HMC260ALC3BTR [ADI]

10 GHz to 26 GHz, GaAs, MMIC, Double Balanced Mixer;
HMC260ALC3BTR
型号: HMC260ALC3BTR
厂家: ADI    ADI
描述:

10 GHz to 26 GHz, GaAs, MMIC, Double Balanced Mixer

局域网 射频 微波
文件: 总16页 (文件大小:273K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10 GHz to 26 GHz, GaAs, MMIC,  
Double Balanced Mixer  
Data Sheet  
HMC260ALC3B  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Passive; no dc bias required  
12 11 10  
Conversion loss  
HMC260ALC3B  
8 dB typical for 10 GHz to 18 GHz  
9 dB typical for 18 GHz to 26 GHz  
LO to RF isolation: 40 dB  
1
2
3
9
8
7
GND  
LO  
GND  
RF  
GND  
GND  
Input IP3: 19 dBm typical for 18 GHz to 26 GHz  
Wide IF bandwidth: dc to 8 GHz  
RoHS compliant, 12-terminal, 3 mm × 3 mm, ceramic  
LCC package: 9 mm2  
4
5
6
PACKAGE  
BASE  
Figure 1.  
APPLICATIONS  
Point to point radios  
Point to multipoint radios and very small aperture terminals  
(VSATs)  
Test equipment and sensors  
Military end use  
GENERAL DESCRIPTION  
The HMC260ALC3B is a general-purpose, double balanced,  
monolithic microwave integrated circuit (MMIC) mixer housed in  
a leadless, Pb-free, RoHS compliant LCC package. The device  
can be used as an upconverter or downconverter in the 10 GHz to  
26 GHz frequency range. The HMC260ALC3B mixer requires no  
external components or matching circuitry.  
The HMC260ALC3B provides local oscillator (LO) to radio  
frequency (RF) and LO to intermediate frequency (IF)  
suppression due to optimized balun structures. The mixer  
operates with LO amplitude levels between 9 dBm and 15 dBm.  
The HMC260ALC3B eliminates the need for wire bonding,  
allowing the use of surface-mount manufacturing techniques.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2018 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC260ALC3B  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Upconverter Performance............................................................8  
Isolation and Return Loss ............................................................9  
IF Bandwidth—Downconverter............................................... 11  
IF Bandwidth—Upconverter .................................................... 12  
Spurious and Harmonics Performance ................................... 13  
Theory of Operation ...................................................................... 14  
Applications Information.............................................................. 15  
Typical Application Circuit....................................................... 15  
Evaluation PCB Information .................................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Interface Schematics..................................................................... 5  
Typical Performance Characteristics ............................................. 6  
Downconverter Performance...................................................... 6  
REVISION HISTORY  
1/2018—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
Data Sheet  
HMC260ALC3B  
SPECIFICATIONS  
Ambient temperature (TA) = 25°C, IF = 1000 MHz, LO = 13 dBm, upper sideband. All measurements performed as a downconverter on the  
evaluation printed circuit board (PCB), unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
FREQUENCY RANGE  
RF  
LO Input  
10  
10  
dc  
9
26  
26  
8
GHz  
GHz  
GHz  
dBm  
IF  
LO AMPLITUDE  
13  
15  
10 GHz TO 18 GHz PERFORMANCE  
Downconverter  
Conversion Loss  
8
10  
dB  
Single Sideband Noise Figure  
Input Third-Order Intercept  
Input 1 dB Compression Point  
Input Second-Order Intercept  
Upconverter  
SSB NF  
IIP3  
IP1dB  
IIP2  
8
dB  
13  
18  
9.5  
43  
dBm  
dBm  
dBm  
IFIN  
IFIN = 1000 MHz  
Conversion Loss  
7
dB  
Input Third-Order Intercept  
Input 1 dB Compression Point  
Isolation  
IIP3  
IP1dB  
18  
7
dBm  
dBm  
RF to IF  
LO to RF  
LO to IF  
14  
25  
21  
40  
35  
dB  
dB  
dB  
18 GHz TO 26 GHz PERFORMANCE  
Downconverter  
Conversion Loss  
9
12  
dB  
Single Sideband Noise Figure  
Input Third-Order Intercept  
Input 1 dB Compression Point  
Input Second-Order Intercept  
Upconverter  
SSB NF  
IIP3  
IP1dB  
IIP2  
10  
23  
13  
46  
dB  
18  
dBm  
dBm  
dBm  
IFIN  
IFIN = 1000 MHz  
Conversion Loss  
8
dB  
Input Third-Order Intercept  
Input 1 dB Compression Point  
Isolation  
IIP3  
IP1dB  
19  
8.5  
dBm  
dBm  
RF to IF  
LO to RF  
LO to IF  
25  
30  
35  
40  
43  
dB  
dB  
dB  
Rev. 0 | Page 3 of 16  
 
HMC260ALC3B  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
RF Input Power  
LO Input Power  
IF Input Power  
IF Source/Sink Current  
Peak Reflow Temperature  
25 dBm  
27 dBm  
25 dBm  
3 mA  
260°C  
260 mW  
θJA is the natural convection junction to ambient thermal resistance  
measured in a one cubic foot sealed enclosure. θJC is the junction to  
case thermal resistance.  
Continuous Power Dissipation, PDISS  
(TA = 85°C, Derate 5 mW/°C Above 85°C)  
Table 3. Thermal Resistance  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature Range  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model  
−40°C to +85°C  
−65°C to +150°C  
−65°C to +150°C  
Package Type  
θJA  
θJC  
Unit  
E-12-41  
120  
200  
°C/W  
1 See JEDEC standard JESD51-2 for additional information on optimizing the  
thermal impedance (PCB with 3 × 3 vias).  
500 V  
1000 V  
ESD CAUTION  
Field Induced Charged Device Model  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 4 of 16  
 
 
 
 
Data Sheet  
HMC260ALC3B  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
HMC260ALC3B  
TOP VIEW  
(Not to Scale)  
12 11 10  
1
2
3
9
8
7
GND  
LO  
GND  
RF  
GND  
GND  
4
5
6
PACKAGE  
BASE  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED. THESE  
PINS CAN BE CONNECTED TO RF/DC GROUND.  
PERFORMANCE IS NOT AFFECTED.  
2. EXPOSED PAD. THE EXPOSED PAD MUST BE  
CONNECTED TO RF/DC GROUND.  
Figure 2.  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 3, 4, 6, 7, 9  
2
5
GND  
LO  
IF  
Ground. These pins and package bottoms connect to RF/dc ground.  
Local Oscillator Port. This pin is ac-coupled and matched to 50 Ω.  
Intermediate Frequency Port. This pin is dc-coupled. For applications, not requiring operation to dc, dc  
block this port externally using a series capacitor of a value chosen to pass the necessary IF frequency  
range. For operation to dc, this pin must not source or sink more than 3 mA of current or die malfunction  
and possible die failure may result. See Figure 5 for the interface schematic.  
8
RF  
Radio Frequency Port. This pin is ac-coupled and matched to 50 Ω.  
10 to 12  
NIC  
EPAD  
Not Internally Connected. These pins can be connected to RF/dc ground. Device performance is not affected.  
Exposed Pad. The exposed pad must be connected to RF/dc ground.  
INTERFACE SCHEMATICS  
GND  
IF  
Figure 5. IF Interface Schematic  
Figure 3. GND Interface Schematic  
LO  
RF  
Figure 6. RF Interface Schematic  
Figure 4. LO Interface Schematic  
Rev. 0 | Page 5 of 16  
 
 
 
HMC260ALC3B  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
DOWNCONVERTER PERFORMANCE  
Downconverter performance at IF = 1000 MHz, upper sideband (low-side LO).  
0
0
–5  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 7. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 10. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 8. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 11. Input IP3 vs. RF Frequency at Various LO Power Levels,  
A = 25°C  
T
20  
20  
15  
10  
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
15  
10  
5
0
0
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 9. Noise Figure vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 12. Noise Figure vs. RF Frequency at Various LO Power Levels, TA = 25°C  
Rev. 0 | Page 6 of 16  
 
 
Data Sheet  
HMC260ALC3B  
Downconverter P1dB and IP2  
IF = 1000 MHz, upper sideband (low-side LO).  
20  
15  
10  
5
20  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
15  
10  
5
0
0
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 13. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 15. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
LO = 9dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
10  
0
A
A
A
10  
0
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 16. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Figure 14. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Rev. 0 | Page 7 of 16  
HMC260ALC3B  
Data Sheet  
UPCONVERTER PERFORMANCE  
Upconverter performance at input intermediate frequency (IFIN) = 1000 MHz, upper sideband (low-side LO).  
0
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
A
A
A
–5  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
RF  
FREQUENCY (GHz)  
RF  
FREQUENCY (GHz)  
OUT  
OUT  
Figure 17. Conversion Gain vs. RF Output (RFOUT) Frequency at Various  
Temperatures, LO = 13 dBm  
Figure 20. Conversion Gain vs. RFOUT Frequency at Various LO Power Levels,  
TA = 25°C  
30  
25  
20  
15  
10  
30  
25  
20  
15  
10  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
5
0
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
0
RF  
FREQUENCY (GHz)  
RF  
FREQUENCY (GHz)  
OUT  
OUT  
Figure 18. Input IP3 vs. RFOUT Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 21. Input IP3 vs. RFOUT Frequency at Various LO Power Levels,  
A = 25°C  
T
20  
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
15  
10  
5
0
0
RF  
FREQUENCY (GHz)  
RF  
FREQUENCY (GHz)  
OUT  
OUT  
Figure 19. Input P1dB vs. RFOUT Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 22. Input P1dB vs. RFOUT Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 8 of 16  
 
Data Sheet  
HMC260ALC3B  
ISOLATION AND RETURN LOSS  
Downconverter performance at IF = 1000 MHz, upper sideband.  
60  
60  
50  
40  
30  
20  
10  
0
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
50  
40  
30  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
10  
0
A
A
A
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 23. LO to RF Isolation vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 26. LO to RF Isolation vs. RF Frequency at Various LO Power levels,  
TA = 25°C  
60  
60  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 24. LO to IF Isolation vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 27. LO to IF Isolation vs. RF Frequency at Various LO Power Levels,  
A = 25°C  
T
50  
50  
40  
30  
20  
10  
0
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
40  
30  
20  
10  
0
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 25. RF to IF Isolation vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 28. RF to IF Isolation vs. RF Frequency at Various LO Power Levels,  
LO = 17 GHz, TA = 25°C  
Rev. 0 | Page 9 of 16  
 
HMC260ALC3B  
Data Sheet  
0
0
–5  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–10  
–20  
–30  
–10  
–15  
–20  
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28  
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
7.1  
8.1  
9.1 10.1  
LO FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 29. LO Return Loss vs. LO Frequency, TA = 25°C, LO = 13 dBm  
Figure 31. IF Return Loss vs. IF Frequency at Various LO Powers, LO = 17 GHz,  
TA = 25°C  
0
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–10  
–20  
–30  
–40  
–50  
RF FREQUENCY (GHz)  
Figure 30. RF Return Loss vs. RF Frequency at Various LO Powers, TA = 25°C  
Rev. 0 | Page 10 of 16  
Data Sheet  
HMC260ALC3B  
IF BANDWIDTH—DOWNCONVERTER  
Upper sideband, RF = 20 GHz.  
0
–5  
0
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
7.1  
8.1  
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
7.1  
8.1  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 32. Conversion Gain vs. IF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 34. Conversion Gain vs. IF Frequency at Various LO Power Levels,  
TA = 25°C  
40  
40  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
35  
30  
25  
20  
15  
10  
5
35  
LO = 15dBm  
30  
25  
20  
15  
10  
5
0
0.1  
0
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
7.1  
8.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
7.1  
8.1  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 33. Input IP3 vs. IF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 35. Input IP3 vs. IF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 11 of 16  
 
HMC260ALC3B  
Data Sheet  
IF BANDWIDTH—UPCONVERTER  
Upper sideband, RFOUT = 20 GHz.  
0
0
–5  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
7.1  
8.1  
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
7.1  
8.1  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
IN  
IN  
Figure 36. Conversion Gain vs. IFIN Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 38. Conversion Gain vs. IFIN Frequency at Various LO Power Levels,  
TA = 25°C  
40  
40  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
35  
30  
25  
20  
15  
10  
5
35  
LO = 15dBm  
30  
25  
20  
15  
10  
5
0
0.1  
0
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
7.1  
8.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
7.1  
8.1  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
IN  
IN  
Figure 37. Input IP3 vs. IFIN Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 39. Input IP3 vs. IFIN Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 12 of 16  
 
Data Sheet  
HMC260ALC3B  
Upconverter M × N Spurious Outputs  
SPURIOUS AND HARMONICS PERFORMANCE  
Spur values are (M × IFIN) + (N × LO).  
Mixer spurious products are measured in dBc from either the  
RF pin or IF pin output power level. N/A means not applicable.  
IFIN = 1000 MHz at −10 dBm, LO = 17 GHz at 13 dBm.  
Downconverter M × N Spurious Outputs  
Spur values are (M × RF) − (N × LO).  
N × LO  
0
1
2
3
4
81  
83  
73  
55  
18  
0
77  
78  
64  
42  
0
73  
71  
72  
66  
28  
17  
40  
67  
64  
66  
68  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
−5  
−4  
−3  
−2  
−1  
0
RF = 18 GHz at −10 dBm, LO = 17 GHz at 13 dBm.  
N × LO  
M × IFIN  
0
1
2
3
4
N/A  
23  
7
19  
34  
66  
72  
64  
N/A  
42  
71  
84  
74  
N/A  
N/A  
68  
0
1
2
3
4
0
9.5  
0
67  
71  
63  
N/A  
M × RF  
18  
55  
74  
81  
80  
1
N/A  
N/A  
73  
45  
66  
74  
74  
2
77  
3
4
5
Rev. 0 | Page 13 of 16  
 
HMC260ALC3B  
Data Sheet  
THEORY OF OPERATION  
The HMC260ALC3B is a general-purpose, double balanced  
mixer that can be used as an upconverter or a downconverter  
from 10 GHz to 26 GHz.  
The mixer performs well with LO drives of 9 dBm or greater,  
and it provides LO to RF and LO to IF suppression due to opti-  
mized balun structures. The ceramic LCC package eliminates the  
need for wire bonding and is compatible with high volume,  
surface-mount manufacturing techniques.  
When used a downconverter, the HMC260ALC3B downconverts  
RF between 10 GHz and 26 GHz to IF between dc and 8 GHz.  
When used as an upconverter, the mixer upconverts IF between dc  
and 8 GHz to RF between 10 GHz and 26 GHz.  
Rev. 0 | Page 14 of 16  
 
Data Sheet  
HMC260ALC3B  
APPLICATIONS INFORMATION  
TYPICAL APPLICATION CIRCUIT  
EVALUATION PCB INFORMATION  
Figure 40 shows the typical application circuit for the  
Use RF circuit design techniques for the circuit board. Ensure  
that signal lines have 50 Ω impedance. Connect the package  
ground leads and the exposed pad directly to the ground plane  
(see Figure 41). Use a sufficient number of via holes to connect  
the top and bottom ground planes. The evaluation circuit board  
shown in Figure 41 is available from Analog Devices, Inc., upon  
request.  
HMC260ALC3B. The HMC260ALC3B is a passive device and  
does not require any external components. The LO ad RF pins  
are internally ac-coupled. The IF pin is internally dc-coupled.  
When IF operation to dc is not required, use of an external series  
capacitor of a value chosen to pass the necessary IF frequency  
range is recommended. When IF operation to dc is required, do  
not exceed the IF source and sink current rating specified in the  
Absolute Maximum Ratings section.  
Table 5. Bill of Materials  
Item  
J1, J2  
J3  
U1  
PCB1  
Description  
PCB mount SRI 2.92 mm connectors  
PCB mount Johnson SMA connector  
HMC260ALC3B  
12  
11 10  
HMC260ALC3B  
GND  
LO  
GND  
RF  
9
8
7
1
2
3
LO  
RF  
117611 evaluation board on Rogers 4350  
GND  
GND  
1 117611 is the raw bare PCB identifier. Reference 109728 when ordering the  
complete evaluation PCB.  
4
5
6
IF  
Figure 40. Typical Application Circuit  
LO  
RF  
117611–1  
260A  
J2  
J1  
IF  
U1  
J3  
Figure 41. Evaluation PCB Top Layer  
Rev. 0 | Page 15 of 16  
 
 
 
 
 
HMC260ALC3B  
Data Sheet  
OUTLINE DIMENSIONS  
3.05  
2.90 SQ  
2.75  
0.36  
0.30  
0.24  
0.08  
BSC  
PIN 1  
INDICATOR  
10  
12  
PIN 1  
9
1
3
0.50  
BSC  
1.60  
1.50 SQ  
1.40  
EXPOSED  
PAD  
7
6
4
0.32  
BSC  
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
1.00 REF  
2.10 BSC  
0.90  
0.80  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
Figure 42. 12-Terminal Ceramic Leadless Chip Carrier (LCC)  
(E-12-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
HMC260ALC3B  
HMC260ALC3BTR  
HMC260ALC3BTR-R5  
EV1HMC260ALC3B  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
MSL Rating2  
MSL3  
MSL3  
MSL3  
Package Description  
12-Terminal LCC  
12-Terminal LCC  
12-Terminal LCC  
Evaluation PCB  
Package Option  
E-12-4  
E-12-4  
E-12-4  
1 All models are RoHS compliant devices.  
2 The peak reflow temperature is 260°C. See Table 2 in the Absolute Maximum Ratings section.  
©2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13884-0-1/18(0)  
Rev. 0 | Page 16 of 16  
 
 

相关型号:

HMC260ALC3BTR-R5

10 GHz to 26 GHz, GaAs, MMIC, Double Balanced Mixer
ADI

HMC260LC3B

GaAs MMIC FUNDAMENTAL MIXER, 14 - 26 GHz
HITTITE

HMC260LC3BTR

Double Balanced Mixer, GAAS
HITTITE

HMC260LC3B_09

GaAs MMIC FUNDAMENTAL MIXER, 14 - 26 GHz
HITTITE

HMC260_09

GaAs MMIC FUNDAMENTAL MIXER, 14 - 26 GHz
HITTITE

HMC261

GaAs MMIC MEDIUM POWER DISTRIBUTED AMPLIFIER, 20 - 40 GHz
HITTITE

HMC261CB1

Wide Band Low Power Amplifier, BGA-25
HITTITE

HMC261LM1

SMT DISTRIBUTED GaAs MMIC AMPLIFIER 20 - 32 GHz
HITTITE

HMC261LM1_01

SMT DISTRIBUTED GaAs MMIC AMPLIFIER, 20 - 32 GHz
HITTITE

HMC261_00

GaAs MMIC MEDIUM POWER DISTRIBUTED AMPLIFIER, 20 - 40 GHz
HITTITE

HMC261_02

GaAs MMIC MEDIUM POWER DISTRIBUTED AMPLIFIER, 20 - 40 GHz
HITTITE

HMC262

GaAs MMIC LOW NOISE AMPLIFIER 15 - 24 GHz
HITTITE