DAC8426AR/883 [ADI]

IC SERIAL INPUT LOADING, 3 us SETTLING TIME, 8-BIT DAC, CDIP20, CERAMIC, DIP-20, Digital to Analog Converter;
DAC8426AR/883
型号: DAC8426AR/883
厂家: ADI    ADI
描述:

IC SERIAL INPUT LOADING, 3 us SETTLING TIME, 8-BIT DAC, CDIP20, CERAMIC, DIP-20, Digital to Analog Converter

CD 输入元件 转换器
文件: 总12页 (文件大小:261K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad 8-Bit Voltage Out CMOS DAC  
Complete with Internal 10 V Reference  
a
DAC8426  
FEATURES  
offering a 25 ppm/°C temperature coefficient and 5 mA of exter-  
No Adjustm ents Required, Total Error ؎1 LSB Max  
Over Tem perature  
Four Voltage-Output DACs on a Single Chip  
Internal 10 V Bandgap Reference  
Operates from Single ؉15 V Supply  
Fast 50 ns Data Load Tim e, All Tem peratures  
Pin-for-Pin Replacem ent for PM-7226 and AD7226,  
Elim inates External Reference  
nal load driving capability.  
T he DAC8426 contains four 8-bit voltage-output CMOS D/A  
converters on a single chip. A 10 V output bandgap reference  
sets the output full-scale voltage. T he circuit also includes four  
input latches and interface control logic.  
One of the four latches, selected by the address inputs, is loaded  
from the 8-bit data bus input when the write strobe is active  
low. All digital inputs are T T L/CMOS (5 V) compatible. T he  
on-board amplifiers can drive up to 10 mA from either a single  
or dual supply. T he on-board reference that is always connected  
to the internal DACs has 5 mA available to drive external devices.  
APPLICATIONS  
Process Controls  
Multichannel Microprocessor Controlled:  
System Calibration  
Op Am p Offset and Gain Adjust  
Level and Threshold Setting  
Its compact size, low power, and economical cost-per-channel,  
make the DAC8426 attractive for applications requiring mul-  
tiple D/A converters without sacrificing circuit-board space. Sys-  
tem reliability is also increased due to reduced parts count.  
PMIs advanced oxide-based, silicon-gate, CMOS process al-  
lows the DAC8426s analog and digital circuitry to be manufac-  
tured on the same chip. T his, coupled with PMI’s highly stable  
thin-film R-2R resistor ladder, aids in matching and tempera-  
ture tracking between DACs.  
GENERAL D ESCRIP TIO N  
T he DAC8426 is a complete quad voltage output D/A converter  
with internal reference. T his product fits directly into any exist-  
ing 7226 socket where the user currently has a 10 V external  
reference. T he external reference is no longer necessary. T he  
internal reference of the DAC8426 is laser-trimmed to ±0.4%  
FUNCTIO NAL BLO CK D IAGRAM  
REV. C  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
(V = +15 V ؎ 10%, AGND = DGND = 0 V, V = 0 V, T = 55؇C to +125؇C  
applies for DAC8426AR/BR, T = 40؇C to +85؇C applies for DAC8426ER/EP/FR/FP/FS, unless otherwise noted.)  
DAC8426–SPECIFICATIONS  
DD  
SS  
A
A
P aram eter  
Sym bol  
Conditions  
Min Typ  
Max  
Units  
ST AT IC PERFORMANCE  
Resolution  
N
T UE  
8
Bits  
T otal Unadjusted Error1  
Includes Reference  
A, E  
B, F  
A, E  
B, F  
±1  
±2  
±1/2  
±1  
±1  
LSB  
LSB  
LSB  
LSB  
LSB  
ppm/°C  
mV  
Relative Accuracy  
INL  
Differential Nonlinearity2  
Full-Scale T emperature Coefficient  
Zero Scale Error  
Zero Scale Error  
T emperature Coefficient  
DNL  
T CGFS  
VZSE  
Includes Reference  
25  
10  
20  
T CVZS  
Dual Supply  
No Load  
VSS = –5 V  
µV/°C  
REFERENCE OUT PUT  
Output Voltage  
VREFOUT  
A, E  
B, F  
9.96  
9.92  
20  
10.04  
10.08  
V
V
T emperature Coefficient  
Load Regulation  
Line Regulation  
T CVREFOUT  
LDREG  
LNREG  
en rms  
IREFOUT  
ppm/°C  
%/mA  
%/V  
µV p-p  
mA  
IL = 5 mA  
VDD ±10%  
f = 0.1 Hz to 10 Hz  
VREFOUT < 40 mV  
0.02  
0.008  
3
0.1  
0.04  
10  
Output Noise3  
Output Current  
5
7
DIGIT AL INPUT S  
Logic Input “0”  
Logic Input “1”  
Input Current  
VINL  
VINH  
IIN  
0.8  
V
V
µA  
pF  
2.4  
VIN = 0 V or VDD  
0.1  
4
10  
8
Input Capacitance3  
CIN  
POWER SUPPLIES  
Positive Supply Current4  
Negative Supply Current4  
Power Dissipation5  
IDD  
ISS  
PDISS  
PSS  
6
4
90  
14  
10  
210  
mA  
mA  
mW  
%/%  
Dual Supply  
VSS = –5 V  
Power Supply Sensitivity  
VDD = ±5%  
0.0002 0.01  
V = +15 V ؎ 10%, AGND = DGND = 0 V, V = 0 V, T = 55؇C to +125؇C applies for  
DAC8426AR/BR, T = 40؇C to +85؇C applies for DAC8426ER/EP/FR/FP/FS, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
DD  
SS  
A
A
P aram eter  
Sym bol  
Conditions  
Min  
Typ6 Max  
Units  
DAC OUT PUT  
Output Current (Source)3  
Output Current (Sink)3  
Minimum Load Resistance  
IOUTSOURCE  
IOUTSINK  
RL(MIN)  
Digital In = All Ones  
Digital In = All Zeroes VSS = –5 V  
Digital In = All Ones  
10  
350  
2
mA  
µA  
kΩ  
450  
DYNAMIC PERFORMANCE3  
VOUT Slew Rate  
VOUT Settling T ime  
(Positive or Negative)  
Digital Crosstalk  
SR  
tS  
4
3
V/µs  
µs  
T o ±1/2 LSB, RL = 2 kΩ  
Q
10  
nVs  
SWIT CHING CHARACT ERIST ICS3  
Address T o Write Setup T ime  
Address T o Write Hold T ime  
Data Valid T o Write Setup T ime  
Data Valid T o Write Hold T ime  
Write Pulse Width  
tAS  
0
0
70  
10  
50  
ns  
ns  
ns  
ns  
ns  
tAH  
tDS  
tDH  
tWR  
NOT ES  
1Includes Full-Scale Error, Relative Accuracy, and Zero Code Error. Note ±1 LSB = ±0.39% error.  
2All devices guaranteed monotonic over the full operating temperature range.  
3Guaranteed and not subject to production test.  
4Digital inputs VIN = VINL or VINH ; VOUT and VREFOUT unloaded.  
5PDISS calculated by IDD × VDD  
.
6T ypicals represent measured characteristics at T A = +25°C.  
Specifications subject to change without notice.  
–2–  
REV. C  
DAC8426  
ABSO LUTE MAXIMUM RATINGS  
CAUTIO N  
VDD to AGND or DGND . . . . . . . . . . . . . . . . . –0.3 V, +17 V  
VSS to AGND or DGND . . . . . . . . . . . . . . . . . . . . . –7 V, VDD  
VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +24 V  
AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V, +5 V  
Digital Input Voltage to DGND . . . . . . . . . . . . . 0.3 V, VDD  
VREFOUT to AGND1 . . . . . . . . . . . . . . . . . . . . . –0.3 V, VDD  
VOUT to AGND1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSS, VDD  
Operating T emperature  
Military AR/BR . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Extended Industrial ER/EP/FR/FP/FS . . . . –40°C to +85°C  
Maximum Junction T emperature . . . . . . . . . . . . . . . . +150°C  
Storage T emperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature (Soldering, 60 sec) . . . . . . . . . . . . +300°C  
1. Do not apply voltages higher than VDD or less than VSS po-  
tential on any terminal.  
2. T he digital control inputs are zener-protected; however,  
permanent damage may occur on unprotected units from  
high-energy electrostatic fields. Keep units in conductive  
foam at all times until ready to use.  
3. Do not insert this device into powered sockets. Remove  
power before insertion or removal.  
4. Stresses above those listed under “Absolute Maximum Rat-  
ings” may cause permanent damage to device.  
P IN CO NNECTIO NS  
TH ERMAL RESISTANCE  
20-P in Cer dip  
(R Suffix)  
2
P ackage Type  
JA  
JC  
Units  
20-P in Epoxy D IP  
(P Suffix)  
20-Pin Cerdip (R)  
20-Pin Plastic DIP (P)  
20-Pin SOL(S)  
70  
61  
80  
7
24  
22  
°C/W  
°C/W  
°C/W  
20-P in SO L  
(S Suffix)  
NOT ES  
1Outputs may be shorted to any terminal provided the package power dissipation  
is not exceeded. T ypical output short-circuit current to AGND is 50 mA.  
2θJA is specified for worst case mounting conditions, i.e., θJA is specified for de-  
vice in socket for cerdip and P-DIP packages; θJA is specified for device sol-  
dered to printed circuit board for SOL package.  
O RD ERING GUID E 1  
Tem perature Range  
Model  
Total Unadjusted Error  
P ackage D escription  
DAC8426AR2  
DAC8426ER  
DAC8426EP  
DAC8426BR2  
DAC8426FR  
DAC8426FP  
DAC8426FS3  
±1 LSB  
±1 LSB  
±1 LSB  
±2 LSB  
±2 LSB  
±2 LSB  
±2 LSB  
–55°C to +125°C  
–40°C to +85°C  
–40°C to +85°C  
–55°C to +125°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
20-Pin Cerdip (Q-20)  
20-Pin Cerdip (Q-20)  
20-Pin Plastic DIP (N-20)  
20-Pin Cerdip (Q-20)  
20-Pin Cerdip (Q-20)  
20-Pin Plastic DIP (N-20)  
20-Lead SOL (R-20)  
NOT ES  
1Burn-in is available on commercial and industrial temperature range parts in cerdip, plastic DIP, and T O-can packages.  
2For devices processed in total compliance to MIL-ST D-883, add /883 after part number. Consult factory for 883 data sheet.  
3For availability and burn-in information on SO and PLCC packages, contact your local sales office.  
Burn-In Circuit  
REV. C  
–3–  
DAC8426  
D ICE CH ARACTERISTICS  
1. VOUT B  
2. VOUT A  
3. VSS  
4. VREF OUT  
5. AGND  
6. DGND  
7. DB7 (MSB)  
8. DB6  
11. DB3  
12. DB2  
13. DB1  
14. DB0 (LSB)  
15. WR  
16. A1  
17. A0  
18. VDD  
9. DB5  
10. DB4  
19. VOUT D  
20. VOUT C  
DIE SIZE 0.129 × 0.152 inch, 19,608 sq. m ils  
(3.28 × 3.86 m m , 12.65 sq. m m )  
at V = +15 V ؎ 5%; V = AGND = DGND = 0 V; unless otherwise specified. T = +25؇C. All specifications  
WAFER TEST LIMITS  
DD  
SS  
A
apply for DACs A, B, C, and D.  
D AC8426GBC  
Lim its  
P aram eter  
Sym bol  
Conditions  
Units  
T otal Unadjusted Error  
Relative Accuracy  
Differential Nonlinearity  
Full-Scale Error  
T UE  
INL  
DNL  
GFSE  
VZSE  
±2  
±1  
±1  
±1  
±20  
10  
10.04  
0.1  
0.04  
5
2.4  
0.8  
±1  
LSB max  
LSB max  
LSB max  
LSB max  
mV max  
mA min  
V max  
%/mA max  
%/V max  
mA min  
V min  
Zero Code Error  
DAC Output Current  
Reference Output Voltage  
Load Regulation  
Line Regulation  
Reference Output Current  
Logic Inputs High  
I
V
OUT SOURCE  
REFOUT  
Digital In = All Ones  
No Load  
IL = 5 mA  
VDD = ±10 V  
VREFOUT < 40 mV  
LDREG  
LNREG  
IREFOUT  
VINH  
VINL  
IIN  
IDD  
ISS  
Logic Inputs Low  
V max  
Logic Input Current  
Positive Supply Current  
Negative Supply Current  
VIN = 0 V or VDD  
VIN = VINL or VINH  
VIN = VINL or VINH’ VSS = –5 V  
µA max  
mA max  
mA max  
14  
10  
NOT E  
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed  
for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the DAC8426 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. C  
–4–  
Typical Performance Characteristics–DAC8426  
Channel-to-Channel Matching (DACs  
A, B, C, D, Superim posed)  
Relative Accuracy vs. Code  
at TA = –55°C, +25°C, +125°C  
(All Superim posed)  
Zero Code Error vs. Tem perature  
Broadband Noise (DC to 200 kHz)  
Long Term Drift Accelerated by  
Burn-In  
VOUT Noise Density vs. Frequency  
V
(0)  
OUT  
V  
PSRR(+) = –20 LOG  
VDD = +15 V ؎1 VP, VSS = 0 V  
(0)  
,
DD  
V
OUT  
V  
PSRR(–) = –20 LOG  
,
SS  
VDD = +15 V, VSS = –4 V ؎1 VP  
Power Supply Current vs.  
Tem perature  
PSRR vs. Frequency  
REV. C  
–5–  
DAC8426–Typical Performance Characteristics  
Output Im pedance (VREFOUT)  
vs. Frequency  
VREFOUT Load Regulation  
vs. Tem perature  
VREFOUT Error from 10.000 V  
vs. Tem perature  
VREFOUT Start Up  
VREFOUT Line Regulation vs. Tem perature  
REV. C  
–6–  
DAC8426  
P ARAMETER D EFINITIO NS  
TO TAL UNAD JUSTED ERRO R (TUE)  
Table I. D AC Control Logic Truth Table  
T his specification includes the Full-Scale-Error, Relative Accu-  
racy Zero-Code-Error and the internal reference voltage. T he  
ideal Full-Scale output voltage is 10 V minus 1 LSB which  
equals 9.961 volts. Each LSB equals 10 V × (1/256) = 0.039 volts.  
Logic Control  
A1  
D AC8426  
O peration  
WR  
A0  
H
X
X
No Operation  
Device Not Selected  
DAC A T ransparent  
DAC A Latched  
DAC B T ransparent  
DAC B Latched  
DAC C T ransparent  
DAC C Latched  
DAC D T ransparent  
DAC D Latched  
D IGITAL CRO SSTALK  
L
g
L
g
L
g
L
g
L
L
L
L
H
H
H
H
L
L
H
H
L
L
H
H
Digital crosstalk is the signal coupled to the output of a DAC  
due to a changing digital input from adjacent DACs being up-  
dated. It is specified in nano-Volt-seconds (nVs).  
CIRCUIT D ESCRIP TIO N  
T he DAC8426 is a complete quad 8-bit D/A converter. It con-  
tains an internal bandgap reference, four voltage switched R-2R  
ladder DACs, four DAC latches, four output buffer amplifiers,  
and an address decoder. All four DACs share the internal ten  
volt reference and analog ground(AGND). Figure 1 provides an  
equivalent DAC plus buffer schematic.  
L = Low State, H = High State, X = Don’t Care  
Figure 1. Sim plified Circuit Configuration for One DAC.  
(Switches Are Shown for All “1s” on the Digital Inputs.)  
T he eleven digital inputs are compatible with both T T L and 5 V  
(or higher) CMOS logic. T able I shows the DAC control logic  
truth table for WR, A1, and A0 operation. When WR is active  
low the input latch of the selected DAC is transparent, and the  
DACs output responds to the data present on the eight digital  
data inputs (DBx). T he data (DBx) is latched into the ad-  
dressed DACs latch on the positive edge of the WR control sig-  
nal. T he important timing requirements are shown in the Write  
Cycle T iming Diagram, Figure 2.  
Figure 2. Write Cycle Tim ing Diagram  
the design of the internal DAC switching to minimize transients  
on the reference voltage terminal (VREFOUT ). Other devices  
connected to this reference terminal should have well behaved  
input loading characteristics. D/A converters such as the PMI  
PM7226A have been designed to minimize reference input tran-  
sient currents and can be directly connected to the DAC8426  
10 V reference. Devices exhibiting large current transients due  
to internal switching should be buffered with an op amp to  
maintain good overall system noise performance. A 10 µF refer-  
ence output bypass capacitor is required.  
INTERNAL 10 VO LT REFERENCE  
T he internal 10 V bandgap reference of the DAC8426 is trimm-  
ed to the output voltage and temperature drift specifications.  
T his internal reference is connected to the reference inputs of  
the four internal 8-bit D/A converters. T he output terminal of  
the internal 10 V reference is available on pin 4. T he 10 V out-  
put of the reference is produced with respect to the AGND pin.  
T his reference output can be used to supply as much as 5 mA of  
additional current to external devices. Care has been taken in  
BUFFER AMP LIFIER SECTIO N  
T he four internal unity-gain voltage buffers provide low output  
impedance capable of sourcing 5 mA or sinking 350 µA. Typical  
output slew rates of ±4 V/µs are achieved with 10 V full-scale out-  
put changes and RL = 2 k. Figure 3 photographs show large sig-  
nal and settling time response. Capacitive loads to 3300 pF  
maximum, and resistive loads to 2 kminimum can be applied.  
REV. C  
–7–  
DAC8426  
a) Large Signal  
b) Settling Tim e Response (Negative Transition)  
Test Conditions, All Photos:  
DD = +15 V  
V
CREFOUT = 10 F  
RL = 2 k⍀  
Digital Input Sequence 0, 255, 0  
c) Settling Tim e Response (Positive Transition)  
Figure 3. Dynam ic Response  
four output buffer amplifiers are connected to VSS. Operating  
the DAC8426 from dual supplies (VDD = +15 V and VSS = –5 V)  
improves negative going output settling time near zero volts.  
T he outputs can withstand an indefinite short-circuit to AGND  
to typically 50 mA. T he output may also be shorted to any volt-  
age between VDD and VSS; however, care must be taken to not  
exceed the device maximum power dissipation.  
When operating single supply (VDD = +15 V and VSS = 0 V) the  
output sink current decreases as the output approaches zero  
voltage. Within 200 mV of AGND (single-supply operation) the  
internal sinking capability appears resistive at a value of approxi-  
mately 1200 . T he buffer amplifier output current and voltage  
characteristics are plotted in Figure 5.  
T he amplifier’s emitter follower output stage consists of an in-  
trinsic NPN bipolar transistor with a 400 µA NMOS pull-down  
current-source load connected to VSS. T his circuit configuration  
shown in Figure 4 enables the output amplifier to develop out-  
put voltages very close to AGND. Only the negative supply of the  
REV. C  
–8–  
DAC8426  
AP P LICATIO NS SETUP  
UNIP O LAR O UTP UT O P ERATIO N  
T he output voltage appearing at any output VOUT is equal to the  
internal 10 V reference multiplied by the decimal value of the  
latched digital input divided by 28 (= 256). In equation form:  
One additional characteristic guaranteed is a DNL of ±1 LSB  
on all grades. T he DAC8426 is therefore guaranteed to be mon-  
otonic. In the situation where a continuously positive 1 LSB  
digital increment is applied, the output voltage will always in-  
crease in value, never decrease. T his is very important is servo  
applications and other closed-loop feedback systems. Finally, in  
the typical characteristic curves, long term output voltage drift  
(stability) is provided.  
VOUT(D) = D/256 × 10 V  
where D = 010 to 25510  
BIP O LAR O UTP UT O P ERATIO N  
An external op amp plus two resistors can easily convert any  
DAC output to bipolar output voltage swings. Figure 6 shows all  
four DACs output operating in bipolar mode. This is the general  
expression describing the bipolar output transfer equation:  
VOUT(D) = [(1 +R2/R1) × D/256 × 10 V] –R2/R1 × 10 V,  
where D = 010 to 25510  
If R1 = R2, then VOUT becomes:  
VOUT (D) = (D/128–1) × 10 V  
T able III lists various output voltages with R1 = R2 versus digital  
input code. T his coding is considered offset binary. Note that  
the LSB step size is now 20 V/256 = 0.078 V, twice as large as  
the unipolar output case previously discussed. In order to minimize  
gain and offset errors, choose R1 and R2 to match and track  
within 0.1% over the selected operating temperature range  
of interest.  
Figure 4. Am plifier Output Stage  
Note that the maximum possible output is 1 LSB less than the  
internal 10 V reference, that is, 255/256 × 10 V = 9.961 V.  
T able II lists output voltages for a given digital input. T he total  
unadjusted error (T UE) specification of the product grade used  
determines the output tolerances of the values listed in T able II.  
For example, a ±2 LSB grade DAC8426FP loaded with decimal  
12810 (half-scale) would have a guaranteed output voltage oc-  
curring in the range of 5 V ±2 LSB, which is 5 V ±(2 × 10 V/256)  
= 5 V ±0.078 V. T herefore VOUT is guaranteed to occur in the  
following range:  
Table II. Unipolar O utput Voltage as a Function of  
D igital Input Code  
D igital Input  
Code  
Analog O utput  
Voltage (= D /256 × 10 V)  
255  
254  
129  
128  
127  
1
9.961 V  
9.922 V  
5.039 V  
5.000 V  
4.961 V  
0.039 V  
0.000 V  
Full-Scale (FS)  
FS-1 LSB  
4.922 V VOUT(128) 5.078 V  
Half-Scale  
1 LSB  
Zero-Scale  
0
O FFSETTING AGND  
Since the DAC ladder and bandgap reference are terminated at  
AGND, it is possible to offset AGND positive with respect to  
DGND. T he 10 V output span remains if a positive offset is ap-  
plied to AGND. T he offset voltage source connected to AGND  
must be capable of sinking 14 mA. AGND cannot be taken  
negative with respect to DGND; this would forward bias an in-  
ternal diode. Allowance must be made at VDD to maintain 3.5 V  
of headroom above VREFOUT . T his connection setup is useful  
in single supply applications where virtual ground needs to be  
slightly positive with respect to ground. In this application con-  
nect VSS to DGND to take advantage of the extra buffer output  
current sinking capability when the DAC output is programmed  
to all zeros code, see Figure 7.  
Figure 5. DAC Output Current Sink  
For the top grade DAC8426EP ±1 LSB total unadjusted error  
(TUE), the guaranteed range is 4.961 V VOUT (12810) 5.039 V.  
T hese tolerances provide the worst case analysis including tem-  
perature changes.  
REV. C  
–9–  
DAC8426  
Table III. Bipolar O utput Voltage as a Function of D igital  
Input Code  
D igital Input  
Code  
Analog O utput  
Voltage (= D /256 × 10 V)  
255  
254  
129  
128  
127  
1
9.922 V  
9.844 V  
0.078 V  
0.000 V  
–0.078 V  
–9.922 V  
–10.000 V  
Full-Scale (FS)  
FS-1 LSB  
Zero-Scale  
0
Neg Full-Scale  
Figure 7. AGND Biasing Schem e Providing Offset Output  
Range  
3. Power Supply Sequencing—No special requirements exist  
with the DAC8426. However, users should be aware that of-  
ten the 5 V logic supply may be powered up momentarily  
prior to the +15 V analog supply. In this situation, the  
DAC8426 ESD input protection diodes will forward bias if  
the applied input logic is at logic “1”. No damage will result  
to the input since the DAC8426 is designed to withstand mo-  
mentary currents of up to 130 mA. T his situation will likely  
exist for any DAC or ADC operating from a separate analog  
supply.  
Figure 6. Bipolar Operation  
CO NNECTIO N AND LAYO UT GUID ELINES  
Layout and design techniques used in the interface between dig-  
ital and analog circuitry require special attention to detail. The  
following considerations should be evaluated prior to PCB layout.  
1. Return signal paths through the ground system should be  
carefully considered. High-speed digital logic current pulses  
traveling on return ground traces generate glitches that can be  
radiated to the analog circuits if the ground path layout pro-  
duces loop antennas. Ground planes can minimize this situa-  
tion. Separate digital and analog grounding areas to minimize  
crosstalk. Ideally a single common-point ground should be on  
the same PCB board as the DAC8426. T he analog ground re-  
turns should take advantage of the appropriate placement of  
power supply bypass capacitors.  
4. ESD input protection—Attention has been given in the de-  
sign of the DAC8426 to ESD sensitivity. Using the human  
body model test technique (MIL-ST D 3015.4) the DAC8426  
generally will withstand 1500 V ESD transients on all pins.  
Handling and testing prior to PCB insertion generally exposes  
ICs to the toughest environment they will experience. Once  
the IC is soldered in the PCB, it is still important to consider  
any traces that connect to PCB edge connectors. T hese traces  
should be protected with appropriate devices especially if the  
boards will experience field replacement or adjustment. Han-  
dling the exposed edge connectors by field maintenance  
people in a low humidity environment can produce 20 kV  
ESD transients which will be detrimental to almost any inte-  
grated IC connected to the edge connector.  
2. For optimum performance, bypass VDD and VSS (if using  
negative supply voltage) with 0.1 µF ceramic disk capacitors  
to shunt high-frequency spikes. Also use in parallel 6.8 µF to  
10 µF capacitors to provide a charge reservoir for lower fre-  
quency load change requirements. T he reference output  
(VREFOUT ) should be bypassed with a 10 µF tantalum ca-  
pacitor to optimize reference output stability during data in-  
put changes. T his helps to minimize digital crosstalk.  
REV. C  
–10–  
DAC8426  
MICRO P RO CESSO R INTERFACING  
T he DAC8426 easily interfaces to most 8- and 16-bit wide data-  
bus systems. Serial and 4-bit busses can also be accommodated  
with additional latches and control circuitry. Interfacing can be  
accomplished with databus transfers running with 50 ns write  
pulse widths.  
Examples of various microprocessor interface circuits are pro-  
vided in Figures 8 through 12. T hese figures have omitted cir-  
cuitry not essential to the bus interface. T he design process  
should include review of the DAC8426 timing diagram with the  
µP system timing diagram.  
Figure 10. DAC8426 to 6809 Interface (Sim plified circuit,  
only lines of interest are shown.)  
Figure 11. DAC8426 to 6502 Interface (Sim plified circuit,  
only lines of interest are shown.)  
Figure 8. DAC8426 to 8085A Interface (Sim plified circuit,  
only lines of interest are shown.)  
Figure 9. DAC8426 to Z-80 Interface (Sim plified circuit,  
only lines of interest are shown.)  
Figure 12. DAC8426 to 68000 Interface (Sim plified circuit,  
only lines of interest are shown.)  
REV. C  
–11–  
DAC8426  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
20-P in Cerdip  
(Q-20)  
0.005 (0.13) MIN  
0.098 (2.49) MAX  
11  
20  
0.310 (7.87)  
0.220 (5.59)  
1
10  
0.320 (8.13)  
0.290 (7.37)  
PIN 1  
1.060 (26.92) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
0.023 (0.58)  
0.014 (0.36)  
0.100  
(2.54)  
BSC  
SEATING  
PLANE  
0.070 (1.78)  
0.030 (0.76)  
15°  
0°  
20-P in P lastic D IP  
(N-20)  
1.060 (26.90)  
0.925 (23.50)  
20  
1
11  
10  
0.280 (7.11)  
0.240 (6.10)  
0.325 (8.25)  
0.300 (7.62)  
0.195 (4.95)  
0.115 (2.93)  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
0.210 (5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.070 (1.77)  
0.045 (1.15)  
0.022 (0.558)  
0.014 (0.356)  
20-Lead SO L  
(R-20)  
0.5118 (13.00)  
0.4961 (12.60)  
20  
11  
1
10  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
x 45°  
0.0098 (0.25)  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
0.0138 (0.35)  
REV. C  
–12–  

相关型号:

DAC8426AR/883C

Quad 8-Bit Voltage Out CMOS DAC Complete with Internal 10V Reference
ADI

DAC8426AR/883C

QUAD, PARALLEL, 8 BITS INPUT LOADING, 3us SETTLING TIME, 8-BIT DAC, CDIP20, CERDIP-20
ROCHESTER

DAC8426BR

Quad 8-Bit Voltage Out CMOS DAC Complete with Internal 10 V Reference
ADI

DAC8426BR/883

IC SERIAL INPUT LOADING, 3 us SETTLING TIME, 8-BIT DAC, CDIP20, CERAMIC, DIP-20, Digital to Analog Converter
ADI

DAC8426BR/883C

IC QUAD, PARALLEL, 8 BITS INPUT LOADING, 3 us SETTLING TIME, 8-BIT DAC, CDIP20, CERDIP-20, Digital to Analog Converter
ADI

DAC8426EP

Quad 8-Bit Voltage Out CMOS DAC Complete with Internal 10 V Reference
ADI

DAC8426EP

QUAD, PARALLEL, 8 BITS INPUT LOADING, 3us SETTLING TIME, 8-BIT DAC, PDIP20, PLASTIC, DIP-20
ROCHESTER

DAC8426EPZ

Quad 8-Bit Voltage Out CMOS DAC Complete with Internal 10V Reference
ADI

DAC8426ER

Quad 8-Bit Voltage Out CMOS DAC Complete with Internal 10 V Reference
ADI

DAC8426ER

QUAD, PARALLEL, 8 BITS INPUT LOADING, 3us SETTLING TIME, 8-BIT DAC, CDIP20, CERDIP-20
ROCHESTER

DAC8426FP

Quad 8-Bit Voltage Out CMOS DAC Complete with Internal 10 V Reference
ADI

DAC8426FPZ

Quad 8-Bit Voltage Out CMOS DAC Complete with Internal 10V Reference
ADI