HMC8142 [ADI]

HMC8142;
HMC8142
型号: HMC8142
厂家: ADI    ADI
描述:

HMC8142

射频 微波
文件: 总17页 (文件大小:392K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
81 GHz to 86 GHz, E-Band Power Amplifier  
With Power Detector  
Data Sheet  
HMC8142  
FEATURES  
GENERAL DESCRIPTION  
Gain: 21 dB typical  
The HMC8142 is an integrated E-band gallium arsenide (GaAs),  
Output power for 1 dB compression (P1dB): 25 dBm typical  
Saturated output power (PSAT): 26 dBm typical  
Output third-order intercept (OIP3): 29 dBm typical  
Input return loss: 12 dB typical  
Output return loss: 8 dB typical  
DC supply: 4 V at 450 mA  
pseudomorphic high electron mobility transistor (pHEMT),  
monolithic microwave integrated circuit (MMIC), medium power  
amplifier with a temperature compensated on-chip power detector  
that operates from 81 GHz to 86 GHz. The HMC8142 provides  
21 dB of gain, 25 dBm of output power at 1 dB compression,  
29 dBm of output third-order intercept, and 26 dBm of saturated  
output power at 20% power added efficiency (PAE) from a 4 V  
power supply. The HMC8142 exhibits excellent linearity and is opti-  
mized for E-band communications and high capacity wireless  
backhaul radio systems. The amplifier configuration and high gain  
make it an excellent candidate for last stage signal amplification  
before the antenna. All data is taken with the chip in a 50 Ω test  
fixture connected via a 3 mil wide × 0. 5 mil thick × 7 mil long  
ribbon on each port.  
No external matching required  
Die size: 3.039 mm × 1.999 mm × 0.05 mm  
APPLICATIONS  
E-band communication systems  
High capacity wireless backhaul radio systems  
Test and measurement  
FUNCTIONAL BLOCK DIAGRAM  
4
5
6
7
9
11  
10  
8
V
V
V
DD3  
DD1  
DD2  
V
DD4  
HMC8142  
12  
13  
14  
3
2
RFIN  
RFOUT  
1
V
V
V
V
GG4  
GG1  
GG2  
GG3  
V
V
DET  
REF  
20  
18  
24  
22  
17  
25  
23  
21  
19  
16  
15  
Figure 1.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC8142* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DISCUSSIONS  
View all HMC8142 EngineerZone Discussions.  
DOCUMENTATION  
Application Notes  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
AN-1363: Meeting Biasing Requirements of Externally  
Biased RF/Microwave Amplifiers with Active Bias  
Controllers  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
Data Sheet  
HMC8142: 81 GHz to 86 GHz, E-Band Power Amplifier With  
Power Detector Data Sheet  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
DESIGN RESOURCES  
HMC8142 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
HMC8142  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 12  
Applications Information .............................................................. 13  
Typical Application Circuit....................................................... 13  
Assembly Diagram ..................................................................... 14  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Interface Schematics..................................................................... 6  
Typical Performance Characteristics ............................................. 7  
Mounting and Bonding Techniques for Millimeterwave  
GaAs MMICs .................................................................................. 15  
Handling Precautions ................................................................ 15  
Mounting..................................................................................... 15  
Wire Bonding.............................................................................. 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
REVISION HISTORY  
2/16—Revision A: Initial Version  
Rev. A | Page 2 of 16  
 
Data Sheet  
HMC8142  
SPECIFICATIONS  
TA = 25°C, VDDx = 4 V, IDD = 450 mA, unless otherwise noted.  
Table 1.  
Parameter  
Min  
81  
Typ  
Max  
Unit  
OPERATING CONDITIONS  
Radio Frequency (RF) Range  
PERFORMANCE  
86  
GHz  
Gain  
19  
21  
0.02  
25  
26  
29  
12  
8
dB  
Gain Variation over Temperature  
Output Power for 1 dB Compression (P1dB)  
Saturated Output Power (PSAT  
Output Third-Order Intercept (OIP3) at Maximum Gain1  
Input Return Loss  
Output Return Loss  
dB/°C  
dBm  
dBm  
dBm  
dB  
22.5  
)
dB  
POWER SUPPLY  
Total Supply Current (IDD)2  
450  
mA  
1 Data taken at output power (POUT) = 12 dBm/tone, 1 MHz spacing.  
2 Adjust VGGx from −2 V to 0 V to achieve the total drain current, IDD = 450 mA.  
Rev. A | Page 3 of 16  
 
HMC8142  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
Table 3. Thermal Resistance  
Package Type  
Parameter  
Rating  
1
Drain Bias Voltage (VDD1 to VDD4  
)
4.5 V  
θJC  
Unit  
Gate Bias Voltage (VGG1 to VGG4  
)
−3 V to 0 V  
175°C  
25-Pad Bare Die [CHIP]  
48.33 °C/W  
Maximum Junction Temperature (to  
Maintain 1 Million Hours Mean Time to  
Failure (MTTF))  
1 Based on ABLETHERM® 2600BT as die attach epoxy with thermal  
conductivity of 20 W/mK.  
ESD CAUTION  
Storage Temperature Range  
Operating Temperature Range  
−65°C to +150°C  
−55°C to +85°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 4 of 16  
 
 
 
Data Sheet  
HMC8142  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
4
5
6
7
8
9
10  
11  
V
V
V
V
DD4  
GND  
DD1  
GND  
DD2  
GND  
DD3  
GND  
GND  
RFOUT  
GND  
12  
GND  
RFIN  
GND  
3
2
1
HMC8142  
TOP VIEW  
(Not to Scale)  
13  
14  
GND  
25  
V
GND  
23  
V
GND  
21  
V
GND  
19  
V
GG1  
24  
GG2  
GG3  
GG4  
GND  
17  
V
V
REF  
DET  
22  
20  
18  
16  
15  
Figure 2. Pad Configuration  
Table 4. Pad Function Descriptions  
Pad No. Mnemonic  
Description  
Ground Connection (See Figure 3).  
1, 3, 4, 6, 8, 10, 12, 14, GND  
17, 19, 21, 23, 25  
2
RFIN  
RF Input. AC couple RFIN and match it to 50 Ω (See Figure 4).  
Drain Bias Voltage for the Power Amplifier (See Figure 5).  
RF Output. AC couple RFOUT and match it to 50 Ω (see Figure 6).  
Detector Voltage for the Power Detector (See Figure 7). VDET is the dc voltage representing the RF  
output power rectified by the diode, which is biased through an external resistor. Refer to the  
typical application circuit for the required external components (see Figure 40).  
5, 7, 9, 11  
13  
15  
VDD1 to VDD4  
RFOUT  
VDET  
16  
VREF  
Reference Voltage for the Power Detector (See Figure 7). VREF is the dc bias of diode biased through  
an external resistor used for the temperature compensation of VDET. Refer to the typical application  
circuit for the required external components (see Figure 40).  
18, 20, 22, 24  
Die Bottom  
VGG4 to VGG1  
GND  
Gate Bias Voltage for the Power Amplifier (See Figure 8). Refer to the typical application circuit for  
the required external components (see Figure 40).  
Ground. The die bottom must be connected to the RF/dc ground (see Figure 3).  
Rev. A | Page 5 of 16  
 
HMC8142  
Data Sheet  
INTERFACE SCHEMATICS  
GND  
RFOUT  
Figure 3. GND Interface  
Figure 6. RFOUT Interface  
V
, V  
DET  
REF  
RFIN  
Figure 4. RFIN Interface  
Figure 7. VDET, VREF Interface  
V
TO V  
DD4  
DD1  
V
TO V  
GG1  
GG4  
Figure 5. VDD1 to VDD4 Interface  
Figure 8. VGG4 to VGG1 Interface  
Rev. A | Page 6 of 16  
 
 
 
 
 
 
 
Data Sheet  
HMC8142  
TYPICAL PERFORMANCE CHARACTERISTICS  
30  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
25  
20  
15  
GAIN  
INPUT RETURN LOSS  
OUTPUT RETURN LOSS  
10  
5
0
–5  
T
T
T
= +85°C  
= +25°C  
= –55°C  
–10  
–15  
–20  
A
A
A
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 9. Broadband Gain and Return Loss Response vs. Frequency,  
Drain Current (IDD) = 450 mA  
Figure 12. Gain vs. Frequency at Various Temperatures,  
Drain Current (IDD) = 450 mA  
25  
24  
–5  
–7  
T
T
T
= +85°C  
= +25°C  
= –55°C  
A
A
A
I
I
I
= 350mA  
= 400mA  
= 450mA  
DD  
DD  
DD  
23  
22  
21  
20  
19  
18  
17  
16  
15  
–9  
–11  
–13  
–15  
–17  
–19  
–21  
–23  
–25  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 10. Gain vs. Frequency at Various Drain Currents (IDD  
)
Figure 13. Input Return Loss vs. Frequency at Various Temperatures,  
Drain Current (IDD) = 450 mA  
0
–2  
–4  
–6  
–8  
–44  
T
T
T
= +85°C  
= +25°C  
= –55°C  
A
A
A
–46  
–48  
–50  
–52  
–54  
–56  
–58  
–60  
–62  
–64  
–10  
–12  
–14  
–16  
–18  
–20  
T
T
T
= +85°C  
= +25°C  
= –55°C  
A
A
A
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 11. Output Return Loss vs. Frequency at Various Temperatures,  
Drain Current (IDD) = 450 mA  
Figure 14. Reverse Isolation vs. Frequency at Various Temperatures,  
Drain Current (IDD) = 450 mA  
Rev. A | Page 7 of 16  
 
HMC8142  
Data Sheet  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
T
T
T
= +85°C  
= +25°C  
= –55°C  
A
A
A
I
I
I
= 350mA  
= 400mA  
= 450mA  
DD  
DD  
DD  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 15. Output P1dB vs. Frequency at Various Temperatures,  
Drain Current (IDD) = 450 mA  
Figure 18. Output P1dB vs. Frequency at Various Drain Currents (IDD)  
30  
29  
28  
27  
26  
25  
24  
23  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
I
I
I
= 350mA  
= 400mA  
= 450mA  
DD  
DD  
DD  
T
T
T
= +85°C  
= +25°C  
= –55°C  
A
A
A
22  
21  
20  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 16. PSAT vs. Frequency at Various Temperatures,  
Drain Current (IDD) = 450 mA  
Figure 19. PSAT vs. Frequency at Various Drain Currents (IDD)  
35  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
I
I
I
= 350mA  
= 400mA  
= 450mA  
DD  
DD  
DD  
T
T
T
= +85°C  
= +25°C  
= –55°C  
A
A
A
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 17. Output IP3 vs. Frequency at Various Temperatures,  
Drain Current (IDD) = 450 mA, POUT/Tone = 12 dBm  
Figure 20. Output IP3 vs. Frequency at Various Drain Currents (IDD),  
POUT/Tone = 12 dBm  
Rev. A | Page 8 of 16  
Data Sheet  
HMC8142  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
I
I
I
= 350mA  
= 400mA  
= 450mA  
DD  
DD  
DD  
12dBm  
14dBm  
16dBm  
8
9
10  
11  
P
12  
13  
14  
15  
16  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
/TONE (dBm)  
FREQUENCY (GHz)  
OUT  
Figure 24. Output IP3 vs. POUT/Tone at Various Drain Currents (IDD  
)
Figure 21. Output IP3 vs. Frequency at Various POUT/Tones,  
Drain Current (IDD) = 450 mA  
at RF = 81 GHz  
35  
34  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
I
I
I
= 350mA  
= 400mA  
= 450mA  
I
I
I
= 350mA  
= 400mA  
= 450mA  
DD  
DD  
DD  
DD  
DD  
DD  
33  
32  
31  
30  
29  
28  
27  
26  
25  
8
9
10  
11  
P
12  
13  
14  
15  
16  
8
9
10  
11  
P
12  
13  
14  
15  
16  
/TONE (dBm)  
/TONE (dBm)  
OUT  
OUT  
Figure 25. Output IP3 vs. POUT/Tone at Various Drain Currents (IDD  
)
Figure 22. Output IP3 vs. POUT/Tone at Various Drain Currents (IDD  
)
at RF = 86 GHz  
at RF = 83.5 GHz  
30  
30  
GAIN (dB)  
29  
GAIN (dB)  
29  
P1dB (dBm)  
P1dB (dBm)  
P
(dBm)  
P
(dBm)  
SAT  
SAT  
28  
27  
26  
25  
24  
23  
22  
21  
20  
28  
27  
26  
25  
24  
23  
22  
21  
20  
350  
400  
(mA)  
450  
350  
400  
(mA)  
450  
I
I
DD  
DD  
Figure 26. Gain, Output P1dB, and PSAT vs. Drain Current (IDD  
)
Figure 23. Gain, Output P1dB, and PSAT vs. Drain Current (IDD  
)
at RF = 83.5 GHz  
at RF = 81 GHz  
Rev. A | Page 9 of 16  
HMC8142  
Data Sheet  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
28  
24  
20  
16  
12  
8
580  
560  
540  
520  
500  
480  
GAIN (dB)  
P1dB (dBm)  
P
(dBm)  
SAT  
P
OUT  
GAIN  
PAE  
4
460  
440  
I
DD  
0
20  
350  
–15 –13 –11 –9 –7 –5 –3 –1  
1
3
5
7
9
11  
400  
(mA)  
450  
INPUT POWER (dBm)  
I
DD  
Figure 27. Gain, Output P1dB, and PSAT vs. Drain Current (IDD  
)
Figure 30. POUT, Gain, PAE, and IDD vs. Input Power at RF = 81 GHz,  
Drain Current (IDD) = 450 mA  
at RF = 86 GHz  
28  
24  
20  
16  
12  
8
580  
560  
540  
520  
500  
480  
460  
440  
28  
580  
560  
540  
520  
500  
480  
460  
440  
24  
20  
16  
12  
8
P
OUT  
P
OUT  
GAIN  
GAIN  
4
4
PAE  
PAE  
I
DD  
I
DD  
0
0
–15 –13 –11 –9 –7 –5 –3 –1  
1
3
5
7
9
11  
–15 –13 –11 –9 –7 –5 –3 –1  
1
3
5
7
9
11  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 28. POUT, Gain, PAE, and IDD vs. Input Power at RF = 83.5 GHz,  
Drain Current (IDD) = 450 mA  
Figure 31. POUT, Gain, PAE, and IDD vs. Input Power at RF = 86 GHz,  
Drain Current (IDD) = 450 mA  
28  
24  
20  
16  
12  
8
560  
530  
500  
470  
440  
410  
380  
350  
28  
560  
530  
500  
470  
440  
410  
380  
350  
24  
20  
16  
12  
8
P
P
OUT  
OUT  
GAIN  
GAIN  
4
4
PAE  
PAE  
I
I
DD  
DD  
0
0
–15 –13 –11 –9 –7 –5 –3 –1  
1
3
5
7
9
11  
–15 –13 –11 –9 –7 –5 –3 –1  
1
3
5
7
9
11  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 29. POUT, Gain, PAE, and IDD vs. Input Power at RF = 81 GHz,  
Drain Current (IDD) = 350 mA  
Figure 32. POUT, Gain, PAE, and IDD vs. Input Power at RF = 83.5 GHz,  
Drain Current (IDD) = 350 mA  
Rev. A | Page 10 of 16  
Data Sheet  
HMC8142  
28  
24  
20  
16  
12  
8
560  
530  
500  
470  
440  
410  
380  
350  
50  
45  
40  
35  
30  
25  
20  
81GHz  
82GHz  
83GHz  
84GHz  
85GHz  
86GHz  
P
OUT  
GAIN  
4
PAE  
I
DD  
0
–15 –13 –11 –9 –7 –5 –3 –1  
1
3
5
7
9
11  
8
9
10  
11  
12  
13  
14  
15  
16  
INPUT POWER (dBm)  
P
/TONE (dBm)  
OUT  
Figure 36. Output IMD3 vs. POUT/Tone at Various Frequencies,  
Drain Current (IDD) = 450 mA  
Figure 33. POUT, Gain, PAE, and IDD vs. Input Power at RF = 86 GHz,  
Drain Current (IDD) = 350 mA  
3.0  
2.5  
2.0  
1.5  
3.0  
2.5  
2.0  
1.5  
81GHz  
82GHz  
83GHz  
84GHz  
85GHz  
86GHz  
1.0  
0.5  
0
81GHz  
82GHz  
83GHz  
84GHz  
85GHz  
86GHz  
1.0  
0.5  
0
–15 –13 –11 –9  
–7  
–5  
–3  
–1  
1
3
5
7
–15 –13 –11 –9  
–7  
–5  
–3  
–1  
1
3
5
7
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 37. Power Dissipation vs. Input Power at Various Frequencies,  
Drain Current (IDD) = 350 mA, TA = 85°C  
Figure 34. Power Dissipation vs. Input Power at Various Frequencies,  
Drain Current (IDD) = 450 mA, TA = 85°C  
10  
10  
T
T
T
= +85°C  
= +25°C  
= –55°C  
T
T
T
= +85°C  
= +25°C  
= –55°C  
A
A
A
A
A
A
1
1
0.1  
0.1  
0.01  
–16  
0.01  
–16  
–11  
–6  
–1  
4
9
14  
19  
24  
29  
–11  
–6  
–1  
4
9
14  
19  
24  
29  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
Figure 35. Detector Output Voltage (VOUT) vs. Output Power at Various  
Temperatures, Drain Current (IDD) = 450 mA, RF = 81 GHz  
Figure 38. Detector Output Voltage (VOUT) vs. Output Power at Various  
Temperatures, Drain Current (IDD) = 450 mA, RF = 86 GHz  
Rev. A | Page 11 of 16  
HMC8142  
Data Sheet  
THEORY OF OPERATION  
The architecture of the HMC8142 power amplifier is shown in  
Figure 39. The HMC8142 uses four cascaded gain stages to form an  
amplifier with a combined gain of 21 dB and saturated output  
power (PSAT) of 26 dBm. At the output of the last stage, a coupler  
taps off a small portion of the output signal. The coupled signal  
is presented to an on-chip diode detector for external monitoring of  
the output power. A matched reference diode is included to help  
correct for detector temperature dependencies. See the application  
circuit shown in Figure 40 for further details on biasing the  
different blocks and using the detector features.  
RFIN  
RFOUT  
V
V
DET  
REF  
Figure 39. Power Amplifier Circuit Architecture  
Rev. A | Page 12 of 16  
 
 
Data Sheet  
HMC8142  
APPLICATIONS INFORMATION  
1. Apply a −2 V bias to the VGG1 to VGG4 pads.  
2. Apply 4 V to the VDD1 to VDD4 pads.  
3. Adjust VGG1 to VGG4 between −2 V and 0 V to achieve a  
total amplifier drain current of 450 mA.  
TYPICAL APPLICATION CIRCUIT  
A typical application circuit for the HMC8142 is shown in  
Figure 40. Combine supply lines as shown in the application  
circuit schematic to minimize external component count and  
simplify power supply routing.  
To power down the HMC8142, follow the procedure in reverse.  
The HMC8142 uses several amplifier, detector, and attenuator  
stages. All stages use depletion mode pHEMT transistors. It is  
important to follow the following power-up bias sequence to  
ensure transistor damage does not occur.  
For additional guidance on general bias sequencing, see the  
MMIC Amplifier Biasing Procedure application note.  
V
, V  
, V  
, V  
DD1  
DD2  
DD3 DD4  
4.7µF  
0.01µF  
120pF  
120pF  
8
120pF  
120pF  
4
5
6
7
9
10 11  
V
V
V
DD4  
DD2  
DD3  
V
DD1  
3
2
12  
13  
RFIN  
RFOUT  
RFOUT  
RFIN  
1
14  
V
V
GG1  
GG3  
V
V
GG4  
V
V
DET  
GG2  
REF  
16 15  
25  
24  
23  
22  
21  
20  
19  
18  
17  
+5V  
100k100kΩ  
+5V  
10kΩ  
120pF  
120pF  
120pF  
120pF  
10kΩ  
V
= V  
– V  
OUT  
REF DET  
10kΩ  
10kΩ  
V
, V  
, V  
, V  
GG1 GG2 GG3 GG4  
4.7µF  
0.01µF  
–5V  
SUGGESTED INTERFACE CIRCUIT  
Figure 40. Typical Application Circuit  
Rev. A | Page 13 of 16  
 
 
 
HMC8142  
Data Sheet  
ASSEMBLY DIAGRAM  
4.7µF  
0.01µF  
120pF  
120pF  
120pF  
9
120pF  
10 11  
4
5
6
7
8
50TRANSMISSION LINE  
3 MIL WIDE GOLD RIBBON  
(WEDGE BOND)  
3
2
1
12  
13  
14  
3 MIL WIDE GOLD RIBBON  
(WEDGE BOND)  
25 24 23 22  
21 20 19 18  
17 16 15  
6 MIL NOMINAL GAP  
120pF  
120pF  
120pF  
120pF  
0.01µF  
4.7µF  
Figure 41. Assembly Diagram  
Rev. A | Page 14 of 16  
 
Data Sheet  
HMC8142  
MOUNTING AND BONDING TECHNIQUES FOR MILLIMETERWAVE GAAS MMICS  
Attach the die directly to the ground plane eutectically or with  
conductive epoxy.  
Transients  
Suppress instrument and bias supply transients while bias is  
applied. To minimize inductive pickup, use shielded signal and  
bias cables.  
To bring RF to and from the chip, use 50 Ω microstrip trans-  
mission lines on 0.127 mm (5 mil) thick alumina thin film  
substrates (see Figure 42).  
General Handling  
Handle the chip on the edges only using a vacuum collet or with  
a sharp pair of bent tweezers. Because the surface of the chip  
has fragile air bridges, never touch the surface of the chip with a  
vacuum collet, tweezers, or fingers.  
0.05mm (0.002") THICK GaAs MMIC  
RIBBON BOND  
0.076mm  
(0.003")  
MOUNTING  
The chip is back metallized and can be die mounted with gold/tin  
(AuSn) eutectic preforms or with electrically conductive epoxy.  
The mounting surface must be clean and flat.  
RF GROUND PLANE  
Eutectic Die Attach  
0.127mm (0.005") THICK ALUMINA  
THIN FILM SUBSTRATE  
It is best to use an 80% gold/20% tin preform with a work  
surface temperature of 255°C and a tool temperature of 265°C.  
When hot 90% nitrogen/10% hydrogen gas is applied, maintain  
tool tip temperature at 290°C. Do not expose the chip to a  
temperature greater than 320°C for more than 20 sec. No more  
than 3 sec of scrubbing is required for attachment.  
Figure 42. Routing RF Signals  
To minimize bond wire length, place microstrip substrates as  
close to the die as possible. The typical die to substrate spacing  
is 0.076 mm to 0.152 mm (3 mil to 6 mil).  
Epoxy Die Attach  
HANDLING PRECAUTIONS  
ABLETHERM 2600BT is recommended for die attachment.  
Apply a minimum amount of epoxy to the mounting surface so  
that a thin epoxy fillet is observed around the perimeter of the  
chip after placing it into position. Cure the epoxy per the schedule  
provided by the manufacturer.  
To avoid permanent damage, adhere to the precautions in the  
following sections.  
Storage  
All bare die ship in either waffle or gel-based ESD protective  
containers, sealed in an ESD protective bag. After opening the  
sealed ESD protective bag, all die must be stored in a dry  
nitrogen environment.  
WIRE BONDING  
RF bonds made with 3 mil × 0.5 mil gold ribbon are recom-  
mended for the RF ports. These bonds must be thermosonically  
bonded with a force of 40 g to 60 g. DC bonds of 1 mil  
(0.025 mm) diameter, thermosonically bonded, are recommended.  
Create ball bonds with a force of 40 g to 50 g and wedge bonds  
with a force of 18 g to 22 g. Create all bonds with a nominal  
stage temperature of 150°C. Apply a minimum amount of  
ultrasonic energy to achieve reliable bonds. Keep all bonds as  
short as possible, less than 12 mil (0.31 mm).  
Cleanliness  
Handle the chips in a clean environment. Never use liquid  
cleaning systems to clean the chip.  
Static Sensitivity  
Follow ESD precautions to protect against ESD strikes.  
Rev. A | Page 15 of 16  
 
 
 
 
 
HMC8142  
Data Sheet  
OUTLINE DIMENSIONS  
3.039  
0.05  
0.200  
0.200 0.200  
0.200  
0.200  
0.600  
0.600  
0.089  
0.114  
4
5
6
7
8
9
10  
11  
0.168  
0.764  
0.130  
0.130  
12  
13  
14  
3
2
1.999  
1
0.764  
0.09  
0.191  
0.106  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
SIDE VIEW  
0.600  
0.600  
0.200 0.200 0.200  
0.200 0.200 0.200  
TOP VIEW  
(CIRCUIT SIDE)  
0.200 0.200  
0.003  
0.014  
Figure 43. 25-Pad Bare Die [CHIP]  
(C-25-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−55°C to +85°C  
−55°C to +85°C  
Package Description  
25-Pad Bare Die [CHIP]  
25-Pad Bare Die [CHIP]  
Package Option2  
C-25-2  
HMC8142  
HMC8142-SX  
C-25-2  
1 The HMC8142-SX consists of two pairs of the die in a gel pack for sample orders.  
2 This is a waffle pack option; contact Analog Devices, Inc., sales representatives for additional packaging options.  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13425-0-2/16(A)  
Rev. A | Page 16 of 16  
 
 

相关型号:

HMC8142-SX

HMC8142-SX
ADI

HMC814LC3B

SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 13 - 24.6 GHz OUTPUT
HITTITE

HMC814LC3BTR

Frequency Doubler
HITTITE

HMC814LC3B_09

SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 13 - 24.6 GHz OUTPUT
HITTITE

HMC814LC3B_10

SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 13 - 24.6 GHz OUTPUT
HITTITE

HMC814_09

GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 13 - 24.6 GHz OUTPUT
HITTITE

HMC814_10

GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 13 - 24.6 GHz OUTPUT
HITTITE

HMC815B

21 GHz to 27 GHz, GaAs, MMIC, I/Q Upconverter
ADI

HMC815BLC5

21 GHz to 27 GHz, GaAs, MMIC, I/Q Upconverter
ADI

HMC815BLC5TR

21 GHz to 27 GHz, GaAs, MMIC, I/Q Upconverter
ADI

HMC815BLC5TR-R5

21 GHz to 27 GHz, GaAs, MMIC, I/Q Upconverter
ADI

HMC815LC5

GaAs MMIC I/Q UPCONVERTER 21 - 27 GHz
HITTITE