EVAL-AD5668SDCZ [ADI]

Octal, 12-/14-/16-Bit SPI Voltage Output denseDAC with 5 ppm/°C On-Chip Reference; 八, 12位/ 14位/ 16位SPI电压输出denseDAC 5 PPM / °时C片参考
EVAL-AD5668SDCZ
型号: EVAL-AD5668SDCZ
厂家: ADI    ADI
描述:

Octal, 12-/14-/16-Bit SPI Voltage Output denseDAC with 5 ppm/°C On-Chip Reference
八, 12位/ 14位/ 16位SPI电压输出denseDAC 5 PPM / °时C片参考

文件: 总32页 (文件大小:1246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Octal, 12-/14-/16-Bit SPI Voltage Output  
denseDAC with 5 ppm/°C On-Chip Reference  
Data Sheet  
AD5628/AD5648/AD5668  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
/V  
V
REFIN REFOUT  
DD  
Low power, small footprint, pin-compatible octal DACs  
AD5668: 16 bits  
AD5628/AD5648/AD5668  
1.25V/2.5V  
REF  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
AD5648: 14 bits  
AD5628: 12 bits  
INPUT  
DAC  
STRING  
DAC A  
V
V
V
V
V
V
V
V
A
B
C
D
E
F
LDAC  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
REGISTER  
REGISTER  
DAC  
REGISTER  
STRING  
DAC B  
INPUT  
REGISTER  
14-lead/16-lead TSSOP, 16-lead LFCSP, and 16-lead WLCSP  
On-chip 1.25 V/2.5 V, 5 ppm/°C reference  
Power down to 400 nA @ 5 V, 200 nA @ 3 V  
2.7 V to 5.5 V power supply  
Guaranteed monotonic by design  
Power-on reset to zero scale or midscale  
3 power-down functions  
Hardware LDAC and LDAC override function  
CLR function to programmable code  
Rail-to-rail operation  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC C  
SCLK  
SYNC  
DIN  
INTERFACE  
LOGIC  
DAC  
REGISTER  
STRING  
DAC D  
INPUT  
REGISTER  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC E  
DAC  
REGISTER  
STRING  
DAC F  
INPUT  
REGISTER  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC G  
G
H
DAC  
REGISTER  
STRING  
DAC H  
INPUT  
REGISTER  
POWER-DOWN  
POWER-ON  
RESET  
LOGIC  
GND  
1
1
LDAC CLR  
1
RU-16 PACKAGE ONLY  
APPLICATIONS  
Process control  
Figure 1.  
Data acquisition systems  
Portable battery-powered instruments  
Digital gain and offset adjustment  
Programmable voltage and current sources  
Programmable attenuators  
GENERAL DESCRIPTION  
selectable output loads while in power-down mode for any or all  
DAC channels. The outputs of all DACs can be updated simul-  
The AD5628/AD5648/AD5668 devices are low power, octal,  
12-/14-/16-bit, buffered voltage-output DACs. All devices  
operate from a single 2.7 V to 5.5 V supply and are guaranteed  
monotonic by design. The AD5668 and AD5628 are available in  
both a 4 mm × 4 mm LFCSP and a 16-lead TSSOP, while the  
AD5648 is available in both a 14-lead and 16-lead TSSOP.  
taneously using the  
function, with the added functionality  
LDAC  
of user-selectable DAC channels to simultaneously update. There  
is also an asynchronous that updates all DACs to a user-  
CLR  
programmable code—zero scale, midscale, or full scale.  
The AD5628/AD5648/AD5668 utilize a versatile 3-wire serial  
interface that operates at clock rates of up to 50 MHz and is  
compatible with standard SPI®, QSPI™, MICROWIRE™, and  
DSP interface standards. The on-chip precision output amplifier  
enables rail-to-rail output swing.  
The AD5628/AD5648/AD5668 have an on-chip reference with  
an internal gain of 2. The AD5628-1/AD5648-1/AD5668-1 have  
a 1.25 V 5 ppm/°C reference, giving a full-scale output range  
of 2.5 V; the AD5628-2/AD5648-2/AD5668-2 and AD5668-3 have  
a 2.5 V 5 ppm/°C reference, giving a full-scale output range of  
5 V. The on-board reference is off at power-up, allowing the use  
of an external reference. The internal reference is enabled via a  
software write.  
PRODUCT HIGHLIGHTS  
1. Octal, 12-/14-/16-bit DAC.  
2. On-chip 1.25 V/2.5 V, 5 ppm/°C reference.  
3. Available in 14-lead/16-lead TSSOP, 16-lead LFCSP, and  
16-lead WLCSP.  
4. Power-on reset to 0 V or midscale.  
5. Power-down capability. When powered down, the DAC  
typically consumes 200 nA at 3 V and 400 nA at 5 V.  
The part incorporates a power-on reset circuit that ensures that the  
DAC output powers up to 0 V (AD5628-1/AD5648-1/AD5668-1,  
AD5628-2/AD5648-2/AD5668-2) or midscale (AD5668-3) and  
remains powered up at this level until a valid write takes place.  
The part contains a power-down feature that reduces the current  
consumption of the device to 400 nA at 5 V and provides software-  
Rev. G  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2005–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD5628/AD5648/AD5668  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
D/A Section................................................................................. 21  
Resistor String............................................................................. 21  
Internal Reference ...................................................................... 21  
Output Amplifier........................................................................ 22  
Serial Interface ............................................................................ 22  
Input Shift Register .................................................................... 23  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Characteristics........................................................................ 6  
Timing Characteristics ................................................................ 7  
Absolute Maximum Ratings............................................................ 8  
ESD Caution.................................................................................. 8  
Pin Configurations and Function Descriptions ........................... 9  
Typical Performance Characteristics ........................................... 11  
Terminology .................................................................................... 19  
Theory of Operation ...................................................................... 21  
Interrupt .......................................................................... 23  
SYNC  
Internal Reference Register....................................................... 24  
Power-On Reset.......................................................................... 24  
Power-Down Modes .................................................................. 24  
Clear Code Register ................................................................... 24  
Function .......................................................................... 26  
LDAC  
Power Supply Bypassing and Grounding................................ 26  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 29  
REVISION HISTORY  
Changes to Table 2.............................................................................5  
Changes to Table 3.............................................................................6  
Changes to Table 4.............................................................................7  
Deleted SnPb from Table 5...............................................................8  
Added Figure 5; Renumbered Sequentially ...................................9  
Changes to Table 6.............................................................................9  
Replaced Typical Performance Characteristics Section ............ 10  
Changes to Power-On Reset Section ........................................... 23  
Updated Outline Dimensions....................................................... 26  
Changes to Ordering Guide.......................................................... 28  
1/13—Rev. F to Rev. G  
Added WLCSP Reference TC of 15 ppm/°C, Table 2.................. 5  
Changes to Ordering Guide .......................................................... 29  
8/11—Rev. E to Rev. F  
Added 16-Lead WLCSP.....................................................Universal  
Added Figure 6 and Table 7; Renumbered Sequentially ........... 10  
Changes to Figure 32 and Figure 33............................................. 15  
Updated Outline Dimensions....................................................... 26  
Changes to Ordering Guide .......................................................... 28  
1/11—Rev. D to Rev. E  
1/10—Rev. B to Rev. C  
Changes to AD5628 Relative Accuracy, Zero-Code Error, Offset  
Error, and Reference TC Parameters, Table 1............................... 3  
Changes to AD5628 Relative Accuracy, Zero-Code Error, Offset  
Error, and Reference TC Parameters, Table 2............................... 5  
Changes to Output Voltage Settling Time, Table 3 ...................... 6  
Added Figure 53; Renumbered Sequentially .............................. 17  
Change to Output Amplifier Section........................................... 21  
Changes to Ordering Guide .......................................................... 28  
Changes to Figure 3........................................................................ 10  
Changes to Ordering Guide.......................................................... 28  
2/09—Rev. A to Rev. B  
Changes to Reference Current Parameter, Table 1........................3  
Changes to IDD (Normal Mode) Parameter, Table 1......................4  
Changes to Reference Current Parameter, Table 2........................5  
Changes to IDD (Normal Mode) Parameter, Table 2......................6  
11/05—Rev. 0 to Rev. A  
Change to Specifications ..................................................................3  
9/10—Rev. C to Rev. D  
Change to Title.................................................................................. 1  
Added 16-Lead LFCSP Throughout ................................Universal  
Changes to Table 1............................................................................ 3  
10/05—Revision 0: Initial Version  
Rev. G | Page 2 of 32  
 
Data Sheet  
AD5628/AD5648/AD5668  
SPECIFICATIONS  
VDD = 4.5 V to 5.5 V, RL = 2 kΩ to GND, CL = 200 pF to GND, VREFIN = VDD. All specifications TMIN to TMAX, unless otherwise noted.  
Table 1.  
A Grade1  
Typ Max  
B Grade1  
Typ Max  
Parameter  
STATIC PERFORMANCE2  
Min  
Min  
Unit  
Conditions/Comments  
AD5628  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
12  
12  
Bits  
LSB  
0.25 LSB  
0.5  
2
4
0.25  
0.5  
2
1
See Figure 9  
Guaranteed monotonic by design  
(see Figure 12)  
AD5648  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
14  
16  
14  
16  
Bits  
LSB  
LSB  
8
0.5  
4
0.5  
See Figure 8  
Guaranteed monotonic by design  
(see Figure 11)  
AD5668  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
Bits  
LSB  
LSB  
8
2
32  
1
8
2
16  
1
See Figure 7  
Guaranteed monotonic by design  
(see Figure 10)  
Zero-Code Error  
Zero-Code Error Drift  
Full-Scale Error  
6
19  
6
19  
mV  
µV/°C  
% FSR  
All 0s loaded to DAC register (see Figure 26)  
−0.2 −1  
−0.2 −1  
All 1s loaded to DAC register  
(see Figure 27)  
Gain Error  
Gain Temperature Coefficient  
Offset Error  
DC Power Supply Rejection Ratio  
DC Crosstalk  
1
1
% FSR  
ppm  
mV  
dB  
µV  
2.5  
2.5  
Of FSR/°C  
VDD 10%  
6
–80  
10  
19  
6
–80  
10  
19  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
(External Reference)  
5
10  
25  
5
10  
25  
µV/mA  
µV  
µV  
Due to load current change  
Due to powering down (per channel)  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
DC Crosstalk  
(Internal Reference)  
10  
10  
µV/mA  
Due to load current change  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
0
VDD  
0
VDD  
V
Capacitive Load Stability  
2
2
nF  
nF  
mA  
µs  
RL = ∞  
RL = 2 kΩ  
10  
0.5  
30  
4
10  
0.5  
30  
4
DC Output Impedance  
Short-Circuit Current  
Power-Up Time  
VDD = 5 V  
Coming out of power-down mode, VDD = 5 V  
REFERENCE INPUTS  
Reference Current  
Reference Input Range  
Reference Input Impedance  
REFERENCE OUTPUT  
Output Voltage  
40  
55  
VDD  
40  
55  
VDD  
µA  
V
kΩ  
VREF = VDD = 5.5 V (per DAC channel)  
0
0
14.6  
14.6  
AD56x8-2, AD56x8-3  
Reference TC3  
2.495  
2.505 2.495  
10  
2.505  
10  
10  
V
At ambient  
5
15  
7.5  
5
5
7.5  
ppm/°C TSSOP  
ppm/°C LFCSP  
kΩ  
Reference Output Impedance  
Rev. G | Page 3 of 32  
 
AD5628/AD5648/AD5668  
Data Sheet  
A Grade1  
Typ Max  
B Grade1  
Typ Max  
Parameter  
LOGIC INPUTS3  
Min  
Min  
Unit  
Conditions/Comments  
Input Current  
3
0.8  
3
0.8  
µA  
V
V
All digital inputs  
VDD = 5 V  
VDD = 5 V  
Input Low Voltage, VINL  
Input High Voltage, VINH  
Pin Capacitance  
POWER REQUIREMENTS  
VDD  
2
2
3
3
pF  
4.5  
5.5  
4.5  
5.5  
V
All digital inputs at 0 or VDD,  
DAC active, excludes load current  
IDD (Normal Mode)4  
VDD = 4.5 V to 5.5 V  
VDD = 4.5 V to 5.5 V  
IDD (All Power-Down Modes)5  
VIH = VDD and VIL = GND  
Internal reference off  
Internal reference on  
1.0  
1.8  
1.5  
2.25  
1.0  
1.7  
1.5  
2.25  
mA  
mA  
VDD = 4.5 V to 5.5 V  
0.4  
1
0.4  
1
µA  
VIH = VDD and VIL = GND  
1 Temperature range is −40°C to +105°C, typical at 25°C.  
2 Linearity calculated using a reduced code range of AD5628 (Code 32 to Code 4064), AD5648 (Code 128 to Code 16,256), and AD5668 (Code 512 to 65,024). Output  
unloaded.  
3 Guaranteed by design and characterization; not production tested.  
4 Interface inactive. All DACs active. DAC outputs unloaded.  
5 All eight DACs powered down.  
Rev. G | Page 4 of 32  
 
Data Sheet  
AD5628/AD5648/AD5668  
VDD = 2.7 V to 3.6 V, RL = 2 kΩ to GND, CL = 200 pF to GND, VREFIN = VDD. All specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
A Grade1  
Typ Max  
B Grade1  
Typ Max  
Parameter  
STATIC PERFORMANCE2  
Min  
Min  
Unit  
Conditions/Comments  
AD5628  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
12  
12  
Bits  
LSB  
0.25 LSB  
0.5  
2
4
0.25  
0.5  
2
1
See Figure 9  
Guaranteed monotonic by design  
(see Figure 12)  
AD5648  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
14  
16  
14  
16  
Bits  
LSB  
LSB  
8
0.5  
4
0.5  
See Figure 8  
Guaranteed monotonic by design  
(see Figure 11)  
AD5668  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
Bits  
LSB  
LSB  
8
2
32  
1
8
2
16  
1
See Figure 7  
Guaranteed monotonic by design  
(see Figure 10)  
All 0s loaded to DAC register (see Figure 26)  
All 1s loaded to DAC register (see Figure 27)  
Of FSR/°C  
Zero-Code Error  
Zero-Code Error Drift  
Full-Scale Error  
Gain Error  
Gain Temperature Coefficient  
Offset Error  
6
19  
6
19  
mV  
µV/°C  
% FSR  
% FSR  
ppm  
mV  
−0.2 −1  
−0.2 −1  
1
1
2.5  
6
2.5  
6
19  
19  
DC Power Supply Rejection  
–80  
–80  
dB  
VDD 10%  
Ratio3  
DC Crosstalk 3  
(External Reference)  
10  
10  
µV  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
5
10  
25  
5
10  
25  
µV/mA  
µV  
µV  
Due to load current change  
Due to powering down (per channel)  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
DC Crosstalk 3  
(Internal Reference)  
10  
10  
µV/mA  
Due to load current change  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
0
VDD  
0
VDD  
V
Capacitive Load Stability  
2
2
nF  
nF  
mA  
µs  
RL = ∞  
RL = 2 kΩ  
10  
0.5  
30  
4
10  
0.5  
30  
4
DC Output Impedance  
Short-Circuit Current  
Power-Up Time  
VDD = 3 V  
Coming out of power-down mode, VDD = 3 V  
REFERENCE INPUTS  
Reference Current  
Reference Input Range  
Reference Input Impedance  
REFERENCE OUTPUT  
Output Voltage  
40  
55  
VDD  
40  
55  
VDD  
µA  
kΩ  
VREF = VDD = 5.5 V (per DAC channel)  
0
0
14.6  
14.6  
AD5628/AD5648/AD5668-1  
Reference TC3  
1.247  
1.253 1.247  
15  
1.253  
15  
15  
V
At ambient  
5
15  
5
5
15  
7.5  
ppm/°C TSSOP  
ppm/°C LFCSP  
ppm/°C WLCSP  
kΩ  
Reference Output  
Impedance  
7.5  
Rev. G | Page 5 of 32  
AD5628/AD5648/AD5668  
Data Sheet  
A Grade1  
Typ Max  
B Grade1  
Typ Max  
Parameter  
LOGIC INPUTS3  
Min  
Min  
Unit  
Conditions/Comments  
Input Current  
3
0.8  
3
0.8  
µA  
V
V
All digital inputs  
VDD = 3 V  
VDD = 3 V  
Input Low Voltage, VINL  
Input High Voltage, VINH  
Pin Capacitance  
POWER REQUIREMENTS  
VDD  
2
2
3
3
pF  
2.7  
3.6  
2.7  
3.6  
V
All digital inputs at 0 or VDD,  
DAC active, excludes load current  
VIH = VDD and VIL = GND  
Internal reference off  
IDD (Normal Mode)4  
VDD = 2.7 V to 3.6 V  
VDD = 2.7 V to 3.6 V  
IDD (All Power-Down Modes)5  
1.0  
1.8  
1.5  
2.25  
1.0  
1.7  
1.5  
2.25  
mA  
mA  
Internal reference on  
VDD = 2.7 V to 3.6 V  
0.2  
1
0.2  
1
µA  
VIH = VDD and VIL = GND  
1 Temperature range is −40°C to +105°C, typical at 25°C.  
2 Linearity calculated using a reduced code range of AD5628 (Code 32 to Code 4064), AD5648 (Code 128 to Code 16256), and AD5668 (Code 512 to 65024). Output  
unloaded.  
3 Guaranteed by design and characterization; not production tested.  
4 Interface inactive. All DACs active. DAC outputs unloaded.  
5 All eight DACs powered down.  
AC CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, RL = 2 kΩ to GND, CL = 200 pF to GND, VREFIN = VDD. All specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter1, 2  
Min  
Typ  
2.5  
1.2  
4
Max  
Unit  
µs  
V/µs  
nV-s  
Conditions/Comments3  
Output Voltage Settling Time  
Slew Rate  
Digital-to-Analog Glitch Impulse  
7
¼ to ¾ scale settling to 2 LSB (16-bit resolution)  
1 LSB (16-bit resolution) change around major carry  
(see Figure 42)  
19  
nV-s  
From code 0xEA00 to code 0xE9FF (16-bit resolution)  
Digital Feedthrough  
Digital Crosstalk  
Analog Crosstalk  
DAC-to-DAC Crosstalk  
Multiplying Bandwidth  
Total Harmonic Distortion  
Output Noise Spectral Density  
0.1  
0.2  
0.4  
0.8  
320  
−80  
120  
100  
12  
nV-s  
nV-s  
nV-s  
nV-s  
kHz  
dB  
nV/√Hz  
nV/√Hz  
μV p-p  
VREF = 2 V 0.2 V p-p  
VREF = 2 V 0.1 V p-p, frequency = 10 kHz  
DAC code = 0x8400(16-bit resolution), 1 kHz  
DAC code = 0x8400(16-bit resolution), 10 kHz  
0.1 Hz to 10 Hz, DAC code = 0x0000  
Output Noise  
1 Guaranteed by design and characterization; not production tested.  
2 See the Terminology section.  
3 Temperature range is −40°C to +105°C, typical at 25°C.  
Rev. G | Page 6 of 32  
 
 
 
Data Sheet  
AD5628/AD5648/AD5668  
TIMING CHARACTERISTICS  
All input signals are specified with tr = tf = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. See Figure 2.  
DD = 2.7 V to 5.5 V. All specifications TMIN to TMAX, unless otherwise noted.  
V
Table 4.  
Limit at TMIN, TMAX  
Parameter  
VDD = 2.7 V to 5.5 V  
Unit  
Conditions/Comments  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC to SCLK falling edge set-up time  
Data set-up time  
1
t1  
t2  
t3  
t4  
20  
8
8
13  
4
4
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns typ  
t5  
t6  
t7  
Data hold time  
0
SCLK falling edge to SYNC rising edge  
Minimum SYNC high time  
SYNC rising edge to SCLK fall ignore  
SCLK falling edge to SYNC fall ignore  
LDAC pulse width low  
t8  
15  
13  
0
t9  
t10  
t11  
t12  
t13  
t14  
t15  
10  
15  
5
SCLK falling edge to LDAC rising edge  
CLR pulse width low  
0
SCLK falling edge to LDAC falling edge  
CLR pulse activation time  
300  
1 Maximum SCLK frequency is 50 MHz at VDD = 2.7 V to 5.5 V. Guaranteed by design and characterization; not production tested.  
t10  
t1  
t9  
SCLK  
t2  
t8  
t7  
t3  
t4  
SYNC  
DIN  
t6  
t5  
DB31  
DB0  
t14  
t11  
1
LDAC  
t12  
2
LDAC  
t13  
CLR  
t15  
V
OUT  
1
2
ASYNCHRONOUS LDAC UPDATE MODE.  
SYNCHRONOUS LDAC UPDATE MODE.  
Figure 2. Serial Write Operation  
Rev. G | Page 7 of 32  
 
 
 
AD5628/AD5648/AD5668  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to GND  
−0.3 V to +7 V  
Digital Input Voltage to GND  
VOUT to GND  
VREFIN/VREFOUT to GND  
Operating Temperature Range  
Industrial  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
ESD CAUTION  
−40°C to +105°C  
−65°C to +150°C  
150°C  
Storage Temperature Range  
Junction Temperature (TJ MAX  
)
TSSOP Package  
Power Dissipation  
θJA Thermal Impedance  
(TJ MAX − TA)/θJA  
150.4°C/W  
Reflow Soldering Peak Temperature  
Pb Free  
260°C  
Rev. G | Page 8 of 32  
 
 
Data Sheet  
AD5628/AD5648/AD5668  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
AD5628/AD5668  
V
1
2
3
4
12 GND  
DD  
V
V
A
C
E
11  
10  
9
V
V
B
D
F
OUT  
OUT  
OUT  
TOP VIEW  
(Not to Scale)  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
LDAC  
SYNC  
SCLK  
DIN  
OUT  
1
2
3
4
5
6
7
SYNC  
14  
13  
12  
11  
10  
9
V
V
OUT  
SCLK  
DIN  
OUT  
V
GND  
V
DD  
DD  
AD5628/  
AD5648/  
AD5668  
TOP VIEW  
(Not to Scale)  
AD5628/  
AD5648/  
V
A
C
E
V
V
V
V
B
V
A
GND  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
D
F
V
C
E
V
V
V
V
B
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
TOP VIEW  
(Not to Scale)  
V
V
D
F
OUT  
OUT  
V
G
V
G
OUT  
H
OUT  
8
V
/V  
H
V
/V  
CLR  
NOTES  
REFIN REFOUT  
REFIN REFOUT  
1. EXPOSED PAD MUST BE TIED TO GND.  
Figure 3. 14-Lead TSSOP (RU-14)  
Figure 4. 16-Lead TSSOP (RU-16)  
Figure 5. 16-Lead LFCSP(CP-16-17)  
Table 6. Pin Function Descriptions  
Pin No.  
14-Lead 16-Lead  
16-Lead  
LFCSP  
TSSOP  
TSSOP  
Mnemonic  
Description  
15  
N/A  
1
LDAC  
Pulsing this pin low allows any or all DAC registers to be updated if the input registers  
have new data. This allows all DAC outputs to simultaneously update. Alternatively, this  
pin can be tied permanently low.  
1
2
16  
SYNC  
Active Low Control Input. This is the frame synchronization signal for the input data.  
When SYNC goes low, it powers on the SCLK and DIN buffers and enables the input shift  
register. Data is transferred in on the falling edges of the next 32 clocks. If SYNC is taken  
high before the 32nd falling edge, the rising edge of SYNC acts as an interrupt and the  
write sequence is ignored by the device.  
2
3
1
VDD  
Power Supply Input. These parts can be operated from 2.7 V to 5.5 V, and the supply  
should be decoupled with a 10 μF capacitor in parallel with a 0.1 μF capacitor to GND.  
3
11  
4
10  
7
4
13  
5
12  
8
2
11  
3
10  
6
VOUT  
VOUT  
VOUT  
VOUT  
VREFIN  
VREFOUT  
A
B
C
D
Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.  
The AD5628/AD5648/AD5668 have a common pin for reference input and reference  
output. When using the internal reference, this is the reference output pin. When using  
an external reference, this is the reference input pin. The default for this pin is as a  
reference input.  
/
N/A  
9
7
CLR  
Asynchronous Clear Input. The CLR input is falling edge sensitive. When CLR is low, all  
LDAC pulses are ignored. When CLR is activated, the input register and the DAC register  
are updated with the data contained in the CLR code register—zero, midscale, or full  
scale. Default setting clears the output to 0 V.  
5
9
6
8
12  
13  
6
11  
7
10  
14  
15  
4
9
5
8
12  
13  
VOUT  
VOUT  
VOUT  
VOUT  
GND  
DIN  
E
F
G
H
Analog Output Voltage from DAC E. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC F. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC G. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC H. The output amplifier has rail-to-rail operation.  
Ground Reference Point for All Circuitry on the Part.  
Serial Data Input. This device has a 32-bit shift register. Data is clocked into the register  
on the falling edge of the serial clock input.  
14  
16  
14  
SCLK  
EPAD  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the  
serial clock input. Data can be transferred at rates of up to 50 MHz.  
It is recommended that the exposed paddle be soldered to the ground plane.  
EPAD  
Rev. G | Page 9 of 32  
 
AD5628/AD5648/AD5668  
Data Sheet  
BALL A1  
INDICATOR  
1
2
3
4
GND SCL  
DIN SYNC  
A
V
V
B LDAC  
V
V
A
OUT  
OUT  
DD  
B
C
D
F V  
D V  
E V  
C
G
OUT  
OUT  
OUT  
OUT  
V
H
CLR  
V
V
OUT  
REF  
OUT  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
Figure 6. 16-Lead WLCSP  
Table 7. 16-Lead WLCSP Pin Function Descriptions  
Pin. No. Mnemonic Description  
B2  
A4  
LDAC  
Pulsing this pin low allows any or all DAC registers to be updated if the input registers have new data. This allows  
all DAC outputs to simultaneously update. Alternatively, this pin can be tied permanently low.  
Active Low Control Input. This is the frame synchronization signal for the input data. When SYNC goes low, it  
powers on the SCLK and DIN buffers and enables the input shift register. Data is transferred in on the falling edges  
of the next 32 clocks. If SYNC is taken high before the 32nd falling edge, the rising edge of SYNC acts as an  
interrupt and the write sequence is ignored by the device.  
SYNC  
B3  
VDD  
Power Supply Input. These parts can be operated from 2.7 V to 5.5 V, and the supply should be decoupled with a  
10 μF capacitor in parallel with a 0.1 μF capacitor to GND.  
B4  
B1  
C4  
C2  
D3  
VOUT  
VOUT  
VOUT  
VOUT  
A
B
C
D
Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.  
VREFIN/VREFOUT The AD5628/AD5648/AD5668 have a common pin for reference input and reference output. When using the  
internal reference, this is the reference output pin. When using an external reference, this is the reference input  
pin. The default for this pin is as a reference input.  
D2  
CLR  
Asynchronous Clear Input. The CLR input is falling edge sensitive. When CLR is low, all LDAC pulses are ignored.  
When CLR is activated, the input register and the DAC register are updated with the data contained in the CLR  
code register—zero, midscale, or full scale. Default setting clears the output to 0 V.  
Analog Output Voltage from DAC E. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC F. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC G. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC H. The output amplifier has rail-to-rail operation.  
Ground Reference Point for All Circuitry on the Part.  
C3  
C1  
D4  
D1  
A1  
A3  
VOUT  
VOUT  
VOUT  
VOUT  
GND  
DIN  
E
F
G
H
Serial Data Input. This device has a 32-bit shift register. Data is clocked into the register on the falling edge of the  
serial clock input.  
A4  
SCLK  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can  
be transferred at rates of up to 50 MHz.  
Rev. G | Page 10 of 32  
Data Sheet  
AD5628/AD5648/AD5668  
TYPICAL PERFORMANCE CHARACTERISTICS  
10  
1.0  
0.8  
V
= 5V  
V
= 5V  
DD  
EXT REF = 5V  
= 25°C  
DD  
EXT REF = 5V  
T = 25°C  
A
8
6
T
A
0.6  
4
0.4  
2
0.2  
0
0
–2  
–4  
–6  
–8  
–10  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
10k  
20k  
30k  
CODES  
40k  
50k  
60k 65535  
0
10k  
20k  
30k  
CODES  
40k  
50k  
60k 65535  
Figure 7. INL AD5668—External Reference  
Figure 10. DNL AD5668—External Reference  
4
0.5  
V
= 5V  
DD  
EXT REF = 5V  
= 25°C  
V
= 5V  
DD  
EXT REF = 5V  
0.4  
0.3  
0.2  
0.1  
3
2
T
A
T
= 25°C  
A
1
0
0
–0.1  
–1  
–2  
–3  
–4  
–0.2  
–0.3  
–0.4  
–0.5  
0
5k  
10k  
15k 16384  
0
5k  
10k  
15k 16384  
CODES  
CODES  
Figure 11. DNL AD5648—External Reference  
Figure 8. INL AD5648—External Reference  
1.0  
0.8  
0.20  
0.15  
0.10  
0.05  
0
V
= 5V  
V
= 5V  
DD  
EXT REF = 5V  
= 25°C  
DD  
EXT REF = 5V  
= 25°C  
T
T
A
A
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.05  
–0.10  
–0.15  
–0.20  
0
500  
1000 1500 2000 2500 3000 3500  
CODES  
4095  
0
500  
1000 1500 2000 2500 3000 3500  
CODES  
4095  
Figure 9. INL AD5628—External Reference  
Figure 12. DNL AD5628—External Reference  
Rev. G | Page 11 of 32  
 
 
 
 
 
 
 
AD5628/AD5648/AD5668  
Data Sheet  
10  
1.0  
0.5  
V
= 5V  
V
= 5V  
DD  
INT REF = 2.5V  
= 25°C  
DD  
INT REF = 2.5V  
T = 25°C  
A
T
A
5
0
0
–5  
–0.5  
–1.0  
–10  
0
10k  
20k  
30k  
CODES  
40k  
50k  
60k 65535  
0
10k  
20k  
30k  
CODES  
40k  
50k  
60k 65535  
Figure 13. INL AD5668-2/AD5668-3  
Figure 16. DNL AD5668-2/AD5668-3  
0.5  
4
V
= 5V  
V
= 5V  
DD  
EXT REF = 5V  
DD  
EXT REF = 2.5V  
0.4  
0.3  
0.2  
0.1  
3
2
T
= 25°C  
T = 25°C  
A
A
1
0
0
–0.1  
–1  
–2  
–3  
–4  
–0.2  
–0.3  
–0.4  
–0.5  
0
5k  
10k  
15k 16383  
0
5k  
10k  
15k 16383  
CODES  
CODES  
Figure 14. INL AD5648-2  
Figure 17. DNL AD5648-2  
0.20  
0.15  
0.10  
0.05  
0
1.0  
0.5  
V
= 5V  
V
= 5V  
DD  
INT REF = 2.5V  
= 25°C  
DD  
INT REF = 2.5V  
= 25°C  
T
T
A
A
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.5  
–1.0  
0
500  
1000 1500 2000 2500 3000 3500  
CODES  
4095  
0
500  
1000 1500 2000 2500 3000 3500  
CODES  
4095  
Figure 18. DNL AD5628-2  
Figure 15. INL AD5628-2  
Rev. G | Page 12 of 32  
 
 
 
 
Data Sheet  
AD5628/AD5648/AD5668  
10  
8
1.0  
0.5  
V
= 3V  
V
= 3V  
DD  
INT REF = 1.25V  
= 25°C  
DD  
INT REF = 1.25V  
= 25°C  
T
T
A
A
6
4
2
0
0
–2  
–4  
–6  
–8  
–10  
–0.5  
–1.0  
0
10k  
20k  
30k  
CODES  
40k  
50k  
60k 65535  
0
10k  
20k  
30k  
CODES  
40k  
50k  
60k 65535  
Figure 19. INL AD5668-1  
Figure 22. DNL AD5668-1  
4
0.5  
V
= 3V  
DD  
EXT REF = 1.25V  
V
= 3V  
DD  
EXT REF = 1.25V  
0.4  
0.3  
0.2  
0.1  
3
2
T
= 25°C  
T
= 25°C  
A
A
1
0
0
–0.1  
–1  
–2  
–3  
–4  
–0.2  
–0.3  
–0.4  
–0.5  
0
5k  
10k  
15k 16383  
0
5k  
10k  
15k 16383  
CODES  
CODES  
Figure 20. INL AD5648-1  
Figure 23. DNL AD5648-1  
1.0  
0.5  
0.20  
0.15  
0.10  
0.05  
0
V
= 3V  
V
= 3V  
DD  
INT REF = 1.25V  
= 25°C  
DD  
INT REF = 1.25V  
T = 25°C  
A
T
A
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.5  
–1.0  
0
500  
1000 1500 2000 2500 3000 3500  
CODES  
4095  
0
500  
1000 1500 2000 2500 3000 3500  
CODES  
4095  
Figure 21. INL AD5628-1  
Figure 24. DNL AD5628-1  
Rev. G | Page 13 of 32  
 
 
 
 
AD5628/AD5648/AD5668  
Data Sheet  
0
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
V
= 5V  
T
= 25°C  
DD  
A
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
OFFSET ERROR  
FULL-SCALE ERROR  
GAIN ERROR  
ZERO-SCALE ERROR  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
2.7  
3.1  
3.5  
3.9  
4.3  
(V)  
4.7  
5.1  
5.5  
TEMPERATURE (°C)  
V
DD  
Figure 25. Gain Error and Full-Scale Error vs. Temperature  
Figure 28. Zero-Scale Error and Offset Error vs. Supply Voltage  
21  
18  
15  
12  
9
6
V
= 5V  
DD  
5
4
3
2
1
0
OFFSET ERROR  
ZERO-SCALE ERROR  
6
3
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
0.85  
0.90  
0.95  
1.00  
1.05  
I
WITH EXTERNAL REFERENCE (mA)  
TEMPERATURE (°C)  
DD  
Figure 26. Zero-Scale Error and Offset Error vs. Temperature  
Figure 29. IDD Histogram with External Reference  
18  
–0.16  
–0.17  
–0.18  
–0.19  
–0.20  
–0.21  
–0.22  
–0.23  
–0.24  
–0.25  
–0.26  
T
= 25°C  
A
FULL-SCALE ERROR  
16  
14  
12  
10  
8
6
4
GAIN ERROR  
2
0
2.7  
3.1  
3.5  
3.9  
4.3  
(V)  
4.7  
5.1  
5.5  
1.65  
1.70  
1.75  
1.80  
1.85  
1.190  
I
WITH INTERNAL REFERENCE (mA)  
V
DD  
DD  
Figure 30. IDD Histogram with Internal Reference  
Figure 27. Gain Error and Full-Scale Error vs. Supply Voltage  
Rev. G | Page 14 of 32  
 
 
 
 
Data Sheet  
AD5628/AD5648/AD5668  
0.4  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
T = 25°C  
A
T
= 25°C  
A
0.3  
0.2  
V
= 5V  
DD  
0.1  
V
= 3V, INT REF = 1.25V  
DD  
0
V
= 3V  
DD  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
V
= 5V, INT REF = 2.5V  
DD  
0
10k  
20k  
30k  
40k  
50k  
60k  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
DIGITAL CODES (Decimal)  
SOURCE/SINK CURRENT (mA)  
Figure 34. Supply Current vs. Code  
Figure 31. Headroom at Rails vs. Source and Sink  
6
5
2.0  
V
= 5V  
DD  
INT REF = 2.5V  
FULL SCALE  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
T
= 25°C  
A
3/4 SCALE  
4
V
V
= 5.5V  
DD  
3
MIDSCALE  
1/4 SCALE  
= 3.6V  
DD  
2
1
0
ZERO SCALE  
–1  
–0.03  
–0.02  
–0.01  
0
0.01  
0.02  
0.03  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
CURRENT (A)  
TEMPERATURE (°C)  
Figure 32. AD5668-2/AD5668-3 Source and Sink Capability  
Figure 35. Supply Current vs. Temperature  
1.48  
1.46  
1.44  
1.42  
1.40  
1.38  
1.36  
1.34  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
A
V
= 3V  
DD  
INT REF = 1.25V  
T
= 25°C  
A
FULL SCALE  
3/4 SCALE  
MIDSCALE  
1/4 SCALE  
ZERO SCALE  
–0.5  
–1.0  
–0.03  
2.7  
3.1  
3.5  
3.9  
4.3  
(V)  
4.7  
5.1  
5.5  
–0.02  
–0.01  
0
0.01  
0.02  
0.03  
V
DD  
CURRENT (A)  
Figure 36. Supply Current vs. Supply Voltage  
Figure 33. AD5668-1 Source and Sink Capability  
Rev. G | Page 15 of 32  
 
 
AD5628/AD5648/AD5668  
Data Sheet  
2.3  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
A
V
= 5V  
DD  
EXT REF = 5V  
= 25°C  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
T
A
V
DD  
V
= 5V  
DD  
V
A
OUT  
V
= 3V  
DD  
–0.5  
–0.0010  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
(V)  
3.5  
4.0  
4.5  
5.0  
–0.0006  
–0.0002  
0.0002  
0.0006  
0.0010  
V
LOGIC  
TIME (s)  
Figure 37. Supply Current vs. Logic Input Voltage  
Figure 40. Power-On Reset to Midscale  
6
5.5  
V
V
= 5V  
TH  
DD  
EXT REF = 5V  
= 5V  
24 CLK RISING EDGE  
DD  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
EXT REF = 5V  
= 25°C  
T
= 25°C  
A
T
A
5
4
3
2
1
0
V
A
OUT  
–0.5  
–10  
–2  
0
2
4
6
8
–5  
0
5
10  
TIME (µs)  
TIME (µs)  
Figure 38. Full-Scale Settling Time, 5 V  
Figure 41. Exiting Power-Down to Midscale  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
T
DD  
V
= 5V  
DD  
EXT REF = 5V  
= 25°C  
EXT REF = 5V  
T
= 25°C  
A
T
A
V
DD  
V
A
OUT  
3
TH  
24 CLK RISING EDGE  
V
A
OUT  
4
–0.5  
–0.0010  
–0.0006  
–0.0002  
0.0002  
0.0006  
0.0010  
M400ns  
17.0%  
A
CH4  
1.50V  
B
CH3 10.0mV  
CH4 5.0V  
T
TIME (s)  
W
Figure 39. Power-On Reset to 0 V  
Figure 42. Digital-to-Analog Glitch Impulse (Negative)  
Rev. G | Page 16 of 32  
 
 
Data Sheet  
AD5628/AD5648/AD5668  
0.0010  
0.20  
0.15  
0.10  
0.05  
0
V
= 5V  
EXT REF = 2.5V  
DD  
EXT REF = 5V  
= 25°C  
T
A
0.0005  
0
–0.0005  
–0.0010  
–0.0015  
–0.05  
–0.10  
–0.15  
–0.20  
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
10  
TIME (µs)  
TIME (s)  
Figure 43. Analog Crosstalk  
Figure 46. 0.1 Hz to 10 Hz Output Noise Plot, External Reference  
0.0020  
0.0015  
0.0010  
0.0005  
0
0.20  
V
= 5V  
INT REF = 1.25V  
DD  
EXT REF = 5V  
= 25°C  
0.15  
0.10  
0.05  
0
T
A
–0.05  
–0.10  
–0.15  
–0.20  
–0.0005  
–0.0010  
–0.0015  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
9
10  
TIME (µs)  
TIME (s)  
Figure 44. DAC-to-DAC Crosstalk  
Figure 47. 0.1 Hz to 10 Hz Output Noise Plot, Internal Reference  
0.06  
0.04  
0.02  
0
800  
700  
600  
500  
400  
EXT REF = 5V  
V
= 2.5V  
REF  
–0.02  
–0.04  
–0.06  
–0.08  
300  
200  
100  
0
V
= 1.25V  
REF  
0
1
2
3
4
5
6
7
8
9
10  
100  
1k  
10k  
100k  
1M  
TIME (s)  
FREQUENCY (Hz)  
Figure 45. 0.1 Hz to 10 Hz Output Noise Plot, External Reference  
Figure 48. Noise Spectral Density, Internal Reference  
Rev. G | Page 17 of 32  
AD5628/AD5648/AD5668  
Data Sheet  
10  
0
0
V
= 5.5V  
DD  
EXT REF = 5V  
= 25°C  
T
–20  
–40  
A
V
= 2V ± 0.1V p-p  
REF  
FREQUENCY = 10kHz  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–60  
–80  
CH A  
CH B  
CH C  
CH D  
CH E  
CH F  
CH G  
CH H  
–3dB  
–100  
–120  
–140  
V
= 5.5V  
DD  
EXT REF = 5V  
= 25°C  
T
A
V
= 2V ± 0.2V p-p  
REF  
10  
100  
1k  
1k0  
100k  
1M  
10M  
100M  
0
2000  
4000  
6000  
8000  
10,000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 52. Multiplying Bandwidth  
Figure 49. Total Harmonic Distortion  
1.2510  
1.2508  
1.2506  
1.2504  
1.2502  
1.2500  
1.2498  
1.2496  
1.2494  
1.2492  
1.2490  
V
= 5.5V  
DD  
9
8
7
6
5
4
3
2
1
T
= 25°C  
A
V
= EXTERNAL REFERENCE = 5V  
DD  
V
= EXTERNAL REFERENCE = 3V  
DD  
–40  
25  
105  
0
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
CAPACITIVE LOAD (nF)  
Figure 53. 1.25 V Reference Temperature Coefficient vs. Temperature  
Figure 50. Settling Time vs. Capacitive Load  
2.503  
2.502  
2.501  
2.500  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
EXT REF = 5V  
V
A
OUT  
2.499  
2.498  
2.497  
2.496  
2.495  
CLR PULSE  
–0.5  
105  
25  
–40  
–10  
–5  
0
5
10  
TEMPERATURE (°C)  
TIME (µs)  
CLR  
Figure 54. 2.5 V Reference Temperature Coefficient vs. Temperature  
Figure 51. Hardware  
Rev. G | Page 18 of 32  
 
Data Sheet  
AD5628/AD5648/AD5668  
TERMINOLOGY  
Relative Accuracy  
Digital-to-Analog Glitch Impulse  
For the DAC, relative accuracy, or integral nonlinearity (INL), is  
a measure of the maximum deviation in LSBs from a straight line  
passing through the endpoints of the DAC transfer function.  
Figure 7 to Figure 9, Figure 13 to Figure 15, and Figure 19 to  
Figure 21 show plots of typical INL vs. code.  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-s and  
is measured when the digital input code is changed by 1 LSB at  
the major carry transition (0x7FFF to 0x8000). See Figure 42.  
Differential Nonlinearity  
DC Power Supply Rejection Ratio (PSRR)  
Differential nonlinearity (DNL) is the difference between the  
measured change and the ideal 1 LSB change between any two  
adjacent codes. A specified differential nonlinearity of 1 LSB  
maximum ensures monotonicity. This DAC is guaranteed mono-  
tonic by design. Figure 10 to Figure 12, Figure 16 to Figure 18,  
and Figure 22 to Figure 24 show plots of typical DNL vs. code.  
PSRR indicates how the output of the DAC is affected by changes  
in the supply voltage. PSRR is the ratio of the change in VOUT to  
a change in VDD for full-scale output of the DAC. It is measured  
in decibels. VREF is held at 2 V, and VDD is varied 10%.  
DC Crosstalk  
DC crosstalk is the dc change in the output level of one DAC in  
response to a change in the output of another DAC. It is measured  
with a full-scale output change on one DAC (or soft power-down  
and power-up) while monitoring another DAC kept at midscale.  
It is expressed in microvolts.  
Offset Error  
Offset error is a measure of the difference between the actual  
V
OUT and the ideal VOUT, expressed in millivolts in the linear  
region of the transfer function. Offset error is measured on the  
AD5668 with Code 512 loaded into the DAC register. It can be  
negative or positive and is expressed in millivolts.  
DC crosstalk due to load current change is a measure of the  
impact that a change in load current on one DAC has to another  
DAC kept at midscale. It is expressed in microvolts per milliamp.  
Zero-Code Error  
Zero-code error is a measure of the output error when zero  
code (0x0000) is loaded into the DAC register. Ideally, the  
output should be 0 V. The zero-code error is always positive in  
the AD5628/AD5648/AD5668, because the output of the DAC  
cannot go below 0 V. It is due to a combination of the offset  
errors in the DAC and output amplifier. Zero-code error is  
expressed in millivolts. Figure 28 shows a plot of typical zero-  
code error vs. temperature.  
Reference Feedthrough  
Reference feedthrough is the ratio of the amplitude of the signal  
at the DAC output to the reference input when the DAC output  
is not being updated (that is,  
decibels.  
is high). It is expressed in  
LDAC  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of a DAC from the digital input pins of the  
device, but is measured when the DAC is not being written to  
Gain Error  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal, expressed as a percentage of the full-scale range.  
(
held high). It is specified in nV-s and measured with a  
SYNC  
full-scale change on the digital input pins, that is, from all 0s to  
all 1s or vice versa.  
Zero-Code Error Drift  
Digital Crosstalk  
Zero-code error drift is a measure of the change in zero-code  
error with a change in temperature. It is expressed in µV/°C.  
Digital crosstalk is the glitch impulse transferred to the output  
of one DAC at midscale in response to a full-scale code change  
(all 0s to all 1s or vice versa) in the input register of another DAC.  
It is measured in standalone mode and is expressed in nV-s.  
Gain Error Drift  
Gain error drift is a measure of the change in gain error with  
changes in temperature. It is expressed in (ppm of full-scale  
range)/°C.  
Analog Crosstalk  
Analog crosstalk is the glitch impulse transferred to the output  
of one DAC due to a change in the output of another DAC. It is  
measured by loading one of the input registers with a full-scale  
Full-Scale Error  
Full-scale error is a measure of the output error when full-scale  
code (0xFFFF) is loaded into the DAC register. Ideally, the  
output should be VDD – 1 LSB. Full-scale error is expressed as a  
percentage of the full-scale range. Figure 25 shows a plot of  
typical full-scale error vs. temperature.  
code change (all 0s to all 1s or vice versa) while keeping  
LDAC  
low and monitoring the output of  
high, and then pulsing  
LDAC  
the DAC whose digital code has not changed. The area of the  
glitch is expressed in nV-s.  
Rev. G | Page 19 of 32  
 
AD5628/AD5648/AD5668  
Data Sheet  
DAC-to-DAC Crosstalk  
Total Harmonic Distortion (THD)  
DAC-to-DAC crosstalk is the glitch impulse transferred to the  
output of one DAC due to a digital code change and subsequent  
output change of another DAC. This includes both digital and  
analog crosstalk. It is measured by loading one of the DACs  
with a full-scale code change (all 0s to all 1s or vice versa) with  
Total harmonic distortion is the difference between an ideal  
sine wave and its attenuated version using the DAC. The sine  
wave is used as the reference for the DAC, and the THD is a  
measure of the harmonics present on the DAC output. It is  
measured in decibels.  
low and monitoring the output of another DAC. The  
LDAC  
energy of the glitch is expressed in nV-s.  
Multiplying Bandwidth  
The amplifiers within the DAC have a finite bandwidth. The  
multiplying bandwidth is a measure of this. A sine wave on the  
reference (with full-scale code loaded to the DAC) appears on  
the output. The multiplying bandwidth is the frequency at  
which the output amplitude falls to 3 dB below the input.  
Rev. G | Page 20 of 32  
Data Sheet  
AD5628/AD5648/AD5668  
THEORY OF OPERATION  
D/A SECTION  
R
R
R
The AD5628/AD5648/AD5668 DACs are fabricated on a  
CMOS process. The architecture consists of a string of DACs  
followed by an output buffer amplifier. Each part includes an  
internal 1.25 V/2.5 V, 5 ppm/°C reference with an internal gain  
of 2. Figure 55 shows a block diagram of the DAC architecture.  
TO OUTPUT  
AMPLIFIER  
V
DD  
V
REFIN  
OUTPUT  
AMPLIFIER  
(GAIN = ×2)  
REF  
DAC  
REGISTER  
V
OUT  
R
R
RESISTOR  
STRING  
GND  
Figure 55. DAC Architecture  
Because the input coding to the DAC is straight binary, the ideal  
output voltage when using an external reference is given by  
Figure 56. Resistor String  
INTERNAL REFERENCE  
D
VOUT VREFIN  
The AD5628/AD5648/AD5668 have an on-chip reference with  
an internal gain of 2. The AD5628/AD5648/AD5668-1 have a  
1.25 V, 5 ppm/°C reference, giving a full-scale output of 2.5 V;  
the AD5628/AD5648/AD5668-2, -3 have a 2.5 V, 5 ppm/°C  
reference, giving a full-scale output of 5 V. The on-board  
reference is off at power-up, allowing the use of an external  
reference. The internal reference is enabled via a write to the  
control register (see Table 8).  
2N  
The ideal output voltage when using the internal reference is  
given by  
D
VOUT 2VREFOUT  
2N  
where:  
D = decimal equivalent of the binary code that is loaded to the  
DAC register.  
0 to 4095 for AD5628 (12 bits).  
0 to 16,383 for AD5648 (14 bits).  
0 to 65,535 for AD5668 (16 bits).  
N = the DAC resolution.  
The internal reference associated with each part is available at  
the VREFOUT pin. A buffer is required if the reference output is  
used to drive external loads. When using the internal reference,  
it is recommended that a 100 nF capacitor be placed between  
the reference output and GND for reference stability.  
Individual channel power-down is not supported while using  
the internal reference.  
RESISTOR STRING  
The resistor string section is shown in Figure 56. It is simply a  
string of resistors, each of value R. The code loaded into the  
DAC register determines at which node on the string the  
voltage is tapped off to be fed into the output amplifier. The  
voltage is tapped off by closing one of the switches connecting  
the string to the amplifier. Because it is a string of resistors, it is  
guaranteed monotonic.  
Rev. G | Page 21 of 32  
 
 
 
 
 
 
AD5628/AD5648/AD5668  
Data Sheet  
Table 8. Command Definitions  
Command  
OUTPUT AMPLIFIER  
The output buffer amplifier can generate rail-to-rail voltages on  
its output, which gives an output range of 0 V to VDD. The  
amplifier is capable of driving a load of 2 kΩ in parallel with  
200 pF to GND. The source and sink capabilities of the output  
amplifier can be seen in Figure 32 and Figure 33. The slew rate  
is 1.5 V/μs with a ¼ to ¾ scale settling time of 7 μs.  
C3 C2 C1 C0 Description  
0
0
0
0
0
0
0
0
1
0
1
0
Write to Input Register n  
Update DAC Register n  
Write to Input Register n, update all  
(software LDAC)  
0
0
0
0
0
1
1
1
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
1
Write to and update DAC Channel n  
Power down/power up DAC  
Load clear code register  
Load LDAC register  
Reset (power-on reset)  
Set up internal REF register  
Reserved  
SERIAL INTERFACE  
The AD5628/AD5648/AD5668 have a 3-wire serial interface  
SYNC  
(
, SCLK, and DIN) that is compatible with SPI, QSPI, and  
MICROWIRE interface standards as well as most DSPs. See  
Figure 2 for a timing diagram of a typical write sequence.  
Reserved  
Reserved  
SYNC  
The write sequence begins by bringing the  
line low. Data  
from the DIN line is clocked into the 32-bit shift register on the  
falling edge of SCLK. The serial clock frequency can be as high  
as 50 MHz, making the AD5628/AD5648/AD5668 compatible  
with high speed DSPs. On the 32nd falling clock edge, the last  
data bit is clocked in and the programmed function is executed,  
that is, a change in DAC register contents and/or a change in  
Table 9. Address Commands  
Address (n)  
A3  
0
A2  
0
A1  
0
A0  
0
Selected DAC Channel  
DAC A  
SYNC  
the mode of operation. At this stage, the  
line can be kept  
0
0
0
1
DAC B  
low or be brought high. In either case, it must be brought high  
for a minimum of 15 ns before the next write sequence so that a  
0
0
0
0
0
1
1
1
0
0
1
0
DAC C  
DAC D  
DAC E  
SYNC  
SYNC  
falling edge of  
can initiate the next write sequence.  
should be idled low between write sequences for even lower  
power operation of the part. As is mentioned previously,  
0
0
1
1
0
1
1
0
DAC F  
DAC G  
SYNC  
however,  
write sequence.  
must be brought high again just before the next  
0
1
1
1
1
1
1
1
DAC H  
All DACs  
Rev. G | Page 22 of 32  
 
 
 
 
Data Sheet  
AD5628/AD5648/AD5668  
INTERRUPT  
SYNC  
INPUT SHIFT REGISTER  
SYNC  
In a normal write sequence, the  
32 falling edges of SCLK, and the DAC is updated on the 32nd  
SYNC SYNC  
is brought  
line is kept low for  
The input shift register is 32 bits wide. The first four bits are  
don’t cares. The next four bits are the command bits, C3 to C0  
(see Table 8), followed by the 4-bit DAC address, A3 to A0 (see  
Table 9) and finally the 16-/14-/12-bit data-word. The data-  
word comprises the 16-/14-/12-bit input code followed by four,  
six, or eight don’t care bits for the AD5668, AD5648, and  
AD5628, respectively (see Figure 57 through Figure 59). These  
data bits are transferred to the DAC register on the 32nd falling  
edge of SCLK.  
falling edge and rising edge of  
. However, if  
high before the 32nd falling edge, this acts as an interrupt to the  
write sequence. The shift register is reset, and the write sequence  
is seen as invalid. Neither an update of the DAC register contents  
nor a change in the operating mode occurs (see Figure 60).  
DB31 (MSB)  
DB0 (LSB)  
X
X
X
X
X
X
X
X
C3 C2 C1 C0 A3 A2 A1 A0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
X
X
X
X
DATA BITS  
COMMAND BITS  
ADDRESS BITS  
Figure 57. AD5668 Input Register Contents  
DB31 (MSB)  
DB0 (LSB)  
X
X
C3 C2 C1 C0 A3 A2 A1 A0 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
DATA BITS  
COMMAND BITS  
ADDRESS BITS  
Figure 58. AD5648 Input Register Contents  
DB31 (MSB)  
DB0 (LSB)  
X
X
C3 C2 C1 C0 A3 A2 A1 A0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
X
X
DATA BITS  
COMMAND BITS  
ADDRESS BITS  
Figure 59. AD5628 Input Register Contents  
SCLK  
SYNC  
DIN  
DB31  
DB0  
DB31  
DB0  
INVALID WRITE SEQUENCE:  
SYNC HIGH BEFORE 32ND FALLING EDGE  
VALID WRITE SEQUENCE, OUTPUT UPDATES  
ON THE 32ND FALLING EDGE  
SYNC  
Figure 60.  
Interrupt Facility  
Rev. G | Page 23 of 32  
 
 
 
 
 
AD5628/AD5648/AD5668  
Data Sheet  
advantage that the output impedance of the part is known while  
the part is in power-down mode. There are three different  
options. The output is connected internally to GND through  
either a 1 kΩ or a 100 kΩ resistor, or it is left open-circuited  
(three-state). The output stage is illustrated in Figure 61.  
INTERNAL REFERENCE REGISTER  
The on-board reference is off at power-up by default. This allows  
the use of an external reference if the application requires it. The  
on-board reference can be turned on or off by a user-program-  
mable internal REF register by setting Bit DB0 high or low (see  
Table 10). Command 1000 is reserved for setting the internal  
REF register (see Table 8). Table 12 shows how the state of the  
bits in the input shift register corresponds to the mode of  
operation of the device.  
The bias generator of the selected DAC(s), output amplifier,  
resistor string, and other associated linear circuitry are shut  
down when the power-down mode is activated. The internal  
reference is powered down only when all channels are powered  
down. However, the contents of the DAC register are unaffected  
when in power-down. The time to exit power-down is typically  
4 µs for VDD = 5 V and for VDD = 3 V. See Figure 41 for a plot.  
POWER-ON RESET  
The AD5628/AD5648/AD5668 family contains a power-on  
reset circuit that controls the output voltage during power-up.  
The AD5628/AD5648/AD5668-1, -2 DAC output powers up to  
0 V, and the AD5668-3 DAC output powers up to midscale. The  
output remains powered up at this level until a valid write  
sequence is made to the DAC. This is useful in applications  
where it is important to know the state of the output of the DAC  
while it is in the process of powering up. There is also a software  
executable reset function that resets the DAC to the power-on  
reset code. Command 0111 is reserved for this reset function  
Any combination of DACs can be powered up by setting PD1  
and PD0 to 0 (normal operation). The output powers up to the  
value in the input register (  
low) or to the value in the  
LDAC  
DAC register before powering down (  
high).  
LDAC  
CLEAR CODE REGISTER  
The AD5628/AD5648/AD5668 have a hardware  
pin that  
CLR  
input is falling edge  
is an asynchronous clear input. The  
CLR  
line low clears the contents of the  
(see Table 8). Any events on  
or during power-on  
LDAC CLR  
sensitive. Bringing the  
CLR  
input register and the DAC registers to the data contained in  
the user-configurable register and sets the analog outputs  
reset are ignored.  
CLR  
POWER-DOWN MODES  
accordingly. This function can be used in system calibration to load  
zero scale, midscale, or full scale to all channels together. These  
clear code values are user-programmable by setting two bits,  
The AD5628/AD5648/AD5668 contain four separate modes  
of operation. Command 0100 is reserved for the power-down  
function (see Table 8). These modes are software-programmable  
by setting two bits, Bit DB9 and Bit DB8, in the control register.  
Bit DB1 and Bit DB0, in the  
control register (see Table 14).  
CLR  
The default setting clears the outputs to 0 V. Command 0101 is  
reserved for loading the clear code register (see Table 8).  
Table 12 shows how the state of the bits corresponds to the  
mode of operation of the device. Any or all DACs (DAC H to  
DAC A) can be powered down to the selected mode by setting  
the corresponding eight bits (DB7 to DB0) to 1. See Table 13 for  
the contents of the input shift register during power-down/power-  
up operation. When using the internal reference, only all channel  
power-down to the selected modes is supported.  
The part exits clear code mode on the 32nd falling edge of the next  
write to the part. If  
is activated during a write sequence, the  
CLR  
write is aborted.  
The  
pulse activation time—the falling edge of  
to  
CLR  
CLR  
when the output starts to change—is typically 280 ns. However, if  
outside the DAC linear region, it typically takes 520 ns after  
When both bits are set to 0, the part works normally with its  
normal power consumption of 1.3 mA at 5 V. However, for the  
three power-down modes, the supply current falls to 0.4 µA at  
5 V (0.2 µA at 3 V). Not only does the supply current fall, but  
the output stage is also internally switched from the output of  
the amplifier to a resistor network of known values. This has the  
executing  
for the output to start changing (see Figure 51).  
CLR  
See Table 15 for contents of the input shift register during the  
loading clear code register operation.  
Rev. G | Page 24 of 32  
 
 
 
 
Data Sheet  
AD5628/AD5648/AD5668  
Table 10. Internal Reference Register  
Internal REF Register (DB0)  
Action  
0
1
Reference off (default)  
Reference on  
Table 11. 32-Bit Input Shift Register Contents for Reference Set-Up Command  
MSB  
LSB  
DB31 to DB28  
X
DB27  
DB26  
DB25  
DB24  
DB23  
DB22  
DB21  
DB20  
DB19 to DB1  
X
DB0  
1
0
0
0
X
X
X
X
1/0  
Don’t cares  
Command bits (C3 to C0)  
Address bits (A3 to A0)—don’t cares  
Don’t cares  
Internal REF  
register  
Table 12. Power-Down Modes of Operation  
DB9  
DB8  
Operating Mode  
Normal operation  
Power-down modes  
1 kΩ to GND  
100 kΩ to GND  
Three-state  
0
0
0
1
1
1
0
1
Table 13. 32-Bit Input Shift Register Contents for Power-Down/Power-Up Function  
MSB  
LSB  
DB31  
to  
DB19  
to  
DB28  
DB27  
DB26  
DB25  
DB24  
DB23  
DB22  
DB21  
DB20  
DB10  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
X
0
1
0
0
X
X
X
X
X
PD1  
PD0  
DAC  
H
DAC  
G
DAC  
F
DAC  
E
DAC  
D
DAC  
C
DAC  
B
DAC  
A
Don’t  
cares  
Command bits (C3 to C0)  
Address bits (A3 to A0)—  
don’t cares  
Don’t  
cares  
Power-  
down mode  
Power-down/power-up channel selection—set bit to 1 to select  
RESISTOR  
STRING DAC  
AMPLIFIER  
V
OUT  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
Figure 61. Output Stage During Power-Down  
Table 14. Clear Code Register  
Clear Code Register  
DB1  
CR1  
0
DB0  
CR0  
0
Clears to Code  
0x0000  
0
1
0x8000  
1
0
0xFFFF  
1
1
No operation  
Table 15. 32-Bit Input Shift Register Contents for Clear Code Function  
MSB  
LSB  
DB0  
CR0  
DB31 to DB28  
X
DB27  
DB26  
DB25  
DB24  
DB23  
DB22  
DB21  
DB20  
DB19 to DB2  
X
DB1  
0
1
0
1
X
X
X
X
CR1  
Don’t cares  
Command bits (C3 to C0)  
Address bits (A3 to A0)—don’t cares  
Don’t cares  
Clear code register  
Rev. G | Page 25 of 32  
 
 
 
 
 
 
AD5628/AD5648/AD5668  
Data Sheet  
pin. See Table 17 for the contents of the input shift register  
during the load register mode of operation.  
FUNCTION  
LDAC  
LDAC  
The outputs of all DACs can be updated simultaneously using  
the hardware  
pin.  
POWER SUPPLY BYPASSING AND GROUNDING  
LDAC  
When accuracy is important in a circuit, it is helpful to carefully  
consider the power supply and ground return layout on the board.  
The printed circuit board containing the AD5628/AD5648/  
AD5668 should have separate analog and digital sections. If the  
AD5628/AD5648/AD5668 are in a system where other devices  
require an AGND-to-DGND connection, the connection should  
be made at one point only. This ground point should be as close  
as possible to the AD5628/AD5648/AD5668.  
Synchronous  
: After new data is read, the DAC registers  
LDAC  
are updated on the falling edge of the 32nd SCLK pulse.  
can be permanently low or pulsed as in Figure 2.  
LDAC  
Asynchronous  
time that the input registers are written to. When  
low, the DAC registers are updated with the contents of the  
input register.  
: The outputs are not updated at the same  
LDAC  
goes  
LDAC  
The power supply to the AD5628/AD5648/AD5668 should be  
bypassed with 10 µF and 0.1 µF capacitors. The capacitors  
should physically be as close as possible to the device, with the  
0.1 µF capacitor ideally right up against the device. The 10 µF  
capacitors are the tantalum bead type. It is important that the  
0.1 µF capacitor has low effective series resistance (ESR) and  
low effective series inductance (ESI), such as is typical of  
common ceramic types of capacitors. This 0.1 µF capacitor  
provides a low impedance path to ground for high frequencies  
caused by transient currents due to internal logic switching.  
Alternatively, the outputs of all DACs can be updated simulta-  
neously using the software  
function by writing to Input  
LDAC  
Register n and updating all DAC registers. Command 0011 is  
reserved for this software function.  
LDAC  
register gives the user extra flexibility and control  
An  
LDAC  
over the hardware  
pin. This register allows the user to  
LDAC  
select which combination of channels to simultaneously update  
when the hardware pin is executed. Setting the bit  
LDAC  
register to 0 for a DAC channel means that this channel’s update  
is controlled by the pin. If this bit is set to 1, this channel  
LDAC  
The power supply line should have as large a trace as possible to  
provide a low impedance path and reduce glitch effects on the  
supply line. Clocks and other fast switching digital signals should  
be shielded from other parts of the board by digital ground. Avoid  
crossover of digital and analog signals if possible. When traces  
cross on opposite sides of the board, ensure that they run at right  
angles to each other to reduce feedthrough effects through the  
board. The best board layout technique is the microstrip technique,  
where the component side of the board is dedicated to the ground  
plane only and the signal traces are placed on the solder side.  
However, this is not always possible with a 2-layer board.  
LDAC  
updates synchronously; that is, the DAC register is updated  
after new data is read, regardless of the state of the pin. It  
LDAC  
pin as being tied low. (See Table 16  
effectively sees the  
LDAC  
register mode of operation.) This flexibility is  
for the  
LDAC  
useful in applications where the user wants to simultaneously  
update select channels while the rest of the channels are  
synchronously updating.  
Writing to the DAC using command 0110 loads the 8-bit  
LDAC  
register (DB7 to DB0). The default for each channel is 0, that is,  
the pin works normally. Setting the bits to 1 means the  
LDAC  
DAC channel is updated regardless of the state of the  
LDAC  
Table 16.  
Register  
LDAC  
Load DAC Register  
Bits (DB7 to DB0)  
Pin  
Operation  
LDAC  
LDAC  
1/0  
X—don’t care  
LDAC  
Determined by LDAC pin.  
DAC channels update, overriding the LDAC pin. DAC channels see LDAC as 0.  
0
1
Table 17. 32-Bit Input Shift Register Contents for  
Register Function  
LDAC  
MSB  
LSB  
DB31  
to  
DB19  
to  
DB28  
DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
X
0
1
1
0
X
X
X
X
X
DAC  
H
DAC  
G
DAC  
F
DAC  
E
DAC  
D
DAC  
C
DAC  
B
DAC  
A
Don’t  
cares  
Command bits (C3 to C0)  
Address bits (A3 to A0)—  
don’t cares  
Don’t  
cares  
LDAC  
LDAC  
pin  
Setting  
bit to 1 overrides  
Rev. G | Page 26 of 32  
 
 
 
 
Data Sheet  
AD5628/AD5648/AD5668  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 62. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 63. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
Rev. G | Page 27 of 32  
 
AD5628/AD5648/AD5668  
Data Sheet  
4.10  
4.00 SQ  
3.90  
0.35  
0.30  
0.25  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.65  
BSC  
12  
1
EXPOSED  
PAD  
2.70  
2.60 SQ  
2.50  
4
9
8
5
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.  
Figure 64. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-16-17)  
Dimensions shown in millimeters  
2.645  
2.605 SQ  
2.565  
4
3
2
1
A
B
C
D
BALL A1  
IDENTIFIER  
1.50  
REF  
0.50  
REF  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
0.650  
0.595  
0.540  
SIDE VIEW  
COPLANARITY  
0.05  
0.340  
0.320  
0.300  
SEATING  
PLANE  
0.270  
0.240  
0.210  
Figure 65. 16-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-16-16)  
Dimensions shown in millimeters  
Rev. G | Page 28 of 32  
Data Sheet  
AD5628/AD5648/AD5668  
ORDERING GUIDE  
Package  
Option  
Power-On  
Reset to Code  
Internal  
Reference  
Model1  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
14-Lead TSSOP  
14-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
Accuracy  
1 LSB INL  
1 LSB INL  
1 LSB INL  
1 LSB INL  
2 LSB INL  
2 LSB INL  
2 LSB INL  
2 LSB INL  
1 LSB INL  
1 LSB INL  
4 LSB INL  
4 LSB INL  
4 LSB INL  
4 LSB INL  
8 LSB INL  
8 LSB INL  
AD5628BRUZ-1  
AD5628BRUZ-1REEL7  
AD5628BRUZ-2  
AD5628BRUZ-2REEL7  
AD5628ARUZ-2  
AD5628ARUZ-2REEL7  
AD5628ACPZ-1-RL7  
AD5628ACPZ-2-RL7  
AD5628BCPZ-2-RL7  
AD5628BCBZ-1-RL7  
AD5648BRUZ-1  
AD5648BRUZ-1REEL7  
AD5648BRUZ-2  
AD5648BRUZ-2REEL7  
AD5648ARUZ-2  
AD5648ARUZ-2REEL7  
AD5668BRUZ-1  
AD5668BRUZ-1REEL7  
AD5668BRUZ-2  
AD5668BRUZ-2REEL7  
AD5668BRUZ-3  
AD5668BRUZ-3REEL7  
AD5668ARUZ-2  
RU-14  
RU-14  
RU-16  
RU-16  
RU-16  
RU-16  
CP-16-17  
CP-16-17  
CP-16-17  
CB-16-16  
RU-14  
RU-14  
RU-16  
RU-16  
RU-16  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
1.25 V  
1.25 V  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
1.25 V  
2.5 V  
2.5 V  
1.25 V  
1.25 V  
1.25 V  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead WLCSP  
14-Lead TSSOP  
14-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
16-Lead TSSOP  
RU-16  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
Zero  
Zero  
Zero  
Zero  
Midscale  
Midscale  
Zero  
16 LSB INL 1.25 V  
16 LSB INL 1.25 V  
16 LSB INL 2.5 V  
16 LSB INL 2.5 V  
16 LSB INL 2.5 V  
16 LSB INL 2.5 V  
32 LSB INL 2.5 V  
32 LSB INL 2.5 V  
32 LSB INL 2.5 V  
32 LSB INL 2.5 V  
16 LSB INL 1.25 V  
16 LSB INL 1.25 V  
16 LSB INL 2.5 V  
16 LSB INL 2.5 V  
32 LSB INL 2.5 V  
32 LSB INL 2.5 V  
16 LSB INL 1.25 V  
AD5668ARUZ-2REEL7  
AD5668ARUZ-3  
Zero  
16-Lead TSSOP  
16-Lead TSSOP  
RU-16  
RU-16  
Midscale  
Midscale  
Zero  
Zero  
Zero  
Zero  
Zero  
Midscale  
Zero  
AD5668ARUZ-3REEL7  
AD5668BCPZ-1-RL7  
AD5668BCPZ-1500RL7  
AD5668BCPZ-2-RL7  
AD5668BCPZ-2500RL7  
AD5668ACPZ-2-RL7  
AD5668ACPZ-3-RL7  
AD5668BCBZ-1-RL7  
EVAL-AD5668SDCZ  
EVAL-AD5668SDRZ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead WLCSP  
LFCSP Evaluation Board  
TSSOP Evaluation Board  
CP-16-17  
CP-16-17  
CP-16-17  
CP-16-17  
CP-16-17  
CP-16-17  
CB-16-16  
1 Z = RoHS Compliant Part.  
Rev. G | Page 29 of 32  
 
 
AD5628/AD5648/AD5668  
NOTES  
Data Sheet  
Rev. G | Page 30 of 32  
Data Sheet  
NOTES  
AD5628/AD5648/AD5668  
Rev. G | Page 31 of 32  
AD5628/AD5648/AD5668  
NOTES  
Data Sheet  
©2005–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05302-0-1/13(G)  
Rev. G | Page 32 of 32  

相关型号:

EVAL-AD5668SDRZ

Octal, 12-/14-/16-Bit SPI Voltage Output denseDAC with 5 ppm/°C On-Chip Reference
ADI

EVAL-AD5680DBZ

EVAL BOARD FOR AD5680
ADI

EVAL-AD5680EB

5 V 18-Bit nanoDAC in a SOT-23
ADI

EVAL-AD5684RSDZ

Quad, 16-/14-/12-Bit nanoDAC
ADI

EVAL-AD5686RSDZ

Quad, 16-/14-/12-Bit nanoDAC
ADI

EVAL-AD5687R

PC control in conjunction with Analog Devices
ADI

EVAL-AD5687RSDZ

Dual, 16-/12-Bit nanoDAC with 2 ppm/°C Reference, SPI Interface
ADI

EVAL-AD5689R

PC control in conjunction with Analog Devices
ADI

EVAL-AD5689RSDZ

Dual, 16-/12-Bit nanoDAC with 2 ppm/°C Reference, SPI Interface
ADI

EVAL-AD5694RSDZ

Quad 16-/14-/12-Bit nanoDAC
ADI

EVAL-AD5696RSDZ

Quad 16-/14-/12-Bit nanoDAC
ADI

EVAL-AD5697RSDZ

Dual, 12-Bit nanoDAC with 2 ppm/°C Reference, I2C Interface
ADI