HMC7229 [ADI]

Point to point radios;
HMC7229
型号: HMC7229
厂家: ADI    ADI
描述:

Point to point radios

射频 微波
文件: 总16页 (文件大小:275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
33 GHz to 40 GHz, GaAs, pHEMT, MMIC, 1 W  
Power Amplifier with Power Detector  
Data Sheet  
HMC7229CHIPS  
FEATURES  
GENERAL DESCRIPTION  
32 dBm PSAT with 22% PAE  
P1dB POUT: 31.5 dBm  
High OIP3: 39.5 dBm  
High gain: 24.5 dB  
The HMC7229CHIPS is a four-stage, gallium arsenide (GaAs),  
pseudomorphic high electron mobility transfer (pHEMT),  
monolithic microwave integrated circuit (MMIC), 1 W power  
amplifier with an integrated temperature compensated on-chip  
power detector, operating between 33 GHz and 40 GHz. The  
HMC7229CHIPS provides a typical range of 23 dB to 24.5 dB of  
gain and a range of 30 dBm to 32 dBm of saturated output power  
(PSAT) with 12% to 22% (typical) power added efficiency (PAE)  
range across a band of 33 GHz to 40 GHz from a 6 V supply. With  
an excellent OIP3 with a range of 37 dBm to 39.5 dBm across a  
band of 33 GHz to 40 GHz, the HMC7229CHIPS is ideal for linear  
applications such as high capacity point to point or point to  
multipoint radios or very small aperture terminal (VSAT)/satellite  
communications (SATCOM) applications demanding 32 dBm of  
efficient saturated output power. The radio frequency (RF) input/  
output ports are internally matched and dc blocked for easy  
integration into higher level assemblies.  
50 Ω matched input/output  
APPLICATIONS  
Point to point radios  
Point to multipoint Radio  
VSAT and SATCOM  
FUNCTIONAL BLOCK DIAGRAM  
V
V
V
V
V
DD1  
GG1  
DD2  
DD3  
DD4  
2
3
4
5
6
V
7
REF  
HMC7229CHIPS  
1
8
RFIN  
RFOUT  
V
9
DET  
14  
13  
12  
11  
10  
V
V
V
V
V
DD8  
GG2  
DD5  
DD6  
DD7  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC7229CHIPS  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................8  
Theory of Operation ...................................................................... 12  
Applications Information .............................................................. 13  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
33 GHz to 35 GHz Frequency Range......................................... 3  
35 GHz to 37 GHz Frequency Range......................................... 3  
37 GHz to 40 GHz Frequency Range......................................... 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Interface Schematics..................................................................... 7  
Mounting and Bonding Techniques for Millimeter Wave  
GaAs MMICs.............................................................................. 13  
Handling Precautions ................................................................ 13  
Mounting..................................................................................... 13  
Biasing Procedures..................................................................... 13  
Typical Application Circuit....................................................... 14  
Assembly Diagram ..................................................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
REVISION HISTORY  
6/2016—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
Data Sheet  
HMC7229CHIPS  
SPECIFICATIONS  
33 GHz TO 35 GHz FREQUENCY RANGE  
TA = 25°C, VDD = VDD1 = VDD2 = VDD3 = VDD4 = VDD5 = VDD6 = VDD7 = VDD8 = 6 V, IDQ = 1200 mA.1, 2  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
33  
Typ  
Max  
Unit  
GHz  
dB  
FREQUENCY RANGE  
GAIN  
35  
21  
23  
Gain Variation Over Temperature  
RETURN LOSS  
0.035  
dB/°C  
Input  
Output  
7
15  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Power Added Efficiency  
Output Third-Order Intercept  
SUPPLY CURRENT  
SUPPLY VOLTAGE  
P1dB  
PSAT  
PAE  
29.5 31.5  
dBm  
dBm  
%
32  
22  
39.5  
PAE taken at saturated output power  
Measurement taken at POUT/tone = 20 dBm  
OIP3  
dBm  
3
IDQ  
800  
5
1200 mA  
VDD  
6
V
1 Recommended bias conditions.  
2 Adjust the VGGx supply voltage between −2 V and 0 V to achieve IDQ = 1200 mA.  
3 IDQ is the drain current without applying RF power.  
35 GHz TO 37 GHz FREQUENCY RANGE  
TA = 25°C, VDD = VDD1 = VDD2 = VDD3 = VDD4 = VDD5 = VDD6 = VDD7 = VDD8 = 6 V, IDQ = 1200 mA.1, 2  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
GHz  
dB  
FREQUENCY RANGE  
GAIN  
Gain Variation Over Temperature  
RETURN LOSS  
35  
37  
22.5 24.5  
0.044  
dB/°C  
Input  
Output  
9.5  
20  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Power Added Efficiency  
Output Third-Order Intercept  
SUPPLY CURRENT  
SUPPLY VOLTAGE  
P1dB  
PSAT  
PAE  
28.5 30.5  
dBm  
dBm  
%
31  
16  
39  
PAE taken at saturated output power  
Measurement taken at POUT/tone = 20 dBm  
OIP3  
dBm  
3
IDQ  
800  
5
1200 mA  
VDD  
6
V
1 Recommended bias conditions.  
2Adjust the VGGx supply voltage between −2 V and 0 V to achieve IDQ = 1200 mA.  
3 IDQ is the drain current without applying RF power.  
Rev. 0 | Page 3 of 16  
 
 
 
HMC7229CHIPS  
Data Sheet  
37 GHz TO 40 GHz FREQUENCY RANGE  
TA = 25°C, VDD = VDD1 = VDD2 = VDD3 = VDD4 = VDD5 = VDD6 = VDD7 = VDD8 = 6 V, IDQ = 1200 mA.1, 2  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
GHz  
dB  
FREQUENCY RANGE  
GAIN  
Gain Variation Over Temperature  
RETURN LOSS  
37  
40  
21.5 23.5  
0.045  
dB/°C  
Input  
Output  
9.5  
13  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Power Added Efficiency  
Output Third-Order Intercept  
SUPPLY CURRENT  
SUPPLY VOLTAGE  
P1dB  
PSAT  
PAE  
27.5 29.5  
dBm  
dBm  
%
30  
12  
37  
PAE taken at saturated output power  
Measurement taken at POUT/tone = 20 dBm  
OIP3  
dBm  
3
IDQ  
800  
5
1200 mA  
VDD  
6
V
1 Recommended bias conditions.  
2 Adjust the VGGx supply voltage between −2 V and 0 V to achieve IDQ = 1200 mA.  
3 IDQ is the drain current without applying RF power.  
Rev. 0 | Page 4 of 16  
 
Data Sheet  
HMC7229CHIPS  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
Drain Bias Voltage (VDD)  
RF Input Power (RFIN)  
Channel Temperature  
7 V  
21 dBm  
175°C  
9.7 W  
Continuous Power Dissipation (PDISS),  
TA = 85°C (Derate 107 mW/°C Above 85°C)  
Thermal Resistance, θJC (Channel to  
Bottom Die)  
9.3°C/W  
ESD CAUTION  
Storage Temperature Range  
Operating Temperature Range  
−65°C to +150°C  
−55°C to +85°C  
ESD Sensitivity, Human Body Model (HBM) Class 0, passed 150 V  
Rev. 0 | Page 5 of 16  
 
 
HMC7229CHIPS  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
2
3
4
5
6
V
V
V
V
V
DD4  
GG1  
DD1  
DD2  
DD3  
V
7
REF  
HMC7229CHIPS  
1
8
RFOUT  
RFIN  
V
DET  
9
V
V
V
V
V
DD8  
GG2  
DD5  
13  
DD6  
12  
DD7  
14  
11  
10  
Figure 2. Pad Configuration  
Table 5. Pad Function Descriptions  
Pad No.  
Mnemonic  
Description  
1
RFIN  
RF Input. This pad is ac-coupled and matched to 50 Ω.  
2, 14  
VGG1, VGG2  
Gate Controls for the Power Amplifier. Adjust the VGG1 or VGG2 supply voltage to achieve recommended bias  
current. External 100 pF, 10 nF, and 4.7 μF bypass capacitors are required.  
3 to 6,  
10 to 13  
7
VDD1 to VDD8  
VREF  
Drain Bias Voltages. External 100 pF, 10 nF, and 4.7 μF bypass capacitors are required.  
DC Voltage of the Diode. This pad is biased through an external detector circuit used for temperature  
compensation of VDET (see Figure 36).  
8
9
RFOUT  
VDET  
RF Output. This pin is ac-coupled and matched to 50 Ω.  
DC Voltage Representing the RF Output Power. This pad is rectified by the diode that is biased through  
an external resistor (see Figure 36).  
Die Bottom GND  
Die Bottom. The die bottom must be connected to RF/dc ground. See Figure 9 for the interface schematic.  
Rev. 0 | Page 6 of 16  
 
Data Sheet  
HMC7229CHIPS  
INTERFACE SCHEMATICS  
RFIN  
V
REF  
Figure 3. RFIN Interface Schematic  
Figure 6. VREF Interface Schematic  
RFOUT  
Figure 7. RFOUT Interface Schematic  
V
, V  
GG1 GG2  
Figure 4. VGG1,VGG2 Interface Schematic  
V
DET  
Figure 8. VDET Interface Schematic  
V
TO V  
DD8  
DD1  
GND  
Figure 9. GND Interface Schematic  
Figure 5. VDD1 to VDD8 Interface Schematic  
Rev. 0 | Page 7 of 16  
 
 
HMC7229CHIPS  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
30  
28  
26  
24  
22  
20  
18  
30  
S21  
–55°C  
+25°C  
+85°C  
20  
10  
0
S11  
–10  
S22  
–20  
–30  
–40  
33  
34  
35  
36  
37  
38  
39  
40  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 10. Response Gain and Return Loss vs. Frequency  
Figure 13. Gain vs. Frequency at Various Temperatures  
0
0
–5  
–5  
–10  
–15  
–20  
–25  
–30  
–55°C  
+25°C  
+85°C  
–55°C  
+25°C  
+85°C  
–10  
–15  
–20  
33  
34  
35  
36  
37  
38  
39  
40  
33  
34  
35  
36  
37  
38  
39  
40  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 14. Output Return Loss vs. Frequency at Various Temperatures  
Figure 11. Input Return Loss vs. Frequency at Various Temperatures  
34  
34  
–55°C  
32  
30  
28  
26  
24  
+25°C  
+85°C  
32  
30  
28  
26  
24  
5.0V  
5.5V  
6.0V  
33  
34  
35  
36  
37  
38  
39  
40  
33  
34  
35  
36  
37  
38  
39  
40  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 12. P1dB vs. Frequency at Various Temperatures  
Figure 15. P1dB vs. Frequency at Various Supply Voltages  
Rev. 0 | Page 8 of 16  
 
Data Sheet  
HMC7229CHIPS  
34  
32  
30  
28  
26  
24  
34  
32  
30  
28  
26  
24  
5.0V  
5.5V  
6.0V  
–55°C  
+25°C  
+85°C  
33  
34  
35  
36  
37  
38  
39  
40  
33  
34  
35  
36  
37  
38  
39  
40  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 16. PSAT vs. Frequency at Various Temperatures  
Figure 19. PSAT vs. Frequency at Various Supply Voltages  
34  
32  
30  
28  
26  
24  
34  
32  
30  
28  
26  
24  
800mA  
1000mA  
1200mA  
800mA  
1000mA  
1200mA  
33  
34  
35  
36  
37  
38  
39  
40  
33  
34  
35  
36  
37  
38  
39  
40  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 17. P1dB vs. Frequency at Various Supply Currents  
Figure 20. PSAT vs. Frequency at Various Supply Currents  
1430  
1375  
1320  
1265  
1210  
1155  
1100  
1045  
1530  
1475  
1420  
1365  
1310  
1255  
1200  
1145  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
P
GAIN  
PAE  
OUT  
P
GAIN  
PAE  
OUT  
I
DD  
I
DD  
0
0
–10 –8  
–6  
–4  
–2  
0
2
4
6
8
10  
12  
–10 –8  
–6  
–4  
–2  
0
2
4
6
8
10  
12  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 18. Power Compression at 34 GHz  
(IDD is Drain Current With RF Power Applied)  
Figure 21. Power Compression at 39 GHz  
Rev. 0 | Page 9 of 16  
HMC7229CHIPS  
Data Sheet  
44  
42  
40  
38  
36  
34  
32  
30  
44  
42  
40  
38  
36  
34  
32  
30  
–55°C  
+25°C  
+85°C  
5.0V  
5.5V  
6.0V  
33  
34  
35  
36  
37  
38  
39  
40  
33  
34  
35  
36  
37  
38  
39  
40  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 22. Output IP3 vs. Frequency at Various Temperatures  
Figure 25. Output IP3 vs. Frequency at Various Supply Voltages  
44  
42  
40  
38  
60  
55  
50  
45  
40  
800mA  
1000mA  
1200mA  
36  
33GHz  
35  
30  
25  
20  
34GHz  
36GHZ  
38GHz  
39GHz  
40GHz  
34  
32  
30  
10  
12  
14  
16  
18  
20  
22  
24  
33  
34  
35  
36  
37  
38  
39  
40  
P
/TONE (dBm)  
FREQUENCY (GHz)  
OUT  
Figure 23. Output IP3 vs. Frequency at Various Supply Current  
Figure 26. IM3 vs. POUT/Tone for Various Frequencies at VDD = 5.5 V  
60  
55  
50  
60  
55  
50  
45  
45  
33GHz  
34GHz  
36GHZ  
38GHz  
39GHz  
40GHz  
40  
35  
30  
25  
20  
40  
33GHz  
35  
30  
25  
20  
34GHz  
36GHZ  
38GHz  
39GHz  
40GHz  
10  
12  
14  
16  
18  
20  
22  
24  
10  
12  
14  
16  
18  
20  
22  
24  
P
/TONE (dBm)  
P
/TONE (dBm)  
OUT  
OUT  
Figure 24. Third-Order Intermodulation (IM3) vs. POUT/Tone for Various  
Frequencies at VDD = 6 V  
Figure 27. IM3 vs. POUT/Tone for Various Frequencies at VDD = 5 V  
Rev. 0 | Page 10 of 16  
Data Sheet  
HMC7229CHIPS  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
33GHz  
34GHz  
36GHZ  
37GHz  
39GHz  
40GHz  
–55°C  
+25°C  
+85°C  
33  
34  
35  
36  
37  
38  
39  
40  
–10 –8  
–6 –4 –2  
0
2
4
6
8
10 12 14  
FREQUENCY (GHz)  
INPUT POWER (dBm)  
Figure 28. Reverse Isolation vs. Frequency for Various Temperatures  
Figure 31. Power Dissipation vs. Input Power for Various Frequencies  
at TA = 85°C  
35  
10  
32  
29  
1
–55°C  
+25°C  
+85°C  
100m  
P
SAT  
P1dB  
GAIN  
26  
23  
20  
10m  
1m  
0.1m  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
–20  
–10  
0
10  
20  
30  
V
(V)  
DD  
OUTPUT POWER (dBm)  
Figure 29. Gain, P1dB, and PSAT vs Supply Voltage (VDD) at 36 GHz  
Figure 32. Detector Voltage (VDET) vs. Output Power at 38.5 GHz at Various  
Temperatures  
35  
25  
20  
15  
10  
5
32  
29  
P
P1dB  
GAIN  
SAT  
26  
23  
20  
0
800  
900  
1000  
(mA)  
1100  
1200  
33  
34  
35  
36  
37  
38  
39  
40  
I
DQ  
FREQUENCY (GHz)  
Figure 30. Gain, P1dB, and PSAT vs. Supply Current (IDQ) at 36 GHz  
Figure 33. PAE at PSAT vs Frequency  
Rev. 0 | Page 11 of 16  
HMC7229CHIPS  
Data Sheet  
THEORY OF OPERATION  
The HMC7229CHIPS is a GaAs, pHEMT, MMIC, 1 W power  
amplifier consisting of four gain stages in series. Figure 34  
shows a simplified functional block diagram of the  
HMC7229CHIPS.  
Similarly, multiple HMC7229CHIPS can be used with power  
dividers at the RF input and power combiners at the RF output  
to obtain higher output power levels.  
The input and output impedances are sufficiently stable compared  
to the variations in temperature and supply voltage that no  
impedance matching compensation is required.  
The input signal of the HMC7229CHIPS is evenly divided into  
two paths and each path is amplified through the four independent  
gain stages. The amplified signals are then combined at the RF  
output.  
It is critical to supply very low inductance ground connections  
to the backside of the HMC7229CHIPS, ensuring stable  
operation. Guidance on mounting the HMC7229CHIPS is given  
in the Mounting and Bonding Techniques for Millimeter Wave  
GaAs MMICs section.  
The HMC7229CHIPS has single-ended input and output ports  
with impedances nominally matched to 50 Ω internally over the  
frequency range from 33 GHz to 40 GHz. Consequently, the  
HMC7229CHIPS can be directly inserted into a 50 Ω system  
with no impedance matching circuitry required.  
To achieve the best performance from the HMC7229CHIPS  
and not to damage the device, do not exceed the absolute  
maximum ratings.  
Impedences nominally matched to a 50 Ω system also means  
that multiple HMC7229CHIPS amplifiers can be cascaded back  
to back without external matching circuitry.  
V
V
V
V
GG1  
GG1  
GG1  
GG1  
OR  
GG2  
OR  
GG2  
OR  
GG2  
OR  
V
V
V
V
DD4  
GG2  
V
V
V
V
DD1  
DD2  
DD3  
RFIN  
RFOUT  
V
V
V
V
GG1  
V
V
V
V
DD8  
GG1  
GG1  
GG1  
DD5  
DD6  
DD7  
OR  
GG2  
OR  
GG2  
OR  
GG2  
OR  
GG2  
V
V
V
V
Figure 34. Simplified Functional Block Diagram  
Rev. 0 | Page 12 of 16  
 
 
Data Sheet  
HMC7229CHIPS  
APPLICATIONS INFORMATION  
MOUNTING AND BONDING TECHNIQUES FOR  
MILLIMETER WAVE GaAs MMICs  
Eutectic Die Attach  
It is best to use an 80% Au/20% Sn preform with a work surface  
temperature of 255°C and a tool temperature of 265°C. When the  
work surface is 255°C and tool temperature is 265°C, 90% nitrogen/  
10% hydrogen gas is applied to the work surface, maintain the  
tool tip temperature at 290°C. Do not expose the HMC7229CHIPS  
to a temperature greater than 320°C for more than 20 sec. No  
more than 3 sec of scrubbing is required for attachment.  
Attach the HMC7229CHIPS directly to the ground plane  
eutectically or with a conductive epoxy. To route the RF signal  
to and from the HMC7229CHIPS, use a 50 Ω microstrip  
transmission line on 0.127 mm (0.005 inches) thick alumina, thin  
film substrates (see Figure 35).  
0.102mm (0.004") THICK GaAs MMIC  
Epoxy Die Attach  
The ABLETHERM 2600BT is recommended for chip attachment.  
Apply a minimum amount of epoxy to the mounting surface so  
a thin epoxy fillet is observed around the perimeter of the  
HMC7229CHIPS after placing the device into position on  
the surface. Cure the epoxy per the schedule provided by the  
manufacturer.  
RIBBON BOND  
0.076mm  
(0.003")  
RF GROUND PLANE  
Wire Bonding  
RF bonds made with 0.003 in. × 0.0005 in. Au ribbon are recom-  
mended for the RF ports. These bonds must be thermosonically  
bonded with a force of 40 g to 60 g. DC bonds of 1 mil (0.025 mm)  
diameter, thermosonically bonded, are recommended. Create ball  
bonds with a force of 40 g to 50 g and wedge bonds with a force of  
18 g to 22 g. Create all bonds with a nominal stage temperature of  
150°C. Apply a minimum amount of ultrasonic energy to achieve  
reliable bonds. Keep all bonds as short as possible, less than 12 mil  
(0.31 mm).  
0.127mm (0.005") THICK ALUMINA,  
THIN FILM SUBSTRATE  
Figure 35. Routing RF Signals  
To minimize the bond wire length, place microstrip substrates  
as close to the HMC7229CHIPS as possible. Typical chip to  
substrate spacing is 0.076 mm to 0.152 mm (0.003 inches and  
0.006 inches).  
HANDLING PRECAUTIONS  
BIASING PROCEDURES  
To avoid permanent damage to the device, adhere to the following  
precautions:  
The basic connections for operating the HMC7229CHIPS are  
shown in the Typical Application Circuit section and the Theory  
of Operation section. The RF input and RF output are ac-coupled  
by internal dc block capacitors. Follow the recommended bias  
sequencing to avoid damaging the amplifier.  
All bare HMC7229CHIPS ship in either waffle or gel-based  
ESD protective containers, sealed in an ESD protective bag.  
After opening the sealed ESD protective bag, store all chips in  
a dry nitrogen environment.  
The amplifier gate bias can be supplied using either the VGG1 pin  
or VGG2 pin. Use the VDD1 to VDD8 pins while applying the drain bias  
to the amplifier. Testing to gather data for the HMC7229CHIPS  
data sheet used the VGG1 pin with the VDD1 to VDD8 pins connected  
together.  
Handle the HMC7229CHIPS in a clean environment.  
Never use liquid cleaning systems to clean the chip.  
Follow ESD precautions to protect against ESD strikes.  
While applying bias, suppress instrument and bias supply  
transients. To minimize inductive pickup, use shielded  
signal and bias cables.  
Use the following recommended bias sequence during power-up:  
1. Connect GND to RF/dc ground.  
2. Set VGG1 or VGG2 to −2 V.  
3. Set VDD1 to VDD8 to 6 V.  
4. Increase VGG1 or VGG2 to achieve a typical IDQ = 1200 mA.  
5. Apply an RF signal the device.  
Handle the HMC7229CHIPS along the edges with a vacuum  
collet or a sharp pair of bent tweezers. The surface of the chip  
has fragile air bridges and must not be touched with a vacuum  
collet, tweezers, or fingers.  
MOUNTING  
Use the following recommended bias sequence during power-  
down:  
The HMC7229CHIPS is back metallized and can be die mounted  
onto a system with Au/Sn eutectic preforms or with electrically  
conductive epoxy. The mounting surface must be clean and flat.  
1. Turn off the RF signal  
2. Decrease VGG1 or VGG2 to −2 V to achieve IDQ = 0 mA.  
3. Decrease VDD1, VDD2, VDD3, and VDD4 to 0 V.  
4. Increase VGG1 or VGG2 to 0 V.  
Rev. 0 | Page 13 of 16  
 
 
 
 
 
 
HMC7229CHIPS  
Data Sheet  
The bias conditions listed at VDD = 6 V, IDQ = 1200 is a  
recommended operating point to receive optimum performance  
from the HMC7229CHIPS. The data used in this data sheet is  
taken with the recommended bias conditions (see the  
Specifications section).  
The VDET and VREF pins are the output pins for the internal  
power detector. The VDET pin is the dc voltage output pin  
representing the RF output power rectified by the internal  
diode, biased through an external resistor.  
The VREF pin is the dc voltage output pin representing the  
reference diode voltage, which is biased through an external  
resistor. The reference diode voltage compensates the temperature  
variation effects on both the VREF and VDET diodes. Figure 36  
shows a suggested circuit to read out the output voltage in  
correlation with the RF output power.  
Using the HMC7229CHIPS in a different bias condition may  
provide different performance than the performance shown in  
the Typical Performance Characteristics section.  
TYPICAL APPLICATION CIRCUIT  
V
, V  
V
, V  
+
DD1  
DD2  
DD3  
DD4  
+
4.7µF  
0.1µF  
100pF  
100pF  
SUGGESTED CIRCUIT  
OPTION 1  
V
GG1  
4.7µF  
100pF  
100pF  
0.1µF  
–5V  
10kΩ  
10kΩ  
4.7µF  
0.1µF  
100pF  
+
2
1
3
V
V
= V  
– V  
REF  
4
OUT  
REF DET  
5
HMC7229CHIPS  
6
7
9
RFIN  
8
RFOUT  
10  
10kΩ  
10kΩ  
11  
V
DET  
12  
13  
100kΩ 100kΩ  
+5V  
14  
OPTION 2  
V
+5V  
GG2  
+
+
100pF  
4.7µF  
4.7µF  
0.1µF  
0.1µF  
100pF  
100pF  
V
, V  
DD8  
DD7  
V
, V  
DD6  
+
DD5  
100pF  
4.7µF  
0.1µF  
100pF  
Figure 36. Typical Application Circuit  
Rev. 0 | Page 14 of 16  
 
 
Data Sheet  
HMC7229CHIPS  
ASSEMBLY DIAGRAM  
Figure 37. Assembly Diagram  
Rev. 0 | Page 15 of 16  
 
HMC7229CHIPS  
Data Sheet  
OUTLINE DIMENSIONS  
2.794  
0.102  
0.130  
0.130  
0.0178  
0.102  
2
3
4
5
6
7
0.150  
0.391  
2.380  
0.201  
0.201  
0.201  
8
1
0.201  
0.391  
0.150  
0.350  
9
0.890  
13  
12  
11  
14  
10  
0.135  
SIDE VIEW  
0.150  
0.851  
0.0102  
0.0813  
0.150  
0.350  
0.216  
0.350  
0.150  
0.150  
0.150  
0.201  
Figure 38. 14-Pad Bare Die [CHIP]  
(C-14-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−55°C to +85°C  
Package Description  
14-Pad Bare Die [CHIP]  
14-Pad Bare Die [CHIP]  
Package Option  
HMC7229  
C-14-4  
C-14-4  
HMC7229SX  
−55°C to +85°C  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14566-0-6/16(0)  
Rev. 0 | Page 16 of 16  
 
 

相关型号:

HMC7229CHIPS

Point to point radios
ADI

HMC7229LS6

GaAs pHEMT MMIC 1 WATT POWER AMPLIFIER With Power Detector, 37 - 40 GHz
HITTITE

HMC7229LS6TR

Wide Band Medium Power Amplifier,
HITTITE

HMC7229SX

RF/MICROWAVE WIDE BAND MEDIUM POWER AMPLIFIER
ADI

HMC722LC3C

13 Gbps, FAST RISE TIME AND/NAND/OR/NOR GATE, w/ PROGRAMMABLE OUTPUT VOLTAGE
HITTITE

HMC722LC3C

HMC722LC3C
ADI

HMC722LC3CTR

HMC722LC3CTR
ADI

HMC722LC3CTR

OR-AND/OR-AND-Invert Gate, 722 Series, 1-Func, 2-Input, CQCC16, 3 X 3 MM, ROHS COMPLIANT, CERAMIC, SMT-16
HITTITE

HMC722LP3E

13 Gbps, FAST RISE TIME AND/NAND/OR/NOR GATE, w/ PROGRAMMABLE OUTPUT VOLTAGE
HITTITE

HMC722LP3ETR

Majority Logic Gate, 722 Series, 1-Func, 4-Input, PQCC16, 3 X 3 MM, ROHS COMPLIANT, PLASTIC, SMT-16
HITTITE

HMC723LC3C

13 Gbps, FAST RISE TIME D-TYPE FLIP-FLOP w/ PROGRAMMABLE OUTPUT VOLTAGE
HITTITE

HMC723LC3CRTR

FF/Latch,
HITTITE