  
TRIG'D  
T
= +25؇C  
A
4
0.2  
2
0.0  
0
0.01  
0.2  
0.01  
0V  
580ns  
0.10  
1.00  
10.0  
100  
0.10  
1.00  
10.0  
100  
1s/DIV  
9.42s  
LOAD RESISTANCE K⍀  
LOAD RESISTANCE K⍀  
Figure 23. Negative Slew Rate  
Figure 24. DAC 8412 INL vs. Load  
Resistance  
Figure 25. DAC 8412 Output Swing  
vs. Load Resistance  
10  
100  
+PSRR  
I
DD  
6
80  
V
V
= +15V  
= 15V  
DD  
SS  
0
PSRR  
10  
2
2  
60  
+PSRR:  
V
V
= +15V؎1Vp  
= 15V  
V
V
V
V
= +15V  
= 15V  
DD  
DD  
SS  
40  
20  
0
30  
50  
SS  
PSRR:  
= 0 ؎100mV  
= 10V  
REFH  
I
V
V
V
= +15V  
= 15V؎1V  
SS  
DD  
SS  
REFL  
6  
DATA BITS = +5V  
200mV p-p  
= 10V  
REFH  
ALL DATA 0  
10  
75  
0
10  
100  
1k 10k 100k 1M 10M  
0
75  
150  
10  
100  
1k  
10k  
100k  
1M  
TEMPERATURE ؇C  
FREQUENCY Hz  
FREQUENCY Hz  
Figure 26. Small Signal Response  
Figure 27. Power Supply Current vs.  
Temperature  
Figure 28. PSRR vs. Frequency  
REV. D  
–9–  
DAC8412/DAC8413  
10.0  
0
V
V
V
V
= +15V  
= 15V  
DD  
SS  
V
V
V
V
= +15V  
= 15V  
DD  
SS  
30  
+I  
= +10V  
SC  
REFH  
= +10V  
= 10V  
REFH  
REFL  
= 10V  
1.00  
0.10  
20  
10  
REFL  
CH1 MEAN  
66.19V  
T
= +25؇C  
A
T
= +25؇C  
A
DATA = 000  
H
V
V
V
V
= +15V  
= 15V  
DD  
SS  
1
0
= +10V  
= 10V  
REFH  
REFL  
10  
20  
30  
0
T
= +25؇C  
A
I  
SC  
0.01  
20uV/DIV  
M 200s  
A CH1 12.9mV  
0.001  
1
10  
100  
1000  
10000  
25 20 15 10 5  
0
5
10 15 20 25  
NOISE FREQUENCY Hz  
V
Volts  
OUT  
Figure 29. DAC8412 Noise  
Frequency vs. Noise Density  
Figure 30. IOUT vs. VOUT  
Figure 31. Broadband Noise  
10s  
25  
+I  
V
V
V
V
= +15V  
= 0V  
SC  
DD  
SS  
20  
15  
10  
5
1V  
4s  
= +10V  
= 0V  
REFH  
REFL  
GLITCH AT DAC OUTPUT  
T
= +25؇C  
A
DATA = 800  
H
0
2
5  
10  
15  
1
I  
SC  
DEGLITCHER OUTPUT  
CH2  
1V  
20  
25  
1.86V  
6  
4  
2  
0
2
4
6
V
Volts  
OUT  
Figure 32. IOUT vs. VOUT  
Figure 33. Glitch and Deglitched Results  
OPERATION  
Introduction  
precision instrumentation control, a deglitcher circuit can be  
implemented with a standard sample-and-hold circuit. (See  
Figure 34.) When CS is enabled by synchronizing the hold  
period to be longer than the glitch tradition, the output voltage  
can be smoothed with minimum disturbance. A quad sample-  
and-hold amplifier, SMP04, has been used to illustrate the  
deglitching result. (See Figure 33.)  
The DAC8412 and DAC8413 are quad, voltage output, 12-bit  
parallel input DACs featuring a 12-bit data bus with readback  
capability. The only differences between the DAC8412 and  
DAC8413 are the reset functions. The DAC8412 resets to mid-  
scale (code 800H) and the DAC8413 resets to minimum scale  
(code 000H).  
DACOUT  
The ability to operate from a single +5 V supply is a unique fea-  
ture of these DACs.  
DACOUT'  
S/H  
Operation of the DAC8412 and DAC8413 can be viewed by  
dividing the system into three separate functional groups: the  
digital I/O and logic, the digital to analog converters and the output  
amplifiers.  
DACOUT  
DACs  
CS  
Each DAC is a voltage switched, high impedance (R = 50 k),  
R-2R ladder configuration. Each 2R resistor is driven by a pair of  
switches that connect the resistor to either VREFH or VREFL  
.
H
S
H
S/H  
S
Glitch  
DACOUT'  
Worst-case glitch occurs at the transition between half-scale  
digital code 1000 0000 0000 to half-scale minus 1 LSB, 0111  
1111 1111. It can be measured at about 2 V µs. (See Figure 33.)  
For demanding applications such as waveform generation or  
Figure 34. Deglitcher Circuit  
REV. D  
–10–  
DAC8412/DAC8413  
Reference Inputs  
The R/W input, when enabled by CS, controls the writing to and  
All four DACs share common reference high (VREFH) and refer-  
ence low (VREFL) inputs. The voltages applied to these reference  
inputs set the output high and low voltage limits of all four of  
the DACs. Each reference input has voltage restrictions with  
respect to the other reference and to the power supplies. The  
VREFL can be set at any voltage between VSS and VREFH 2.5 V,  
and VREFH can be set to any value between +VDD 2.5 V and  
VREFL + 2.5 V. Note that because of these restrictions the  
DAC8412 references cannot be inverted (i.e., VREFL cannot be  
greater than VREFH).  
reading from the input register.  
Coding  
Both the DAC8412 and DAC8413 use binary coding. The out-  
put voltage can be calculated by:  
(VREFH _VREFL) × N  
VOUT = VREFL  
+
4096  
where N is the digital code in decimal.  
RESET  
It is important to note that the DAC8412s VREFH input both  
sinks and sources current. Also the input current of both VREFH  
and VREFL are code dependent. Many references have limited  
current sinking capability and must be buffered with an ampli-  
fier to drive VREFH. The VREFL has no such special requirements.  
The RESET function can be used either at power-up or at any  
time during the DACs operation. The RESET function is inde-  
pendent of CS. This pin is active LOW and sets the DAC output  
registers to either center code for the DAC8412, or zero code  
for the DAC8413. The reset to center code is most useful when  
the DAC is configured for bipolar references and an output of  
zero volts after reset is desired.  
It is recommended that the reference inputs be bypassed with  
0.2 µF capacitors when operating with 10 V references. This  
limits the reference bandwidth.  
Supplies  
Supplies required are VSS, VDD and VLOGIC. The VSS supply can  
be set between 15 V and 0 V. VDD is the positive supply; its op-  
erating range is between +5 V and +15 V.  
Digital I/O  
See Table I for digital control logic truth table. Digital I/O consists  
of a 12-bit bidirectional data bus, two registers select inputs, A0  
and A1, a R/W input, a RESET input, a Chip Select (CS), and  
a Load DAC (LDAC) input. Control of the DACs and bus  
direction is determined by these inputs as shown in Table I.  
Digital data bits are labeled with the MSB defined as data bit  
11and the LSB as data bit 0.All digital pins are TTL/  
CMOS compatible.  
VLOGIC is the digital output supply voltage for the readback  
function. It is normally connected to +5 V. This pin is a logic  
reference input only. It does not supply current to the device.  
If you are not using the readback function, VLOGIC can be left open-  
circuit. While VLOGIC does not supply current to the DAC8412,  
it does supply currents to the digital outputs when readback  
is used.  
See Figure 35 for a simplified I/O logic diagram. The register  
select inputs A0 and A1 select individual DAC registers A”  
(binary code 00) through D(binary code 11). Decoding of  
the registers is enabled by the CS input. When CS is high no  
decoding takes place, and neither the writing nor the reading of  
the input registers is enabled. The loading of the second bank of  
registers is controlled by the asynchronous LDAC input. By tak-  
ing LDAC low while CS is enabled, all output registers can be  
updated simultaneously. Note that the tLDW required pulsewidth  
for updating all DACs is a minimum of 170 ns.  
Amplifiers  
Unlike many voltage output DACs, the DAC8412 features buff-  
ered voltage outputs. Each output is capable of both sourcing  
and sinking 5 mA at 10 volts, eliminating the need for external  
amplifiers when driving 500 pF or smaller capacitive load in  
most applications. These amplifiers are short-circuit protected.  
Table I. DAC8412/DAC8413 Logic Table  
A1  
A0  
R/W  
CS  
RS  
LDAC  
INPUT REG  
OUTPUT REG  
MODE  
DAC  
L
L
H
H
L
L
H
L
H
L
H
L
H
L
H
L
H
X
X
X
X
L
L
L
L
L
L
L
L
H
H
H
H
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
H
H
X
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
H
H
H
H
H
H
H
H
L
WRITE  
WRITE  
WRITE  
WRITE  
WRITE  
WRITE  
WRITE  
WRITE  
READ  
READ  
READ  
READ  
HOLD  
HOLD  
WRITE  
WRITE  
WRITE  
WRITE  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
Transparent  
Transparent  
Transparent  
Transparent  
WRITE INPUT  
WRITE INPUT  
WRITE INPUT  
WRITE INPUT  
READ INPUT  
READ INPUT  
READ INPUT  
READ INPUT  
A
B
C
D
A
B
C
D
A
B
C
D
All  
All  
All  
All  
L
H
H
L
L
H
H
X
X
X
X
Update all output registers  
HOLD HOLD  
H
X
X
*All registers reset to mid/zero-scale  
*All registers latched to mid/zero-scale  
g
*DAC8412 resets to midscale, and DAC8413 resets to zero scale. L = Logic Low; H = Logic High; X - Don’t Care. Input and Output registers are transparent when  
asserted.  
REV. D  
–11–  
DAC8412/DAC8413  
V
V
V
SS  
REFH  
DD  
RDDACA  
WRDACA  
RDDACB  
WRDB0  
WRDB1  
WRDB2  
WRDB3  
WRDB4  
WRDB5  
CS  
DAC A  
DAC B  
DAC C  
DAC D  
V
V
V
OUTA  
OUTB  
OUTC  
OUTD  
A0  
A1  
OUTPUT  
REGISTER  
WRDACB  
INPUT  
REGISTER WRDB6  
RDDACC  
WRDB7  
WRDB8  
WRDACC  
R/W  
WRDB9  
RDDACD  
WRDACD  
WRDB10  
WRDB11  
V
DB11..DB0  
V
REFL  
V
LOGIC  
LDAC  
RESET  
READOUTBAR  
READBACKDATAIN_DB11  
READBACKDATAIN_DB10  
READOUT  
READBACK  
DATAOUT_DB11  
DGND  
Figure 35. Simplified I/O Logic Diagram  
+15V  
39k  
Careful attention to grounding is important to accurate opera-  
tion of the DAC8412. This is not because the DAC8412 is  
more sensitive than other 12-bit DACs, but because with four  
outputs and two references there is greater potential for ground  
loops. Since the DAC8412 has no analog ground, the ground  
must be specified with respect to the reference.  
+15V  
V
DD  
6.2⍀  
V
REFH  
BALANCE  
100k⍀  
0.2F  
Reference Configurations  
DAC8412  
OR  
DAC8413  
AD688 FOR ؎10V  
AD588 FOR ؎ 5V  
Output voltage ranges can be configured as either unipolar or  
bipolar, and within these choices a wide variety of options exists.  
The unipolar configuration can be either positive or negative  
voltage output, and the bipolar configuration can be either sym-  
metrical or nonsymmetrical.  
0.1F  
//10F  
GAIN  
100k⍀  
6.2⍀  
V
REFL  
0.2F  
V
SS  
1F  
+15V  
+15V  
15V  
؎5 OR ؎10V OPERATION  
+
V
V
REFH  
Figure 37. Symmetrical Bipolar Operation  
DD  
INPUT  
OP400  
OUTPUT  
TRIM  
Figure 37 (Symmetrical Bipolar Operation) shows the DAC8412  
configured for 10 V operation. Note: See the AD688 data  
sheet for a full explanation of reference operation. Adjustments may  
not be required for many applications since the AD688 is a very  
high accuracy reference. However if additional adjustments are  
required, adjust the DAC8412 full scale first. Begin by loading  
the digital full-scale code (FFFH), and then adjust the Gain  
Adjust potentiometer to attain a DAC output voltage of 9.9976 V.  
Then, adjust the Balance Adjust to set the center scale output  
voltage to 0.000 V.  
0.2F  
DAC8412  
OR  
DAC8413  
REF10  
0.1F  
//10F  
10k⍀  
V
REFL  
V
SS  
+10V OPERATION  
15V  
Figure 36. Unipolar +10 V Operation  
REV. D  
–12–  
DAC8412/DAC8413  
The 0.2 µF bypass capacitors shown at the reference inputs  
in Figure 37 should be used whenever 10 V references are  
used. Applications with single references or references to 5 V  
may not require the 0.2 µF bypassing. The 6.2 resistor in series  
with the output of the reference amplifier is to keep the amplifier  
from oscillating with the capacitive load. We have found that this is  
large enough to stabilize this circuit. Larger resistor values are  
acceptable, provided that the drop across the resistor doesnt  
exceed a VBE. Assuming a minimum VBE of 0.6 V and a maxi-  
mum current of 2.75 mA, then the resistor should be under  
200 for the loading of a single DAC8412.  
Figure 38 shows the DAC8412 configured for 10 V to 0 V  
operation. A REF08 with a 10 V output is connected directly  
to VREFL for the reference voltage.  
Single +5 V Supply Operation  
For operation with a +5 V supply, the reference voltage should be  
set between 1.0 V and +2.5 V for optimum linearity. Figure  
39 shows a REF43 used to supply a +2.5 V reference voltage.  
The headroom of the reference and DAC are both sufficient to  
support a +5 V supply with 5% tolerance. VDD and VLOGIC  
should be connected to the same supply. Separate bypassing  
to each pin should also be used.  
Using two separate references is not recommended. Having two  
references could cause different drifts with time and tempera-  
ture; whereas with a single reference, most drifts will track.  
+5V  
10F  
0.01F  
Unipolar positive full-scale operation can usually be set with a  
reference with the correct output voltage. This is preferable to  
using a reference and dividing down to the required value. For a  
10 V full-scale output, the circuit can be configured as shown  
in Figure 38. In this configuration the full-scale value is set first  
by adjusting the 10 kresistor for a full-scale output of 9.9976 V.  
INPUT  
V
DD  
V
OUTPUT  
REFH  
REF43  
0.2F  
DAC8412  
OR  
DAC8413  
TRIM  
0.1F  
//10F  
10k⍀  
GND  
V
REFL  
10k  
V
SS  
ZERO TO +2.5V OPERATION  
SINGLE +5V SUPPLY  
V
V
DD  
REFH  
TRIM  
OUTPUT  
DAC8412  
OR  
DAC8413  
REF08  
0.1F  
//10F  
GND  
Figure 39. +5 V Single Supply Operation  
0.2F  
V
REFL  
0.01F  
10F  
V
SS  
ZERO TO 10V OPERATION  
15V  
Figure 38. Unipolar –10 V Operation  
REV. D  
–13–  
DAC8412/DAC8413  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
28-Position Leadless Chip Carrier  
(TC Suffix)  
0.300 (7.62)  
BSC  
0.075  
(1.91)  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.458 (11.63)  
0.442 (11.23)  
SQ  
0.150  
(3.51)  
BSC  
0.015 (0.38)  
MIN  
0.095 (2.41)  
0.075 (1.90)  
4
26  
28  
25  
5
0.028 (0.71)  
0.022 (0.56)  
1
0.458  
0.011 (0.28)  
0.007 (0.18)  
R TYP  
TOP  
VIEW  
(11.63)  
MAX  
SQ  
BOTTOM  
VIEW  
0.050  
(1.27)  
BSC  
0.075  
(1.91)  
REF  
19  
11  
18  
12  
45؇ TYP  
0.200  
(5.08)  
BSC  
0.088 (2.24)  
0.054 (1.37)  
0.055 (1.40)  
0.045 (1.14)  
28-Lead PLCC (P-28A)  
(PC Suffix)  
0.180 (4.57)  
0.165 (4.19)  
0.048 (1.21)  
0.042 (1.07)  
0.056 (1.42)  
0.025 (0.63)  
0.015 (0.38)  
0.042 (1.07)  
0.048 (1.21)  
0.042 (1.07)  
4
26  
25  
5
PIN 1  
IDENTIFIER  
0.021 (0.53)  
0.013 (0.33)  
0.430 (10.92)  
0.390 (9.91)  
0.050  
(1.27)  
BSC  
TOP VIEW  
(PINS DOWN)  
0.032 (0.81)  
0.026 (0.66)  
11  
19  
12  
18  
0.020  
(0.50)  
R
0.040 (1.01)  
0.025 (0.64)  
0.456 (11.58)  
SQ  
0.450 (11.43)  
0.495 (12.57)  
0.110 (2.79)  
0.085 (2.16)  
SQ  
0.485 (12.32)  
28-Lead Epoxy DIP (N-28)  
(P Suffix)  
1.565 (39.70)  
1.380 (35.10)  
28  
15  
0.580 (14.73)  
0.485 (12.32)  
1
14  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
0.625 (15.87)  
0.600 (15.24)  
0.250  
(6.35)  
MAX  
0.195 (4.95)  
0.125 (3.18)  
0.150  
(3.81)  
MIN  
0.015 (0.381)  
0.008 (0.204)  
0.200 (5.05)  
0.125 (3.18)  
0.100  
(2.54)  
BSC  
0.070  
(1.77)  
MAX  
0.022 (0.558)  
0.014 (0.356)  
SEATING  
PLANE  
REV. D  
–14–  

相关型号:

DAC8412AT

Quad, 12-Bit DAC Voltage Output with Readback
ADI

DAC8412AT-883C

Quad, 12-Bit DAC Voltage Output with Readback
ADI

DAC8412AT/883

12-Bit Digital-to-Analog Converter
ETC

DAC8412AT/883C

Quad, 12-Bit DAC Voltage Output with Readback
ADI

DAC8412AT883C

Quad, 12-Bit DAC Voltage Output with Readback
ADI

DAC8412BT-883C

Quad, 12-Bit DAC Voltage Output with Readback
ADI

DAC8412BT/883

12-Bit Digital-to-Analog Converter
ETC

DAC8412BT/883C

Quad, 12-Bit DAC Voltage Output with Readback
ADI

DAC8412BT883C

Quad, 12-Bit DAC Voltage Output with Readback
ADI

DAC8412BTC-883C

Quad, 12-Bit DAC Voltage Output with Readback
ADI

DAC8412BTC/883

Quad, 12-Bit DAC Voltage Output with Readback
ADI

DAC8412BTC/883C

Quad, 12-Bit DAC Voltage Output with Readback
ADI