FIDO5100CBCZ [ADI]

Real-Time Ethernet Multiprotocol (REM) Switch;
FIDO5100CBCZ
型号: FIDO5100CBCZ
厂家: ADI    ADI
描述:

Real-Time Ethernet Multiprotocol (REM) Switch

文件: 总19页 (文件大小:378K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Real-Time Ethernet  
Multiprotocol (REM) Switch  
Data Sheet  
fido5100/fido5200  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
144-lead CSP_BGA RoHS compliant package  
−40°C to +105°C industrial temperature range rating  
3.3 V input/output buffers  
IEEE 802.3, 10 Mbps/100 Mbps, half and full duplex, IPv6 and  
IPv4 communication  
REM SWITCH  
TIMER  
HOST  
INTERFACE  
BUFFER  
MEMORY  
CONTROL  
UNIT  
INTERRUPT  
CONTROL  
2 independent Ethernet ports: 1 MII and 1 RMII interface per  
port  
Support for all industrial protocols  
PORT 1  
PORT 2  
PROFINET Class B and Class C with fast startup (Version 2.3)  
EtherNet/IP with QuickConnect, CIP Sync, and CIP Motion  
Modbus TCP  
Figure 1.  
EtherCAT  
Ethernet POWERLINK  
GENERAL DESCRIPTION  
Host interface transfer rate: 32 bits per 28 ns  
Supports EtherCAT cycle times down to 12.5 μs and  
PROFINET cycle times down to 31.25 μs  
PI Net Load Class III capable  
DLR (supervisor and node, announce and beacon based),  
MRPD, HSR, PRP, shared device, controller redundancy  
IEEE 1588 Version 2 support: ordinary clock; both peer to peer  
and end to end transparent clocks, raw frames, and UDP  
8 independent timer signals synchronized with an internal  
precision timer  
4 independently programmable timer signals for timer  
capture events or timer output events  
4 timer signals create programmable periodic waveforms  
synchronized to the internal precision timer  
DCP, LLDP, DHCP, RSTP, VLAN, IGMP snooping support  
Forwarding table with aging and learning  
Drive LEDs for link activity  
The fido5100 and fido5200 (REM switch) are programmable  
IEEE 802.3 10 Mbps/100 Mbps Ethernet Internet Protocol  
Version 6 (IPv6) and Internet Protocol Version 4 (IPv4) switches  
that support virtually any Layer 2 or Layer 3 protocol. The  
switches are personalized to support the desired protocol by  
firmware that is downloaded from a host processor.  
The firmware is contained in the real-time Ethernet multiprotocol  
(REM) switch driver and is downloaded at power-up. The REM  
switch can be ready for network data operation in less than 4 ms to  
support fast startup and quick connect type network functionality.  
The REM switch devices have the same signal assignments as  
defined in this data sheet.  
The fido5100 supports the following protocols: PROFINET real  
time (RT) and isochronous real time (IRT), EtherNet/IP with  
and without device level ring (DLR), Modbus TCP, and  
POWERLINK.  
The fido5200 supports the following protocols: EtherCAT and  
all protocols defined for the fido5100.  
APPLICATIONS  
Industrial automation  
Process control  
Managed Ethernet switch  
The REM switch is intended for use with a host processor.  
Network operation is handled using the functions and services  
provided in the REM switch driver. The host processor can  
implement any protocol stack by integrating it with the REM  
switch driver. An example application is shown in Figure 11.  
The REM switches are available in a 144-ball chip scale package  
ball grid array (CSP_BGA) package.  
Note that throughout this data sheet, multifunction pins, such  
as A02/ALE, are referred to either by the entire pin name or by  
a single function of the pin, for example, ALE, when only that  
function is relevant.  
Rev. E  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2017–2020 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
fido5100/fido5200  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 12  
Device Interfaces ........................................................................ 12  
Internal Precision Timer ........................................................... 12  
Host Interface.............................................................................. 12  
Ethernet Interface....................................................................... 15  
Applications Information.............................................................. 17  
REM Switch Hardware .............................................................. 17  
Board Layout............................................................................... 17  
Design Considerations .............................................................. 17  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
REM Switch Characteristics........................................................ 3  
Timing Specifications—Nonmultiplexed Address Data Bus.. 3  
Timing Specifications—Multiplexed Address Data Bus ......... 5  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
REVISION HISTORY  
3/2020—Rev. D to Rev. E  
1/2019—Rev. A to Rev. B  
Deleted Table 13; Renumbered Sequentially .............................. 18  
Change to tAH Parameter, Table 2 ....................................................3  
Changes to Ordering Guide.......................................................... 19  
8/2018—Rev. 0 to Rev. A  
1/2020—Rev. C to Rev. D  
Change to Features Section ............................................................. 1  
Added Core Current Parameter and I/O Current Parameter,  
Table 1 .................................................................................................3  
Changes to tAS Parameter and tAH Parameter, Table 2...................3  
Added Note 2 and Note 3, Table 2; Renumbered Sequentially ...3  
Change to Power Dissipation Parameter, Table 4 .........................7  
8/2019—Rev. B to Rev. C  
Change to Features Section, General Description Section, and  
Figure 1 .............................................................................................. 1  
Changes to Figure 6.......................................................................... 8  
Change to Crystal Section and Figure 8 ...................................... 12  
Change to Figure 9 and Figure 10 ................................................ 16  
Changes to Figure 11, REM Switch Hardware Section, and  
Power Section.................................................................................. 17  
Changes to Table 13........................................................................ 18  
10/2017—Revision 0: Initial Version  
Rev. E | Page 2 of 19  
 
Data Sheet  
fido5100/fido5200  
SPECIFICATIONS  
REM SWITCH CHARACTERISTICS  
Table 1.  
Parameter  
Min  
1.08  
2.97  
Typ  
1.2  
3.3  
1.2  
Max  
Unit  
Test Conditions/Comments  
OPERATING CONDITIONS  
Core Voltage  
1.32  
48  
V
Core Current  
mA  
V
At TA = 85°C  
Input/Output (I/O) Buffers  
I/O Current  
3.63  
0.035  
1.32  
+3.8  
+3.8  
+125  
3.3 V power supply  
At TA = 85°C  
mA  
V
PLL Analog Voltage Regulator Power Supply  
DC Input Voltage  
Output Voltage  
1.08  
−0.5  
−0.5  
−40  
V
V
Operating Junction Temperature (Industrial)  
DC CHARACTERISTICS (I/O STANDARD)  
3.3 V LVCMOS  
°C  
VCC+3V3  
2.97  
3.3  
3.63  
V
Voltage level applied to the VCC+3V3 signal  
Input Voltage  
Low (VIL)  
−0.3  
2.0  
+0.8  
3.6  
V
V
High (VIH)  
Output Voltage  
Low (VOL)  
0.4  
V
V
High (VOH  
)
2.4  
Output Current  
Low (IOL)  
8.2  
9.2  
13.0  
19.2  
16.1  
30.7  
mA  
mA  
High (IOH  
)
LEAKAGE CURRENT  
Input Pin  
−10  
−10  
+10  
+10  
μA  
μA  
Bits  
Input voltage (VIN) = 0 V to 3.3 V maximum  
Output voltage (VOUT) = 0 V to 3.3 V maximum  
Per 28 ns  
Tristated I/O Pin  
HOST INTERFACE TRANSFER RATE1  
32  
1 Supports EtherCAT cycle times down to 12.5 μs and PROFINET cycle times down to 31.25 μs.  
TIMING SPECIFICATIONS—NONMULTIPLEXED ADDRESS DATA BUS  
Table 2. Nonmultiplexed Address Data Bus—Read and Write Cycle Timing1, 2, 3  
Parameter  
Min  
Typ  
Max  
Unit  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
ps  
ns  
ns  
ns  
ps  
ps  
Description  
tAS  
2
Address setup time  
Address hold time  
tAH  
370  
tCDV  
tODV  
tOEL  
20  
20  
CS  
to data valid time  
Output enable to data valid time  
Output enable low time  
20  
8
tCSH  
CS  
high time  
tCSL  
20  
0
CS  
low time  
tEOE  
CS  
to output enable time  
tCOE  
0
CS  
Output enable high to high  
tDO  
150  
Output enable to data drive time  
Output disable to high-Z time  
tDHZ  
tCHZ  
tWES  
tWEWC  
tWECS  
tDS  
110  
110  
CS  
CS  
high to high-Z time  
to write enable  
0
16  
0
Write enable to write complete  
CS  
Write enable high to high  
WE  
30  
30  
Data setup to  
high  
WE  
tDH  
Input data hold after  
high  
1 The MBS pin determines whether the host interfaced has multiplexed or separate address and data lines. When MBS = 0, the interface is nonmultiplexed.  
2 OE  
CS  
can be taken low before . Therefore, tEOE can be a negative value. In this case, a board designer must closely monitor tDO and tCDV to avoid bus contention and  
ensure proper data transfer.  
The read bus cycle terminates when either  
3
CS OE  
or  
is taken high. Therefore, a negative value for tCOE is acceptable in some circumstances.  
Rev. E | Page 3 of 19  
 
 
 
 
fido5100/fido5200  
Data Sheet  
Timing Diagrams, Nonmultiplexed REM Switch  
tAS  
tAH  
ADDRESS  
DATA  
OE  
ADDRESS  
tCDV  
DATA OUT  
tDHZ  
tDO  
tEOE  
tCHZ  
tCSH  
tODV  
tOEL  
tCOE  
CS  
tCSL  
Figure 2. REM Switch Nonmultiplexed Address and Data Bus Read Timing, MBS = 0  
tAS  
tAH  
ADDRESS  
DATA  
ADDRESS  
tDS  
tDH  
DATA IN  
tWEWC  
WE  
tWES  
tWECS  
CS  
tCSH  
Figure 3. REM Switch Nonmultiplexed Address and Data Bus Write Timing, MBS = 0  
Rev. E | Page 4 of 19  
 
 
Data Sheet  
fido5100/fido5200  
TIMING SPECIFICATIONS—MULTIPLEXED ADDRESS DATA BUS  
Table 3. Multiplexed Address Data Bus—Read and Write Cycle Timing1  
Parameter  
tALEH  
tALEL  
tAS  
tAH  
tCDV  
tALOE  
tODV  
tDHZ  
tCHZ  
Min  
Typ  
Max  
Unit  
ns  
ns  
ps  
ps  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
ns  
ps  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
Description  
8
16  
170  
170  
ALE high time  
ALE low time  
Address setup time  
Address hold time  
ALE to valid data  
ALE to output enable  
Output enable to data valid  
Output disable to high-Z time  
CS high to high-Z time  
CS low to ALE low  
20  
2
20  
150  
150  
tCLLL  
tCSH  
0
8
CS high time  
tEOE  
2
CS to output enable  
tDO  
tCOE  
2
0
110  
Output enable to output drive time  
Output disable to CS high  
CS to write enable  
tWES  
0
tWEWC  
tWECS  
tWHLH  
tDS  
16  
0
Write enable to write complete  
Write enable high to CS high  
WE high to next ALE high  
Data setup to WE high  
Input data hold after WE high  
0
60  
60  
tDH  
1 The MBS pin determines whether the host interfaced has multiplexed or separate address and data lines. When MBS = 1, the interface is multiplexed.  
Timing Diagrams, Multiplexed REM Switch  
tCDV  
tAS  
tAH  
ADDRESS  
BUS  
ADDRESS  
DATA OUT  
tALEL  
ALE  
tALEH  
tALOE  
tDO  
tDHZ  
OE  
CS  
tCLLL  
tCHZ  
tCSH  
tEOE  
tODV  
tCOE  
Figure 4. REM Switch Multiplexed Address and Data Bus Read Timing, MBS = 1  
Rev. E | Page 5 of 19  
 
 
 
fido5100/fido5200  
Data Sheet  
tAS  
tAH  
tDS  
tDH  
ADDRESS  
ADDRESS  
DATA IN  
BUS  
tALEL  
ALE  
tALEH  
tCSH  
tCLLL  
tWECS  
CS  
tWES  
tWEWC  
tWHLH  
WE  
Figure 5. REM Switch Multiplexed Address and Data Bus Write Timing, MBS = 1  
Rev. E | Page 6 of 19  
 
Data Sheet  
fido5100/fido5200  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
Power Supply  
Core Voltage and Periphery Circuitry  
I/O (VCC+3V3)  
PLL Analog  
1.08 V to 1.32 V  
2.97 V to 3.63 V  
1.08 V to 1.32 V  
−0.5 V to +3.8 V  
DC Input Voltage  
Operating Temperature Range  
Junction  
Ambient  
ESD CAUTION  
−40°C to +125°C  
−40°C to +85°C  
Storage Temperature (No Bias) Range  
Electrostatic Discharge (ESD) Voltage,  
Human Body Model  
−65°C to +150°C  
−2000 V to +2000 V  
Lead Temperature (Soldering)  
Power Dissipation  
J-STD-020C1  
172.6 mW  
1 Compliant with JEDEC Standard J-STD-020C and restriction of hazardous  
substances (RoHS), Directive 2002/95/EU.  
Rev. E | Page 7 of 19  
 
 
fido5100/fido5200  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
REM SWITCH  
TOP VIEW  
(Not to Scale)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
A
B
C
D
E
F
D02/AD02  
D04/AD04  
D07  
D11  
D15  
D18  
D19  
D22  
D25  
D27  
D30  
D31  
D01  
A04/UNUSED  
A02/ALE  
RESET  
D03/AD03  
D06  
D10  
D09  
D14  
D13  
D17  
D16  
D20  
D21  
D23  
D24  
D26  
D28  
D29  
INT2  
OE  
WE  
INT0  
D00  
D05/A05  
INT1  
A03/UNUSED A05/UNUSED  
D08  
D12  
VCC+1V2  
GND  
GND  
VCC+3V3  
GND  
GND  
TIMER7  
TIMER5  
TIMER2  
RMII_CLK  
P2_CRS  
NC  
TIMER6  
TIMER4  
TIMER1  
CLKOUT  
P2_COL  
P2_RXDV  
NC  
CS  
LE  
MBS  
SIZE_32  
GND  
GND  
VCC+1V2  
GND  
VCC+1V2  
GND  
VCC+3V3  
GND  
TIMER3  
TIMER0  
P2_ACTIVITY  
GND  
VCC+3V3  
GND  
VCC+1V2  
GND  
GND  
G
H
J
XTAL0  
XTAL1  
VCC+3V3  
P1_TXCLK  
NC  
VCC+1V2A  
VCC+1V2  
GND  
GND  
VCC+1V2  
GND  
GND  
P2_LINK_  
STATUS  
GND  
GND  
VCC+3V3  
GND  
VCC+1V2  
GND  
GND  
VCC+3V3  
P1_TXEN  
P1_TXD0  
P1_TXD1  
P1_TXD3  
NC  
VCC+3V3  
VCC+1V2  
NC  
NC  
P2_RXCLK  
P1_LINK_  
STATUS  
K
L
NC  
NC  
NC  
P1_RXDV  
P1_CRS  
P1_RXCLK  
P2_TXD1  
P2_TXD0  
P2_TXEN  
NC  
P2_RXD0  
NC  
P1_TXD2  
P1_RXD0  
P1_RXD1  
P1_RXD3  
P1_RXD2  
VCC+1V2  
NC  
P1_ACTIVITY  
P2_TXD3  
P2_TXD2  
NC  
P2_RXD2  
P2_RXD1  
NC  
M
NC  
NC  
P1_COL  
P2_TXCLK  
P2_RXD3  
I/O  
GND  
VCC+1V2  
VCC+3V3  
Figure 6. Pin Configuration  
Rev. E | Page 8 of 19  
 
Data Sheet  
fido5100/fido5200  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Direction1 Description  
A1  
D02/AD02  
I/O  
Data Bus Bit 02 Nonmultiplexed/Data Bus Bit 02 Multiplexed. This is a  
multifunction pin.  
When MBS = 0, Pin A1 (D02) is Data Bus Bit 02 to and from the REM switch for  
the nonmultiplexed address data bus.  
When MBS = 1, Pin A1 (AD02) is for the multiplexed address data bus, Bit 02 of  
the address (LSB), and Bit 02 of the data.  
A2  
D04/AD04  
I/O  
Data Bus Bit 04 Nonmultiplexed/Data Bus Bit 04 Multiplexed. This is a  
multifunction pin.  
When MBS = 0, Pin A2 (D04) is Data Bus Bit 04 to and from the REM switch for  
the nonmultiplexed address data bus.  
When MBS = 1, Pin A2 (AD04) is for the multiplexed address data bus, Bit 04 of  
the address, Bit 04 of the data.  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
B1  
D07  
D11  
D15  
D18  
D19  
D22  
D25  
D27  
D30  
D31  
D01  
D03/AD03  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Data Bus Bit 07. Pin A3 is Data Bus Bit 07 to and from the REM switch.  
Data Bus Bit 11. Pin A4 is Data Bus Bit 11 to and from the REM switch.  
Data Bus Bit 15. Pin A5 is Data Bus Bit 15 to and from the REM switch.  
Data Bus Bit 18. Pin A6 is Data Bus Bit 18 to and from the REM switch.  
Data Bus Bit 19. Pin A7 is Data Bus Bit 19 to and from the REM switch.  
Data Bus Bit 22. Pin A8 is Data Bus Bit 22 to and from the REM switch.  
Data Bus Bit 25. Pin A9 is Data Bus Bit 25 to and from the REM switch.  
Data Bus Bit 27. Pin A10 is Data Bus Bit 27 to and from the REM switch.  
Data Bus Bit 30. Pin A11 is Data Bus Bit 30 to and from the REM switch.  
Data Bus Bit 31. Pin A12 is Data Bus Bit 31 to and from the REM switch.  
Data Bus Bit 01. Pin B1 is Data Bus Bit 01 to and from the REM switch.  
B2  
Data Bus Bit 03 Nonmultiplexed/Data Bus Bit 03 Multiplexed. This is a  
multifunction pin.  
When MBS = 0, Pin B2 (D03) is Data Bus Bit 03 to and from the REM switch for  
the nonmultiplexed address data bus.  
When MBS = 1, Pin B2 (AD03) is for the multiplexed address data bus, Bit 03 of  
the address, Bit 03 of the data.  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
B11  
B12  
D06  
D10  
D14  
D17  
D20  
D23  
D26  
D29  
OE  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Data Bus Bit 06. Pin B3 is Data Bus Bit 06 to and from the REM switch.  
Data Bus Bit 10. Pin B4 is Data Bus Bit 10 to and from the REM switch.  
Data Bus Bit 14. Pin B5 is Data Bus Bit 14 to and from the REM switch.  
Data Bus Bit 17. Pin B6 is Data Bus Bit 17 to and from the REM switch.  
Data Bus Bit 20. Pin B7 is Data Bus Bit 20 to and from the REM switch.  
Data Bus Bit 23. Pin B8 is Data Bus Bit 23 to and from the REM switch.  
Data Bus Bit 26. Pin B9 is Data Bus Bit 26 to and from the REM switch.  
Data Bus Bit 29. Pin B10 is Data Bus Bit 29 to and from the REM switch.  
Output Enable. Setting Pin B11 low allows the REM switch to drive data lines.  
WE  
I
Write Enable. Setting Pin B12 low enables a write; setting Pin B12 high enables  
a read.  
C1  
A04/UNUSED  
I
Address Line 04/Multiplexed Address Bus (UNUSED). This is a multifunction pin.  
Pin C1 is Address Line 04 when MBS = 0 for the nonmultiplexed address data  
bus. When MBS = 1, Pin C1 is Bit 04 of the address bus. Line A04 is sampled on  
the falling edge of CS (Pin D12).  
Pin C1 is unused when MBS = 1 for the multiplexed address data bus.  
Data Bus Bit 00. C2 is Data Bus Bit 00 to and from the REM switch.  
Data Bus Bit 05 Nonmultiplexed/Data Bus Bit 05 Multiplexed. This is a  
multifunction pin.  
C2  
C3  
D00  
D05/A05  
I/O  
I/O  
When MBS = 0, Pin C3 (D05) is Data Bus Bit 05 to and from the REM switch for  
the nonmultiplexed address data bus.  
When MBS = 1, Pin C3 (A05) is for the multiplexed address data bus, Bit 05 of  
the address, Bit 05 of the data.  
C4  
C5  
C6  
D09  
D13  
D16  
I/O  
I/O  
I/O  
Data Bus Bit 09. Pin C4 is Data Bus Bit 09 to and from the REM switch.  
Data Bus Bit 13. Pin C5 is Data Bus Bit 13 to and from the REM switch.  
Data Bus Bit 16. Pin C6 is Data Bus Bit 16 to and from the REM switch.  
Rev. E | Page 9 of 19  
 
fido5100/fido5200  
Data Sheet  
Pin No.  
C7  
C8  
C9  
C10  
Mnemonic  
Direction1 Description  
D21  
D24  
D28  
INT2  
I/O  
I/O  
I/O  
O
Data Bus Bit 21. Pin C7 is Data Bus Bit 21 to and from the REM switch.  
Data Bus Bit 24. Pin C8 is Data Bus Bit 24 to and from the REM switch.  
Data Bus Bit 28. Pin C9 is Data Bus Bit 28 to and from the REM switch.  
Interrupt 2 Output to Host Processor. Pin C10 can be configured to respond to  
one or more internal events.  
C11  
C12  
D1  
INT1  
O
O
Interrupt 1 Output to Host Processor. Pin C11 can be configured to respond to  
one or more internal events.  
Interrupt 0 Output to Host Processor. Pin C12 can be configured to respond to  
one or more internal events.  
INT0  
A02/ALE  
I
Address Line 02/Address Latch Enable. This is a multifunction pin.  
N/A  
Pin D1 is Address Line 02 when MBS = 0 for the nonmultiplexed address data  
bus. When MBS = 0, Pin D1 is Bit 02 of the address bus. Line A02 is sampled on  
the falling edge of CS (Pin D12). The addresses are 32-bit aligned/addressable.  
When MBS = 1, this pin is the address latch enable pin.  
D2  
D3  
A03/UNUSED  
A05/UNUSED  
I
I
Address Line 03/Multiplexed Address Bus. This is a multifunction pin.  
Pin D2 is Address Line 03 when MBS = 0 for the nonmultiplexed address data  
bus. When MBS = 0, Pin D2 is Bit 03 of the address bus. Line A03 is sampled on  
the falling edge of CS (Pin D12). The addresses are 32-bit aligned/addressable.  
Pin D2 is unused when MBS = 1 for the multiplexed address data bus.  
Address Line 05/Multiplexed Address Bus. This is a multifunction pin.  
Pin D3 is Address Line 05 when MBS = 0 for the nonmultiplexed address data  
bus. When MBS = 0, Pin D3 is Bit 05 of the address bus. Line A05 is sampled on  
the falling edge of CS (Pin D12). The addresses are 32-bit aligned/addressable.  
Pin D3 is unused when MBS = 1 for the multiplexed address data bus.  
Data Bus Bit 08. Pin D4 is Data Bus Bit 08 to and from the REM switch.  
Data Bus Bit 12. Pin D5 is Data Bus Bit 12 to and from the REM switch.  
1.2 V Power Supply.  
D4  
D5  
D08  
D12  
VCC+1V2  
I/O  
I/O  
N/A  
D6, E5, E7, F6, G5, G8,  
H6, J7  
D7, D9, E4, E6, E8, F1,  
F3, F5, F7, F8, F9, G4,  
G6, G7, G9, H1, H3,  
H5, H7, H8, J4, J6  
GND  
N/A  
Ground.  
D8, E9, F4, H2, H4,  
H9, J5  
VCC+3V3  
N/A  
3.3 V Power Supply.  
D10  
D11  
D12  
TIMER7  
TIMER6  
CS  
O
O
I
Internal Precision Timer Clock 7 Synchronized. Pin D10 is a programmable output.  
Internal Precision Timer Clock 6 Synchronized. Pin D11 is a programmable output.  
Address Bus Chip Select. The address bus is sampled on the falling edge of CS.  
A rising edge on CS terminates the current read or write cycle.  
E1  
E2  
RESET  
LE  
I
I
Reset. When Pin E1 is asserted low, all internal registers initialize and bus  
configuration pins enable for sampling.  
System Endianness. When Pin E2 is set high, the data format is little endian.  
When Pin E2 is set low, the data format is big endian. The value is captured on  
the rising edge of RESET.  
E3  
SIZE_32  
TIMER5  
TIMER4  
TIMER3  
MBS  
I
Data Bus Size. The data bus size is 32 bits when Pin E3 is set high and 16 bits  
when Pin E3 is set low. The value is captured on the rising edge of RESET.  
E10  
E11  
E12  
F2  
O
O
I/O  
I
Internal Precision Timer Clock 5 Synchronized. Pin E10 is a programmable  
output.  
Internal Precision Timer Clock 4 Synchronized. Pin E11 is a programmable  
output.  
Internal Precision Timer 3 Clock Synchronized. Pin E12 is a programmable  
output or input.  
Multiplex Bus Select. When Pin F2 is set high, the host interface bus operates as  
a multiplexed bus. The host interface operates as a nonmultiplexed bus when  
Pin F2 is set low. The value is captured on the rising edge of Pin E1, RESET.  
F10  
TIMER2  
I/O  
Internal Precision Timer Clock 2 Synchronized. Pin F10 is a programmable  
output or input.  
Rev. E | Page 10 of 19  
Data Sheet  
fido5100/fido5200  
Pin No.  
Mnemonic  
Direction1 Description  
F11  
TIMER1  
I/O  
Internal Precision Timer Clock 1 Synchronized. Pin F11 is a programmable  
output or input.  
F12  
TIMER0  
I/O  
Internal Precision Timer Clock 0 Synchronized. Pin F12 is a programmable  
output or input.  
G1  
XTAL0  
Clock Input. This pin has a frequency of 25 MHz.  
G2  
G3  
G10  
XTAL1  
VCC+1V2A  
RMII_CLK  
Output Pair for XTAL0. Pin G2 is required for use with a crystal clock source.  
Analog 1.2 V Power Supply. This pin must be isolated from VCC+1V2.  
50 MHz Reduced Media Independent Interface (RMII) Transmit and Receive  
Clock Reference for Port 1 and Port 2.  
O
G11  
G12  
H10  
CLKOUT  
P2_ACTIVITY  
P2_CRS  
O
O
I
Output Clock. Pin G11 has the same frequency as XTAL0 (25 MHz).  
Port 2 Activity LED Output Driver. The LED turns on when G12 is asserted low.  
Port 2 Carrier Sense. When H10 is asserted high, a carrier has been sensed on  
Port 2.  
H11  
H12  
P2_COL  
I
I
Port 2 Media Independent Interface (MII) Collision. Pin H11 asserting high  
indicates a collision on Port 2.  
Port 2 Link Status from Physical Layer (PHY). When H12 is asserted low, the link  
on Port is active.  
P2_LINK_STATUS  
J1  
J2  
P1_TXEN  
P1_TXCLK  
O
I
Port 1 MII Transmit Enable. Setting Pin J1 high enables transmission on Port 1.  
Port 1 MII Transmit Clock from PHY.  
J3, J8, J9, J10, K2, K3, K4, NC  
K5, K9, K11, K12, L5,  
N/A  
No Connection.  
L10, L12, M2, M5  
J11  
P2_RXDV  
I
Port 2 Received Data Valid. Data from the Port 2 PHY is valid when J11 is  
asserted high (used as CRS/RXDV in RMII mode).  
J12  
K1  
K6  
P2_RXCLK  
P1_TXD0  
P1_RXDV  
I
O
I
Port 2 MII Receive Clock from PHY.  
Transmit Data Output Bit 0 for Port 1 MII and RMII.  
Port I MII Received Data Valid. Asserting Pin K6 high indicates that data from  
the Port 1 PHY is valid (used as CRS/RXDV in RMII mode).  
K7  
K8  
K10  
L1  
L2  
L3  
L4  
L6  
P1_LINK_STATUS  
P2_TXD1  
P2_RXD0  
P1_TXD1  
P1_TXD2  
P1_RXD0  
P1_RXD3  
P1_CRS  
I
Port 1 Link Status from PHY. Asserting Pin K7 low activates the Port 1 link.  
Transmit Data Output Bit 1 for Port 2 MII and RMII.  
Receive Data Input Bit 0 for Port 2 MII and RMII.  
Transmit Data Output Bit 1 for Port 1 MII and RMII.  
Transmit Data Output Bit 2 for Port 1 MII.  
Receive Data Input Bit 0 for Port 1 MII and RMII.  
Receive Data Input Bit 3 for Port 1 MII.  
Port 1 Carrier Sense. When L6 is asserted high, a carrier has been sensed on  
Port 1.  
O
I
I
O
I
I
I
L7  
P1_ACTIVITY  
P2_TXD0  
P2_TXD3  
P2_RXD2  
P1_TXD3  
P1_RXD1  
P1_RXD2  
P1_RXCLK  
P1_COL  
P2_TXEN  
P2_TXD2  
P2_TXCLK  
P2_RXD1  
P2_RXD3  
O
O
O
I
O
I
I
I
I
O
O
I
I
I
Port 1 Activity LED Output Driver. The LED turns on when Pin L7 is asserted low.  
Transmit Data Output Bit 0 for Port 2 MII and RMII.  
Transmit Data Output Bit 3 for Port 2 MII.  
Receive Data Input Bit 2 for Port 2 MII.  
Transmit Data Output Bit 3 for Port 1 MII.  
Receive Data Input Bit 1 for Port 1 MII AND RMII.  
Receive Data Input Bit 2 for Port 1 MII.  
Port I MII Receive Clock from PHY.  
Port 1 MII Collision. Asserting Pin M7 high indicates a collision on Port 1.  
Port 2 MII Transmit Enable. Setting Pin M8 to high enables the Port 2 transmit.  
Transmit Data Output Bit 2 for Port 2 MII.  
L8  
L9  
L11  
M1  
M3  
M4  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
Port 2 MII Transmit Clock from PHY.  
Receive Data Input Bit 1 for Port 2 MII and RMII.  
Receive Data Input Bit 3 for Port 2 MII.  
1 I is input, I/O is input/output, O is output, and N/A is not applicable.  
Rev. E | Page 11 of 19  
fido5100/fido5200  
Data Sheet  
THEORY OF OPERATION  
DEVICE INTERFACES  
Oscillator  
TIMER0 to TIMER3 Inputs/Outputs  
TIMER0 to TIMER3 inputs/outputs can be configured to either  
time stamp an input event or time trigger an output event.  
When configured to time stamp an input event, the value of the  
IPT is captured in a 64-bit register when the associated timer  
signal transitions from low to high. User software reads this  
register and uses the value to time stamp an associated event.  
For example, when the TIMER0 signal transitions from low to  
high, the value of the IPT is stored in the Timer 0, 64-bit  
register (consult the REM Switch Software Driver User Guide,  
available at www.analog.com/en/products/industrial-ethernet.html  
for more details). The same is true when configuring TIMER1,  
TIMER2, or TIMER3 to time stamp input events. User software  
uses the generated time stamp to associate the time stored in the  
64-bit register with a particular event.  
The oscillator clock source is routed to an internal phase-locked  
loop (PLL) to create the following clock sources:  
25 MHz for the CLKOUT reference clock  
50 MHz for the RMII reference clock  
An oscillator used as a clock source requires a tighter tolerance.  
F12 TIMER0  
TIMER0  
F11 TIMER1  
TIMER1  
F10 TIMER2  
TIMER2  
E12 TIMER3  
TIMER3  
E11 TIMER4  
TIMER4  
E10 TIMER5  
TIMER5  
D11 TIMER6  
D10 TIMER7  
C12 INT0  
C11 INT1  
C10 INT2  
+3V3  
TIMER6  
TIMER7  
INT0  
INT1  
INT2  
U5  
25MHz  
When configured to time trigger an output event, the timer  
signal toggles when the IPT reaches the value stored in the  
Timer x, 64-bit register. The process of time triggering an  
output event is as follows using the Timer 0 register in the  
example:  
G1  
G2  
XTAL0  
4
1
XTAL0  
XTAL1  
OUT OE  
R28  
22Ω  
C25  
0.01µF  
E2  
F2  
E3  
LE  
MBS  
SIZE_32  
GND  
GND  
_BGA  
ASEMPC–  
25.000MHZ–LR–T  
GND  
1. The host processor software stores a value in the Timer 0,  
64-bit register.  
Figure 7. Oscillator Clock Source Circuit  
Crystal  
2. The IPT reaches that value stored in the Timer 0, 64-bit  
register.  
3. The TIMER0 pin toggles from high to low or low to high  
(depending on its state when the 64-bit register was  
loaded).  
When using the REM switch with a crystal, use an oscillator  
pad configuration, as shown Figure 8.  
XTAL0  
C
L
The same process is followed when the TIMER1, TIMER2, and  
TIMER3 pins are configured to time trigger output events.  
REM  
SWITCH  
25MHz  
R
F
TIMER4 to TIMER7 Outputs  
XTAL1  
TIMER4 to TIMER7 outputs are configured to output independ-  
ent, IPT clock synchronized, programmable, pulse-width  
modulated signals. Each of these timers has a resolution of  
16 ns. Each timer can have its own pulse-width modulation  
program that allows an arbitrary number of rising and falling  
edges, depending on the protocols that repeat on a programmable  
interval. The software drivers for the REM switch provide the  
capability to define the rising and falling edges for each  
TIMERx output.  
C
L
Figure 8. Crystal Clock Source Circuit  
The values presented in the following list are typical for  
operation when using a 25 MHz crystal:  
ESR = 40 Ω  
CL = 8 pF  
RF = 1 MΩ  
Reset Timing  
HOST INTERFACE  
Multiplex Bus Select  
RESET  
The timing requirement for  
time of 16 ns.  
is a minimum active low  
The host interface supports a separate address bus and data bus  
or a multiplexed address and data bus. The selection between  
the two types of busses is provided by the MBS signal (Pin F2),  
which is sampled on the rising edge of  
pin function descriptions for the MBS and  
INTERNAL PRECISION TIMER  
The REM switch includes an internal precision timer (IPT). The  
IPT maintains a system time that has a resolution of 1 ns. Use  
the IPT to trigger timer output events or capture input event  
times on the TIMER0, TIMER1, TIMER2, and TIMER3 pins, or  
to create a complex pulse pattern on the TIMER4, TIMER5,  
TIMER6, and TIMER7 pins.  
RESET  
. See Table 5 for  
RESET  
signals.  
Rev. E | Page 12 of 19  
 
 
 
 
 
Data Sheet  
fido5100/fido5200  
Data Bus Width  
initialization process. In the case of the number, 0x00003300, the  
value read from this register must be transferred across the bus,  
as shown in Table 6. When evaluated in the software on the host  
processor, the value of these 32 bits results in 0x00003300.  
The host interface supports either a 16-bit or 32-bit wide data  
bus. The data bus width is determined by the SIZE_32 (Pin E3)  
signal that is sampled on the rising edge of  
RESET  
. See Table 5  
RESET  
For queue accesses, the REM switch treats all data as byte  
arrays. Consider the following example of a stream of bytes  
received over an Ethernet cable into a REM switch port and  
then transferred to the host. The packet data in network order is  
as follows: 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,  
0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F.  
for pin function descriptions for the SIZE_32 and  
signals.  
Endianness  
The host interface presents data on the data bus in either big  
endian or little endian format. The endianness of the data is  
determined by the LE signal (Pin E2), which is sampled on the  
rising edge of the  
descriptions for the LE and  
The REM switch data bus is defined as follows:  
RESET  
signal. See Table 5 for pin function  
The data is read differently depending on the setting, as follows:  
RESET  
signals.  
Big endian 16-bit host interface: 0x0001, 0x0203, 0x0405,  
0x0607, 0x0809, 0x0A0B, 0x0C0D, 0x0E0F.  
Big endian 32-bit host interface: 0x00010203, 0x04050607,  
0x08090A0B, 0x0C0D0E0F.  
Little endian 16-bit host interface: 0x0100, 0x0302, 0x0504,  
0x0706, 0x0908, 0x0B0A, 0x0D0C, 0x0F0E.  
Little endian 32-bit host interface: 0x03020100,  
0x07060504, 0x0B0A0908, 0x0F0E0D0C.  
D0 = LSB  
D15 = MSB for 16-bit bus  
D31 = MSB for 32-bit bus  
For all control/status register accesses, there is no difference in  
operation based on the setting of the LE pin. The data represen-  
tation in a host processor register must match the data that is  
transferred over the bus.  
Consult the REM Switch Software Driver User Guide, available  
at www.analog.com/en/products/industrial-ethernet.html for  
more details on how to handle endianness in an application of  
a device.  
All control/status registers are 16-bits wide. If using a 32-bit  
bus, transfer the data in the following order: D15 to D0 (D31 to  
D16 are ignored when using a 32-bit bus). For example, the  
REM switch driver reads the device number register early in the  
Table 6. Control/Status Registers Bit Map  
D31  
D30  
D29  
D28  
D27  
D26  
0
D25  
0
D24  
0
D23  
0
D22  
0
D21  
0
D20  
0
D19  
0
D18  
0
D17  
0
D16  
0
0
0
0
0
0
D15  
0
D14  
0
D13  
1
D12  
1
D11  
0
D10  
0
D9  
1
D8  
1
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Table 7. Big Endian 16-Bit Data Bus Bit Map, 0x0E0F Hexadecimal  
D31  
D30  
D29  
D28  
D27  
D26  
D25  
D24  
D23  
0
D22  
0
D21  
0
D20  
0
D19  
0
D18  
0
D17  
0
D16  
0
0
0
0
0
0
0
0
0
D15  
0
D14  
0
D13  
0
D12  
0
D11  
1
D10  
1
D9  
1
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
1
D2  
1
D1  
1
D0  
1
Table 8. Big Endian 32-Bit Data Bus Bit Map, 0x0C0D0E0F Hexadecimal  
D31  
D30  
D29  
D28  
D27  
D26  
D25  
D24  
D23  
D22  
0
D21  
0
D20  
0
D19  
1
D18  
1
D17  
0
D16  
1
0
0
0
0
1
1
0
0
0
D15  
0
D14  
0
D13  
0
D12  
0
D11  
1
D10  
1
D9  
1
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
1
D2  
1
D1  
1
D0  
1
Table 9. Little Endian 16-Bit Data Bus Bit Map, 0x0E0F Hexadecimal  
D31  
D30  
D29  
D28  
D27  
D26  
D25  
D24  
D23  
D22  
0
D21  
0
D20  
0
D19  
0
D18  
0
D17  
0
D16  
0
0
0
0
0
0
0
0
0
0
D15  
0
D14  
0
D13  
0
D12  
0
D11  
1
D10  
1
D9  
1
D8  
1
D7  
0
D6  
0
D5  
0
D4  
0
D3  
1
D2  
1
D1  
1
D0  
0
Table 10. Little Endian 32-Bit Data Bus Bit Map, 0x0F0E0D0C Hexadecimal  
D31  
D30  
D29  
D28  
D27  
D26  
D25  
D24  
D23  
D22  
D21  
0
D20  
0
D19  
1
D18  
1
D17  
1
D16  
0
0
0
0
0
1
1
1
1
0
0
D15  
0
D14  
0
D13  
0
D12  
0
D11  
1
D10  
1
D9  
0
D8  
1
D7  
0
D6  
0
D5  
0
D4  
0
D3  
1
D2  
1
D1  
0
D0  
0
Rev. E | Page 13 of 19  
 
fido5100/fido5200  
Data Sheet  
Address/Data Bus Operation  
Register and Data Access  
The host interface address/data bus connects to the address/  
data bus of the CPU. There are four bits of data for the address  
bus and either 16 bits or 32 bits of data for the data bus. Each  
REM switch address is 32-bit aligned, meaning that the addresses  
increment by four bytes (A05 to A02). Regardless of whether the  
data bus is 16 bits wide or 32 bits wide, the least significant  
address bit supplied to the REM switch is always the same.  
Four bits of address provide direct access to 16 registers. A read  
cycle or a write cycle obtains or sets the data in these registers.  
To access additional registers, use the host indirect address  
register. The direct address register definitions are provided in  
Table 11.  
The REM switch software driver provides the necessary application  
programming interface (API) functions to access these registers  
and manage all aspects of the switch for a specific protocol. Ether-  
net packets are received and transmitted directly through the  
Queue 0, Queue 1, Queue 2, and Queue 3 read and write registers,  
depending on the protocol.  
In addition, all accesses to indirect registers return the register  
data in the lower 16 bits only (even if the interface is 32 bits  
wide). For wider registers, such as a 64-bit timer, use a repeated  
set of reads or writes to access the full content of the register.  
Ethernet protocol control and switch management are performed  
by the software driver API through the host read/write queue  
data registers and the host direct/indirect registers (refer to the  
REM Switch Driver User Guide, available at  
www.analog.com/en/products/industrial-ethernet.html, for more  
information about these registers). Interrupt management is  
performed by the software driver API using the three interrupt  
lines in conjunction with the queue status register, timer status  
register, universal input/output controller (UIC) interrupt status  
register, and the composite interrupt status register.  
Nonmultiplexed Address Data Bus  
MBS = 0 selects the nonmultiplexed address data bus config-  
uration. The read and write cycle timings are defined in Figure 2  
and Figure 3. See Table 2 for the read and write cycle timing  
parameters.  
Multiplexed Address Data Bus  
MBS = 1 selects the multiplexed address data bus configuration.  
The read and write cycle timings are defined in Figure 4 and  
Figure 5. See Table 3 for the read and write cycle timing  
parameters.  
Table 11. Direct Address Register Definitions  
Register Name  
Queue 0 Read  
Queue 0 Write  
Queue 1 Read  
Queue 1 Write  
Queue 2 Read  
Queue 2 Write  
Width  
16/32  
16/32  
16/32  
16/32  
16/32  
16/32  
16/32  
16/32  
N/A  
16/32  
16/32  
16/32  
16/32  
16  
16  
16  
16  
16  
16  
16  
16  
16  
Address[5:0]  
0x00  
0x00  
0x04  
0x04  
0x08  
0x08  
0x0C  
0x0C  
0x10 to 0x14  
0x18  
0x18  
0x1C  
0x1C  
0x20  
0x24  
0x28  
0x2C  
Read/Write1  
Reset Value2  
0x00000000  
N/A  
0x00000000  
N/A  
0x00000000  
N/A  
0x00000000  
N/A  
R
W
R
W
R
W
R
Queue 3 Read  
Queue 3 Write  
Reserved  
W
N/A  
Host Read Queue 0 Data  
Host Read Queue 0 Data Head  
Host Read Queue 1 Data  
Host Read Queue 1 Data Head  
Queue Status Register  
Timer Status Register  
UIC Interrupt Status  
Composite Interrupt Status  
Host Indirect Address  
Host Indirect Read Data  
Host Indirect Write Data  
Host Write Queue 0 Completion  
Host Write Queue 1 Completion  
R
W
R
W
R/W  
R/W  
R/W  
R
R/W  
R
0x00000000  
0x00000000  
0x00000000  
N/A  
0x00000F00  
0x00000000  
0x0000  
0x0000  
0x0000  
N/A  
N/A  
0x30  
0x34  
0x34  
0x38  
W
R
R
0x0000  
0x0000  
0x3C  
1 R means read only, W means write only, and R/W means read/write.  
2 N/A means not applicable.  
Rev. E | Page 14 of 19  
 
Data Sheet  
fido5100/fido5200  
Interrupts  
ETHERNET INTERFACE  
Three interrupt lines are outputs from the REM switch; these  
three lines are labeled INT0, INT1, and INT2. Each of these  
interrupt lines must be mapped according to the interrupt  
inputs of the host processor. To ensure the best protocol  
performance, give INT2 the highest priority in the processor  
priority scheme, and do not disable it.  
There are two Ethernet ports on the REM switch. Each port is  
capable of configuration to support RMII or MII. Each port also  
has an input for link status from the PHY and an output for a  
link activity LED.  
Connections  
The pins associated specifically with the RMII and MII interfaces  
are listed in Table 12; their full descriptions are defined in  
Table 5.  
The interrupt lines are mapped to the events defined by the  
queue status register, timer status register, UIC interrupt status  
register, and composite interrupt status register for each protocol.  
It is the responsibility of the software driver API to provide the  
appropriate interrupt service routine for the mapped event.  
Refer to the REM Switch Driver User Guide, available at  
www.analog.com/en/products/industrial-ethernet.html, for  
technical details on handling REM switch interrupts for a  
specific industrial Ethernet protocol.  
The RMII interface is a seven-signal interface for each port (see  
Figure 9). This interface uses a 50 MHz reference clock (RMII_  
CLK) provided by the REM switch to the PHY.  
The MII interface is a 14-signal interface for each port (see  
Figure 10). The REM switch provides the base clock to the  
PHYs using the synchronized 25 MHz CLKOUT signal. The  
PHYs then provide a receive and transmit clock (RX_CLK and  
TX_CLK) for each port.  
When an interrupt event defined in the appropriate status  
registers occurs, the associated REM switch interrupt output  
line becomes active (Logic 1) and remains active until the  
register is cleared. If multiple events are mapped to the same  
REM switch interrupt output, and more than one becomes  
active, the associated interrupt line remains in the active (Logic 1)  
state until all active interrupt source registers are cleared.  
Link Status and Activity  
Px_LINK_STATUS  
from the selected PHY, configured so that the  
The  
signal is an input to the REM switch  
Px_LINK_STATUS  
signal is asserted continuously (not blinking) and determines  
the link up or link down state.  
Note that although the interrupts, INT0, INT1, and INT2, are  
labeled as priorities of low, medium, and high, there is not any  
inherent priority on the lines themselves, and they can be mapped  
accordingly.  
Px_ACTIVITY  
The  
signal is an output from the REM switch  
and is typically used to drive an LED to indicate a link is valid.  
Rev. E | Page 15 of 19  
 
fido5100/fido5200  
Data Sheet  
XTAL0  
HOST INTERFACE  
XTAL0  
HOST INTERFACE  
CLKOUT  
RESET  
TIMER0 TO TIMER3  
CLKOUT  
RESET  
TIMER0 TO TIMER3  
REM  
SWITCH  
TIMER4 TO TIMER7  
PORT 2  
REM  
SWITCH  
TIMER4 TO TIMER7  
4
4
4
4
PORT 1  
PORT 1  
PORT 2  
P1_LINK_STATUS  
P1_ACTIVITY  
P2_LINK_STATUS  
P2_ACTIVITY  
P1_LINK_STATUS  
P1_ACTIVITY  
P2_LINK_STATUS  
P2_ACTIVITY  
Figure 10. REM Switch Configured for MII Interface  
Figure 9. REM Switch Configured for RMII Interface  
Table 12. Brief Descriptions for MII and RMII Pins  
Pin No. Mnemonic Brief Description  
G10  
G11  
G12  
H10  
H11  
H12  
J1  
RMII_CLK  
CLKOUT  
P2_ACTIVITY  
P2_CRS  
50 MHz RMII Transmit and Receive Clock for Port 1 and Port 2.  
Output Clock.  
Port 2 Activity LED Output Driver.  
Port 2 Carrier Sense.  
Port 2 MII Collision.  
Port 2 Link Status from PHY.  
P2_COL  
P2_LINK_STATUS  
P1_TXEN  
P1_TXCLK  
P2_RXDV  
P2_RXCLK  
P1_TXD0  
P1_RXDV  
P1_LINK_STATUS  
P2_TXD1  
P2_RXD0  
P1_TXD1  
P1_TXD2  
P1_RXD0  
P1_RXD3  
P1_CRS  
Port 1 MII Transmit Enable.  
Port 1 MII Transmit Clock from PHY.  
Port 2 Received Data Valid.  
Port 2 MII Receive Clock from PHY.  
Transmit Data Output Bit 0 for Port 1 MII, RMII.  
Port I MII Received Data Valid.  
J2  
J11  
J12  
K1  
K6  
K7  
Port 1 Link Status from PHY.  
K8  
K10  
L1  
L2  
L3  
Transmit Data Output Bit 1 for Port 2 MII, RMII.  
Receive Data Input Bit 0 for Port 2 MII, RMII.  
Transmit Data Output Bit 1 for Port 1 MII, RMII.  
Transmit Data Output Bit 2 for Port 1 MII.  
Receive Data Input Bit 0 for Port 1 MII, RMII.  
Receive Data Input Bit 3 for Port 1 MII.  
Port 1 MII Carrier Sense.  
L4  
L6  
L7  
P1_ACTIVITY  
P2_TXD0  
P2_TXD3  
P2_RXD2  
P1_TXD3  
P1_RXD1  
P1_RXD2  
P1_RXCLK  
P1_COL  
P2_TXEN  
P2_TXD2  
P2_TXCLK  
P2_RXD1  
P2_RXD3  
Port 1 Activity LED Output Driver.  
Transmit Data Output Bit 0 for Port 2 MII, RMII.  
Transmit Data Output Bit 3 for Port 2 MII.  
Receive Data Input Bit 2 for Port 2 MII.  
Transmit Data Output Bit 3 for Port 1 MII.  
Receive Data Input Bit 1 for Port 1 MII, RMII.  
Receive Data Input Bit 2 for Port 1 MII.  
Port 1 Receive Clock from PHY.  
Port 1 MII Collision.  
Port 2 MII Transmit Enable.  
Transmit Data Output Bit 2 for Port 2 MII.  
Port 2 MII Transmit Clock from PHY.  
Receive Data Input Bit 1 for Port 2 MII, RMII.  
Receive Data Input Bit 3 for Port 2 MII.  
L8  
L9  
L11  
M1  
M3  
M4  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
Rev. E | Page 16 of 19  
 
 
 
Data Sheet  
fido5100/fido5200  
APPLICATIONS INFORMATION  
CONFIGURABLE TO  
SUPPORT TOPOLOGY  
MANAGEMENT  
INDUSTRIAL FIELD DEVICE  
OR CONTROLLER APPLICATION  
CONFIGURABLE TO  
SUPPORT INDUSTRIAL  
ETHERNET PROTOCOLS  
RSTP  
PRP  
CPU OR  
FLASH  
RAM  
MRP  
DLR  
SoC  
PROFINET, EtherNet/IP,  
Modbus TCP, EtherCAT,  
ETHERNET POWERLINK  
HSR  
MRPD  
REAL-TIME ETHERNET  
MULTIPROTOCOL (REM)  
SWITCH  
APPLICATION  
I/O  
CONFIGURABLE TO  
SUPPORT NETWORK  
MANAGEMENT  
FAST CYCLE TIME,  
FAST STARTUP, AND  
LOW JITTER  
DCP  
PHY  
PHY  
DHCP  
LLDP  
IGMP  
PriorityChannel  
TECHNOLOGY  
VLAN  
LEARNING  
AGING  
INDUSTRIAL ETHERNET  
NETWORK  
Figure 11. Application for the REM Switch  
REM SWITCH HARDWARE  
BOARD LAYOUT  
The basic REM switch hardware is identified as the fido5100 or  
fido5200. For example, the fido5100 supports the following  
protocols:  
The following guidelines provide best practice for board layout  
with the REM switch:  
Use individual polygons for the power planes for each of  
the three supplies. Allow at least 0.2 mm of isolation  
between the power planes.  
PROFINET RT and IRT, Class B and Class C with fast  
startup (Version 2.3)  
EtherNet/IP with and without DLR (supervisor and node,  
announce based and beacon based), QuickConnect, CIP  
Sync, and CIP Motion  
Modbus TCP  
POWERLINK  
Isolate clock signals from the other traces and make them  
as short as possible.  
A minimum clearance around the REM switch of 3 mm is  
required to facilitate heat dissipation.  
DESIGN CONSIDERATIONS  
Power  
The fido5200 supports the following protocols:  
EtherCAT  
All protocols defined for the fido5100  
The REM switch require 1.2 V and 3.3 V power supplies. Each  
power level requires its own power plane on the PCB.  
The REM switches are PI Net Load Class III capable, and  
support media redundancy for planned duplication (MRPD),  
high availability seamless redundancy (HSR), and parallel  
redundancy protocol (PRP). They also support IEEE 1588  
Version 2 for ordinary clock (both peer to peer and end to end  
transparent clocks), raw frames, and user datagram protocol  
(UDP), as well as discovery configuration protocol (DCP), link  
layer discovery protocol (LLDP), dynamic host configuration  
protocol (DHCP), rapid spanning tree protocol (RSTP), virtual  
local area network (VLAN), and Internet group management  
protocol (IGMP) snooping support.  
The REM switch uses 3.3 V LVCMOS logic levels for its I/O.  
This I/O requires a 3.3 V ( 10%) power supply circuit. Ideally,  
this circuit uses a low noise switching power supply. The REM  
switch use a 1.2 V ( 10%) supply for the core of the chip. The  
core power supply requires its own power plane on the PCB.  
Additional best practices include  
Use one 0.1 µF bypass capacitor for every 1.2 V power pin.  
Use a power supply IC rated to supply at least 100 mA.  
Supply 3.3 V power from its own layer on the PCB to the  
3.3 V power input pins on the REM switch.  
Use one 0.1 µF bypass capacitor for every 3.3 V power pin.  
For the 1.2 V analog supply, the signal must be isolated  
using a 120 Ω, 500 mA ferrite bead and 10 µF, 1 µF, and  
0.1 µF filtering capacitors.  
REM Switch Drivers  
The REM switch driver for each protocol is provided as  
portable C code. The REM Switch Software Driver User Guide  
describes the driver for each protocol and its integration into a  
host processor. Visit www.analog.com/en/products/industrial-  
ethernet.html to download the user guide.  
Rev. E | Page 17 of 19  
 
 
 
 
 
fido5100/fido5200  
Data Sheet  
Reset  
transmit (Tx) clock inputs (P1_RXCLK, P1_TXCLK,  
P2_RXCLK, and P2_TXCLK pins) to the REM switch.  
RESET  
The  
that is paired with the REM switch.  
RESET  
signal is typically driven by the host microprocessor  
RESET  
is an active low signal;  
high as power becomes valid.  
Physical Layer (PHY)  
For RMII, the REM switch generates the required 50 MHz clock  
for the RMII interface. The clock is generated from the 25 MHz  
input clock to the REM switch using the internal PLL of the  
REM switch.  
therefore, pull  
The REM switch is designed intentionally without PHYs  
because of the different requirements on PHY performance.  
EtherCAT and PROFINET IRT have much tighter latency and  
jitter requirements than standard Ethernet.  
As with all clock signals, take care when routing these signals to  
minimize noise and loading effects.  
Management Data Input/Output (MDIO)  
Clocking  
All PHYs require configuration and can provide some type of  
status information in return. Each PHY is different, but most  
PHYs use a management data input/output (MDIO) interface to  
communicate this configuration and status. The REM switch does  
not provide separate communication to the PHYs. The host  
processor paired with the REM switch is required to provide  
this PHY communication.  
Most PHYs allow the user to clock the PHY with a crystal  
oscillator or a separate clock source when using an MII  
interface. It is a requirement for EtherCAT designs (and  
recommended for other designs) to use the CLKOUT signal  
from the REM switch as the clock source for the PHYs. This  
approach minimizes jitter as much as possible.  
CLKOUT from the REM switch is a 25 MHz clock signal  
generated from the 25 MHz input clock to the REM switch  
using the internal PLL of the REM switch. The PHY uses the  
25 MHz CLKOUT signal to generate the MII receive (Rx) and  
Contact Analog Devices, Inc., technical support regarding  
questions about PHY settings or the MDIO interface.  
Rev. E | Page 18 of 19  
Data Sheet  
fido5100/fido5200  
OUTLINE DIMENSIONS  
10.10  
10.00 SQ  
9.90  
A1 BALL  
CORNER  
A1 BALL  
PAD CORNER  
12 11 10  
9
8
7
6
5
4
3
2 1  
A
B
C
D
E
F
8.80 SQ  
REF  
G
H
J
0.80  
BSC  
K
L
M
TOP VIEW  
BOTTOM VIEW  
DETAIL A  
SIDE VIEW  
1.24 MAX  
0.91  
0.86  
0.81  
DETAIL A  
0.35  
0.30  
0.25  
SEATING  
PLANE  
0.45  
0.40  
0.35  
COPLANARITY  
0.12  
BALL DIAMETER  
COMPLIANT WITH JEDEC STANDARDS MO-275-EEAB-1  
Figure 12. 144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-144-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
BC-144-12  
BC-144-12  
BC-144-12  
BC-144-12  
BC-144-12  
BC-144-12  
BC-144-12  
BC-144-12  
FIDO5100BBCZ  
FIDO5100CBCZ  
FIDO5110BBCZ  
FIDO5110CBCZ  
FIDO5200BBCZ  
FIDO5200CBCZ  
FIDO5210BBCZ  
FIDO5210CBCZ  
RAPID-NIEK-V0004  
−40°C to +85°C  
−40°C to +105°C  
−40°C to +85°C  
−40°C to +105°C  
−40°C to +85°C  
−40°C to +105°C  
−40°C to +85°C  
−40°C to +105°C  
144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
Evaluation Kit  
1 Z = RoHS Compliant Part.  
©2017–2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15833-3/20(E)  
Rev. E | Page 19 of 19  
 
 
 

相关型号:

FIDO5110BBCZ

Real-Time Ethernet Multiprotocol (REM) Switch
ADI

FIDO5110CBCZ

Real-Time Ethernet Multiprotocol (REM) Switch
ADI

FIDO5200

Real-Time Ethernet Multiprotocol (REM) Switch
ADI

FIDO5200BBCZ

Real-Time Ethernet Multiprotocol (REM) Switch
ADI

FIDO5200CBCZ

Real-Time Ethernet Multiprotocol (REM) Switch
ADI

FIDO5210BBCZ

Real-Time Ethernet Multiprotocol (REM) Switch
ADI

FIDO5210CBCZ

Real-Time Ethernet Multiprotocol (REM) Switch
ADI

FIDT2X2YL

6x4 FiberRunner System Spillouts
PANDUIT

FIDT4X4BL

6x4 FiberRunner System Spillouts
PANDUIT

FIE220-1

General Purpose Inductor, 11.7uH, 10%, 1 Element, ROHS COMPLIANT
TRIAD

FIF-S-31-080-R

Free Space Isolator
FINISAR

FIF-S-55-080-R

Free Space Isolator
FINISAR