HMC624ALP4E [ADI]

0.1 GHz to 6.0 GHz,0.5 dB LSB, 6-Bit, GaAs Digital Attenuator;
HMC624ALP4E
型号: HMC624ALP4E
厂家: ADI    ADI
描述:

0.1 GHz to 6.0 GHz,0.5 dB LSB, 6-Bit, GaAs Digital Attenuator

文件: 总15页 (文件大小:578K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
0.1 GHz to 6.0 GHz,0.5 dB LSB, 6-Bit,  
GaAs Digital Attenuator  
Data Sheet  
HMC624A  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Attenuation range: 0.5 dB (LSB) steps to 31.5 dB  
Low insertion loss: 1.6 dB at 3 GHz  
Excellent attenuation accuracy  
24  
23  
22  
21  
20  
19  
P/S  
CLK  
1
2
3
4
5
6
18 VDD  
High linearity  
PUP1  
17  
16  
15  
14  
13  
Input 0.1dB compression (P0.1dB): 33 dBm typical  
Input third-order intercept (IP3): 55 dBm typical  
High RF input power handling: 28 dBm  
Low phase shift: 25° at 3 GHz  
Single-supply operation: 3 V to 5 V  
CMOS-/TTL-compatible control  
SERIAL/  
PARALLEL  
INTERFACE  
PUP2  
SERIN  
LE  
SEROUT  
GND  
6-BIT/  
DIGITAL  
ATTENUATOR  
GND  
ATTOUT  
ATTIN  
24-lead, 4 mm × 4 mm LFCSP package  
Pin compatible to the HMC1122  
7
8
9
10  
11  
12  
PACKAGE  
BASE  
APPLICATIONS  
GND  
Cellular infrastructure  
Microwave radios and very small aperture terminals (VSATs)  
Test equipment and sensors  
Figure 1.  
Intermediate frequency (IF) and radio frequency (RF) designs  
GENERAL DESCRIPTION  
The HMC624A is a 6-bit digital attenuator with a 31.5 dB  
attenuation control range in 0.5 dB steps.  
serial output port for cascading other serial controlled  
components.  
The HMC624A offers excellent attenuation accuracy and high  
input linearity over the specified frequency range from 100 MHz  
to 6.0 GHz. However, this digital attenuator features external ac  
grounding capacitors to extend the operation below 100 MHz.  
The HMC624A operates with a single positive supply voltage  
from 3 V to 5 V, and provides a CMOS-/TTL-compatible  
control interface.  
The HMC624A comes in a RoHS compliant, compact, 4 mm ×  
4 mm LFCSP package, and is pin compatible to the HMC1122  
except for the ACGx pins.  
The HMC624A is integrated with two dies: a CMOS driver and  
a gallium arsenide (GaAs) RF attenuator. The CMOS driver  
provides both serial and parallel control of the RF attenuator.  
The device also features a user-selectable power-up state and a  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2017 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC624A  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Input Power Compression and Third-Order Intercept............9  
Theory of Operation ...................................................................... 11  
Power Supply............................................................................... 11  
Power-Up Interface .................................................................... 11  
Serial or Parallel Mode Selection ............................................. 11  
Serial Mode Interface................................................................. 11  
Parallel Mode Interface.............................................................. 12  
RF Input and Output ................................................................. 12  
ACGx Pins................................................................................... 12  
Applications Information .............................................................. 13  
Evaluation Board ........................................................................ 13  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Interface Schematics..................................................................... 6  
Typical Performance Characteristics ............................................. 7  
Insertion Loss, Return Loss, State Error, Step Error, and  
Relative Phase................................................................................ 7  
REVISION HISTORY  
9/2017—Rev. A to Rev. B  
Changes to Figure 9, Figure 10, Figure 12, and Figure 13 ...........7  
Deleted Application Circuit Figure.................................................8  
Added Figure 14, Figure 15, and Figure 17....................................8  
Changes to Figure 16 ........................................................................8  
Added Figure 20 and Figure 23 .......................................................9  
Changes to Figure 21 and Figure 22 ...............................................9  
Added Figure 26 and Figure 29 .................................................... 10  
Added Theory of Operation Section, Serial or Parallel Mode  
Selection Section, Table 8, and Figure 30.................................... 11  
Changes to Table 6, Power Supply Section, Power-Up Interface  
Section, Table 7, Serial Mode Interface Section ......................... 11  
Added RF Input and Output Section and AGCx Pins Section....... 12  
Changes to Figure 31, Parallel Mode Interface Section, Direct  
Parallel Mode Section, Latched Parallel Mode Section, and  
Figure 32 .......................................................................................... 12  
Added Applications Information Section ................................... 13  
Changes to Evaluation Board Section.......................................... 13  
Added Figure 34 ............................................................................. 14  
Changes to Table 9.......................................................................... 14  
Updated Outline Dimensions....................................................... 15  
Changes to Ordering Guide.......................................................... 15  
Changed CP-24-2 to CP-24-16.................................... Throughout  
Changes to Table 3............................................................................ 5  
Updated Outline Dimensions....................................................... 15  
Changes to Ordering Guide .......................................................... 15  
3/2017—Rev. 00.0912 to Rev. A  
This Hittite Microwave Products data sheet has been reformatted to  
meet the styles and standards of Analog Devices, Inc.  
Changes to Title, Features Section, Applications Section, and  
General Description Section........................................................... 1  
Changes to Table 1............................................................................ 3  
Added Table 2; Renumbered Sequentially .................................... 4  
Changes to Table 3............................................................................ 5  
Added Figure 2 and Thermal Resistance Section; Renumbered  
Sequentially ....................................................................................... 5  
Deleted Bias Voltage Table and Control Voltage Table;  
Renumbered Sequentially................................................................ 5  
Added Figure 3.................................................................................. 6  
Changes to Table 5............................................................................ 6  
Added Insertion Loss, Return Loss, State Error, and Relative  
Phase Section..................................................................................... 7  
Rev. B | Page 2 of 15  
 
Data Sheet  
HMC624A  
SPECIFICATIONS  
VDD = 3 V to 5 V, control input voltage (VCTL) = 0 V or VDD, TCASE = 25°C, 50 Ω system, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
6.0  
Unit  
GHz  
dB  
FREQUENCY RANGE  
INSERTION LOSS  
0.1  
0.1 GHz to 3 GHz  
3 GHz to 6.0 GHz  
0.1 GHz to 6.0 GHz  
Between minimum and maximum  
attenuation states  
Between any successive  
attenuation states  
Between any successive  
attenuation states  
1.6  
2.3  
2.4  
3.8  
dB  
ATTENUATION  
Range  
31.5  
0.5  
dB  
dB  
dB  
Step Size  
Step Error  
State Error  
< 0.2  
All attenuation states, referenced  
to insertion loss state  
0.1 GHz to 0.8 GHz  
−(0.1 + 5% of  
attenuation state)  
+(0.1 + 5% of  
attenuation state)  
dB  
0.8 GHz to 6.0 GHz  
−(0.3 + 3% of  
attenuation state)  
+(0.3 + 3% of  
attenuation state)  
dB  
dB  
RETURN LOSS (ATTIN and ATTOUT)  
RELATIVE PHASE  
All attenuation states,  
0.1 GHz to 6.0 GHz  
15  
Between minimum and maximum  
attenuation states  
100 MHz to 3 GHz  
3 GHz to 6.0 GHz  
25  
50  
Degrees  
Degrees  
SWITCHING CHARACTERISTICS  
Rise and Fall Time  
On and Off Time  
Between all attenuation states  
10% to 90% of RF output  
50% VCTL to 90% of RF output  
tRISE, tFALL  
tON, tOFF  
60  
90  
ns  
ns  
INPUT LINEARITY1  
All attenuation states,  
250 MHz to 6.0 GHz  
0.1 dB Compression  
Third-Order Intercept  
P0.1dB  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V to 5 V, 10 dBm per tone,  
1 MHz spacing  
33  
27  
55  
dBm  
dBm  
dBm  
IP3  
IDD  
SUPPLY CURRENT  
VDD = 3 V to 5 V  
3
mA  
DIGITAL CONTROL INPUTS  
P/S, CLK, SERIN, LE, D0 to D5,  
PUP1, and PUP2 pins  
Voltage  
Low  
VINL  
VINH  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
0
0
2
2
0.5  
0.8  
3
V
V
V
V
High  
5
Current  
VDD = 3 V to 5 V  
Low  
High  
IINL  
IINH  
15  
65  
µA  
µA  
DIGITAL CONTROL OUTPUT  
SEROUT  
Voltage  
Low  
High  
VOUTL  
VOUTH  
0
VDD  
V
V
Current  
Low  
High  
IOUTL  
IOUTH  
1
1
mA  
mA  
1 Input linearity performance degrades at frequencies less than 250 MHz; see Figure 18 to Figure 29.  
Rev. B | Page 3 of 15  
 
HMC624A  
Data Sheet  
TIMING SPECIFICATIONS  
See Figure 31 and Figure 32 for the timing diagrams.  
Table 2.  
Parameter  
Description  
Min  
70  
15  
Typ  
Max  
Unit  
ns  
ns  
tSCK  
tCS  
Minimum serial period  
Control setup time  
tCH  
tLN  
Control hold time  
LE setup time  
20  
ns  
ns  
15  
tLEW  
tLES  
tCKN  
tPH  
Minimum LE pulse width  
Minimum LE pulse spacing  
Serial clock hold time from LE  
Data hold time from LE  
Data setup time to LE  
10  
630  
0
10  
2
ns  
ns  
ns  
ns  
tPS  
ns  
Rev. B | Page 4 of 15  
 
 
Data Sheet  
HMC624A  
ABSOLUTE MAXIMUM RATINGS  
2
0
Table 3.  
Parameter  
Rating  
Supply Voltage  
5.6 V  
Digital Control Input Voltage  
RF Input Power1 (All Attenuation States,  
f = 250 MHz to 6.0 GHz, TCASE = 85°C)  
VDD = 3 V  
VDD = 5 V  
Continuous Power Dissipation, PDISS  
(TCASE = 85°C)  
Temperature  
Junction, TJ  
Storage  
Reflow2 ((Moisture Sensitivity Level 1  
(MSL1) Rating)  
−1 V to VDD + 1 V  
0.56 W  
–2  
–4  
–6  
–8  
–10  
25 dBm  
28 dBm  
0.56 W  
150°C  
−65°C to +150°C  
260°C  
0.01  
0.1  
FREQUENCY (GHz)  
1
Figure 2. Power Derating at Frequencies Less Than 250 MHz  
ESD Sensitivity  
Human Body Model (HBM)  
THERMAL RESISTANCE  
250 V (Class 1A)  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
1 For power derating at frequencies less than 250 MHz, see Figure 2.  
2 See the Ordering Guide for more information.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
θ
JC is the junction to case thermal resistance.  
Table 4. Thermal Resistance  
Package Type  
θJC  
Unit  
CP-24-161  
116  
°C/W  
1 Thermal impedance simulated values are based on a JEDEC 2S2P thermal  
test board with nine thermal vias. See JEDEC JESD51.  
Only one absolute maximum rating can be applied at any one time.  
ESD CAUTION  
Rev. B | Page 5 of 15  
 
 
 
 
HMC624A  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
24  
23  
22  
21  
20  
19  
P/S  
CLK  
1
2
3
4
5
6
18 VDD  
PUP1  
17  
16  
15  
14  
13  
PUP2  
SERIN  
LE  
HMC624A  
TOP VIEW  
SEROUT  
GND  
(Not to Scale)  
GND  
ATTOUT  
ATTIN  
7
8
9
10  
11  
12  
NOTES  
1. THE EXPOSED PAD MUST BE CONNECTED TO GROUND FOR  
PROPER OPERATION.  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
P/S  
Parallel/Serial Mode Select. For parallel mode operation, set this pin to low. For serial mode operation, set  
this pin to high.  
2
CLK  
Serial Interface Clock Input.  
3
4
SERIN  
LE  
Serial Interface Data Input.  
Latch Enable Input.  
5, 14  
6
GND  
ATTIN  
Ground. These pins must be connected to ground.  
Attenuator RF Input. This pin can also be used as an output because the design is bidirectional. ATTIN is  
dc-coupled and ac matched to 50 Ω. An external dc blocking capacitor is required.  
7 to 12  
13  
ACG1 to ACG6  
ATTOUT  
AC Grounding Capacitor Pins. These pins can be left unconnected when operating above 700 MHz. For  
frequencies less than 700 MHz, connect capacitors larger than 100 pF as close to the ACGx pins as  
possible. Select the capacitor value for the lowest frequency of operation.  
Attenuator RF Output. This pin can also be used as an input because the design is bidirectional. ATTOUT is  
dc-coupled and ac matched to 50 Ω. An external dc blocking capacitor is required.  
15  
16, 17  
18  
SEROUT  
PUP2, PUP1  
VDD  
Serial Interface Data Output. Serial input data is delayed by six clock cycles.  
Power-Up State Selection Pins. These pins set the attenuation value at power-up (see Table 7).  
Power Supply.  
19 to 24  
D5 to D0  
Parallel Control Voltage Inputs. These pins select the required attenuation (see Table 6). There is no  
internal pull-up or pull-down resistor on these pins; therefore, they must always be kept at a valid logic level  
(VIH or VIL) and not be left floating.  
EPAD  
Exposed Pad. The exposed pad must be connected to ground for proper operation.  
INTERFACE SCHEMATICS  
ATTIN,  
ATTOUT  
ACG1 TO  
ACG6  
Figure 6. ACGx Pin Interface Schematic  
Figure 4. ATTIN, ATTOUT Interface Schematic  
VDD  
VDD  
VDD  
VDD  
P/S, LE, CLK, SERIN  
PUP1, PUP2, D0 TO D5  
SEROUT  
Figure 7. SEROUT Pin Interface  
Figure 5. Digital Control Input Interface  
Rev. B | Page 6 of 15  
 
 
Data Sheet  
HMC624A  
TYPICAL PERFORMANCE CHARACTERISTICS  
INSERTION LOSS, RETURN LOSS, STATE ERROR, STEP ERROR, AND RELATIVE PHASE  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
–5  
–10  
–15  
–20  
–25  
–30  
–35  
0dB  
0.5dB  
1dB  
2dB  
4dB  
8dB  
16dB  
31.5dB  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 8. Insertion Loss vs. Frequency over Temperature  
Figure 11. Normalized Attenuation vs. Frequency over Major Attenuation  
States  
0
0
–10  
–20  
–30  
–10  
–20  
–30  
–40  
–50  
0dB  
0dB  
0.5dB  
1dB  
0.5dB  
1dB  
–40  
–50  
2dB  
2dB  
4dB  
4dB  
8dB  
8dB  
16dB  
31.5dB  
16dB  
31.5dB  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 9. Input Return Loss vs. Frequency over Major Attenuation States  
Figure 12. Output Return Loss vs. Frequency over Major Attenuation States  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
0dB  
0.5dB  
1dB  
1.5  
1.0  
2dB  
4dB  
8dB  
16dB  
31.5dB  
0.5  
0
–0.2  
–0.5  
–1.0  
–1.5  
–2.0  
–0.4  
0.1GHz  
0.5GHz  
1GHz  
2GHz  
–0.6  
–0.8  
4GHz  
6GHz  
20  
ATTENUATION STATE (dB)  
–1.0  
0
4
8
12  
16  
24  
28  
32  
0
1
2
3
4
5
6
FREQUENCY (GHz)  
Figure 10. State Error vs. Attenuation State over Frequency  
Figure 13. State Error vs. Frequency over Major Attenuation States  
Rev. B | Page 7 of 15  
 
 
HMC624A  
Data Sheet  
1.0  
1.0  
0.8  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0dB  
0.1GHz  
0.5GHz  
1GHz  
2GHz  
4GHz  
0.5dB  
1dB  
2dB  
4dB  
8dB  
16dB  
31.5dB  
6GHz  
0
4
8
12  
16  
20  
24  
28  
32  
0
1
2
3
4
5
6
ATTENUATION STATE (dB)  
FREQUENCY (GHz)  
Figure 14. Step Error vs. Attenuation State over Frequency  
Figure 16. Step Error vs. Frequency over Major Attenuation States  
60  
60  
0dB  
0.5dB  
0.1GHz  
0.5GHz  
1GHz  
2GHz  
4GHz  
1dB  
50  
40  
50  
40  
2dB  
4dB  
8dB  
16dB  
31.5dB  
6GHz  
30  
30  
20  
20  
10  
10  
0
0
–10  
–20  
–10  
–20  
0
4
8
12  
16  
20  
24  
28  
32  
0
1
2
3
4
5
6
ATTENUATION STATE (dB)  
FREQUENCY (GHz)  
Figure 15. Relative Phase vs. Attenuation State over Frequency  
Figure 17. Relative Phase vs. Frequency over Major Attenuation States  
Rev. B | Page 8 of 15  
Data Sheet  
HMC624A  
INPUT POWER COMPRESSION AND THIRD-ORDER INTERCEPT  
36  
36  
33  
30  
27  
24  
21  
18  
15  
33  
30  
27  
24  
21  
18  
15  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
0
1
2
3
4
5
6
0
1
2
3
4
5
6
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 18. Input P0.1dB vs. Frequency at Minimum Attenuation State over  
Temperature, VDD = 5 V  
Figure 21. Input P0.1dB vs. Frequency at Minimum Attenuation State over  
Temperature, VDD = 3 V  
36  
33  
30  
27  
24  
21  
36  
33  
30  
27  
24  
21  
18  
15  
T
T
T
= +85°C  
= +25°C  
= –40°C  
18  
15  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 19. Input P0.1dB vs. Frequency at Minimum Attenuation State over  
Temperature, VDD = 5 V (Low Frequency Detail)  
Figure 22. Input P0.1dB vs. Frequency at Minimum Attenuation State over  
Temperature, VDD = 3 V (Low Frequency Detail)  
36  
33  
30  
27  
24  
36  
33  
30  
27  
24  
0dB  
0dB  
21  
21  
0.5dB  
0.5dB  
1dB  
2dB  
1dB  
2dB  
4dB  
4dB  
18  
15  
18  
15  
8dB  
8dB  
16dB  
31.5dB  
16dB  
31.5dB  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 20. Input P0.1dB vs. Frequency over Major Attenuation States,  
DD = 5 V  
Figure 23. Input P0.1dB vs. Frequency over Major Attenuation States,  
DD = 3 V  
V
V
Rev. B | Page 9 of 15  
 
 
HMC624A  
Data Sheet  
70  
70  
60  
50  
40  
30  
60  
50  
40  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
30  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 24. Input IP3 vs. Frequency at Minimum Attenuation State over  
Temperature, VDD = 5 V  
Figure 27. Input IP3 vs. Frequency at Minimum Attenuation State over  
Temperature, VDD = 3 V  
70  
60  
50  
40  
70  
60  
50  
40  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
30  
30  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 25. Input IP3 vs. Frequency at Minimum Attenuation State over  
Temperature, VDD = 5 V (Low Frequency Detail)  
Figure 28. Input IP3 vs. Frequency at Minimum Attenuation State over  
Temperature, VDD = 3 V (Low Frequency Detail)  
70  
70  
60  
60  
50  
50  
0dB  
0dB  
0.5dB  
0.5dB  
40  
40  
1dB  
1dB  
2dB  
2dB  
4dB  
4dB  
8dB  
8dB  
16dB  
16dB  
31.5dB  
31.5dB  
30  
30  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 26. Input IP3 vs. Frequency over Major Attenuation States,  
DD = 5 V  
Figure 29. Input IP3 vs. Frequency over Major Attenuation States,  
DD = 3 V  
V
V
Rev. B | Page 10 of 15  
 
Data Sheet  
HMC624A  
THEORY OF OPERATION  
The HMC624A incorporates a 6-bit attenuator die that offers an  
attenuation range of 31.5 dB in 0.5 dB steps. A CMOS driver die  
inside the HMC624A enables both serial and parallel mode  
control of the 6-bit attenuator (see Figure 30 and Table 6).  
device per the truth table shown in Table 7. The attenuator  
latches in the desired power-up state approximately 200 ms after  
power-up.  
Table 7. PUPx Truth Table  
Table 6. D5 to D0 Truth Table  
Attenuation State  
LE  
PUP1  
Low  
High  
Low  
PUP2  
Low  
Low  
High  
High  
Digital Control Input1  
Attenuation  
State (dB)  
31.5 dB  
24.0 dB  
16.0 dB  
0 dB (Reference)  
Determined by D0 to D5  
Low  
Low  
Low  
Low  
D5  
D4  
D3  
D2  
D1  
D0  
High High High High High High 0 (reference)  
High High High High High Low 0.5  
High High High High Low High 1.0  
High High High Low High High 2.0  
High High Low High High High 4.0  
High Low High High High High 8.0  
High High High High High 16.0  
Low Low Low Low Low 31.5  
High  
High Don’t care  
Don’t care  
SERIAL OR PARALLEL MODE SELECTION  
The HMC624A can be controlled in either serial or parallel  
mode by setting the P/S pin to high or low, respectively (see  
Table 8).  
Low  
Low  
Table 8. Mode Selection  
1 Any combination of the control voltage input states shown in Table 6  
provides an attenuation equal to the sum of the bits selected.  
P/S  
Control Mode  
Low  
High  
Parallel  
Serial  
POWER SUPPLY  
The HMC624A requires a single dc voltage applied to the VDD  
pin. The ideal power-up sequence is as follows:  
SERIAL MODE INTERFACE  
The HMC624A has a 3-wire serial peripheral interface (SPI):  
serial data input (SERIN), clock (CLK), and latch enable (LE).  
The serial control interface is activated when P/S is set to high.  
1. Connect the ground reference.  
2. Apply a supply voltage to the VDD pin.  
3. Power up the digital control inputs. The relative order of  
the digital control inputs is not important.  
In serial mode, the 6-bit SERIN data is clocked MSB first on the  
rising CLK edges into the shift register and then LE must be  
toggled high to latch the new attenuation state into the device.  
LE must be set to low to clock new 6-bit data into the shift  
register because CLK is masked to prevent the attenuator value  
from changing if LE is kept high (see Figure 31 and Table 2).  
4. Apply an RF input signal to ATTIN or ATTOUT.  
The power-down sequence is the reverse of the power-up  
sequence.  
POWER-UP INTERFACE  
The HMC624A uses the PUP1 and PUP2 control voltage inputs  
to set the attenuation value to a known value at power-up before  
the initial control data word is provided in either serial or parallel  
mode. When the attenuator powers up with LE set to low, the  
state of PUP1 and PUP2 determines the power-up state of the  
The HMC624A also features a serial data output pin, SEROUT,  
that outputs serial input data delayed by six clock cycles to  
control the cascaded attenuator using a single SPI bus.  
D0  
D1  
D2  
D3  
D4  
D5  
SERIN  
SEROUT  
D Q  
D Q  
D Q  
D Q  
D Q  
D Q  
CLK  
P/S  
P/S SELECT  
6-BIT LATCH  
LE  
RF  
INPUT  
RF  
OUTPUT  
0.5dB  
1dB  
2dB  
4dB  
8dB  
16dB  
Figure 30. Simplified Circuit Diagram  
Rev. B | Page 11 of 15  
 
 
 
 
 
 
 
 
 
HMC624A  
Data Sheet  
X
P/S  
MSB  
[FIRST IN]  
LSB  
[LAST IN]  
tCS tCH  
D[5:0]  
NEXT WORD  
SERIN  
X
D5  
D4  
D3  
D2  
D1  
D0  
X
X
tLEW  
tCKN  
tLN  
CLK  
LE  
tSCK  
tLES  
Figure 31. Serial Mode Timing Diagram  
RF INPUT AND OUTPUT  
PARALLEL MODE INTERFACE  
The attenuator in the HMC624A is bidirectional; the ATTIN  
and ATTOUT pins are interchangeable as the RF input and  
output ports. The attenuator is internally matched to 50 Ω at  
both the input and the output; therefore, no external matching  
components are required.  
The HMC624A has six digital control inputs, D0 (LSB) to D5  
(MSB), to select the desired attenuation state in parallel mode, as  
shown in Table 6. The parallel control interface is activated when  
P/S is set to low.  
There are two modes of parallel operation: direct parallel and  
latched parallel.  
The RF input and output pins of the HMC624A are internally  
dc-biased to VDD; therefore, they require external dc blocking  
capacitors. Select the value of these dc blocking capacitors based  
on the minimum operating frequency; use larger value capacitors  
to extend the operation to lower frequencies.  
Direct Parallel Mode  
The LE pin must be kept high. The attenuation state is changed  
by the control voltage inputs (D0 to D5) directly. This mode is  
ideal for manual control of the attenuator.  
ACGx PINS  
Latched Parallel Mode  
The HMC624A is a positive bias GaAs attenuator; therefore, it  
requires floating capacitors between the attenuator bits and  
ground. The HMC624A uses on-chip floating capacitors that  
are sufficient for operation greater than 700 MHz. The HMC624A  
also features the ACGx pins to externally connect floating  
capacitors larger than 100 pF. Select the value of the external  
floating capacitors based on the minimum operating frequency,  
whereas the ACGx pins can be left open when operating above  
700 MHz.  
The LE pin must be kept low when changing the control voltage  
inputs (D0 to D5) to set the attenuation state. When the desired  
state is set, LE must be toggled high to transfer the 6-bit data to  
the bypass switches of the attenuator array, and then toggled  
low to latch the change into the device until the next desired  
attenuation change (see Figure 32 and Table 2).  
P/S  
D5 TO D0  
LE  
X
tPS  
tPH  
D[5:0]  
PARALLEL  
CONTROL  
X
X
tLEW  
Figure 32. Latched Parallel Mode Timing Diagram  
Rev. B | Page 12 of 15  
 
 
 
 
 
Data Sheet  
HMC624A  
APPLICATIONS INFORMATION  
The evaluation board is grounded from the dc pin, J11. The dc  
supply must be connected to the dc pin, J8, of the evaluation  
board. A 1 nF decoupling capacitor is placed on the supply trace  
to filter high frequency noise.  
EVALUATION BOARD  
The HMC624A uses a 4-layer evaluation board. The copper  
thickness is 0.5 oz (0.7 mil) on each layer. The top dielectric  
material is 10 mil Rogers RO4350 for optimal high frequency  
performance, whereas the middle and bottom dielectric materials  
are FR-4 type materials to achieve an overall board thickness of  
62 mil. RF traces are routed on the top copper layer, and the  
bottom layer is a grounded plane that provides a solid ground  
for the RF transmission lines. The RF transmission lines are  
designed using a coplanar waveguide (CPWG) model with a  
width of 16 mil and ground spacing of 13 mil to have a characteris-  
tic impedance of 50 Ω. For enhanced RF and thermal grounding,  
as many plated through vias as possible are arranged around  
transmission lines and under the exposed pad of the package.  
The RF input and output ports (ATTIN and ATTOUT) are  
connected through 50 Ω transmission lines to the SMA connect-  
ors, J1 and J2, respectively. The ATTIN and ATTOUT ports are  
ac-coupled with 330 pF capacitors. A thru calibration line is  
used to estimate the loss of the PCB over the environmental  
conditions being evaluated.  
All the digital control pins are connected through digital signal  
traces to the 2 × 9-pin header, J3. The HMC624A evaluation  
board also uses two dual inline package (DIP), and four-position,  
single-pole dual-throw (SPDT) switches for the manual control  
of the device in direct parallel mode.  
Figure 33 shows the top view of the populated HMC624A  
evaluation board, available from Analog Devices, Inc., upon  
request (see the Ordering Guide).  
Figure 34 and Table 9 show the evaluation board schematic and  
bill of materials, respectively.  
Figure 33. Populated Evaluation Board—Top View  
Rev. B | Page 13 of 15  
 
 
 
HMC624A  
Data Sheet  
Figure 34. Evaluation Board Schematic  
Table 9. Evaluation Board Bill of Materials  
Component  
Default Value  
Not applicable  
Not applicable  
Not applicable  
Do not insert  
330 pF  
1 nF  
Do not insert  
100 kΩ  
Description  
J1, J2  
J3  
SMA connector  
2 × 9-pin header  
DC pins  
SMA connector  
Capacitor, 0402 package  
Capacitor, 0402 package  
Capacitor, 0402 package  
Resistor, 0402 package  
SPDT four-position DIP switch  
Digital attenuator, Analog Devices, Inc.  
Evaluation PCB, Analog Devices  
J8, J11  
J9, J10  
C1 to C6  
C8  
C9, C10  
R1 to R14  
SW1, SW2  
U1  
Not applicable  
HMC624A  
117210-2  
PCB  
Rev. B | Page 14 of 15  
 
 
Data Sheet  
HMC624A  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
24  
19  
18  
1
0.50  
BSC  
2.85  
2.70 SQ  
2.55  
EXPOSED  
PAD  
13  
12  
6
7
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.90  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8.  
Figure 35. 24-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.85 mm Package Height  
(CP-24-16)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
MSL  
Package  
Option  
Model1  
Rating2 Package Description  
Branding3  
H624A  
XXXX  
H624A  
XXXX  
HMC624ALP4E  
−40°C to +85°C MSL1  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
CP-24-16  
HMC624ALP4ETR  
−40°C to +85°C MSL1  
CP-24-16  
117212-HMC624ALP4  
1 E = RoHS Compliant Part.  
2 See the Absolute Maximum Ratings section.  
3 XXXX is the 4-digit lot number.  
©2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15353-0-9/17(B)  
Rev. B | Page 15 of 15  
 
 

相关型号:

HMC624ALP4ETR

RF/Microwave Attenuator, GAAS,
HITTITE

HMC624ALP4ETR

0.1 GHz to 6.0 GHz, 0.5 dB LSB, 6-Bit, GaAs Digital Attenuator
ADI

HMC624LFLP4E

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, 60 - 500 MHz
HITTITE

HMC624LFLP4ETR

Variable Attenuator
HITTITE

HMC624LP4

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 6 GHz
HITTITE

HMC624LP4E

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 6 GHz
HITTITE

HMC624LP4ERTR

Analog Circuit
HITTITE

HMC624LP4RTR

Analog Circuit
HITTITE

HMC624LP4TR

暂无描述
HITTITE

HMC624LP4_10

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 6 GHz
HITTITE

HMC625BLP5E

0.5 dB LSB GaAs MMIC 6-Bit Digital Variable Gain Amplifier, DC - 5 GHz
ADI

HMC625BLP5ETR

0.5 dB LSB GaAs MMIC 6-Bit Digital Variable Gain Amplifier, DC - 5 GHz
ADI