HMC7912LP5E [ADI]

21 GHz to 24 GHz, GaAs, MMIC, I/Q Upconverter;
HMC7912LP5E
型号: HMC7912LP5E
厂家: ADI    ADI
描述:

21 GHz to 24 GHz, GaAs, MMIC, I/Q Upconverter

文件: 总24页 (文件大小:552K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
21 GHz to 24 GHz,  
GaAs, MMIC, I/Q Upconverter  
Data Sheet  
HMC7912  
FEATURES  
GENERAL DESCRIPTION  
Conversion gain: 15 dB typical  
Sideband rejection: 22 dBc typical  
The HMC7912 is a compact, gallium arsenide (GaAs), pseudo-  
morphic (pHEMT), monolithic microwave integrated circuit  
(MMIC) upconverter in a RoHS compliant, low stress, injection  
molded plastic LFCSP package that operates from 21 GHz to  
24 GHz. This device provides a small signal conversion gain of  
15 dB with 22 dBc of sideband rejection. The HMC7912 uses a  
variable gain amplifier preceded by an in-phase/quadrature (I/Q)  
mixer that is driven by an active 2× LO multiplier. IF1 and IF2  
mixer inputs are provided, and an external 90° hybrid is needed to  
select the required sideband. The I/Q mixer topology reduces  
the need for filtering of the unwanted sideband. The HMC7912  
is a much smaller alternative to hybrid style single sideband (SSB)  
upconverter assemblies, and it eliminates the need for wire  
bonding by allowing the use of surface-mount manufacturing  
techniques.  
Input power for 1 dB compression (P1dB): 4 dBm typical  
Output third-order intercept (OIP3): 33 dBm typical  
2× local oscillator (LO) leakage at RFOUT: 5 dBm typical  
2× LO leakage at the intermediate frequency (IF) input:  
−35 dBm typical  
RF return loss: 15 dB typical  
LO return loss: 15 dB typical  
32-lead, 5 mm × 5 mm LFCSP package  
APPLICATIONS  
Point to point and point to multipoint radios  
Military radars, electronic warfare (EW), and electronic  
intelligence (ELINT)  
Satellite communications  
Sensors  
FUNCTIONAL BLOCK DIAGRAM  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
3
4
5
6
7
8
24  
NIC  
V
GMIX  
23 NIC  
22 V  
NIC  
NIC  
NIC  
NIC  
DRF2  
21  
20  
19  
18  
17  
V
V
V
V
CTL1  
CTL2  
DRF3  
DRF4  
HMC7912  
GND  
LOIN  
GND  
2×  
NIC  
9
10  
11  
12  
13  
14  
15  
16  
EPAD  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2016–2018 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
HMC7912  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Leakage Performance................................................................. 16  
Return Loss Performance.......................................................... 17  
Power Detector Performance.................................................... 18  
Spurious Performance ............................................................... 19  
Theory of Operation ...................................................................... 20  
Applications Information .............................................................. 21  
Biasing Sequence ........................................................................ 21  
Local Oscillator Nulling ............................................................ 21  
Evaluation Printed Circuit Board............................................. 23  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Interface Schematics..................................................................... 6  
Typical Performance Characteristics ............................................. 7  
REVISION HISTORY  
4/2018—Rev. A to Rev. B  
Changes to Biasing Sequence Section.......................................... 21  
Updated Outline Dimensions....................................................... 24  
Changes to Ordering Guide .......................................................... 24  
6/2016—Rev. 0 to Rev. A  
Change to the Local Oscillator (LO) Parameter and Output  
Third-Order Intercept (OIP3) at Maximum Gain Parameter,  
Table 1 ................................................................................................ 3  
Changes to Figure 76, Figure 77, Figure 78, Figure 79, Figure 80,  
and Figure 81................................................................................... 18  
4/2016—Revision 0: Initial Version  
Rev. B | Page 2 of 24  
 
Data Sheet  
HMC7912  
SPECIFICATIONS  
TA = 25°C, IF = 1 GHz, VDLOx = 5 V, V DRFx = 5 V, V CTLx = −5 V, VESD = −5 V, VGMIX = −0.5 V, LO = 4 dBm. Measurements performed with upper  
sideband selected and external 90° hybrid at the IF ports, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
OPERATING CONDITIONS  
Frequency Range  
Radio Frequency (RF)  
Local Oscillator (LO)  
Intermediate Frequency (IF)  
LO Drive Range  
21  
24  
12  
3.5  
8
GHz  
GHz  
GHz  
dBm  
8.75  
DC  
2
PERFORMANCE  
Conversion Gain  
10  
31  
13  
15  
33  
22  
4
33  
5
dB  
dB  
Conversion Gain Dynamic Range  
Sideband Rejection  
Input Power for 1 dB Compression (P1dB)  
Output Third-Order Intercept (OIP3) at Maximum Gain  
2× LO Leakage at RFOUT1  
2× LO Leakage at IFx2  
Noise Figure  
dBc  
dBm  
dBm  
dBm  
dBm  
dB  
22.5  
−35  
14  
Return Loss  
RF  
LO  
IFx2  
15  
15  
20  
dB  
dB  
dB  
POWER SUPPLY  
Total Supply Current  
LO Amplifier  
RF Amplifier3  
100  
220  
mA  
mA  
1 The LO signal level at the RF output port is not calibrated.  
2 Measurements taken without the 90° hybrid at the IF ports.  
3 Adjust VGRF between −2 V and 0 V to achieve a total variable gain amplifier quiescent drain current = 220 mA.  
Rev. B | Page 3 of 24  
 
 
HMC7912  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
θJA is specified for the worst case conditions, that is, a device  
soldered in a circuit board for surface-mount packages. The θJA  
values in Table 3 assume a 4-layer JEDEC standard board with  
zero airflow.  
Parameter  
Rating  
Drain Bias Voltage  
VDRFx, VDLOx, VREF, VDET  
Gate Bias Voltage  
VGRF  
VCTLx, VESD  
VGMIX  
5.5 V  
−3 V to 0 V  
−7 V to 0 V  
−2 V to 0 V  
10 dBm  
Table 3. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
32-Lead LFCSP  
31.66  
37.6  
°C/W  
LO Input Power  
IF Input Power  
10 dBm  
Maximum Junction Temperature  
Storage Temperature Range  
Operating Temperature Range  
Reflow Temperature  
ESD Sensitivity (HBM)  
175°C  
ESD CAUTION  
−65°C to +150°C  
−40°C to +85°C  
260°C  
250 V (Class 1A)  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 4 of 24  
 
 
 
 
 
Data Sheet  
HMC7912  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
32 31 30 29 28 27 26 25  
24 NIC  
23 NIC  
V
V
1
GMIX  
NIC 2  
NIC 3  
22  
21  
20  
19  
18  
DRF2  
CTL1  
CTL2  
DRF3  
DRF4  
V
V
V
V
NIC  
4
HMC7912  
TOP VIEW  
NIC 5  
(Not to Scale)  
GND 6  
LOIN 7  
GND 8  
17 NIC  
9
10 11 12 13 14 15 16  
EPAD  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED. NO CONNECTION IS REQUIRED.  
THESE PINS ARE NOT CONNECTED INTERNALLY. HOWEVER, ALL DATA  
SHOWN HEREIN WERE MEASURED WITH THESE PINS CONNECTED  
EXTERNALLY TO RF/DC GROUND.  
2. EXPOSED PAD. CONNECT TO A LOW IMPEDANCE THERMAL AND  
ELECTRICAL GROUND PLANE.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
VGMIX  
Gate Voltage for the FET Mixer. See Figure 3. Refer to the typical application circuit for the required external  
components (see Figure 83).  
2 to 5, 16, 17,  
23, 24, 29, 31, 32  
NIC  
Not Internally Connected. No connection is required. These pins are not connected internally. However, all  
data shown herein were measured with these pins connected externally to RF/dc ground.  
6, 8, 13, 15  
7
GND  
LOIN  
Ground Connect. See Figure 4. These pins and package bottom must be connected to RF/dc ground.  
Local Oscillator Input. See Figure 5. This pin is dc-coupled and matched to 50 Ω.  
9, 10  
VDLO1, VDLO2  
Power Supply Voltage for the LO Amplifier. See Figure 6. Refer to the typical application circuit for the  
required external components (see Figure 83).  
11  
12  
VREF  
Reference Voltage for the Power Detector. See Figure 8. VREF is the dc bias of the diode biased through the  
external resistor used for temperature compensation of VDET. Refer to the typical application circuit for the  
required external components (see Figure 83).  
Detector Voltage for the Power Detector. See Figure 8. VDET is the dc voltage representing the RF output  
power rectified by the diode, which is biased through an external resistor. Refer to the typical application  
circuit for the required external components (see Figure 83).  
VDET  
14  
RFOUT  
Radio Frequency Output. See Figure 9. This pin is dc-coupled and matched to 50 Ω.  
18, 19, 22, 25  
VDRF4, VDRF3  
DRF2, VDRF1  
,
Power Supply Voltage for the Variable Gain Amplifier. See Figure 10. Refer to the typical application circuit  
for the required external components (see Figure 83).  
V
20, 21  
26  
VCTL2, VCTL1  
Gain Control Voltage for the Variable Gain Amplifier. See Figure 11. Refer to the typical application circuit  
for the required external components (see Figure 83).  
Gate Voltage for the Variable Gain Amplifier. See Figure 12. Refer to the typical application circuit for the  
required external components (see Figure 83).  
VGRF  
27  
VESD  
DC Voltage for ESD Protection. See Figure 13. Refer to the typical application circuit for the required  
external components (see Figure 83).  
28, 30  
IF1, IF2  
Quadrature IF Inputs. See Figure 14. For applications not requiring operation to dc, use an off chip dc  
blocking capacitor. For operation to dc, these pins must not source/sink more than 3 mA of current or  
device malfunction and failure may result.  
EPAD  
Exposed Pad. Connect to a low impedance thermal and electrical ground plane.  
Rev. B | Page 5 of 24  
 
HMC7912  
Data Sheet  
INTERFACE SCHEMATICS  
RFOUT  
V
GMIX  
Figure 3. VGMIX Interface  
Figure 9. RFOUT Interface  
V
, V  
, V  
, V  
DRF1  
DRF2  
DRF3 DRF4  
GND  
Figure 4. GND Interface  
Figure 10. VDRF1, VDRF2, VDRF3, VDRF4 Interface  
LOIN  
V
V
CTL1, CTL2  
Figure 5. LOIN Interface  
Figure 11. VCTL1, VCTL2 Interface  
V
, V  
DLO1 DLO2  
V
GRF  
Figure 12. VGRF Interface  
Figure 6. VDLO1, VDLO2 Interface  
V
V
ESD  
REF  
Figure 7. VREF Interface  
Figure 13. VESD Interface  
V
IF1, IF2  
DET  
Figure 14. IF1, IF2 Interface  
Figure 8. VDET Interface  
Rev. B | Page 6 of 24  
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
HMC7912  
TYPICAL PERFORMANCE CHARACTERISTICS  
Data taken as SSB upconverter with external IF 90° hybrid at the IF ports, IF = 1 GHz.  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
LO = 0dBm  
LO = 2dBm  
LO = 4dBm  
LO = 6dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
6
21.0  
6
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 15. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 18. Conversion Gain vs. RF Frequency at Various LO Powers  
20  
16  
12  
8
20  
15  
10  
5
4
V
V
V
= –5.0V  
= –4.8V  
= –4.5V  
V
V
V
= –4.3V  
= –4.0V  
= –3.8V  
V
V
V
= –3.5V  
= –3.3V  
= –3.0V  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
0
–4  
0
V
= –2.0V  
= –1.8V  
= –1.5V  
V
V
V
= –2.8V  
= –2.5V  
= –2.3V  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
V
V
= –1.3V  
= –1.0V  
–5  
CTLx  
CTLx  
V
V
–8  
–10  
–12  
–16  
–20  
RF = 21GHz  
RF = 22GHz  
–15  
RF = 23GHz  
RF = 24GHz  
–20  
–5.0  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
–4.5  
–4.0  
–3.5  
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
RF FREQUENCY (GHz)  
CONTROL VOLTAGE (V)  
Figure 16. Conversion Gain vs. RF Frequency at Various Control Voltages,  
LO = 4 dBm  
Figure 19. Conversion Gain vs. Control Voltage at Various RF Frequencies,  
LO = 4 dBm  
40  
35  
30  
25  
20  
15  
10  
40  
35  
30  
25  
20  
15  
10  
LO = 0dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO = 2dBm  
LO = 4dBm  
LO = 6dBm  
A
A
A
5
5
0
21.0  
0
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 17. Sideband Rejection vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 20. Sideband Rejection vs. RF Frequency at Various LO Powers  
Rev. B | Page 7 of 24  
 
HMC7912  
Data Sheet  
Data taken as SSB upconverter with external IF 90° hybrid at the IF ports, IF = 1 GHz.  
25  
23  
21  
19  
17  
15  
13  
11  
9
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
7
5
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 21. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 24. Output IP3 vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
25  
23  
21  
19  
17  
15  
13  
11  
40  
38  
36  
34  
32  
30  
28  
26  
LO = 0dBm  
9
LO = 0dBm  
24  
LO = 2dBm  
LO = 2dBm  
LO = 4dBm  
LO = 6dBm  
5
LO = 4dBm  
LO = 6dBm  
20  
7
22  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 22. Input IP3 vs. RF Frequency at Various LO Powers  
Figure 25. Output IP3 vs. RF Frequency at Various LO Powers  
30  
48  
V
V
V
V
V
V
= –5.0V  
= –4.8V  
= –4.5V  
= –4.3V  
= –4.0V  
= –3.8V  
V
V
V
V
V
V
= –3.5V  
= –3.3V  
= –3.0V  
= –2.8V  
= –2.5V  
= –2.3V  
V
V
V
V
V
= –2.0V  
= –1.8V  
= –1.5V  
= –1.3V  
= –1.0V  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
V
V
V
V
V
V
= –5.0V  
= –4.8V  
= –4.5V  
= –4.3V  
= –4.0V  
= –3.8V  
V
V
V
V
V
V
= –3.5V  
= –3.3V  
= –3.0V  
= –2.8V  
= –2.5V  
= –2.3V  
V
V
V
V
V
= –2.0V  
= –1.8V  
= –1.5V  
= –1.3V  
= –1.0V  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
4
6
21.0  
0
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 23. Input IP3 vs. RF Frequency at Various Control Voltages,  
LO = 4 dBm  
Figure 26. Output IP3 vs. RF Frequency at Various Control Voltages,  
LO = 4 dBm  
Rev. B | Page 8 of 24  
Data Sheet  
HMC7912  
Data taken as SSB upconverter with external IF 90° hybrid at the IF ports, IF = 1 GHz.  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
RF = 21GHz  
RF = 22GHz  
RF = 23GHz  
RF = 24GHz  
RF = 21GHz  
RF = 22GHz  
RF = 23GHz  
RF = 24GHz  
0
–5.0  
0
–5.0  
–4.5  
–4.0  
–3.5  
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
–4.5  
–4.0  
–3.5  
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
CONTROL VOLTAGE (V)  
CONTROL VOLTAGE (V)  
Figure 27. Input IP3 vs. Control Voltage at Various RF Frequencies,  
LO = 4 dBm  
Figure 30. Output IP3 vs. Control Voltage at Various RF Frequencies,  
LO = 4 dBm  
10  
26  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
8
6
24  
22  
20  
18  
16  
14  
12  
10  
4
2
0
–2  
–4  
–6  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 28. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 31. Output P1dB vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
25  
25  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
23  
21  
19  
17  
15  
13  
11  
9
23  
21  
19  
17  
15  
13  
11  
9
7
7
5
21.0  
5
1.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
1.5  
2.0  
2.5  
3.0  
3.5  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 29. Noise Figure vs. RF Frequency at Various Temperatures,  
LO = 6 dBm  
Figure 32. Noise Figure vs. IF Frequency at Various Temperatures,  
LO = 6 dBm, LO Frequency = 19 GHz  
Rev. B | Page 9 of 24  
HMC7912  
Data Sheet  
Data taken as SSB upconverter with external IF 90° hybrid at the IF ports, IF = 2 GHz.  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
LO = 0dBm  
LO = 2dBm  
LO = 4dBm  
LO = 6dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
6
21.0  
6
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 33. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 36. Conversion Gain vs. RF Frequency at Various LO Powers  
20  
16  
12  
8
20  
15  
10  
5
4
V
V
V
= –5.0V  
= –4.8V  
= –4.5V  
V
V
V
= –4.3V  
= –4.0V  
= –3.8V  
V
V
V
= –3.5V  
= –3.3V  
= –3.0V  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
0
–4  
0
V
= –2.0V  
= –1.8V  
= –1.5V  
V
V
V
= –2.8V  
= –2.5V  
= –2.3V  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
V
V
= –1.3V  
= –1.0V  
–5  
CTLx  
CTLx  
V
V
–8  
–10  
–12  
–16  
–20  
RF = 21GHz  
RF = 22GHz  
–15  
RF = 23GHz  
RF = 24GHz  
–20  
–5.0  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
–4.5  
–4.0  
–3.5  
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
RF FREQUENCY (GHz)  
CONTROL VOLTAGE (V)  
Figure 34. Conversion Gain vs. RF Frequency at Various Control Voltages,  
LO = 4 dBm  
Figure 37. Conversion Gain vs. Control Voltage at Various RF Frequencies,  
LO = 4 dBm  
40  
40  
35  
30  
25  
20  
15  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
35  
30  
25  
20  
15  
10  
5
10  
LO = 0dBm  
LO = 2dBm  
LO = 4dBm  
5
LO = 6dBm  
0
0
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 35. Sideband Rejection vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 38. Sideband Rejection vs. RF Frequency at Various LO Powers  
Rev. B | Page 10 of 24  
Data Sheet  
HMC7912  
Data taken as SSB upconverter with external IF 90° hybrid at the IF ports, IF = 2 GHz.  
25  
23  
21  
19  
17  
15  
13  
11  
9
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
7
5
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 39. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 42. Output IP3 vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
25  
23  
21  
19  
17  
15  
13  
11  
40  
38  
36  
34  
32  
30  
28  
26  
LO = 0dBm  
9
LO = 0dBm  
24  
LO = 2dBm  
LO = 2dBm  
LO = 4dBm  
LO = 6dBm  
5
LO = 4dBm  
LO = 6dBm  
20  
7
22  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 40. Input IP3 vs. RF Frequency at Various LO Powers  
Figure 43. Output IP3 vs. RF Frequency at Various LO Powers  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
48  
V
V
V
V
V
= –5.0V  
= –4.8V  
= –4.5V  
= –2.8V  
= –2.5V  
V
V
V
V
V
V
= –4.3V  
= –4.0V  
= –3.8V  
= –2.3V  
= –2.0V  
= –1.8V  
V
V
V
V
V
V
= –3.5V  
= –3.3V  
= –3.0V  
= –1.5V  
= –1.3V  
= –1.0V  
V
V
V
= –5.0V  
= –4.8V  
= –4.5V  
V
V
V
= –4.3V  
= –4.0V  
= –3.8V  
V
V
V
= –3.5V  
= –3.3V  
= –3.0V  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
V
= –2.0V  
= –1.8V  
= –1.5V  
V
V
V
= –2.8V  
= –2.5V  
= –2.3V  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
V
V
= –1.3V  
= –1.0V  
V
CTLx  
CTLx  
4
V
0
21.0  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 41. Input IP3 vs. RF Frequency at Various Control Voltages,  
LO = 4 dBm  
Figure 44. Output IP3 vs. RF Frequency at Various Control Voltages,  
LO = 4 dBm  
Rev. B | Page 11 of 24  
HMC7912  
Data Sheet  
Data taken as SSB upconverter with external IF 90° hybrid at the IF ports, IF = 2 GHz.  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
RF = 21GHz  
RF = 22GHz  
RF = 23GHz  
RF = 24GHz  
RF = 21GHz  
RF = 22GHz  
RF = 23GHz  
RF = 24GHz  
0
–5.0  
0
–5.0  
–4.5  
–4.0  
–3.5  
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
–4.5  
–4.0  
–3.5  
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
CONTROL VOLTAGE (V)  
CONTROL VOLTAGE (V)  
Figure 45. Input IP3 vs. Control Voltage at Various RF Frequencies,  
LO = 4 dBm  
Figure 48. Output IP3 vs. Control Voltage at Various RF Frequencies,  
LO = 4 dBm  
10  
26  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
8
6
24  
22  
20  
18  
16  
14  
12  
10  
4
2
0
–2  
–4  
–6  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 46. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 49. Output P1dB vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
25  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
23  
21  
19  
17  
15  
13  
11  
9
7
5
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
Figure 47. Noise Figure vs. RF Frequency at Various Temperatures,  
LO = 6 dBm  
Rev. B | Page 12 of 24  
Data Sheet  
HMC7912  
Data taken as SSB upconverter with external IF 90° hybrid at the IF ports, IF = 3 GHz.  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
LO = 0dBm  
LO = 2dBm  
LO = 4dBm  
LO = 6dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
6
21.0  
6
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 50. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 53. Conversion Gain vs. RF Frequency at Various LO Powers  
32  
20  
15  
10  
5
V
V
V
V
V
V
= –5.0V  
= –4.8V  
= –4.5V  
= –4.3V  
= –4.0V  
= –3.8V  
V
V
V
V
V
V
= –3.5V  
= –3.3V  
= –3.0V  
= –2.8V  
= –2.5V  
= –2.3V  
V
V
V
V
V
= –2.0V  
= –1.8V  
= –1.5V  
= –1.3V  
= –1.0V  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
28  
24  
20  
16  
12  
8
0
4
0
–5  
–4  
–8  
–12  
–16  
–20  
–10  
RF = 21GHz  
RF = 22GHz  
–15  
RF = 23GHz  
RF = 24GHz  
–20  
–5.0  
–4.5  
–4.0  
–3.5  
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
CONTROL VOLTAGE (V)  
RF FREQUENCY (GHz)  
Figure 54. Conversion Gain vs. Control Voltage at Various RF Frequencies,  
LO = 4 dBm  
Figure 51. Conversion Gain vs. RF Frequency at Various Control Voltages,  
LO = 4 dBm  
40  
35  
30  
25  
20  
15  
40  
35  
30  
25  
20  
15  
10  
10  
LO = 0dBm  
LO = 2dBm  
LO = 4dBm  
LO = 6dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
5
5
0
21.0  
0
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 55. Sideband Rejection vs. RF Frequency at Various LO Powers  
Figure 52. Sideband Rejection vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Rev. B | Page 13 of 24  
HMC7912  
Data Sheet  
Data taken as SSB upconverter with external IF 90° hybrid at the IF ports, IF = 3 GHz.  
25  
23  
21  
19  
17  
15  
13  
11  
9
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
7
5
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 56. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 59. Output IP3 vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
25  
23  
21  
19  
17  
15  
13  
11  
40  
38  
36  
34  
32  
30  
28  
26  
LO = 0dBm  
9
LO = 0dBm  
24  
LO = 2dBm  
LO = 2dBm  
LO = 4dBm  
LO = 6dBm  
5
LO = 4dBm  
LO = 6dBm  
20  
7
22  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 57. Input IP3 vs. RF Frequency at Various LO Powers  
Figure 60. Output IP3 vs. RF Frequency at Various LO Powers  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
52  
V
V
V
V
V
V
= –5.0V  
= –4.8V  
= –4.5V  
= –4.3V  
= –4.0V  
= –3.8V  
V
V
V
V
V
V
= –3.5V  
= –3.3V  
= –3.0V  
= –2.8V  
= –2.5V  
= –2.3V  
V
V
V
V
V
= –2.0V  
= –1.8V  
= –1.5V  
= –1.3V  
= –1.0V  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
V
V
V
= –5.0V  
= –4.8V  
= –4.5V  
V
V
V
= –4.3V  
= –4.0V  
= –3.8V  
V
V
V
= –3.5V  
= –3.3V  
= –3.0V  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
48  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
V
V
= –1.3V  
= –1.0V  
V
= –2.0V  
= –1.8V  
= –1.5V  
V
= –2.8V  
= –2.5V  
= –2.3V  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
V
V
4
V
V
0
21.0  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 58. Input IP3 vs. RF Frequency at Various Control Voltages,  
LO = 4 dBm  
Figure 61. Output IP3 vs. RF Frequency at Various Control Voltages,  
LO = 4 dBm  
Rev. B | Page 14 of 24  
Data Sheet  
HMC7912  
Data taken as SSB upconverter with external IF 90° hybrid at the IF ports, IF = 3 GHz.  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
RF = 21GHz  
RF = 22GHz  
RF = 23GHz  
RF = 24GHz  
RF = 21GHz  
RF = 22GHz  
RF = 23GHz  
RF = 24GHz  
0
–5.0  
0
–5.0  
–4.5  
–4.0  
–3.5  
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
–4.5  
–4.0  
–3.5  
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
CONTROL VOLTAGE (V)  
CONTROL VOLTAGE (V)  
Figure 62. Input IP3 vs. Control Voltage at Various RF Frequencies,  
LO = 4 dBm  
Figure 65. Output IP3 vs. Control Voltage at Various RF Frequencies,  
LO = 4 dBm  
10  
26  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
8
6
24  
22  
20  
18  
16  
14  
12  
10  
4
2
0
–2  
–4  
–6  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 63. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 66. Output P1dB vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
25  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
23  
21  
19  
17  
15  
13  
11  
9
7
5
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
Figure 64. Noise Figure vs. RF Frequency at Various Temperatures,  
LO = 6 dBm  
Rev. B | Page 15 of 24  
HMC7912  
Data Sheet  
LEAKAGE PERFORMANCE  
20  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
15  
10  
5
0
–5  
–10  
17  
18  
19  
20  
21  
22  
23  
24  
17  
18  
19  
20  
21  
22  
23  
24  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 67. 2× LO Leakage at RFOUT vs. LO Frequency at  
Various Temperatures, LO = 4 dBm  
Figure 70. 2× LO Leakage at IF1 vs. LO Frequency at  
Various Temperatures, LO = 4 dBm  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
17  
18  
19  
20  
21  
22  
23  
24  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
LO FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 68. 2× LO Leakage at IF2 vs. LO Frequency at  
Various Temperatures, LO = 4 dBm  
Figure 71. IF1 Leakage at RFOUT vs. IF Frequency at  
Various Temperatures  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
IF FREQUENCY (GHz)  
Figure 69. IF2 Leakage at RFOUT vs. IF Frequency at  
Various Temperatures  
Rev. B | Page 16 of 24  
 
Data Sheet  
HMC7912  
RETURN LOSS PERFORMANCE  
0
0
–5  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
–5  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–20  
–25  
–30  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
8.0  
8.5  
9.0  
9.5  
10.0  
10.5  
11.0  
11.5  
12.0  
RF FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 72. RF Return Loss vs. RF Frequency at Various Temperatures,  
LO = 4 dBm at LO Frequency = 20 GHz  
Figure 74. LO Return Loss vs. LO Frequency at Various Temperatures,  
LO = 4 dBm  
0
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 73. IF1 Return Loss vs. IF Frequency at Various Temperatures,  
LO = 4 dBm at LO Frequency = 20 GHz  
Figure 75. IF2 Return Loss vs. IF Frequency at Various Temperatures,  
LO = 4 dBm at LO Frequency = 20 GHz  
Rev. B | Page 17 of 24  
 
HMC7912  
Data Sheet  
POWER DETECTOR PERFORMANCE  
10  
0.1  
1
0.01  
0.1  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
0.01  
0.001  
–16 –14 –12 –10 –8 –6 –4 –2  
0
2
4
6
8
10  
–16 –14 –12 –10 –8 –6 –4 –2  
0
2
4
6
8
10  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
Figure 76. Detector Output Voltage (VREF − VDET) vs. Output Power at Various  
Temperatures, LO = 17.5 GHz  
Figure 79. Detector Sensitivity vs. Output Power at Various Temperatures,  
LO = 17.5 GHz  
10  
0.1  
1
0.01  
0.1  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
0.01  
–16 –14 –12 –10 –8 –6 –4 –2  
0.001  
–16 –14 –12 –10 –8 –6 –4 –2  
0
2
4
6
8
10  
0
2
4
6
8
10  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
Figure 77. Detector Output Voltage (VREF − VDET) vs. Output Power at Various  
Temperatures, LO = 19 GHz  
Figure 80. Detector Sensitivity vs. Output Power at Various Temperatures,  
LO = 19 GHz  
10  
0.1  
1
0.01  
0.1  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
0.01  
–16 –14 –12 –10 –8 –6 –4 –2  
0.001  
–16 –14 –12 –10 –8 –6 –4 –2  
0
2
4
6
8
10  
0
2
4
6
8
10  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
Figure 78. Detector Output Voltage (VREF − VDET) vs. Output Power at Various  
Temperatures, LO = 20.5 GHz  
Figure 81. Detector Sensitivity vs. Output Power at Various Temperatures,  
LO = 20.5 GHz  
Rev. B | Page 18 of 24  
 
Data Sheet  
HMC7912  
M × N Spurious Output, RF = 24 GHz  
SPURIOUS PERFORMANCE  
IF = 1 GHz at IF input power = −6 dBm, LO frequency =  
23 GHz at LO input = +4 dBm.  
TA = 25°C, IF = 1 GHz, VDLOx = 5 V, VDRFx = 5 V, V CTLx = −5 V,  
V
ESD = −5 V, VGMIX = −0.5 V.  
N × LO  
Mixer spurious products are measured in dBc from the RF  
output power level. Spur values are (M × IF) + (N × LO). N/A  
means not applicable.  
0
1
2
3
4
5
0
1
2
3
4
5
N/A  
4
0
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A N/A N/A  
N/A N/A N/A  
N/A N/A N/A  
N/A N/A N/A  
N/A N/A N/A  
N/A N/A N/A  
59  
74  
91  
90  
113  
M × N Spurious Outputs, RF = 21 GHz  
39  
58  
70  
80  
IF = 1 GHz at IF input power = −6 dBm, LO frequency =  
20 GHz at LO input power = +4 dBm.  
M × IF  
N × LO  
0
N/A  
53  
1
2
3
4
5
0
1
2
3
4
5
5
0
66  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
IF = 2 GHz at IF input power = −6 dBm, LO frequency =  
22 GHz at LO input power = +4 dBm.  
52  
73  
37  
52  
M × IF  
N × LO  
90  
66  
85  
0
1
2
3
4
5
101  
114  
77  
95  
0
1
2
3
4
5
N/A  
5
0
64  
N/A N/A N/A  
N/A N/A N/A  
N/A N/A N/A  
N/A N/A N/A  
N/A N/A N/A  
N/A N/A N/A  
102  
N/A  
60  
61  
73  
93  
113  
N/A  
N/A  
N/A  
N/A  
N/A  
44  
61  
74  
86  
IF = 2 GHz at IF input power = −6 dBm, LO frequency =  
19 GHz at LO input power = +4 dBm.  
M × IF  
N × LO  
0
N/A  
61  
1
2
3
4
5
0
1
2
3
4
5
11  
73  
N/A N/A N/A  
N/A N/A N/A  
N/A N/A N/A  
N/A N/A N/A  
N/A N/A N/A  
N/A N/A N/A  
IF = 3 GHz at IF input power = −6 dBm, LO frequency =  
21 GHz at LO input power = +4 dBm.  
N/A  
44  
66  
63  
51  
M × IF  
N × LO  
79  
60  
74  
0
N/A  
56  
1
2
3
4
5
115  
114  
81  
N/A  
N/A  
0
1
2
3
4
5
4
0
58  
N/A N/A N/A  
N/A N/A N/A  
N/A N/A N/A  
N/A N/A N/A  
N/A N/A N/A  
N/A N/A N/A  
91  
N/A  
N/A  
N/A  
N/A  
47  
57  
49  
69  
84  
76  
IF = 3 GHz at IF input power = −6 dBm, LO frequency =  
18 GHz at LO input = +4 dBm.  
M × IF  
81  
88  
N × LO  
47  
0
1
2
3
4
5
0
1
2
3
4
5
N/A  
50  
57  
59  
64  
25  
3
62  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A N/A  
N/A N/A  
N/A N/A  
N/A N/A  
N/A N/A  
N/A N/A  
0
64  
43  
34  
51  
56  
51  
M × IF  
N/A  
N/A  
N/A  
Rev. B | Page 19 of 24  
 
HMC7912  
Data Sheet  
THEORY OF OPERATION  
The HMC7912 is a GaAs, pHEMT, MMIC I/Q upconverter with  
an integrated LO buffer that upconverts intermediate frequencies  
between dc and 3.5 GHz to radio frequencies between 21 GHz  
and 24 GHz. LO buffer amplifiers are included on chip to allow  
a typical LO drive level of only 4 dBm for full performance. The  
LO path feeds a quadrature splitter followed by on-chip baluns  
that drive the I and Q singly balanced cores of the passive mixers.  
The RF output of the I and Q mixers are then summed through  
an on-chip Wilkinson power combiner and relatively matched  
to provide a single-ended 50 Ω output signal that is amplified  
by the RF amplifiers to produce a dc-coupled and 50 Ω matched  
RF output signal at the RFOUT port. A voltage attenuator precedes  
the RF amplifiers for desired gain control.  
The power detector feature provides a LO cancellation capability  
to the level of −10 dBm. See Figure 82 for a functional block  
diagram of the upconverter circuit architecture.  
ESD  
ESD  
ESD  
LOIN  
V
V
I
DLO1  
DLO2  
ESD  
ESD  
ESD  
ESD  
V
V
V
V
DRF4  
DRF1  
DRF2  
DRF3  
2×  
V
GMIX  
RFOUT  
V
V
DET  
REF  
V
V
V
CTL1  
GRF CTL2  
Q
ESD  
ESD  
ESD  
ESD  
ESD  
ESD  
Figure 82. Upconverter Circuit Architecture  
Rev. B | Page 20 of 24  
 
 
Data Sheet  
HMC7912  
APPLICATIONS INFORMATION  
A typical lower sideband upconversion circuit is shown in  
Figure 83. The lower sideband input signal is connected to the  
input port of the 90° hybrid coupler. The isolated port is loaded  
to 50 Ω. The external 90° hybrid splits the IF signal into I and Q  
phase terms. The I and Q input signals enter the HMC7912 on  
the IF1 and IF2 inputs. IF1 of the device is connected to the 0°  
port of the hybrid coupler. IF2 is connected to the 90° port of  
the hybrid coupler. The LO to RF leakage can be improved by  
applying small dc offsets to the I/Q mixer cores via the VDC_IF1  
and VDC_IF2 inputs. However, it is important to limit the applied  
dc bias to avoid sourcing or sinking more than 3 mA of bias  
current. Depending on the bias sources used, it may be prudent to  
add series resistance to ensure that the applied bias current does  
not exceed 3 mA.  
4. Apply 5 V to Pin 9 (VDLO1) and Pin 10 (VDLO2).  
5. Apply −5 V to Pin 20 (VCTL2) and Pin 21 (VCTL1). Adjust  
CTL1 and VCTL2 between −5 V and 0 V depending on the  
V
amount of attenuation desired.  
6. Apply 5 V to Pin 18, Pin 19, Pin 22, and Pin 25 (VDRF4  
,
V
DRF3, VDRF2, and VDRF1).  
7. Adjust Pin 26 (VGRF) between −2 V and 0 V to achieve a  
total amplifier quiescent drain current of 220 mA.  
LOCAL OSCILLATOR NULLING  
Broad LO nulling may be required to achieve optimum IP3 and  
LO to RF isolation performance. This nulling is achieved by  
applying dc voltages between −0.2 V and +0.2 V to the I and Q  
ports to suppress the LO signal across the RF frequency band by  
approximately 5 dBc to 10 dBc. To suppress the LO signal at the  
RF port, use the following nulling sequence:  
Biasing the power detector circuitry may degrade the IP3  
performance. Therefore, to achieve optimum IP3 performance  
it is recommended that the power detector of the HMC7912 be  
kept in off mode.  
1. Adjust VDC_IF1 between −0.2 V and +0.2 V and monitor the  
LO leakage on the RF port. When the desired or maximum  
level of suppression is achieved, proceed to Step 2.  
2. Adjust VDC_IF2 between −0.2 V and +0.2 V and monitor the  
LO leakage on the RF port until either the desired or the  
maximum level of suppression is achieved.  
3. If the desired level of the LO signal on the RF port has still  
not been achieved, further tune each VDC_IF1 and VDC_IF2  
independently to achieve the desired LO leakage. The  
resolution of the voltage changed on the voltage of the  
BIASING SEQUENCE  
The HMC7912 uses buffer amplifiers in the LO and RF paths.  
These active stages all use depletion mode pHEMTs. To ensure  
transistor damage does not occur, use the following power-up  
bias sequence:  
1. Apply a −5 V bias to Pin 27 (VESD).  
2. Apply a −2 V bias to Pin 26 (VGRF), which is a pinched  
off state.  
V
DC_IF1 and VDC_IF2 inputs must be in the millivolt range.  
3. Apply a −0.5 V bias to Pin 1 (VGMIX). This bias can be  
adjusted from −0.5 V to −1 V depending on the LO power  
used to provide the optimum IP3 response of the mixer.  
Rev. B | Page 21 of 24  
 
 
 
HMC7912  
Data Sheet  
IF1  
IF2  
IFIN  
100pF  
100pF  
HYBRID  
COUPLER  
V
V
DC_IF1  
DC_IF2  
33nH  
33nH  
100nF  
100pF  
100pF  
100nF  
V
ESD  
100pF  
100nF  
4.7µF  
+
V
GRF  
100pF  
100pF  
100pF  
100pF  
100pF  
100pF  
100pF  
100nF  
100nF  
100nF  
100nF  
100nF  
100nF  
100nF  
4.7µF  
+
+
V
DRF1  
DRF2  
CTL1  
CTL2  
DRF3  
DRF4  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
32 31 30 29 28 27 26 25  
V
V
V
V
V
V
GMIX  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
+
+
4.7µF  
100nF  
100pF  
+
HMC7912  
LOIN  
+
+
9
10 11 12 13 14 15 16  
GND  
V
DLO1  
+
+
4.7µF  
4.7µF  
100nF  
100pF  
+
V
DLO2  
RFOUT  
100nF  
100pF  
V
V
DET  
REF  
V
V
DET  
+5V  
100kΩ 100kΩ  
–5V  
V
V
REF  
REF  
10kΩ  
10kΩ  
DET  
10kΩ  
10kΩ  
33kΩ  
V
= V  
– V  
OUT  
REF DET  
VD_5V  
100nF  
33kΩ  
+5V  
100pF  
ALTERNATE SUGGESTED CIRCUIT  
Figure 83. Typical Application Circuit  
Rev. B | Page 22 of 24  
 
Data Sheet  
HMC7912  
EVALUATION PRINTED CIRCUIT BOARD  
The circuit board used in this application must use RF circuit  
design techniques. Signal lines must have 50 Ω impedance and  
the package ground leads and exposed pad must be connected  
directly to the ground plane similar to that shown in Figure 84.  
Use a sufficient number of via holes to connect the top and  
bottom ground planes. The evaluation circuit board shown in  
Figure 84 is available from Analog Devices, Inc., upon request.  
J3  
J2  
Q
I
L2  
L1  
C75  
J6  
C76  
C70  
+
VI  
VQ  
VADJUST  
J5  
C64  
+
-5ESD  
C62  
VGRF  
+
C30  
8
C61  
C49  
4
6
C
4
+
U1  
VDLNA  
+
VDD2  
C47  
C
J1  
C29  
C28  
C45  
C17  
C18  
C15  
C44  
LOIN  
C16  
C13  
C10  
+
C11  
1
VCTL1  
C7  
C
C8  
C12  
VCTL2  
C2  
+
+
4
VDLO1  
6
5
C
C5  
C3  
C
J8  
VDLO2  
1
+
3
C9  
C32  
C
+
C6  
VDD3  
R1  
C26  
VDD4  
VDREF  
C77  
+
+
C25  
J7  
C65  
VD_5V  
R2  
C57  
+
VDOUT  
C78  
C27  
+
600-01346-00-2  
J4  
RFOUT  
Figure 84. Evaluation Board Top Layer  
Rev. B | Page 23 of 24  
 
 
HMC7912  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
PIN 1  
TIONS  
INDIC ATOR AREA OP  
INDICATOR  
(SEE DETAIL A)  
25  
32  
24  
1
0.50  
BSC  
3.80  
3.70 SQ  
3.60  
EXPOSED  
PAD  
17  
8
16  
9
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
3.50 REF  
0.90  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-4.  
Figure 85. 32-Lead Lead Frame Chip Scale Package [LFCSP]  
5 mm × 5 mm Body and 0.85 mm Package Height  
(HCP-32-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
MSL Rating2  
MSL3  
Package Description  
Package Option  
HCP-32-1  
HCP-32-1  
HMC7912LP5E  
HMC7912LP5ETR  
EV1HMC7912LP5  
−40°C to +85°C  
−40°C to +85°C  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Assembly Board  
MSL3  
1 HMC7912LP5E and HMC7912LP5ETR are RoHS compliant parts.  
2 The peak reflow temperature is 260°C. See the Absolute Maximum Ratings section, Table 2.  
©2016–2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13735-0-4/18(B)  
Rev. B | Page 24 of 24  
 
 

相关型号:

HMC7912LP5ETR

21 GHz to 24 GHz, GaAs, MMIC, I/Q Upconverter
ADI

HMC791LC4B

DIVIDE-BY-2, DIVIDE-BY-4 0.1 - 28 GHz
HITTITE

HMC791LC4B_10

28 GHz CLOCK DIVIDE-BY-2 / DIVIDE-BY-4
HITTITE

HMC792ALP4E

0.25 dB LSB GaAs MMIC 6-Bit Digital Attenuator SMT, DC - 6 GHz
ADI

HMC792ALP4E

Variable Attenuator, 0MHz Min, 6000MHz Max, 4dB Insertion Loss-Max, 4 X 4 MM, ROHS COMPLIANT, LEADLESS, PLASTIC, SMT, QFN-24
HITTITE

HMC792ALP4ETR

0.25 dB LSB GaAs MMIC 6-Bit Digital Attenuator SMT, DC - 6 GHz
ADI

HMC792LP4E

0.25 dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 6 GHz
HITTITE

HMC792LP4E_10

0.25 dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 6 GHz
HITTITE

HMC794LP3E

2 GHz LOW NOISE PROGRAMMABLE DIVIDER (N = 1 to 4)
HITTITE

HMC794LP3E

2 GHz Low Noise Programmable Divider (N = 1 to 4) SMT
ADI

HMC794LP3ETR

2 GHz Low Noise Programmable Divider (N = 1 to 4) SMT
ADI

HMC794LP3ETR

Wide Band Low Power Amplifier,
HITTITE