HMC220B [ADI]

5 GHz to 12 GHz GaAs, MMIC, Fundamental Mixer;
HMC220B
型号: HMC220B
厂家: ADI    ADI
描述:

5 GHz to 12 GHz GaAs, MMIC, Fundamental Mixer

文件: 总18页 (文件大小:799K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5 GHz to 12 GHz  
GaAs, MMIC, Fundamental Mixer  
HMC220B  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
HMC220B  
Low conversion loss: 9 dB  
No dc bias and no external matching required  
Ideal for upconversion and downconversion  
Wideband IF range: DC to 4 GHz  
1
LO  
GND  
GND  
NIC  
8
7
6
5
RF  
2
3
4
GND  
GND  
IF  
Ultrasmall package: 8-Lead MINI_SO_EP  
APPLICATIONS  
NIC = NOT INTERNALLY CONNECTED  
Figure 1.  
Very small aperture terminals (VSAT) and mobile satellite  
communication terminals  
Microwave and military radio  
Wireless backhaul equipment  
Automotive, dedicated short range communications (DSRC)  
and intelligent vehicle highway systems (IVHS)  
Military radar, electronic warfare (EW), and electronic  
counter measure (ECM) subsystems  
GENERAL DESCRIPTION  
The HMC220B is an ultraminiature, double-balanced mixer in  
an 8-lead mini small outline package with exposed pad  
(MINI_SO_EP). This fundamental, monolithic microwave  
integrated circuit (MMIC) mixer is constructed of gallium  
arsenide (GaAs) Schottky diodes and planar transformer baluns  
on the chip.  
The device can be used as an upconverter, downconverter,  
biphase demodulator, or phase comparator from 5 GHz to  
12 GHz. The HMC220B provides excellent local oscillator (LO)  
to radio frequency (RF) and LO to intermediate frequency (IF)  
isolation due to optimized balun structures and operates as low as  
7 dBm. The RoHS compliant HMC220B eliminates the need for  
wire bonding and is compatible with high volume surface-  
mount manufacturing techniques.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2017–2019 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
HMC220B  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Downconverter Performance ......................................................6  
Upconverter Performance......................................................... 10  
Isolation and Return Loss ......................................................... 11  
IF Bandwidth .............................................................................. 13  
Spurious Performance ............................................................... 15  
Theory of Operation ...................................................................... 16  
Applications Information.............................................................. 17  
Evaluation PCB Information .................................................... 17  
Typical Applications Circuit ..................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Interface Schematics..................................................................... 5  
Typical Performance Characteristics ............................................. 6  
REVISION HISTORY  
10/2019—Rev. B to Rev. C  
10/2017—Rev. 0 to Rev. A  
Changes to Table 1............................................................................ 3  
Change to Table 2 and Table 3 ........................................................ 4  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide .......................................................... 18  
Changes to LO to RF Parameter, Table 1........................................3  
Changes to Figure 35 and Figure 38............................................. 11  
Changes to Ordering Guide.......................................................... 18  
7/2017—Revision 0: Initial Version  
8/2018—Rev. A to Rev. B  
Changes to Continuous Power Dissipation, PDISS Parameter  
and Maximum Junction Temperature Parameter, Table 2 and  
Table 3................................................................................................. 4  
Rev. C | Page 2 of 18  
 
Data Sheet  
HMC220B  
SPECIFICATIONS  
TA = 25°C, IF = 100 MHz, LO drive level = 10 dBm. All measurements performed as a downconverter with the lower sideband selected,  
unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
FREQUENCY RANGE  
Radio Frequency  
Local Oscillator  
Intermediate Frequency  
LO DRIVE LEVEL  
RF  
LO  
IF  
5
5
DC  
7
12  
12  
4
GHz  
GHz  
GHz  
dBm  
10  
PERFORMANCE AT LO DRIVE = 10 dBm  
Conversion Loss  
9.5  
9.5  
17  
50  
9.5  
12  
dB  
dB  
dBm  
dBm  
dBm  
Single Sideband (SSB) Noise Figure  
Input Third-Order Intercept  
Input Second-Order Intercept  
Input 1 dB Compression Point  
PERFORMANCE AT LO DRIVE = 13 dBm  
Conversion Loss  
NF  
IIP3  
IIP2  
IP1dB  
12  
12  
9
9
18.5  
60  
11  
13  
dB  
dB  
dBm  
dBm  
dBm  
SSB Noise Figure  
NF  
Input Third-Order Intercept  
Input Second-Order Intercept  
Input 1 dB Compression Point  
ISOLATION  
IIP3  
IIP2  
IP1dB  
RF to IF  
LO to RF  
LO to IF  
20  
40  
38  
dB  
dB  
dB  
31  
23  
Rev. C | Page 3 of 18  
 
HMC220B  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
25 dBm  
25 dBm  
25 dBm  
3 mA  
RF Input Power  
LO Input Power  
IF Input Power  
IF Source and Sink Current  
Continuous Power Dissipation, PDISS  
(TA = 85°C, Derate 5.5 mW/°C Above 85°C)  
Junction Temperature  
Peak Reflow Temperature (Moisture  
Sensitivity Level (MSL1))1  
Table 3. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
495 mW  
RH-8-11  
104.7  
180  
°C/W  
1 Thermal impedance simulated values are based on JEDEC 2S2P test board  
with 3 mm × 3 mm thermal vias. See JEDEC JESD51-12 for additional information.  
175°C  
260°C  
ESD CAUTION  
Operating Temperature Range  
Storage Temperature Range  
−40°C to +85°C  
−65°C to +125°C  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
2000 V (Class 2)  
Field Induced Charged Device Model (FICDM) 750 V (Class C4)  
1 See the Ordering Guide section.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
Rev. C | Page 4 of 18  
 
 
 
Data Sheet  
HMC220B  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
HMC220B  
TOP VIEW  
(Not to Scale)  
1
2
3
4
LO  
GND  
GND  
NIC  
8
7
6
5
RF  
GND  
GND  
IF  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED. THIS PIN CAN  
BE LEFT FLOATING OR IT CAN BE SOLDERED DOWN  
TO RF/DC GND. THE NIC PIN DOES NOT AFFECT THE  
PERFORMANCE OF THE HMC220B.  
2. EXPOSED PAD. CONNECT THE EXPOSED PAD TO A  
LOW IMPEDANCE THERMAL AND ELECTRICAL  
GROUND PLANE.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
LO  
2, 3, 6, 7 GND  
1
Local Oscillator. This pin is ac-coupled and matched to 50 Ω. See Figure 4 for the LO interface schematic.  
Ground. Connect the package bottom to RF/dc ground. See Figure 3 for the GND interface schematic.  
4
NIC  
Not Internally Connected. This pin can be left floating or it can be soldered down to RF/dc GND. The NIC pin does  
not affect the performance of the HMC220B.  
5
IF  
Intermediate Frequency. This pin is dc-coupled. For applications not requiring operations to dc, dc block this  
port externally using a series capacitor whose value is chosen to pass the necessary IF frequency range. For  
operation to dc, this pin must not source or sink 3 mA of current, or the device is nonfunctioning and possible  
device failure may result. See Figure 5 for the IF interface schematic.  
8
RF  
EPAD  
Radio Frequency. This pin is ac-coupled internally and match to 50 Ω. See Figure 6 for the RF interface schematic.  
Exposed Pad. Connect the exposed pad to a low impedance thermal and electrical ground plane.  
INTERFACE SCHEMATICS  
GND  
IF  
Figure 3. GND Interface Schematic  
Figure 5. IF Interface Schematic  
LO  
RF  
Figure 6. RF Interface Schematic  
Figure 4. LO Interface Schematic  
Rev. C | Page 5 of 18  
 
 
 
 
 
 
HMC220B  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
DOWNCONVERTER PERFORMANCE  
Downconverter Performance at IF = 100 MHz, Lower Sideband  
Data taken at LO = 10 dBm, TA = 25°C, unless otherwise noted.  
0
–2  
0
15dBm  
13dBm  
10dBm  
9dBm  
+85°C  
+25°C  
–40°C  
–4  
7dBm  
–5  
–10  
–15  
–20  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
5
6
7
8
9
10  
11  
12  
13  
5
6
7
8
9
10  
11  
12  
13  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 7. Conversion Gain vs. RF Frequency at Various Temperature  
Figure 10. Conversion Gain vs. RF Frequency at Various LO Powers  
30  
30  
9dBm  
10dBm  
13dBm  
+85°C  
+25°C  
–40°C  
25  
20  
15  
10  
25  
20  
15  
10  
5
6
7
8
9
10  
11  
12  
13  
5
6
7
8
9
10  
11  
12  
13  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 8. Input IP3 vs. RF Frequency at Various Temperatures  
Figure 11. Input IP3 vs. RF Frequency at Various LO Powers  
100  
100  
9dBm  
+85°C  
10dBm  
13dBm  
+25°C  
90  
90  
80  
70  
60  
50  
40  
30  
20  
–40°C  
80  
70  
60  
50  
40  
30  
20  
5
6
7
8
9
10  
11  
12  
13  
5
6
7
8
9
10  
11  
12  
13  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 9. Input IP2 vs. RF Frequency at Various Temperatures  
Figure 12. Input IP2 vs. RF Frequency at Various LO Powers  
Rev. C | Page 6 of 18  
 
 
Data Sheet  
HMC220B  
20  
20  
15  
10  
5
10dBm  
13dBm  
+85°C  
+25°C  
–40°C  
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
5
6
7
8
9
10  
11  
12  
13  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 13. Input P1dB vs. RF Frequency at Various Temperatures  
Figure 15. Input P1dB vs. RF Frequency at Various LO Powers  
40  
7dBm  
10dBm  
13dBm  
35  
30  
25  
20  
15  
10  
5
0
5
6
7
8
9
10  
11  
12  
13  
RF FREQUENCY (GHz)  
Figure 14. Noise Figure vs. RF Frequency at Various LO Powers  
Rev. C | Page 7 of 18  
HMC220B  
Data Sheet  
Downconverter Performance at IF = 1000 MHz, Lower Sideband  
Data taken at LO = 10 dBm, TA = 25°C, unless otherwise noted.  
0
–5  
0
7dBm  
+85°C  
+25°C  
–40°C  
9dBm  
10dBm  
13dBm  
15dBm  
–5  
–10  
–15  
–20  
–25  
–10  
–15  
–20  
–25  
–30  
–30  
5
6
7
8
9
10  
11  
12  
13  
5
6
7
8
9
10  
11  
12  
13  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 16. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 19. Conversion Gain vs. RF Frequency at Various LO Powers  
30  
30  
7dBm  
9dBm  
10dBm  
+85°C  
+25°C  
–40°C  
25  
25  
13dBm  
15dBm  
20  
15  
10  
5
20  
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
5
6
7
8
9
10  
11  
12  
13  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 17. Input IP3 vs. RF Frequency at Various Temperatures  
Figure 20. Input IP3 vs. RF Frequency at Various LO Powers  
100  
100  
7dBm  
9dBm  
10dBm  
13dBm  
+85°C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
+25°C  
–40°C  
80  
70  
60  
50  
40  
30  
20  
10  
0
5
6
7
8
9
10  
11  
12  
13  
5
6
7
8
9
10  
11  
12  
13  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 18. Input IP2 vs. RF Frequency at Various Temperatures  
Figure 21. Input IP2 vs. RF Frequency at Various LO Powers  
Rev. C | Page 8 of 18  
Data Sheet  
HMC220B  
Downconverter Performance at IF = 3000 MHz, Lower Sideband  
Data taken at LO = 10 dBm, TA = 25°C, unless otherwise noted.  
0
0
–5  
7dBm  
9dBm  
10dBm  
13dBm  
15dBm  
+85°C  
+25°C  
–40°C  
–5  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–20  
–25  
–30  
5
6
7
8
9
10  
11  
12  
5
6
7
8
9
10  
11  
12  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 22. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 25. Conversion Gain vs. RF Frequency at Various LO Powers  
30  
30  
9dBm  
+85°C  
+25°C  
–40°C  
10dBm  
13dBm  
25  
25  
20  
15  
10  
5
20  
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
5
6
7
8
9
10  
11  
12  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 23. Input IP3 vs. RF Frequency at Various Temperatures  
Figure 26. Input IP3 vs. RF Frequency at Various LO Powers  
100  
100  
9dBm  
10dBm  
13dBm  
+85°C  
90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+25°C  
–40°C  
80  
70  
60  
50  
40  
30  
20  
10  
0
5
6
7
8
9
10  
11  
12  
5
6
7
8
9
10  
11  
12  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 24. Input IP2 vs. RF Frequency at Various Temperatures  
Figure 27. Input IP2 vs. RF Frequency at Various LO Powers  
Rev. C | Page 9 of 18  
HMC220B  
Data Sheet  
UPCONVERTER PERFORMANCE  
Upconverter Performance at IF = 100 MHz, Upper Sideband  
Data taken at LO = 10 dBm, TA = 25°C, unless otherwise noted.  
0
0
–5  
7dBm  
9dBm  
10dBm  
11dBm  
13dBm  
+85°C  
+25°C  
–40°C  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
5
6
7
8
9
10  
11  
12  
13  
5
6
7
8
9
10  
11  
12  
13  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 28. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 31. Conversion Gain vs. RF Frequency at Various LO Powers  
30  
30  
7dBm  
9dBm  
+85°C  
+25°C  
–40°C  
10dBm  
25  
25  
11dBm  
13dBm  
20  
15  
10  
5
20  
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
5
6
7
8
9
10  
11  
12  
13  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 29. Input IP3 vs. RF Frequency at Various Temperatures  
Figure 32. Input IP3 vs. RF Frequency at Various LO Powers  
80  
80  
7dBm  
+85°C  
9dBm  
+25°C  
70  
70  
60  
50  
40  
30  
20  
10  
0
10dBm  
11dBm  
13dBm  
–40°C  
60  
50  
40  
30  
20  
10  
0
5
6
7
8
9
10  
11  
12  
13  
5
6
7
8
9
10  
11  
12  
13  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 30. Input IP2 vs. RF Frequency at Various Temperatures  
Figure 33. Input IP2 vs. RF Frequency at Various LO Powers  
Rev. C | Page 10 of 18  
Data Sheet  
HMC220B  
ISOLATION AND RETURN LOSS  
Data taken at IF = 100 MHz, LO = 10 dBm, TA = 25°C, unless otherwise noted.  
70  
70  
60  
50  
40  
30  
20  
10  
0
+7dBm  
+9dBm  
+10dBm  
+13dBm  
+15dBm  
+85°C  
+25°C  
–40°C  
60  
50  
40  
30  
20  
10  
0
5
6
7
8
9
10  
11  
12  
13  
5
6
7
8
9
10  
11  
12  
13  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 34. LO to IF Isolation vs. LO Frequency at Various Temperatures  
Figure 37. LO to IF Isolation vs. LO Frequency at Various LO Powers  
60  
60  
50  
40  
+85°C  
+25°C  
–40°C  
50  
40  
30  
20  
10  
0
7dBm  
9dBm  
10dBm  
13dBm  
15dBm  
30  
20  
10  
0
5
6
7
8
9
10  
11  
12  
13  
5
6
7
8
9
10  
11  
12  
13  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 38. LO to RF Isolation vs. LO Frequency at Various LO Powers  
Figure 35. LO to RF Isolation vs. LO Frequency at Various Temperatures  
30  
30  
+85°C  
+25°C  
–40°C  
7dBm  
9dBm  
10dBm  
25  
25  
13dBm  
15dBm  
20  
15  
10  
5
20  
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
5
6
7
8
9
10  
11  
12  
13  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 36. RF to IF Isolation vs. RF Frequency at Various Temperatures  
Figure 39. RF to IF Isolation vs. RF Frequency at Various LO Powers  
Rev. C | Page 11 of 18  
HMC220B  
Data Sheet  
0
0
–5  
–5  
–10  
–15  
–20  
–25  
–10  
–15  
–20  
–25  
3
4
5
6
7
8
9
10  
11  
12  
13  
0
1
2
3
4
LO FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 40. LO Return Loss vs. LO Frequency  
Figure 42. IF Return Loss vs. IF Frequency  
0
–5  
–10  
–15  
–20  
–25  
3
4
5
6
7
8
9
10  
11  
12  
13  
RF FREQUENCY (GHz)  
Figure 41. RF Return Loss vs. RF Frequency  
Rev. C | Page 12 of 18  
Data Sheet  
HMC220B  
IF BANDWIDTH  
Downconverter Performance, Lower Sideband  
Data taken at LO = 10 dBm, TA =25°C, unless otherwise noted.  
0
0
–5  
7dBm  
+85°C  
+25°C  
–40°C  
9dBm  
10dBm  
11dBm  
13dBm  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 43. Conversion Gain vs. IF Frequency at Various Temperatures  
Figure 45. Conversion Gain vs. IF Frequency at Various LO Drives  
30  
30  
7dBm  
9dBm  
+85°C  
+25°C  
–40°C  
10dBm  
25  
25  
11dBm  
13dBm  
20  
15  
10  
5
20  
15  
10  
5
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 44. Input IP3 vs. IF Frequency at Various Temperatures  
Figure 46. Input IP3 vs. IF Frequency at Various LO Drives  
Rev. C | Page 13 of 18  
HMC220B  
Data Sheet  
Downconverter Performance, Upper Sideband  
Data taken at LO = 10 dBm, TA = 25°C, unless otherwise noted.  
0
0
–5  
7dBm  
+85°C  
+25°C  
–40°C  
9dBm  
10dBm  
11dBm  
13dBm  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 47. Conversion Gain vs. IF Frequency at Various Temperatures  
Figure 49. Conversion Gain vs. IF Frequency at Various LO Drives  
30  
25  
20  
15  
30  
+85°C  
+25°C  
–40°C  
25  
20  
15  
10  
5
10  
7dBm  
9dBm  
5
10dBm  
11dBm  
13dBm  
0
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 48. Input IP3 vs. IF Frequency at Various Temperatures  
Figure 50. Input IP3 vs. IF Frequency at Various LO Drives  
Rev. C | Page 14 of 18  
Data Sheet  
HMC220B  
SPURIOUS PERFORMANCE  
Mixer spurious products are measured in decibels relative to  
carrier from the IF output power level, unless otherwise noted.  
RF = 12000 MHz, LO = 12100 MHz, LO power = +10 dBm, RF  
power = −10 dBm.  
Spur values are (M × RF) − (N × LO).  
N × LO  
0
N/A1  
1
2
3
4
5
Harmonics of LO  
0
1
2
3
4
5
20  
0
35  
26  
69  
77  
87  
75  
39  
59  
80  
61  
89  
85  
56  
62  
86  
77  
94  
87  
0
LO Power = 10 dBm. Values are in decibels relative to carrier  
(dBc) below the input LO level measured at the RF port.  
9
61  
75  
86  
89  
95  
M × RF  
85  
75  
62  
0
63  
84  
76  
63  
N
LO Spur at RF  
Port(dBc)  
LO Frequency  
(GHz)  
1
2
3
4
6
7
9
10  
12  
13  
42  
36  
39  
43  
36  
33  
42  
47  
44  
55  
65  
57  
57  
52  
72  
52  
72  
60  
91  
51  
71  
76  
84  
N/A1  
1 N/A means not applicable.  
M × N Spurious Outputs, IF = 1000 MHz  
RF = 5000 MHz, LO = 6000 MHz, LO power = +10 dBm, RF  
power = −10 dBm.  
N × LO  
1 N/A means not applicable.  
0
1
2
3
4
5
0
1
2
3
4
5
N/A1  
−3  
+18  
+6  
+31  
+5  
+53  
+27  
+35  
0
+46  
+40  
+41  
−6  
0
M × N Spurious Outputs, IF = 100 MHz  
−6  
0
RF = 5000 MHz, LO = 5100 MHz, LO power = +10 dBm, RF  
power = −10 dBm.  
M × RF  
+41  
+40  
+46  
+67  
+35  
+27  
+53  
+63  
+31  
+5  
+31  
+6  
+31  
+39  
+18  
+18  
−3  
−3  
N × LO  
−6  
0
1
2
3
4
5
0
1
2
3
4
5
N/A1  
7
25  
12  
60  
49  
88  
85  
31  
29  
62  
50  
89  
87  
52  
40  
64  
52  
88  
79  
56  
43  
71  
65  
84  
78  
1 N/A means not applicable.  
5
0
M × RF  
57  
77  
83  
82  
63  
60  
85  
84  
RF = 8500 MHz, LO = 9500 MHz, LO power = +10 dBm, RF  
power = −10 dBm.  
N × LO  
0
1
2
3
4
5
N/A1  
+11  
+88  
+87  
+84  
+81  
−3  
+24  
+21  
+60  
+84  
+90  
+87  
+28  
+40  
+47  
+71  
+94  
+89  
+48  
+62  
+64  
+72  
+95  
+87  
+49  
+52  
+77  
+80  
+95  
+95  
1 N/A means not applicable.  
0
1
2
3
4
5
0
RF = 8500 MHz, LO = 8600 MHz, LO power = +10 dBm, RF  
power = −10 dBm.  
M × RF  
+58  
+82  
+84  
+87  
N × LO  
0
1
2
3
4
5
0
1
2
3
4
5
N/A1  
12  
80  
88  
82  
80  
2
28  
23  
57  
75  
88  
86  
29  
46  
46  
69  
89  
88  
54  
68  
83  
68  
96  
95  
46  
50  
82  
85  
86  
95  
1 N/A means not applicable.  
0
RF = 12000 MHz, LO = 13000 MHz, LO power = +10 dBm, RF  
power = −10 dBm.  
M × RF  
49  
82  
87  
85  
N × LO  
0
1
2
3
4
5
0
1
2
3
4
5
N/A1  
10  
84  
75  
64  
0
14  
0
42  
28  
83  
84  
82  
73  
29  
63  
61  
75  
85  
85  
55  
55  
81  
73  
93  
87  
0
1 N/A means not applicable.  
60  
77  
80  
87  
88  
M × RF  
64  
84  
71  
67  
1 N/A means not applicable.  
Rev. C | Page 15 of 18  
HMC220B  
Data Sheet  
THEORY OF OPERATION  
The HMC220B is a general-purpose, double balanced mixer in an  
8-lead MINI_SO_EP, RoHS compliant package that can be used as  
an upconverter or a downconverter from 5 GHz to 12 GHz.  
The mixer provides excellent LO to RF and LO to IF isolation  
due to optimized balun structures. The HMC220B requires no  
external components or matching circuitry. The RoHS  
compliant HMC220B eliminates the need for wire bonding and  
is compatible with high volume, surface-mount manufacturing  
techniques.  
When used as a downconverter, the HMC220B downconverts  
RF between 5 GHz to 12 GHz to IF between dc and 4 GHz.  
When used as an upconverter, the mixer upconverts IF between  
dc and 4 GHz to RF between 5 GHz and 12 GHz.  
Rev. C | Page 16 of 18  
 
Data Sheet  
HMC220B  
APPLICATIONS INFORMATION  
EVALUATION PCB INFORMATION  
TYPICAL APPLICATIONS CIRCUIT  
HMC220B  
The PCB used in this application must use RF circuit design  
techniques. Signal lines must have 50 Ω impedance, and the  
package ground lead and exposed pad must be connected  
directly to the ground planes. The evaluation PCB shown in  
Figure 52 is available from Analog Devices, Inc., upon request.  
RF  
IF  
LO  
1
8
2
3
4
7
6
5
Figure 51. Typical Applications Circuit  
Figure 52. EV1HMC220BMS8G Evaluation PCB  
Table 5. EV1HMC220BMS8G PCB Components  
Reference  
Item  
Description  
Designator  
Quantity  
Manufacturer  
Part Number  
101828-8  
21-146-1000-01  
142-0701-851  
1
2
3
PCB, EV1HMC220BMS8G  
2.92 mm Subminiature Version A (SMA) connector  
SMA connector, end launch  
1
2
1
Analog Devices  
SRI Connector Gage  
Cinch Connectivity  
Solutions Johnson  
J1, J2  
J3  
4
Device under test (DUT)  
U1  
1
Analog Devices  
HMC220BMS8GE  
Rev. C | Page 17 of 18  
 
 
 
 
HMC220B  
Data Sheet  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
2.26  
2.16  
2.06  
8
1
5
4
5.05  
4.90  
4.75  
1.83  
1.73  
1.63  
3.10  
3.00  
2.90  
EXPOSED  
PAD  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
TOP VIEW  
BOTTOM VIEW  
0.65  
BSC  
SECTION OF THIS DATA SHEET.  
1.95 BSC  
0.94  
0.86  
0.78  
1.10  
MAX  
0.25 GAGE  
SIDE VIEW  
END VIEW  
PLANE  
0.23  
0.08  
6°  
0°  
0.13  
MAX  
0.40  
0.33  
0.25  
0.70  
0.55  
0.40  
0.95  
REF  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA-T  
Figure 53. 8-Lead Mini Small Outline Package with Exposed Pad [MINI_SO_EP]  
(RH-8-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
MSL  
Package  
Option  
Model1  
Rating2  
Package Description  
HMC220BMS8GE  
HMC220BMS8GETR  
EV1HMC220BMS8G  
−40°C to +85°C  
−40°C to +85°C  
MSL1  
MSL1  
8-Lead Mini Small Outline Package with Exposed Pad [MINI_SO_EP]  
8-Lead Mini Small Outline Package with Exposed Pad [MINI_SO_EP]  
Evaluation PCB Assembly  
RH-8-1  
RH-8-1  
1 The HMC220BMS8GE and HMC220BMS8GETR are RoHS Compliant Parts.  
2 See the Absolute Maximum Ratings section.  
©2017–2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15769-0-10/19(C)  
Rev. C | Page 18 of 18  
 
 

相关型号:

HMC220BMS8GE

5 GHz to 12 GHz GaAs, MMIC, Fundamental Mixer
ADI

HMC220BMS8GETR

5 GHz to 12 GHz GaAs, MMIC, Fundamental Mixer
ADI

HMC220MS8

GaAs MMIC SMT DOUBLEBALANCED MIXER, 5 - 12 GHz
HITTITE

HMC220MS8E

Double Balanced Mixer, 5000MHz Min, 12000MHz Max, 10.5dB Conversion Loss-Max, GAAS, ROHS COMPLIANT, PLASTIC, SMT, MSOP-8
HITTITE

HMC220MS8ETR

DBL-BAL Mixer SMT, 5 - 12 GHz
ADI

HMC220MS8TR

Double Balanced Mixer
HITTITE

HMC220MS8_06

GaAs MMIC SMT DOUBLEBALANCED MIXER, 5 - 12 GHz
HITTITE

HMC221

GaAs MMIC SOT26 SPDT SWITCH, DC - 3 GHz
HITTITE

HMC221A

GaAs MMIC SOT26 SPDT SWITCH, DC - 3 GHz
HITTITE

HMC221AETR

SPDT, 0MHz Min, 3000MHz Max, 1 Func, 1.1dB Insertion Loss-Max, GAAS, ROHS COMPLIANT, ULTRA SMALL, PLASTIC, SOT-26, SMT, 6 PIN
HITTITE

HMC221ATR

SPDT, 3000MHz Max, 1 Func, 1.1dB Insertion Loss-Max, GAAS
HITTITE

HMC221B

HMC221B
ADI