HMC219B [ADI]

2.5 GHz to 7.0 GHz GaAs, MMIC Fundamental Mixer;
HMC219B
型号: HMC219B
厂家: ADI    ADI
描述:

2.5 GHz to 7.0 GHz GaAs, MMIC Fundamental Mixer

文件: 总27页 (文件大小:452K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 GHz to 7.0 GHz GaAs, MMIC  
Fundamental Mixer  
Data Sheet  
HMC219B  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Conversion loss: 9 dB typical  
LO to RF isolation: 40 dB typical  
LO to IF isolation: 35 dB typical  
RF to IF isolation: 22 dB typical  
Input IP3: 18 dBm typical  
GND  
LO  
1
2
3
4
8
7
6
5
GND  
RF  
HMC219B  
GND  
NIC  
GND  
IF  
Figure 1.  
Input P1dB: 11 dBm typical  
Input IP2: 55 dBm typical  
Passive double balanced topology  
8-lead, 3 mm × 3 mm, MINI_SO_EP  
APPLICATIONS  
Microwave radios  
High performance radio local area network (HiperLAN) and  
unlicensed national information infrastructure (U-NII)  
Industrial, scientific, and medical (ISM)  
GENERAL DESCRIPTION  
The HMC219B is an ultraminiature, general-purpose, double  
balanced mixer in an 8-lead plastic surface mini small outline  
package with exposed pad (MINI_SO_EP). This passive  
monolithic microwave integrated circuit (MMIC) mixer is  
fabricated in a gallium arsenide (GaAs) metal semiconductor  
field effect transistor (MESFET) process and requires no  
external components or matching circuitry. The device can be  
used as an upconverter, downconverter, biphase demodulator,  
or phase comparator from 2.5 GHz to 7.0 GHz.  
The HMC219B provides excellent local oscillator (LO) to radio  
frequency (RF) isolation and LO to intermediate frequency (IF)  
isolation due to optimized balun structures. The RoHS compliant  
HMC219B eliminates the need for wire bonding and is compatible  
with high volume surface-mount manufacturing techniques. The  
consistent MMIC performance improves system operation and  
assures regulatory compliance with HiperLAN, U-NII, and ISM.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibilityisassumedbyAnalogDevicesforitsuse,norforanyinfringementsofpatentsorother  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices.Trademarks and registered trademarks are theproperty of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2017 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC219B  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................6  
Downconverter Performance ......................................................6  
Upconverter Performance......................................................... 18  
Spurious and Harmonics Performance ................................... 24  
Theory of Operation ...................................................................... 25  
Applications Information .............................................................. 26  
Typical Application Circuit....................................................... 26  
Evaluation PCB Information .................................................... 26  
Outline Dimensions ....................................................................... 27  
Ordering Guide .......................................................................... 27  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Interface Schematics..................................................................... 5  
REVISION HISTORY  
10/2017—Rev. 0 to Rev. A  
Changes to Figure 16........................................................................ 7  
Changes to M × N Spurious Outputs, IF = 100 MHz Section  
and M × N Spurious Outputs, IF = 1000 MHz Section ............ 24  
1/2017—Revision 0: Initial Version  
Rev. A | Page 2 of 27  
 
Data Sheet  
HMC219B  
SPECIFICATIONS  
TA = 25°C, IF = 100 MHz, LO power = 13 dBm, and all measurements performed as downconverter with lower sideband selected, unless  
otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
FREQUENCY RANGE  
RF  
LO  
2.5  
2.5  
DC  
7.0  
7.0  
3
GHz  
GHz  
GHz  
dBm  
IF  
LO DRIVE LEVEL  
13  
PERFORMANCE  
Conversion Loss  
Single-Sideband (SSB) Noise Figure  
Input Third-Order Intercept (IP3)  
Input Second-Order Intercept (IP2)  
LO to RF Isolation  
LO to IF Isolation  
RF to IF Isolation  
Input 1 dB Compression Point (P1dB)  
RF Return Loss  
9
8
11  
dB  
dB  
dBm  
dBm  
dB  
dB  
dB  
dBm  
dB  
dB  
15  
18  
55  
40  
35  
22  
11  
10  
25  
12  
34  
29  
LO Return Loss  
IF Return Loss  
dB  
Rev. A | Page 3 of 27  
 
HMC219B  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
RF Input Power  
LO Input Power  
IF Input Power  
IF Source and Sink Current  
Continuous Power Dissipation, PDISS (TA =  
85°C, Derate 10.81 mW/°C Above 85°C)  
Maximum Junction Temperature  
Maximum Peak Reflow Temperature (MSL1)1  
Operating Temperature Range  
Storage Temperature Range  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
25 dBm  
27dBm  
25 dBm  
6 mA  
Table 3. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
972 mW  
RM-8  
194.9  
92.5  
°C/W  
1 See JEDEC standard JESD51-2 for additional information on optimizing the  
thermal impedance (PCB with 3 × 3 vias).  
175°C  
260°C  
−40°C to +85°C  
−65°C to +125°C  
ESD CAUTION  
1500 V (Class 1C)  
750 V (Class C4)  
Field Induced Charged Device Model  
(FICDM)  
1 See the Ordering Guide.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 4 of 27  
 
 
 
Data Sheet  
HMC219B  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND  
1
2
3
4
8
7
6
5
GND  
LO  
HMC219B  
RF  
TOP VIEW  
GND  
NIC  
GND  
IF  
(Not to Scale)  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED.  
LEAVE THIS PIN FLOATING.  
2. EXPOSED PAD. EXPOSED PAD MUST  
BE CONNECTED TO RF/DC GROUND.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 3, 6, 8  
GND  
LO  
NIC  
IF  
Ground. Connect the package bottom to RF/dc ground. See Figure 3 for the GND interface schematic.  
Local Oscillator. This pin is dc-coupled and matched to 50 Ω. See Figure 4 for the LO interface schematic.  
Not Internally Connected. Leave this pin floating.  
Intermediate Frequency. This pin is dc-coupled. For applications not requiring operation to dc, externally block  
this pin using a series capacitor with a value chosen to pass the necessary IF frequency range. For operation to  
dc, this pin must not source or sink more than 6 mA of current or device nonfunction and possible device failure  
results. See Figure 5 for the IF interface schematic.  
2
4
5
7
RF  
Radio Frequency. This pin is dc-coupled and matched to 50 Ω. See Figure 6 for the RF interface schematic.  
INTERFACE SCHEMATICS  
GND  
IF  
Figure 3. GND Interface Schematic  
Figure 5. IF Interface Schematic  
LO  
RF  
Figure 4. LO Interface Schematic  
Figure 6. RF Interface Schematic  
Rev. A | Page 5 of 27  
 
 
 
 
 
 
HMC219B  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
DOWNCONVERTER PERFORMANCE  
Data taken as downconverter, lower sideband, TA = 25°C, IF = 100 MHz, and LO power = 13 dBm, unless otherwise noted.  
0
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
+85°C  
+25°C  
–40°C  
LO TO IF  
LO TO RF  
RF TO IF  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 7. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 10. Isolation vs. RF Frequency  
30  
20  
18  
16  
14  
12  
10  
8
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
25  
20  
15  
10  
5
6
4
2
0
2.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 8. Input IP3 vs. RF Frequency at Various Temperatures  
Figure 11. Input P1dB vs. RF Frequency at Various Temperatures  
0
0
9dBm  
IF RETURN LOSS  
CONVERSION GAIN  
–2  
–4  
–2  
–4  
11dBm  
13dBm  
15dBm  
17dBm  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
IF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 9. Conversion Gain and IF Return Loss vs. IF Frequency  
Figure 12. Conversion Gain vs. RF Frequency at Various LO Powers  
Rev. A | Page 6 of 27  
 
 
Data Sheet  
HMC219B  
30  
20  
18  
16  
14  
12  
10  
8
9dBm  
+85°C  
+25°C  
–40°C  
11dBm  
13dBm  
15dBm  
17dBm  
25  
20  
15  
10  
5
6
4
2
0
2.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 13. Input IP3 vs. RF Frequency at Various LO Powers  
Figure 16. Noise Figure vs. RF Frequency at Various Temperatures  
80  
80  
70  
60  
50  
40  
30  
+85°C  
+25°C  
–40°C  
70  
60  
50  
40  
30  
20  
10  
0
9dBm  
20  
10  
0
11dBm  
13dBm  
15dBm  
17dBm  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 14. Input IP2 vs. RF Frequency at Various Temperatures  
Figure 17. Input IP2 vs. RF Frequency at Various LO Powers  
0
0
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
–2  
–4  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 15. RF Return Loss vs. RF Frequency at Various Temperatures,  
LO Frequency = 4.6 GHz, LO Power = 13 dBm  
Figure 18. LO Return Loss vs. LO Frequency at Various Temperatures  
Rev. A | Page 7 of 27  
HMC219B  
Data Sheet  
Data taken as downconverter, lower sideband, TA = 25°C, IF = 1000 MHz, and LO power = 13 dBm, unless otherwise noted.  
0
0
9dBm  
+85°C  
+25°C  
–40°C  
–2  
–2  
11dBm  
13dBm  
15dBm  
17dBm  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 19. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 22. Conversion Gain vs. RF Frequency at Various LO Powers  
30  
30  
9dBm  
11dBm  
13dBm  
15dBm  
17dBm  
+85°C  
+25°C  
–40°C  
25  
25  
20  
15  
10  
5
20  
15  
10  
5
0
2.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 20. Input IP3 vs. RF Frequency at Various Temperatures  
Figure 23. Input IP3 vs. RF Frequency at Various LO Powers  
80  
80  
9dBm  
+85°C  
+25°C  
–40°C  
11dBm  
13dBm  
15dBm  
17dBm  
70  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 21. Input IP2 vs. RF Frequency at Various Temperatures  
Figure 24. Input IP2 vs. RF Frequency at Various LO Powers  
Rev. A | Page 8 of 27  
Data Sheet  
HMC219B  
20  
20  
18  
16  
14  
12  
10  
8
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
2.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 25. Input P1dB vs. RF Frequency at Various Temperatures  
Figure 26. Noise Figure vs. RF Frequency at Various Temperatures  
Rev. A | Page 9 of 27  
HMC219B  
Data Sheet  
Data taken as downconverter, lower sideband, TA = 25°C, IF = 2000 MHz, and LO power = 13 dBm, unless otherwise noted.  
0
0
9dBm  
+85°C  
+25°C  
–40°C  
–2  
–2  
11dBm  
13dBm  
15dBm  
17dBm  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 27. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 30. Conversion Gain vs. RF Frequency at Various LO Powers  
30  
30  
9dBm  
11dBm  
13dBm  
15dBm  
17dBm  
+85°C  
+25°C  
–40°C  
25  
25  
20  
15  
10  
5
20  
15  
10  
5
0
2.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 28. Input IP3 vs. RF Frequency at Various Temperatures  
Figure 31. Input IP3 vs. RF Frequency at Various LO Powers  
80  
80  
+85°C  
+25°C  
–40°C  
70  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
9dBm  
11dBm  
13dBm  
15dBm  
17dBm  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 29. Input IP2 vs. RF Frequency at Various Temperatures  
Figure 32. Input IP2 vs. RF Frequency at Various LO Powers  
Rev. A | Page 10 of 27  
Data Sheet  
HMC219B  
20  
35  
30  
25  
20  
15  
10  
5
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
18  
16  
14  
12  
10  
8
6
4
2
0
2.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 33. Input P1dB vs. RF Frequency at Various Temperatures  
Figure 34. Noise Figure vs. RF Frequency at Various Temperatures  
Rev. A | Page 11 of 27  
HMC219B  
Data Sheet  
Data taken as downconverter, upper sideband, TA = 25°C, IF = 100 MHz, and LO power = 13 dBm, unless otherwise noted.  
0
0
9dBm  
+85°C  
+25°C  
–40°C  
–2  
–2  
11dBm  
13dBm  
15dBm  
17dBm  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 35. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 38. Conversion Gain vs. RF Frequency at Various LO Powers  
30  
30  
9dBm  
11dBm  
13dBm  
15dBm  
17dBm  
+85°C  
+25°C  
–40°C  
25  
25  
20  
15  
10  
5
20  
15  
10  
5
0
2.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 36. Input IP3 vs. RF Frequency at Various Temperatures  
Figure 39. Input IP3 vs. RF Frequency at Various LO Powers  
80  
80  
+85°C  
+25°C  
–40°C  
70  
60  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
9dBm  
11dBm  
13dBm  
15dBm  
17dBm  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 37. Input IP2 vs. RF Frequency at Various Temperatures  
Figure 40. Input IP2 vs. RF Frequency at Various LO Powers  
Rev. A | Page 12 of 27  
Data Sheet  
HMC219B  
20  
20  
18  
16  
14  
12  
10  
8
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
2.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 41. Input P1dB vs. RF Frequency at Various Temperatures  
Figure 42. Noise Figure vs. RF Frequency at Various Temperatures  
Rev. A | Page 13 of 27  
HMC219B  
Data Sheet  
Data taken as downconverter, upper sideband, TA = 25°C, IF = 1000 MHz, and LO power = 13 dBm, unless otherwise noted.  
0
0
9dBm  
+85°C  
+25°C  
–40°C  
–2  
–2  
11dBm  
13dBm  
15dBm  
17dBm  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 43. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 46. Conversion Gain vs. RF Frequency at Various LO Powers  
30  
30  
9dBm  
11dBm  
13dBm  
15dBm  
+85°C  
+25°C  
–40°C  
25  
25  
17dBm  
20  
15  
10  
5
20  
15  
10  
5
0
2.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 44. Input IP3 vs. RF Frequency at Various Temperatures  
Figure 47. Input IP3 vs. RF Frequency at Various LO Powers  
80  
80  
+85°C  
+25°C  
–40°C  
70  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
9dBm  
11dBm  
13dBm  
15dBm  
17dBm  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 45. Input IP2 vs. RF Frequency at Various Temperatures  
Figure 48. Input IP2 vs. RF Frequency at Various LO Powers  
Rev. A | Page 14 of 27  
Data Sheet  
HMC219B  
20  
20  
18  
16  
14  
12  
10  
8
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
2.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 49. Input P1dB vs. RF Frequency at Various Temperatures  
Figure 50. Noise Figure vs. RF Frequency at Various Temperatures  
Rev. A | Page 15 of 27  
HMC219B  
Data Sheet  
Data taken as downconverter, upper sideband, TA = 25°C, IF = 2000 MHz, and LO power = 13 dBm, unless otherwise noted.  
0
0
9dBm  
+85°C  
+25°C  
–40°C  
–2  
–2  
11dBm  
13dBm  
15dBm  
17dBm  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 51. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 54. Conversion Gain vs. RF Frequency at Various LO Powers  
30  
30  
9dBm  
11dBm  
13dBm  
15dBm  
17dBm  
+85°C  
+25°C  
–40°C  
25  
25  
20  
15  
10  
5
20  
15  
10  
5
0
2.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 52. Input IP3 vs. RF Frequency at Various Temperatures  
Figure 55. Input IP3 vs. RF Frequency at Various LO Powers  
80  
80  
+85°C  
+25°C  
–40°C  
70  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
9dBm  
11dBm  
13dBm  
15dBm  
17dBm  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 53. Input IP2 vs. RF Frequency at Various Temperatures  
Figure 56. Input IP2 vs. RF Frequency at Various LO Powers  
Rev. A | Page 16 of 27  
Data Sheet  
HMC219B  
20  
20  
18  
16  
14  
12  
10  
8
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
3.5  
0
4.0  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 57. Input P1dB vs. RF Frequency at Various Temperatures  
Figure 58. Noise Figure vs. RF Frequency at Various Temperatures  
Rev. A | Page 17 of 27  
HMC219B  
Data Sheet  
UPCONVERTER PERFORMANCE  
Data taken as upconverter, lower sideband, TA = 25°C, IF = 100 MHz, and LO power = 13 dBm, unless otherwise noted.  
0
0
9dBm  
+85°C  
+25°C  
–40°C  
–2  
–2  
11dBm  
13dBm  
15dBm  
17dBm  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 59. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 61. Conversion Gain vs. RF Frequency at Various LO Powers  
30  
30  
9dBm  
11dBm  
13dBm  
+85°C  
+25°C  
–40°C  
25  
25  
15dBm  
17dBm  
20  
15  
10  
5
20  
15  
10  
5
0
2.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 60. Input IP3 vs. RF Frequency at Various Temperatures  
Figure 62. Input IP3 vs. RF Frequency at Various LO Powers  
Rev. A | Page 18 of 27  
 
Data Sheet  
HMC219B  
Data taken as upconverter, lower sideband, TA = 25°C, IF = 1000 MHz, and LO drive level = 13 dBm, unless otherwise noted.  
0
0
9dBm  
+85°C  
+25°C  
–40°C  
11dBm  
13dBm  
15dBm  
17dBm  
–2  
–2  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 63. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 65. Conversion Gain vs. RF Frequency at Various LO Powers  
30  
30  
9dBm  
11dBm  
13dBm  
15dBm  
17dBm  
+85°C  
+25°C  
–40°C  
25  
25  
20  
15  
10  
5
20  
15  
10  
5
0
2.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 64. Input IP3 vs. RF Frequency at Various Temperatures  
Figure 66. Input IP3 vs. RF Frequency at Various LO Powers  
Rev. A | Page 19 of 27  
HMC219B  
Data Sheet  
Data taken as upconverter, lower sideband, TA = 25°C, IF = 2000 MHz, and LO drive level = 13 dBm, unless otherwise noted.  
0
0
9dBm  
+85°C  
+25°C  
–40°C  
–2  
–2  
11dBm  
13dBm  
15dBm  
17dBm  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 67. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 69. Conversion Gain vs. RF Frequency at Various LO Powers  
30  
30  
9dBm  
11dBm  
13dBm  
15dBm  
17dBm  
+85°C  
+25°C  
–40°C  
25  
25  
20  
15  
10  
5
20  
15  
10  
5
0
2.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 68. Input IP3 vs. RF Frequency at Various Temperatures  
Figure 70. Input IP3 vs. RF Frequency at Various LO Powers  
Rev. A | Page 20 of 27  
Data Sheet  
HMC219B  
Data taken as upconverter, upper sideband, TA = 25°C, IF = 100 MHz, and LO drive level = 13 dBm, unless otherwise noted.  
0
0
9dBm  
+85°C  
+25°C  
–40°C  
–2  
–2  
11dBm  
13dBm  
15dBm  
17dBm  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 71. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 73. Conversion Gain vs. RF Frequency at Various LO Powers  
30  
30  
9dBm  
11dBm  
13dBm  
15dBm  
17dBm  
+85°C  
+25°C  
–40°C  
25  
25  
20  
15  
10  
5
20  
15  
10  
5
0
2.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 72. Input IP3 vs. RF Frequency at Various Temperatures  
Figure 74. Input IP3 vs. RF Frequency at Various LO Powers  
Rev. A | Page 21 of 27  
HMC219B  
Data Sheet  
Data taken as upconverter, upper sideband, TA = 25°C, IF = 1000 MHz, and LO drive level = 13 dBm, unless otherwise noted.  
0
0
9dBm  
+85°C  
+25°C  
–40°C  
–2  
–2  
11dBm  
13dBm  
15dBm  
17dBm  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 75. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 77. Conversion Gain vs. RF Frequency at Various LO Powers  
30  
30  
9dBm  
11dBm  
13dBm  
15dBm  
17dBm  
+85°C  
+25°C  
–40°C  
25  
25  
20  
15  
10  
5
20  
15  
10  
5
0
2.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 76. Input IP3 vs. RF Frequency at Various Temperatures  
Figure 78. Input IP3 vs. RF Frequency at Various LO Powers  
Rev. A | Page 22 of 27  
Data Sheet  
HMC219B  
Data taken as upconverter, upper sideband, TA = 25°C, IF = 2000 MHz, and LO drive level = 13 dBm, unless otherwise noted.  
0
0
9dBm  
+85°C  
+25°C  
–40°C  
11dBm  
13dBm  
15dBm  
17dBm  
–2  
–2  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 79. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 81. Conversion Gain vs. RF Frequency at Various LO Powers  
30  
30  
9dBm  
11dBm  
13dBm  
15dBm  
17dBm  
+85°C  
+25°C  
–40°C  
25  
25  
20  
15  
10  
5
20  
15  
10  
5
0
2.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 80. Input IP3 vs. RF Frequency at Various Temperatures  
Figure 82. Input IP3 vs. RF Frequency at Various LO Powers  
Rev. A | Page 23 of 27  
HMC219B  
Data Sheet  
SPURIOUS AND HARMONICS PERFORMANCE  
Mixer spurious products are measured in dBc from the IF output  
power level, unless otherwise noted. Spur values are (M × RF) −  
(N × LO).  
M × N Spurious Outputs, IF = 1000 MHz  
RF = +2.5 GHz, LO = +3.5 GHz, RF power = −10 dBm, and  
LO power = +13 dBm.  
M × N Spurious Outputs, IF = 100 MHz  
N × LO  
RF = +2.5 GHz, LO = +2.6 GHz, RF power = −10 dBm, and  
LO power = +13 dBm.  
0
1
2
3
4
5
0
1
2
3
4
5
−2  
+22  
+29  
+62  
+69  
+60  
+74  
+17  
+38  
+76  
+60  
+69  
+63  
+51  
+56  
+80  
+82  
+62  
+55  
+36  
+61  
+75  
+81  
+78  
+79  
+7  
N/A1  
+55  
+61  
+83  
+83  
N × LO  
0
1
2
3
4
5
+75  
+77  
+82  
+80  
M × RF  
0
1
2
3
4
5
1
28  
27  
35  
86  
67  
85  
84  
55  
44  
82  
73  
90  
87  
39  
62  
77  
81  
85  
90  
7
N/A1 20  
79  
81  
83  
83  
62  
72  
82  
82  
73  
67  
85  
81  
M × RF  
1 N/A means not applicable.  
RF = +4.5 GHz, LO = +5.5 GHz, RF power = −10 dBm, and  
LO power = +13 dBm.  
1 N/A means not applicable.  
N × LO1  
RF = +4.5 GHz, LO = +4.6 GHz, RF power = −10 dBm, and  
LO power = +13 dBm.  
0
1
2
3
4
5
0
1
2
3
4
5
6
44  
27  
51  
74  
71  
89  
87  
29  
45  
82  
84  
86  
90  
N/A  
45  
79  
82  
84  
87  
N × LO  
13  
85  
81  
81  
77  
N/A 36  
0
1
2
3
4
5
57  
83  
83  
79  
64  
76  
84  
85  
M × RF  
0
1
2
3
4
5
3
39  
34  
57  
74  
84  
80  
31  
46  
57  
71  
87  
84  
35  
71  
83  
88  
88  
86  
33  
57  
76  
86  
89  
89  
15  
85  
80  
80  
80  
N/A1  
55  
83  
81  
79  
M × RF  
1 N/A means not applicable.  
RF = +6 GHz, LO = +7 GHz, RF power = −10 dBm, and  
LO power = +13 dBm.  
1 N/A means not applicable.  
N × LO1  
RF = +6 GHz, LO = +6.1 GHz, RF power = −10 dBm, and  
LO power = +13 dBm.  
0
1
2
3
4
5
0
1
2
3
4
5
6
36  
22  
60  
70  
66  
65  
70  
N/A  
29  
78  
82  
73  
59  
N/A  
N/A  
64  
78  
80  
N × LO1  
16  
80  
79  
70  
N/A 37  
0
1
2
3
4
5
68  
82  
79  
67  
59  
73  
83  
79  
M × RF  
0
1
2
3
4
5
7
39  
28  
51  
85  
78  
87  
84  
29  
45  
83  
87  
89  
86  
N/A  
42  
79  
82  
85  
89  
17  
79  
81  
76  
N/A 38  
N/A  
67  
72  
84  
79  
76  
62  
82  
83  
79  
M × RF  
1 N/A means not applicable.  
N/A  
1 N/A means not applicable.  
Rev. A | Page 24 of 27  
 
Data Sheet  
HMC219B  
THEORY OF OPERATION  
The HMC219B is a general-purpose, double balanced mixer in  
an 8-lead, MINI_SO_EP, RoHS-compliant package that can be  
used as an upconverter or a downconverter from 2.5 GHz to  
7.0 GHz.  
When used as an upconverter, the mixer upconverts IF between  
dc and 3 GHz to RF between 2.5 GHz and 7.0 GHz.  
The mixer provides excellent LO to RF and LO to IF isolation  
due to optimized balun structures. The HMC219B requires no  
external components or matching circuitry. The RoHS compliant  
HMC219B eliminates the need for wire bonding and is compatible  
with high volume, surface-mount manufacturing techniques.  
When used a downconverter, the HMC219B downconverts RF  
between 2.5 GHz and 7.0 GHz to IF between dc and 3 GHz.  
Rev. A | Page 25 of 27  
 
HMC219B  
Data Sheet  
APPLICATIONS INFORMATION  
TYPICAL APPLICATION CIRCUIT  
EVALUATION PCB INFORMATION  
Figure 83 shows the typical application circuit for the HMC219B.  
The HMC219B is a passive device and does not require any  
external components. The LO and RF pins are internally  
dc-coupled. When IF operation is not required until dc, use an  
ac-coupled capacitor at the IF port. When IF operation to dc is  
required, do not exceed the IF source and sink the current rating  
specified in the Absolute Maximum Ratings section.  
RF circuit design techniques must be implemented for the  
evaluation board PCB shown in Figure 84. Signal lines must  
have 50 Ω impedance, and the package ground leads and  
exposed pad must connect directly to the ground plane, similar to  
what is shown in Figure 84. Use a sufficient number of via holes  
to connect the top and bottom ground planes. The evaluation  
circuit board shown in Figure 84 is available from Analog  
Devices, Inc., upon request. Reference EV1HMC219BMS8G  
when ordering the evaluation PCB assembly. The bill of  
materials for the evaluation PCB is shown in Table 5.  
HMC219B  
LO  
8
1
RF  
IF  
2
3
4
7
6
5
GND  
Table 5. Bill of Materials for Evaluation PCB  
EV1HM219BMS8G  
GND  
Reference  
Figure 83. Typical Application Circuit  
Designator  
J1 to J3  
U1  
Description  
SMA RF connectors  
HMC219B  
101650 evaluation PCB, Rogers 4350  
PCB1  
1 101650 is the bare EV1HMC219BMS8G PCB.  
Figure 84. HMC219B Evaluation PCB  
Rev. A | Page 26 of 27  
 
 
 
 
 
 
Data Sheet  
HMC219B  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
2.41  
MAX  
8
5
4
5.08  
4.90  
4.68  
3.10  
3.00  
2.90  
1.78  
MAX  
EXPOSED  
PAD  
1
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.65  
BSC  
1.95 BSC  
SECTION OF THIS DATA SHEET.  
0.95  
0.85  
0.75  
1.10  
MAX  
0.25 GAGE  
0.22  
0.08  
PLANE  
END VIEW  
6°  
0°  
0.13  
MAX  
0.38  
0.30  
0.22  
0.80  
0.60  
0.40  
0.95  
REF  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA-T  
Figure 85. 8-Lead Mini Small Outline Package with Exposed Pad (MINI_SO_EP)  
(RH-8-4)  
Dimensions shown in millimeters)  
ORDERING GUIDE  
Temperature  
Range  
MSL  
Package  
Description  
Package Package  
Option  
Model1, 2  
Rating3 Package Body Material  
Marking4  
H219B  
XXXX  
HMC219BMS8GE  
−40°C to +85°C  
MSL1  
Low Stress Injection Molded Plastic  
8-Lead MINI_SO_EP  
RH-8-4  
HMC219BMS8GETR −40°C to +85°C  
EV1HMC219BMS8G  
MSL1  
Low Stress Injection Molded Plastic 8-Lead MINI_SO_EP  
RH-8-4  
H219B  
XXXX  
Evaluation PCB  
Assembly  
1 The HMC219BMS8GE and the HMC219BMS8GETR are RoHS Compliant Parts.  
2 Lead finish, 100% SN 10 micron minimum.  
3 See the Absolute Maximum Ratings section.  
4 XXXX = four digit lot number.  
©2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15452-0-10/17(A)  
Rev. A | Page 27 of 27  
 
 

相关型号:

HMC219BMS8GE

2.5 GHz to 7.0 GHz GaAs, MMIC Fundamental Mixer
ADI

HMC219BMS8GETR

2.5 GHz to 7.0 GHz GaAs, MMIC Fundamental Mixer
ADI

HMC219MS8

GaAs MMIC SMT DOUBLEBALANCED MIXER, 4.5 - 9 GHz
HITTITE

HMC219MS8E

暂无描述
HITTITE

HMC219MS8ETR

RF/Microwave Mixer, GAAS
HITTITE

HMC219MS8TR

Double Balanced Mixer, GAAS
HITTITE

HMC219MS8_06

GaAs MMIC SMT DOUBLEBALANCED MIXER, 4.5 - 9 GHz
HITTITE

HMC219MS8_10

GaAs MMIC SMT DOUBLEBALANCED MIXER, 4.5 - 9 GHz
HITTITE

HMC220AMS8

GaAs MMIC SMT DOUBLEBALANCED MIXER, 5 - 12 GHz
HITTITE

HMC220AMS8

DBL-BAL Mixer SMT, 5 - 12 GHz
ADI

HMC220AMS8E

Double Balanced Mixer, 5000MHz Min, 12000MHz Max, 10.5dB Conversion Loss-Max, GAAS, ROHS COMPLIANT, ULTRA MINIATURE, PLASTIC, SMT, MSOP-8
HITTITE

HMC220AMS8TR

DBL-BAL Mixer SMT, 5 - 12 GHz
ADI