EVAL-AD7641CB [ADI]

18-Bit 250/670 kSPS PulSAR Bipolar Programmable Inputs ADC; 18位六百七十○分之二百五十○ kSPS时的PulSAR双极性可编程输入ADC
EVAL-AD7641CB
型号: EVAL-AD7641CB
厂家: ADI    ADI
描述:

18-Bit 250/670 kSPS PulSAR Bipolar Programmable Inputs ADC
18位六百七十○分之二百五十○ kSPS时的PulSAR双极性可编程输入ADC

文件: 总14页 (文件大小:334K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
18-Bit 250/670 kSPS PulSAR®  
Bipolar Programmable Inputs ADC  
Preliminary Technical Data  
AD7631/AD7634  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
TEMP REFBUFIN REF REFGND  
VEE  
DVDD DGND  
VCC  
Multiple pins/software programmable input ranges:  
±10ꢀ, ±±ꢀ, 10ꢀ, ±ꢀ  
iCMOS™ process technology  
OVDD  
AD7631/  
AD7634  
AGND  
AVDD  
OGND  
SPPEN  
SPPCLK  
SPPDATA  
HW/SW  
Pins or serial SPI input ranges/mode selection  
Throughput:  
670kSPS (AD7634)  
2±0kSPS (AD7631)  
INL: ± 1.7± LSB (7± ppm of full scale)  
DNL: +2/-1 LSB  
18-bit resolution with no missing codes  
Dynamic range: 102.± dB typical  
SNR: 101 dB typical  
REF  
SERIAL  
PROGRAMMABLE  
PORT  
REF AMP  
IN+  
IN-  
SWITCHED  
CAP DAC  
SERIAL DATA  
PORT  
18  
D[17:0]  
BUSY  
RD  
PDREF  
PDBUF  
PD  
CLOCK  
PARALLEL  
INTERFACE  
CONTROL LOGIC AND  
CALIBRATION CIRCUITRY  
CS  
RESET  
D0/OB/2C  
THD: -122 dB typical  
CNVST WARP IMPULSE  
MODE1  
MODE0  
±ꢀ internal reference: typical drift 7ppm/°C; TEMP output  
No pipeline delay (SAR architecture)  
Parallel (18, 16- or 8-bit bus) and serial ± ꢀ/3.3 ꢀ interface  
SPI®-/QSPI™-/MICROWIRE™-/DSP-compatible  
Power dissipation:  
Figure 1.  
Table 1. PulSAR® Selection  
100 to  
±00 to  
±70  
6±0 to  
1000  
Type/kSPS  
2±0  
>1000  
190 mW @ 670kSPS  
7± mW @ 2±0kSPS  
Pb-free 48-lead LQFP and LFCSP (7x7mm) packages  
Pin compatible with other PulSAR ADCs  
Pseudo  
Differential  
AD7651,  
AD7660  
AD7661  
AD7650  
AD7652  
AD7664  
AD7666  
AD7653  
AD7667  
True Bipolar  
AD7610,  
AD7663  
AD7675  
AD7665  
AD7612,  
AD7671  
AD7677  
APPLICATIONS  
True  
AD7676  
AD7621  
AD7622  
AD7623  
AD7641  
AD7643  
Differential  
Process control  
High speed data acquisition  
Digital signal processing  
Spectrum analysis  
Instrumentation  
Communications  
18-Bit  
Multichannel/  
Simultaneous  
AD7631  
AD7678  
AD7679  
AD7634  
AD7674  
AD7654  
AD7655  
PRODUCT HIGHLIGHTS  
GENERAL DESCRIPTION  
1. Programmable input range and mode selection.  
The AD7631/AD7634 is an18-bit, charge redistribution  
successive approximation register (SAR) architecture analog-to-  
digital converter (ADC) with programmable input ranges and  
mode selection via a dedicated write only serial interface (or by  
hardware pin-strapping). The device is fabricated on ADIs  
patented iCMOS high voltage process. The device contains a  
high speed 18-bit sampling ADC, an internal conversion clock,  
an internal reference (and buffer), and both serial and parallel  
system interface ports. Power consumption is automatically  
scaled with throughput (AD7634 in Impulse mode), making it  
ideal for battery-powered applications. It is available in Pb-free,  
48-lead packages with operation specified from −40°C to  
+85°C.  
Dedicated write only serial port used for selecting input  
range and mode select (mode select AD7634 only).  
2. Fast throughput  
The AD7634 is 670kSPS and the AD7631 is 250kSPS.  
3. Superior Linearity.  
No missing 18-bit code. +/- 1.75 LSB typical INL  
4. Internal Reference.  
5 V internal reference with a typical drift of 7 ppm/°C  
and on-chip TEMP sensor.  
5. Serial or Parallel Interface.  
Versatile parallel (18, 16- or 8-bit bus) or 2-wire serial  
interface arrangement compatible with 3.3 V, or 5 V logic.  
Rev. PrC  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD7631/AD7634  
Preliminary Technical Data  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ............................................................8  
ESD Caution...................................................................................8  
Pin Configuration and Function Descriptions..............................9  
Terminology .................................................................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications....................................................................... 6  
REꢀISION HISTORY  
Rev. PrC | Page 2 of 14  
 
Preliminary Technical Data  
SPECIFICATIONS  
AD7631/AD7634  
AVDD = DVDD = 5 V; OVDD = 2.7 V to 5.5 V; VCC = 15V; VEE = -15V; VREF = 5 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RESOLUTION  
18  
Bits  
ANALOG INPUT1  
Differential Voltage Range  
0 to 5V  
VIN+ - VIN−  
VIN+ - VIN−  
VIN+ - VIN−  
VIN+ - VIN−  
-VREF  
VREF  
0 to 10V  
5V  
10V  
-2VREF  
-2VREF  
-4VREF  
2VREF  
2VREF  
4VREF  
Operating Input Voltage Range  
0 to 5V  
0 to 10V  
(VIN+, VIN−) to AGND  
(VIN+, VIN−) to AGND  
(VIN+, VIN−) to AGND  
(VIN+, VIN−) to AGND  
-0.1V  
-0.1V  
-VREF – 0.1V  
-2VREF – 0.1V  
VREF + 0.1V  
2VREF + 0.1V  
VREF + 0.1V  
2VREF + 0.1V  
5V  
10V  
Common Mode Voltage range  
0 to 5V  
0 to 10V  
VIN+, VIN−  
VIN+, VIN−  
VIN+, VIN−  
VREF/2 – 0.1V  
VREF – 0.2V  
–0.1V  
VREF/2  
VREF  
0
VREF/2 + 0.1V  
VREF + 0.2V  
0.1V  
Bipolar ranges  
Analog Input CMRR  
Input Current  
Input Current  
fIN = 100 kHz  
@ 670 kSPS throughput  
@ 250 kSPS throughput  
TBD  
TBD  
TBD  
dB  
μA  
μA  
Input Impedance  
THROUGHPUT SPEED  
Complete Cycle  
Throughput Rate  
Time between Conversions  
Complete Cycle  
Throughput Rate  
Complete Cycle  
Throughput Rate  
Complete Cycle  
Throughput Rate  
DC ACCURACY  
Integral Linearity Error2  
No Missing Codes  
Differential Linearity Error  
Transition Noise  
Bipolar Offset Error  
Bipolar Offset Error Temperature Drift  
Bipolar Full-Scale Error  
Bipolar Full-Scale Error Temperature Drift  
Power Supply Sensitivity  
AD7634 in Warp mode  
AD7634 in Warp mode  
AD7634 in Warp mode  
AD7634 in Normal mode  
AD7634 in Normal mode  
AD7634 in Impulse  
AD7634 in Impulse mode  
AD7631  
1.49  
670  
1
1.75  
570  
2.22  
450  
4
ꢀs  
kSPS  
ms  
ꢀs  
kSPS  
ꢀs  
kSPS  
ꢀs  
kSPS  
1
0
0
0
AD7631  
250  
VREF = 5V, PDREF = PDBUF = High  
1.75  
LSB3  
Bits  
LSB  
LSB  
LSB  
ppm/°C  
LSB  
ppm/°C  
LSB  
18  
−1  
+2  
0.75  
10  
TBD  
60  
TBD  
TBD  
AVDD = 5 V 5%  
Rev. PrC | Page 3 of 14  
 
AD7631/AD7634  
Preliminary Technical Data  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
AC ACCURACY  
Dynamic Range  
Signal-to-Noise  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
Signal-to-(Noise + Distortion)  
–3 dB Input Bandwidth  
SAMPLING DYNAMICS  
Aperture Delay  
Aperture Jitter  
Transient Response  
INTERNAL REFERENCE  
Output Voltage  
Temperature Drift  
Line Regulation  
Turn-On Settling Time  
REFERENCE BUFFER  
REFBUFIN Input Voltage Range  
EXTERNAL REFERENCE  
Voltage Range  
Current Drain  
VIN  
VIN  
VIN  
VIN  
VIN  
=
=
=
=
=
5V, fIN = 2 kHz, -60dB  
5V, fIN = 2 kHz  
5V, fIN = 2 kHz  
5V, fIN = 2 kHz  
5V, fIN = 2 kHz  
102.5  
101  
122  
-106  
100  
12  
dB4  
dB  
dB  
dB  
dB  
MHz  
1
5
ns  
ps rms  
ns  
Full-scale step  
PDREF = PDBUF = low  
REF @ 25°C  
–40°C to +85°C  
AVDD = 5 V 5%  
CREF = 10 μF  
115  
4.985  
5.000  
5.015  
V
7
15  
5
ppm/°C  
ppm/V  
ms  
PDREF = high  
2.5  
V
PDREF = PDBUF = high  
REF  
AD7634 @ 670 kSPS throughput  
AD7631 @ 250 kSPS throughput  
5
TBD  
TBD  
AVDD+0.1  
V
μA  
μA  
Current Drain  
TEMPERATURE PIN  
Voltage Output  
Temperature Sensitivity  
Output Resistance  
DIGITAL INPUTS  
Logic Levels  
TEMP @ 25°C  
TBD  
1
4
mV  
mV/°C  
kΩ  
VIL  
VIH  
IIL  
IIH  
–0.3  
2.1  
–1  
+0.6  
OVDD+0.3  
+1  
V
V
μA  
μA  
–1  
+1  
DIGITAL OUTPUTS  
Data Format5  
Pipeline Delay6  
VOL  
VOH  
ISINK = 500 μA  
ISOURCE = −500 μA  
0.4  
V
V
OVDD − 0.6  
POWER SUPPLIES  
Specified Performance  
AVDD  
4.75  
4.75  
2.7  
5
5
5.25  
5.25  
5.25  
V
V
V
V
V
DVDD  
OVDD  
VCC  
VEE  
15  
-15  
Rev. PrC | Page 4 of 14  
Preliminary Technical Data  
AD7631/AD7634  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Operating Current7  
AVDD8  
PDREF = PDBUF = low  
AD7631 @ 250kSPS throughput  
AD7634 @ 670kSPS throughput  
AD7631 @ 250kSPS throughput  
AD7634 @ 670kSPS throughput  
AD7631 @ 250kSPS throughput  
AD7634 @ 670kSPS throughput  
AD7631 @ 250kSPS throughput  
AD7631 @ 250kSPS throughput  
AD7634 @ 670kSPS throughput  
AD7634 @ 670kSPS throughput  
8.5  
21  
3.5  
7
0.1  
0.2  
1
0.6  
2.8  
2
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DVDD  
OVDD  
VCC  
VEE  
VCC  
VEE  
Power Dissipation  
With Internal Reference7  
With Internal Reference7  
Without Internal Reference  
Without Internal Reference7  
In Power-Down Mode9  
TEMPERATURE RANGE10  
Specified Performance  
AD7631 @ 250kSPS throughput  
AD7634 @ 670kSPS throughput  
AD7631 @ 250kSPS throughput  
AD7634 @ 670kSPS throughput  
PD = high  
75  
190  
62  
160  
2
mW  
mW  
mW  
μW  
TMIN to TMAX  
−40  
+85  
°C  
1 The inputs are differential anti-phase. Refer to the Error! Reference source not found. section.  
2 Linearity is tested using endnotes, not best fit.  
3 LSB means least significant bit. With the 0 to 5V input range, 1 LSB 38.15μV.  
4 All specifications in dB are referred to a full-scale input FSR. Tested with an input signal at 0.5 dB below full-scale, unless otherwise specified.  
5 Parallel or serial 18-bit.  
6 Conversion results are available immediately after completed conversion.  
7 Tested in parallel reading mode.  
8 With internal reference, PDREF and PDBUF are low; without internal reference, PDREF and PDBUF are high.  
9 With all digital inputs forced to OVDD.  
10Consult sales for extended temperature range.  
Rev. PrC | Page 5 of 14  
 
AD7631/AD7634  
Preliminary Technical Data  
TIMING SPECIFICATIONS  
AVDD = DVDD = 5 V; OVDD = 2.7 V to 5.5 V; VCC = 15V; VEE = -15V; VREF = 5 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
CONVERSION AND RESET  
Convert Pulse Width  
t1  
t2  
10  
ns  
ns  
ꢀs  
ꢀs  
Time Between Conversions (Warp Mode/Normal Mode1)  
AD7631  
4
AD7634 (Warp Mode/Normal Mode/Impulse Mode)2  
CNVST Low to BUSY High Delay  
1.49/1.75/2.22  
t3  
t4  
35  
ns  
BUSY High All Modes (Except Master Serial Read After Convert)  
AD7631  
AD7634 (Warp Mode/Normal Mode/Impulse Mode)  
Aperture Delay  
End of Conversion to BUSY Low Delay  
Conversion Time  
TBD  
TBD  
ꢀs  
ꢀs  
ns  
ns  
t5  
t6  
t7  
2
10  
AD7631  
TBD  
TBD  
ꢀs  
ꢀs  
AD7634 (Warp Mode/Normal Mode/Impulse Mode)  
Acquisition Time  
t8  
AD7631  
250  
250  
10  
ns  
ns  
ns  
AD7634 (Warp Mode/Normal Mode/Impulse Mode)  
RESET Pulse Width  
t9  
PARALLEL INTERFACE MODES  
CNVST Low to DATA Valid Delay  
AD7631  
t10  
1.5  
ꢀs  
AD7634 (Warp Mode/Normal Mode/Impulse Mode)  
DATA Valid to BUSY Low Delay  
Bus Access Request to DATA Valid  
Bus Relinquish Time  
1/1.25/1.5 ꢀs  
ns  
t11  
t12  
t13  
12  
5
45  
15  
ns  
ns  
MASTER SERIAL INTERFACE MODES3  
CS Low to SYNC Valid Delay  
CS Low to Internal SCLK Valid Delay  
CS Low to SDOUT Delay  
t14  
t15  
t16  
t17  
10  
10  
10  
ns  
ns  
ns  
CNVST Low to SYNC Delay  
AD7631  
525  
25/275/525  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AD7634 (Warp Mode/Normal Mode/Impulse Mode)  
SYNC Asserted to SCLK First Edge Delay  
Internal SCLK Period4  
t18  
t19  
t20  
t21  
t22  
t23  
t24  
t25  
t26  
t27  
3
25  
12  
7
4
2
40  
Internal SCLK High4  
Internal SCLK Low4  
SDOUT Valid Setup Time4  
SDOUT Valid Hold Time4  
SCLK Last Edge to SYNC Delay4  
3
CS High to SYNC HI-Z  
10  
10  
10  
CS High to Internal SCLK HI-Z  
CS High to SDOUT HI-Z  
Rev. PrC | Page 6 of 14  
 
 
Preliminary Technical Data  
AD7631/AD7634  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
See  
BUSY High in Master Serial Read after Convert4  
CNVST Low to SYNC Asserted Delay (all Modes)  
t28  
t29  
Table 4  
ns  
ns  
ns  
ns  
AD7631  
TBD  
TBD  
25  
AD7634 (Warp Mode/Normal Mode/Impulse Mode)  
SYNC Deasserted to BUSY Low Delay  
SLAVE SERIAL INTERFACE MODES  
External SCLK Setup Time  
External SCLK Active Edge to SDOUT Delay  
SDIN Setup Time  
SDIN Hold Time  
External SCLK Period  
External SCLK High  
External SCLK Low  
t30  
t31  
t32  
t33  
t34  
t35  
t36  
t37  
5
1
5
5
12.5  
5
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
8
1 In warp mode only, the maximum time between conversions is 1 ms; otherwise, there is no required maximum time.  
2 In warp mode only, the time between conversions is 1 ms; otherwise, there is no required maximum time.  
3 In serial interface modes, the SYNC, SCLK, and SDOUT timings are defined with a maximum load CL of 10 pF; otherwise, the load is 60 pF maximum.  
4 In serial master read during convert mode. See Error! Reference source not found. for serial master read after convert mode timing specifications.  
Table 4. Serial Clock Timings in Master Read After Convert Mode  
DIꢀSCLK[1]  
0
0
1
1
DIꢀSCLK[0]  
Symbol  
t18  
t19  
t19  
t20  
t21  
t22  
t23  
t24  
0
1
0
1
Unit  
SYNC to SCLK First Edge Delay Minimum  
Internal SCLK Period Minimum  
Internal SCLK Period Maximum  
Internal SCLK High Minimum  
3
17  
60  
80  
22  
21  
18  
4
60  
2.5  
2.75  
3
17  
120  
160  
50  
49  
18  
30  
140  
4
17  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
25  
40  
12  
7
4
2
3
1.75  
2
240  
320  
100  
99  
18  
89  
300  
7
7.25  
7.5  
Internal SCLK Low Minimum  
SDOUT Valid Setup Time Minimum  
SDOUT Valid Hold Time Minimum  
SCLK Last Edge to SYNC Delay Minimum  
BUSY High Width Maximum (Warp mode)  
BUSY High Width Maximum (Normal mode)  
BUSY High Width Maximum (Impulse mode)  
t28  
t28  
t28  
4.25  
4.5  
2.25  
Rev. PrC | Page 7 of 14  
AD7631/AD7634  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Analog Inputs/Outputs  
IN+, IN−, REF, REFBUFIN, TEMP,  
INGND, REFGND to AGND  
AVDD + 0.3 V to  
AGND − 0.3 V  
Ground Voltage Differences  
AGND, DGND, OGND  
Supply Voltages  
0.3 V  
AVDD, DVDD  
OVDD  
AVDD to DVDD  
−0.3 V to +2.7 V  
−0.3 V to +3.8 V  
2.8 V  
AVDD, DVDD to OVDD  
Digital Inputs  
PDREF, PDBUF  
−3.8 V to +2.8 V  
−0.3 V to +5.5 V  
20 mA  
Internal Power Dissipation1  
Internal Power Dissipation2  
Junction Temperature  
Storage Temperature Range  
700 mW  
2.5 W  
125°C  
–65°C to +125°C  
1. Specification is for the device in free air:  
48-Lead LQFP; θJA = 91°C/W, θJC = 30°C/W.  
2. Specification is for the device in free air:  
48-Lead LFCSP; θJA = 26°C/W.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
500µA  
I
OL  
TO OUTPUT  
PIN  
1.4V  
C
L
50pF  
2V  
0.8V  
500µA  
I
OH  
tDELAY  
tDELAY  
NOTE  
2V  
2V  
IN SERIAL INTERFACE MODES, THE SYNC, SCLK, AND  
SDOUT TIMING ARE DEFINED WITH A MAXIMUM LOAD  
0.8V  
0.8V  
C
OF 10pF; OTHERWISE, THE LOAD IS 60pF MAXIMUM.  
L
Figure 3. Voltage Reference Levels for Timing  
Figure 2. Load Circuit for Digital Interface Timing,  
SDOUT, SYNC, and SCLK Outputs, CL = 10 pF  
Rev. PrC | Page 8 of 14  
 
Preliminary Technical Data  
AD7631/AD7634  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
AGND  
AVDD  
36 BIPOLAR  
35 CNVST  
34 PD  
PIN 1  
IDENTIFIER  
3
MODE0  
MODE1  
D0/OB/2C  
WARP  
4
33  
RESET  
5
32 CS  
AD7631/AD7634  
6
31  
30  
29  
28  
27  
26  
25  
RD  
TOP VIEW  
IMPULSE  
7
TEN  
(Not to Scale)  
8
D1/A0  
D2/A1  
BUSY  
9
D17/SPPEN  
D16/SPPCLK  
D15/SPPDATA  
D14/HW/SW  
10  
11  
12  
D3  
D4DIVSCLK[0]  
D5/DIVSCLK[1]  
13 14 15 16 17 18 19 20 21 22 23 24  
NC = NO CONNECT  
Figure 4. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin  
No.  
Mnemonic  
AGND  
AVDD  
Type1 Description  
1, 42  
2, 44  
3, 4  
P
Analog Power Ground Pin.  
Input Analog Power Pins. Nominally 5 V.  
Data Output Interface Mode Selection.  
P
DI  
MODE[0:1]  
Interface MODE#  
MODE1  
MODE0  
Description  
0
1
2
3
0
0
1
1
0
1
0
1
18-bit interface  
16-bit interface  
8-bit (byte) interface  
Serial interface  
5
6
D0/OB/2C  
WARP  
DI/O  
DI  
When MODE[1:0] = 0 (18-bit interface mode), this pin is Bit 0 of the parallel port data output bus  
and the data coding is straight binary. In all other modes, this pin allows the choice of straight  
2C  
binary/twos complement. When OB/ is high, the digital output is straight binary; when low,  
the MSB is inverted resulting in a twos complement output from its internal shift register.  
AD7634: Conversion Mode Selection. When WARP = high and IMPULSE = low, this selects warp mode.  
In this mode, the maximum throughput is achievable, and a minimum conversion rate must be applied  
to guarantee full specified accuracy.  
When WARP = low and IMPULSE = low, this selects normal mode where full accuracy is maintained  
independent of the minimum conversion rate.  
AD7631: Connect to DGND.  
7
IMPULSE  
DI  
AD7634: Conversion Mode Selection. When IMPULSE = high and WARP = low, this input selects impulse  
mode, a reduced power mode. In this mode, the power dissipation is approximately scaled  
proportional to the sampling rate.  
AD7631: Connect to DGND.  
8
9
D1/A0  
D2/A1  
DI/O  
When MODE[1:0] = 0, this pin is Bit 1 of the parallel port data output bus. In all other modes, this  
input pin controls the form in which data is output as shown in Table 7.  
When MODE[1:0] = 0, this pin is Bit 2 of the parallel port data output bus.  
DI/O  
When MODE[1:0] = 1 or 2, this input pin controls the form in which data is output as shown in Table 7.  
10  
D3  
D0  
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 3 of the parallel port data output bus.  
This pin is always an output, regardless of the interface mode.  
Rev. PrC | Page 9 of 14  
 
AD7631/AD7634  
Preliminary Technical Data  
Pin  
No.  
11, 12 D[4:5]  
or DIVSCLK[0:1]  
Mnemonic  
Type1 Description  
DI/O  
When MODE[1:0] = 0, 1, or 2, these pins are Bit 4 and Bit 5 of the parallel port data output bus.  
When MODE[1:0] = 3 (serial mode), serial clock division selection. When using serial master read  
after convert mode (EXT/INT = low, RDC/SDIN = low), these inputs can be used to slow down the  
internally generated serial clock that clocks the data output. In other serial modes, these pins are  
high impedance outputs.  
13  
14  
D6  
or EXT/INT  
DI/O  
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 6 of the parallel port data output bus.  
When MODE[1:0] = 3 (serial mode), serial clock source select. This input is used to select the  
internally generated (master) or external (slave) serial data clock.  
When EXT/INT = low, master mode. The internal serial clock is selected on SCLK output.  
When EXT/INT = high, slave mode. The output data is synchronized to an external clock signal,  
gated by CS, connected to the SCLK input.  
D7  
DI/O  
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 7 of the parallel port data output bus.  
When MODE[1:0] = 3 (serial mode), invert sync select. In serial master mode (EXT/INT = low), this  
input is used to select the active state of the SYNC signal.  
or INVSYNC  
When INVSYNC = low, SYNC is active high.  
When INVSYNC = high, SYNC is active low.  
15  
16  
D8  
or INVSCLK  
DI/O  
DI/O  
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 8 of the parallel port data output bus.  
When MODE[1:0] = 3, invert SCLK select. In all serial modes, this input is used to  
invert the SCLK signal.  
D9  
When MODE[1:0] = 0, 1, or 2, this output is used as bit 9 of the parallel port data output bus.  
or RDC  
When MODE[1:0] = 3 (serial mode), read during convert. When using serial master mode  
(EXT/INT = low), RDC is used to select the read mode.  
When RDC = high, the previous conversion result is output on SDOUT during conversion and  
the period of SCLK changes.  
When RDC = low (read after convert), the current result can be output on SDOUT only when  
the conversion is complete.  
or SDIN  
When MODE[1:0] = 3 (serial mode), serial data in. When using serial slave mode, (EXT/INT = high),  
SDIN could be used as a data input to daisy-chain the conversion results from two or more ADCs  
onto a single SDOUT line. The digital data level on SDIN is output on SDOUT with a delay of 18 SCLK  
periods after the initiation of the read sequence.  
17  
18  
OGND  
OVDD  
P
P
Input/Output Interface Digital Power Ground.  
Input/Output Interface Digital Power. Nominally at the same supply as the supply of the  
host interface (2.7 V to 5V).  
19  
20  
21  
DVDD  
DGND  
D10  
P
P
DO  
Digital Power. Nominally at 5 V.  
Digital Power Ground.  
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 10 of the parallel port data output bus.  
or SDOUT  
When MODE[1:0] = 3 (serial mode), serial data output. In serial mode, this pin is used as the serial  
data output synchronized to SCLK. Conversion results are stored in an on-chip register. The ADC  
provides the conversion result, MSB first, from its internal shift register. The data format is  
determined by the logic level of OB/2C.  
In master mode, EXT/INT = low. SDOUT is valid on both edges of SCLK.  
In slave mode, EXT/INT = high:  
When INVSCLK = low, SDOUT is updated on SCLK rising edge and valid on the next falling edge.  
When INVSCLK = high, SDOUT is updated on SCLK falling edge and valid on the next rising edge.  
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 11 of the parallel port data output bus.  
When MODE[1:0] = 3 (serial mode), serial clock. In all serial modes, this pin is used as the serial  
data clock input or output, depending upon the logic state of the EXT/INT pin. The active edge  
where the data SDOUT is updated depends on the logic state of the INVSCLK pin.  
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 12 of the parallel port data output bus.  
When MODE[1:0] = 3 (serial mode), frame synchronization. In serial master mode (EXT/INT= low),  
this output is used as a digital output frame synchronization for use with the internal data clock.  
22  
23  
D11  
or SCLK  
DI/O  
DO  
D12  
or SYNC  
Rev. PrC | Page 10 of 14  
Preliminary Technical Data  
AD7631/AD7634  
Pin  
No.  
Mnemonic  
Type1 Description  
When a read sequence is initiated and INVSYNC = low, SYNC is driven high and remains high  
while SDOUT output is valid.  
When a read sequence is initiated and INVSYNC = high, SYNC is driven low and remains low  
while SDOUT output is valid.  
24  
D13  
DO  
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 13 of the parallel port data output bus.  
or RDERROR  
When MODE[1:0] = 3 (serial mode), read error. In serial slave mode (EXT/INT = high), this output  
is used as an incomplete read error flag. If a data read is started and not completed when the  
current conversion is complete, the current data is lost and RDERROR is pulsed high.  
25  
26  
27  
D14  
DI/O  
DI/O  
DI/O  
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 14 of the parallel port data output bus.  
When MODE[1:0] = 3 (serial mode) hardware/software select. This input, part of the serial  
programmable port, is used to select hardware or software input ranges and mode selection.  
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 15 of the parallel port data output bus.  
When MODE[1:0] = 3 (serial mode), serial programmable port data. This input is used to write in the  
SW  
or HW/  
D15  
or SPPDATA  
SW  
serial programmable port data when HW/  
= low.  
D16  
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 16 of the parallel port data output bus.  
or SPPCLK  
When MODE[1:0] = 3 (serial mode), serial programmable port clock. This input is used to clock in the  
data on SPPDATA. The active edge where the data SPPDATA is updated depends on the logic state of  
the INVSCLK pin.  
28  
D17  
DI/O  
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 17 of the parallel port data output bus.  
SPPEN  
When MODE[1:0] = 3 (serial mode), serial programmable port enable. Asserting this input enables the  
serial programmable port.  
or  
29  
30  
BUSY  
TEN  
DO  
DI  
Busy Output. Transitions high when a conversion is started and remains high until the conversion  
is complete and the data is latched into the on-chip shift register. The falling edge of BUSY can be  
used as a data-ready clock signal.  
10 Volt Input Range. Refer to Table 8.  
When MODE[1:0] = 0, 1, or 2, this input is used to select the 10V input range.  
When MODE[1:0] = 3 (serial mode), and  
SW  
HW/  
HW/  
= high, driving TEN high selects the 10 Volt input range.  
SW  
= low, the input range is programmed with the serial programmable port and this pin is a  
don’t care.  
31  
32  
RD  
CS  
DI  
DI  
Read Data. When CS and RD are both low, the interface parallel or serial output bus is enabled.  
Chip Select. When CS and RD are both low, the interface parallel or serial output bus is enabled.  
CS  
is also used to gate the external clock in slave serial mode.  
33  
RESET  
DI  
Reset Input. When high, resets the ADC. Current conversion, if any, is aborted. Falling edge of  
RESET enables the calibration mode indicated by pulsing BUSY high. If not used, this pin can be tied to  
DGND.  
34  
35  
36  
PD  
DI  
DI  
DI  
Power-Down Input. When high, power downs the ADC. Power consumption is reduced and  
conversions are inhibited after the current one is completed.  
Conversion Start. A falling edge on CNVST puts the internal sample-and-hold into the hold state  
and initiates a conversion.  
CNVST  
BIP  
Bipolar Input Range. Refer to Table 8.  
When MODE[1:0] = 0, 1, or 2, this input is used to select the bipolar input range.  
When MODE[1:0] = 3 (serial mode), and  
SW  
HW/  
HW/  
= high, driving BIP high selects the bipolar input range.  
SW  
= low, the input range is programmed with the serial programmable port and this pin is a  
don’t care.  
37  
REF  
AI/O  
Reference Output/Input.  
When PDREF/PDBUF = low, the internal reference and buffer are enabled producing 5 V on this pin.  
When PDREF/PDBUF = high, the internal reference and buffer are disabled allowing an externally  
supplied voltage reference up to AVDD volts. Decoupling is required with or without the internal  
reference and buffer.  
Rev. PrC | Page 11 of 14  
AD7631/AD7634  
Preliminary Technical Data  
Pin  
No.  
38  
39  
40  
41  
43  
45  
46  
Mnemonic  
REFGND  
IN−  
VCC  
VEE  
IN+  
TEMP  
REFBUFIN  
Type1 Description  
AI  
Reference Input Analog Ground.  
AI  
P
Differential Negative Analog Input; referenced to IN+.  
High Voltage Positive Supply.  
P
High Voltage Negative Supply.  
AI  
AO  
AI/O  
Differential Positive Analog Input; referenced to IN-.  
Temperature Sensor Analog Output.  
Reference Buffer Input.  
When using an external reference with the internal buffer (PDBUF = low, PDREF = high), applying 2.5V  
on this pin produces 5V on the REF pin.  
When using the internal reference (PDBUF = PDREF = low), this pin should not be connected.  
Internal Reference Power-Down Input.  
When low, the internal reference is enabled (PDBUF also needs to be low).  
When high, the internal reference is powered down and an external reference must been used.  
Internal Reference Buffer Power-Down Input.  
47  
48  
PDREF  
PDBUF  
DI  
DI  
When low, the buffer is enabled (PDREF also needs to be low).  
When high, the buffer is powered-down and an external reference must be used.  
1 AI = analog input; AI/O = bidirectional analog; AO = analog output; DI = digital input; DI/O = bidirectional digital; DO = digital output; P = power.  
Table 7. Data Bus Interface Definition  
MODE MODE1 MODE0  
2C D1/A0 D2/A1 D[3] D[4:9] D[10:11] D[12:1±] D[16:17] Description  
D0/OB/  
0
1
1
2
2
2
2
3
0
0
0
1
1
1
1
1
0
1
1
0
0
0
0
1
R[0]  
R[1]  
R[2]  
R[3]  
R[3]  
R[1]  
R[4:9]  
R[4:9]  
R[10:11]  
R[10:11]  
R[12:15]  
R[12:15]  
R[16:17]  
R[16:17]  
18-Bit Parallel  
16-Bit High Word  
16-Bit Low Word  
8-Bit High Byte  
8-Bit Mid Byte  
8-Bit Low Byte  
8-Bit Low Byte  
Serial Interface  
2C  
2C  
2C  
2C  
2C  
2C  
2C  
A0 = 0 R[2]  
A0 = 1 R[0]  
A0 = 0 A1 = 0  
A0 = 0 A1 = 1  
A0 = 1 A1 = 0  
A0 = 1 A1 = 1  
All Hi-Z  
OB/  
OB/  
OB/  
OB/  
OB/  
OB/  
OB/  
All Zeros  
All Hi-Z  
R[10:11]  
R[2:3]  
R[12:15]  
R[4:7]  
R[16:17]  
R[8:9]  
All Hi-Z  
All Hi-Z  
All Hi-Z  
R[0:1]  
All Zeros  
R[0:1]  
All Zeros  
Serial Interface  
Table 8. Input Range Selection. Parallel Mode and Serial Hardware Mode  
Range  
BIP  
TEN  
SW  
HW/ (serial  
mode)  
High  
High  
High  
High  
Low  
0 - 5V  
0 - 10V  
5V  
Low  
Low  
High  
High  
X
Low  
High  
Low  
High  
X
10V  
All Ranges1  
1
SW  
In serial mode (MODE[1:0] = 3) when HW/  
= low, the input ranges are defined by registers.  
Rev. PrC | Page 12 of 14  
 
Preliminary Technical Data  
TERMINOLOGY  
AD7631/AD7634  
Integral Nonlinearity Error (INL)  
Total Harmonic Distortion (THD)  
Linearity error refers to the deviation of each individual code  
from a line drawn from negative full scale through positive full  
scale. The point used as negative full scale occurs ½ LSB before  
the first code transition. Positive full scale is defined as a level  
1½ LSB beyond the last code transition. The deviation is  
measured from the middle of each code to the true straight line.  
THD is the ratio of the rms sum of the first five harmonic  
components to the rms value of a full-scale input signal and is  
expressed in decibels.  
Signal to (Noise + Distortion) Ratio (SINAD)  
SINAD is the ratio of the rms value of the actual input signal to  
the rms sum of all other spectral components below the Nyquist  
frequency, including harmonics but excluding dc. The value for  
SINAD is expressed in decibels.  
Differential Nonlinearity Error (DNL)  
In an ideal ADC, code transitions are 1 LSB apart. Differential  
nonlinearity is the maximum deviation from this ideal value. It  
is often specified in terms of resolution for which no missing  
codes are guaranteed.  
Spurious-Free Dynamic Range (SFDR)  
The difference, in decibels (dB), between the rms amplitude of  
the input signal and the peak spurious signal.  
Gain Error  
Effective Number of Bits (ENOB)  
The first transition (from 000…00 to 000…01) should occur for  
an analog voltage ½ LSB above the nominal negative full scale  
(19.073486 V for the 0 to 5V range). The last transition (from  
111…10 to 111…11) should occur for an analog voltage  
1½ LSB below the nominal full scale (+4.999943 V for the 0 to  
5V V range). The gain error is the deviation of the difference  
between the actual level of the last transition and the actual  
level of the first transition from the difference between the ideal  
levels.  
ENOB is a measurement of the resolution with a sine wave  
input. It is related to SINAD and is expressed in bits by  
ENOB = [(SINADdB − 1.76)/6.02]  
Aperture Delay  
Aperture delay is a measure of the acquisition performance and  
CNVST  
is measured from the falling edge of the  
the input signal is held for a conversion.  
input to when  
Zero Error  
Transient Response  
The zero error is the difference between the ideal midscale  
input voltage (0 V) and the actual voltage producing the  
midscale output code.  
The time required for the AD7641 to achieve its rated accuracy  
after a full-scale step function is applied to its input.  
Reference Voltage Temperature Coefficient  
Dynamic Range  
It is derived from the typical shift of output voltage at 25°C on a  
sample of parts maximum and minimum reference output  
voltage (VREF) measured at TMIN, T(25°C), and TMAX. It is  
expressed in ppm/°C using  
It is the ratio of the rms value of the full scale to the rms noise  
measured with the inputs shorted together. The value for  
dynamic range is expressed in decibels.  
Signal-to-Noise Ratio (SNR)  
VREF  
(
Max  
)
VREF  
(Min)  
TCVREF  
(
ppm/°C  
)
=
×106  
SNR is the ratio of the rms value of the actual input signal to the  
rms sum of all other spectral components below the Nyquist  
frequency, excluding harmonics and dc. The value for SNR is  
expressed in decibels.  
VREF  
(
25°C  
)
×
(
TMAX TMIN  
)
where:  
V
V
V
REF (Max) = Maximum VREF at TMIN, T(25°C), or TMAX  
REF (Min) = Minimum VREF at TMIN, T(25°C), or TMAX  
REF (25°C) = VREF at 25°C  
T
MAX = +85°C  
MIN = –40°C  
T
Rev. PrC | Page 13 of 14  
 
AD7631/AD7634  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
0.75  
0.60  
0.45  
9.00  
BSC SQ  
1.60  
MAX  
37  
36  
48  
1
PIN 1  
7.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
25  
24  
12  
0.15  
0.05  
13  
SEATING  
PLANE  
0.08 MAX  
COPLANARITY  
0.27  
0.22  
0.17  
VIEW A  
0.50  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BBC  
Figure 5. 48-Lead Low Profile Quad Flat Package [LQFP]  
(ST-48)  
Dimensions shown in millimeters  
0.30  
0.23  
0.18  
7.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
37  
36  
48  
1
PIN 1  
INDICATOR  
EXPOSED  
5.25  
5.10 SQ  
4.95  
TOP  
VIEW  
6.75  
BSC SQ  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
25  
24  
12  
13  
0.25 MIN  
5.50  
REF  
PADDLE CONNECTED TO AGND.  
THIS CONNECTION IS NOT  
REQUIRED TO MEET THE  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
ELECTRICAL PERFORMANCES.  
COPLANARITY  
0.08  
0.50 BSC  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VKKD-2  
Figure 6. 48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
7 mm × 7 mm Body, Very Thin Quad (CP-48-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-48-1  
CP-48-1  
ST-48  
ST-48  
AD7641BCPZ1  
48-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
48-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
48-Lead Low Profile Quad Flat Package (LQFP)  
48-Lead Low Profile Quad Flat Package (LQFP)  
Evaluation Board  
AD7641BCPZRL1  
AD7641BSTZ1  
AD7641BSTZRL1  
EVAL-AD7641CB2  
EVAL-CONTROLBRD33  
Controller Board  
1 Z = Pb-free part.  
2 This board can be used as a standalone evaluation board or in conjunction with the EVAL-CONTROL BRD3 for evaluation/demonstration purposes.  
3 This board allows a PC to control and communicate with all Analog Devices, Inc. evaluation boards ending in the CB designators.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR06004-0-6/06(PrC)  
Rev. PrC | Page 14 of 14  
 
 
 
 
 
 
 
 
 
 
 
 

相关型号:

EVAL-AD7641CB1

18-Bit, 2 MSPS SAR ADC
ADI

EVAL-AD7650CB

Evaluation Board AD766X/AD767X
ADI

EVAL-AD7652CB1

16-Bit 500 kSPS PulSARTM Unipolar ADC with Reference
ADI

EVAL-AD7656-1EDZ

250 kSPS, 6-Channel, Simultaneous Sampling, Bipolar, 16-/14-/12-Bit ADC
ADI

EVAL-AD7656CB

250 kSPS, 6-Channel,Simultaneous Sampling, Bipolar 12/14/16-Bit ADC
ADI

EVAL-AD7656CBZ

250 kSPS, 6-Channel, Simultaneous Sampling, Bipolar 16-/14-/12-Bit ADC
ADI

EVAL-AD7657-1EDZ

250 kSPS, 6-Channel, Simultaneous Sampling, Bipolar, 16-/14-/12-Bit ADC
ADI

EVAL-AD7657CBZ

250 kSPS, 6-Channel, Simultaneous Sampling, Bipolar 16-/14-/12-Bit ADC
ADI

EVAL-AD7658-1EDZ

250 kSPS, 6-Channel, Simultaneous Sampling, Bipolar, 16-/14-/12-Bit ADC
ADI

EVAL-AD7658CBZ

250 kSPS, 6-Channel, Simultaneous Sampling, Bipolar 16-/14-/12-Bit ADC
ADI

EVAL-AD7660CB

16-Bit, 100 kSPS CMOS ADC
ADI

EVAL-AD7662CB

Evaluation Board AD766X/AD767X
ADI