HMC951A [ADI]

5.6 GHz to 8.6 GHz, GaAs, MMIC, I/Q Downconverter;
HMC951A
型号: HMC951A
厂家: ADI    ADI
描述:

5.6 GHz to 8.6 GHz, GaAs, MMIC, I/Q Downconverter

文件: 总31页 (文件大小:645K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5.6 GHz to 8.6 GHz,  
GaAs, MMIC, I/Q Downconverter  
HMC951A  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
HMC951A  
Conversion gain: 13 dB typical  
Image rejection: 32 dBc typical  
Input P1dB compression: −6 dBm typical  
Input IP3: 3 dBm typical, 6.0 GHz to 8.6 GHz  
Noise figure: 2 dB typical  
LO to RF isolation: 48 dBm typical  
LO to IF isolation: 13 dBm typical  
RF to IF isolation: 10 dBm typical  
Amplitude balance: 0.2 dB typical  
Phase balance: −2° typical  
NIC 1  
VDRF 2  
NIC 3  
18 NIC  
17  
16  
15  
NIC  
VDLO  
NIC  
4
GND  
RFIN 5  
14 NIC  
13 NIC  
6
GND  
RF return loss: 10 dB typical  
EXPOSED  
PAD  
LO return loss: 15 dB typical  
IF return loss: 15 dB typical  
Exposed paddle, 4 mm × 4 mm, 24-lead, LFCSP  
Figure 1.  
APPLICATIONS  
Point to point and point to multipoint radios  
Military radars, electronic warfare, and electronic  
intelligence  
Satellite communications  
Sensors  
GENERAL DESCRIPTION  
The HMC951A is a compact gallium arsenide (GaAs),  
select the required sideband. The I/Q mixer topology reduces  
the need for filtering of unwanted sideband. The HMC951A  
is a smaller alternative to hybrid style, single sideband (SSB)  
downconverter assemblies, and it eliminates the need for wire  
bonding by allowing the use of surface-mount manufacturing  
techniques.  
monolithic microwave integrated circuit (MMIC), in-phase  
quadrature (I/Q) downconverter in a RoHS compliant package  
that operates from 5.6 GHz to 8.6 GHz. This device provides a  
small signal conversion gain of 13 dB with a noise figure of 2 dB  
and an image rejection of 32 dBc. The HMC951A uses a low noise  
amplifier (LNA) followed by an image mixer that is driven by a  
local oscillator (LO) buffer amplifier. The image reject mixer  
eliminates the need for a filter following the LNA and removes  
thermal noise at the image frequency. The IF1 and IF2 mixer  
outputs are provided and an external 90° hybrid is needed to  
The HMC951A is available in 4 mm × 4 mm, 24-lead lead  
frame chip scale package (LFCSP) and operates over the  
−40°C to +85°C temperature range. An evaluation board for  
the HMC951A is also available upon request.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2018 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
HMC951A  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Isolation and Return Loss ......................................................... 19  
IF Bandwidth Performance......................................................... 21  
Amplitude and Phase Imbalance Performance...................... 23  
Spurious Performance ............................................................... 25  
Theory of Operation ...................................................................... 27  
LO Driver Amplifier .................................................................. 27  
Mixer............................................................................................ 27  
LNA .............................................................................................. 27  
Applications Information .............................................................. 28  
Typical Application Circuit....................................................... 28  
Performance at Lower IF Frequencies..................................... 29  
Evaluation Board Information.................................................. 29  
Outline Dimensions....................................................................... 31  
Ordering Guide .......................................................................... 31  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
5.6 GHz to 6.0 GHz ...................................................................... 3  
6.0 GHz to 8.6 GHz ...................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Interface Schematics..................................................................... 6  
Typical Performance Characteristics ............................................. 7  
Lower Sideband (High-Side LO)................................................ 7  
Upper Sideband (Low-Side LO)............................................... 13  
REVISION HISTORY  
4/2018—Rev. 0 to Rev. A  
Changes to Performance at Lower IF Frequencies Section....... 29  
Removed Figure 99; Renumbered Sequentially.......................... 29  
3/2018—Revision 0: Initial Version  
Rev. A | Page 2 of 31  
 
Data Sheet  
HMC951A  
SPECIFICATIONS  
5.6 GHz TO 6.0 GHz  
TA = 25°C, intermediate frequency (IF) = 1000 MHz, VDRF = VDLO = 5 V, local oscillator (LO) power = 0 dBm, unless otherwise noted.  
Measurements performed with lower sideband selected and an external 90° hybrid at the IF ports, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
OPERATING CONDITIONS  
Frequency Range  
Radio Frequency (RF)  
LO  
IF  
5.6  
4.5  
DC  
−4  
6.0  
12.1  
3.5  
+4  
GHz  
GHz  
GHz  
dBm  
LO Drive Range  
0
PERFORMANCE  
Conversion Gain  
Image Rejection  
Input Power for 1 dB Compression (P1dB)  
Input Third-Order Intercept (IP3)  
Amplitude Balance  
Phase Balance  
Isolation  
10  
20  
13  
32  
−6  
2
0.2  
−2  
dB  
dBc  
dBm  
dBm  
dB  
0
Degree  
LO to RF  
LO to IF  
RF to IF  
Noise Figure  
Return Loss  
RF  
LO  
IF  
40  
9
48  
13  
10  
2
dB  
dB  
dB  
dB  
2.5  
10  
15  
15  
dB  
dB  
dB  
POWER SUPPLY  
Drain Current  
Low Noise Amplifier (IDD1  
LO Amplifier (IDD2  
Total Drain Current (IDD  
)
75  
80  
155  
85  
95  
mA  
mA  
mA  
)
)
Rev. A | Page 3 of 31  
 
 
HMC951A  
Data Sheet  
6.0 GHz TO 8.6 GHz  
TA = 25°C, intermediate frequency (IF) = 1000 MHz, VDRF = VDLO = 5 V, local oscillator (LO) power = 0 dBm, unless otherwise noted.  
Measurements performed with lower sideband selected and an external 90° hybrid at the IF ports, unless otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
OPERATING CONDITIONS  
Frequency Range  
Radio Frequency (RF)  
LO  
IF  
6.0  
4.5  
DC  
−4  
8.6  
12.1  
3.5  
+4  
GHz  
GHz  
GHz  
dBm  
LO Drive Range  
0
PERFORMANCE  
Conversion Gain  
Image Rejection  
Input Power for 1 dB Compression (P1dB)  
Input Third-Order Intercept (IP3)  
Amplitude Balance  
Phase Balance  
Isolation  
10  
20  
13  
32  
−6  
3
0.2  
−2  
dB  
dBc  
dBm  
dBm  
dB  
1
Degree  
LO to RF  
LO to IF  
RF to IF  
Noise Figure  
Return Loss  
RF  
LO  
IF  
40  
9
48  
13  
10  
2
dB  
dB  
dB  
dB  
2.5  
10  
15  
15  
dB  
dB  
dB  
POWER SUPPLY  
Drain Current  
Low Noise Amplifier (IDD1  
LO Amplifier (IDD2  
Total Drain Current (IDD  
)
75  
80  
155  
85  
95  
mA  
mA  
mA  
)
)
Rev. A | Page 4 of 31  
 
Data Sheet  
HMC951A  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
Drain Bias Voltage (VDRF, VDLO)  
Input Power  
5.5 V  
LO  
RF  
20 dBm  
15 dBm  
MSL3  
175°C  
−65°C to +150°C  
−40°C to +85°C  
260°C  
θ
JA is the junction to ambient (or die to ambient) thermal  
resistance measured in a one cubic foot sealed enclosure, and  
JC is the junction to case (or die to package) thermal resistance.  
Moisture Sensitivity Level (MSL) Rating1  
Maximum Junction Temperature  
Storage Temperature Range  
Operating Temperature Range  
Reflow Temperature  
Electrostatic Discharge Sensitivity  
Human Body Model (HBM)  
θ
Table 4. Thermal Resistance  
Package Type  
HCP-24-31  
θJA  
θJC  
Unit  
40.9  
46.4  
°C/W  
1 Thermal impedance simulated values are based on a JEDEC 2S2P test board  
with 4 × 4 thermal vias. Refer to JEDEC standard JESD51-2 for additional  
information.  
1000 V  
750 V  
Field Induced Charged Device Model  
(FICDM)  
1 See the Ordering Guide.  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 5 of 31  
 
 
 
HMC951A  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NIC 1  
VDRF 2  
NIC 3  
18 NIC  
17  
16  
15  
NIC  
HMC951A  
VDLO  
NIC  
TOP VIEW  
4
GND  
(Not to Scale)  
RFIN 5  
14 NIC  
13 NIC  
6
GND  
EXPOSED  
PAD  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED. HOWEVER, THESE  
PINS CAN BE CONNECTED TO RF/DC GROUND WITHOUT  
AFFECTING PERFORMANCE.  
2. EXPOSED PAD. CONNECT TO A LOW IMPEDANCE THERMAL  
AND ELECTRICAL GROUND PLANE.  
Figure 2. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 3, 7, 8, 12 to 15, 17, 18  
NIC  
Not Internally Connected. However, these pins can be connected to RF/dc ground without  
affecting performance.  
2
VDRF  
GND  
RFIN  
LOIN  
VDLO  
Power Supply Voltage for the RF Amplifier. See Figure 3 for the interface schematic. Refer to the  
typical application circuit (see Figure 96) for the required external components.  
Ground Connect. See Figure 4 for the interface schematic. These pins and package bottom must  
be connected to RF/dc ground.  
Radio Frequency Input. See Figure 5 for the interface schematic. This pin is ac-coupled and  
matched to 50 Ω.  
Local Oscillator Input. See Figure 6 for the interface schematic. This pin is ac-coupled and  
matched to 50 Ω.  
4, 6, 9, 11, 19, 21, 22, 24  
5
10  
16  
Power Supply Voltage for the LO Amplifier. See Figure 3 for the interface schematic. Refer to the  
typical application circuit (see Figure 96) for the required external components.  
20, 23  
IF2, IF1  
Quadrature Intermediate Frequency Outputs. See Figure 7 for the interface schematic. For  
applications not requiring operation to dc, use an off chip dc blocking capacitor. For operation to  
dc, these pins must not source or sink more than 3 mA of current or device malfunction and  
failure can result.  
EPAD  
Exposed Pad. Connect to a low impedance thermal and electrical ground plane.  
INTERFACE SCHEMATICS  
VDRF, VDLO  
ESD  
LOIN  
Figure 3. VDRF, VDLO Interface  
Figure 6. LOIN Interface  
GND  
IF1, IF2  
Figure 4. GND Interface  
Figure 7. IF2, IF1 Interface  
RFIN  
Figure 5. RFIN Interface  
Rev. A | Page 6 of 31  
 
 
 
 
 
 
 
Data Sheet  
HMC951A  
TYPICAL PERFORMANCE CHARACTERISTICS  
LOWER SIDEBAND (HIGH-SIDE LO)  
IF = 1000 MHz and RF input power = −20 dBm. Data de-embedded for RF trace loss, unless otherwise noted.  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
+85°C  
+25°C  
–40°C  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
6
6
4
4
2
2
0
5.6  
0
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 8. Conversion Gain vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 11. Conversion Gain vs. RF Frequency over LO Powers, TA = 25°C  
50  
45  
40  
35  
30  
25  
50  
45  
40  
35  
30  
25  
20  
20  
+85°C  
+4dBm  
15  
+25°C  
–40°C  
15  
10  
5
+2dBm  
0dBm  
–2dBm  
10  
–4dBm  
5
0
5.6  
0
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 9. Image Rejection vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 12. Image Rejection vs. RF Frequency over LO Powers,  
T
A = 25°C  
6
6
5
4
3
2
1
0
+85°C  
+25°C  
–40°C  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
5
4
3
2
1
0
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 10. Noise Figure vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 13. Noise Figure vs. RF Frequency over LO Powers,  
A = 25°C  
T
Rev. A | Page 7 of 31  
 
 
HMC951A  
Data Sheet  
10  
10  
8
+85°C  
+25°C  
–40°C  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
8
6
6
4
4
2
2
0
0
–2  
5.6  
–2  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 14. Input IP3 vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 16. Input IP3 vs. RF Frequency over LO Powers,  
T
A = 25°C  
0
0
–2  
–2  
–4  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
+85°C  
+25°C  
–40°C  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–10  
–12  
–14  
–16  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 15. Input P1dB vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 17. Input P1dB vs. RF Frequency over LO Powers,  
A = 25°C  
T
Rev. A | Page 8 of 31  
Data Sheet  
HMC951A  
IF = 150 MHz and RF input power = −20 dBm. Data de-embedded for RF trace loss, unless otherwise noted.  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
+85°C  
+25°C  
–40°C  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
6
6
4
4
2
2
0
5.6  
0
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 18. Conversion Gain vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 21. Conversion Gain vs. RF Frequency over LO Powers, TA = 25°C  
50  
45  
40  
35  
30  
25  
50  
45  
40  
35  
30  
25  
20  
20  
+85°C  
+4dBm  
15  
+25°C  
–40°C  
15  
10  
5
+2dBm  
0dBm  
–2dBm  
10  
–4dBm  
5
0
5.6  
0
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 19. Image Rejection vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 22. Image Rejection vs. RF Frequency over LO Powers, TA = 25°C  
6
6
+85°C  
+25°C  
–40°C  
+4dBm  
5
5
+2dBm  
0dBm  
–2dBm  
–4dBm  
4
4
3
2
1
0
3
2
1
0
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 20. Noise Figure vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 23. Noise Figure vs. RF Frequency over LO Powers, TA = 25°C  
Rev. A | Page 9 of 31  
HMC951A  
Data Sheet  
10  
10  
8
+85°C  
+25°C  
–40°C  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
8
6
6
4
4
2
2
0
0
–2  
5.6  
–2  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 24. Input IP3 vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 26. Input IP3 vs. RF Frequency over LO Powers, TA = 25°C  
0
0
–2  
–4  
–2  
–4  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
+85°C  
+25°C  
–40°C  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–10  
–12  
–14  
–16  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 25. Input P1dB vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 27. Input P1dB vs. RF Frequency over LO Powers, TA = 25°C  
Rev. A | Page 10 of 31  
Data Sheet  
HMC951A  
IF = 3100 MHz and RF input power = −20 dBm. Data de-embedded for RF trace loss, unless otherwise noted.  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
+85°C  
+25°C  
–40°C  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
6
6
4
4
2
2
0
4.6  
0
4.6  
5.1  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
5.1  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 28. Conversion Gain vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 31. Conversion Gain vs. RF Frequency over LO Powers, TA = 25°C  
50  
45  
40  
35  
30  
25  
50  
45  
40  
35  
30  
25  
20  
20  
+85°C  
+4dBm  
15  
+25°C  
–40°C  
15  
10  
5
+2dBm  
0dBm  
–2dBm  
10  
–4dBm  
5
0
4.6  
0
4.6  
5.1  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
5.1  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 29. Image Rejection vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 32. Image Rejection vs. RF Frequency over LO Powers, TA = 25°C  
6
6
+85°C  
+25°C  
–40°C  
+4dBm  
5
5
+2dBm  
0dBm  
–2dBm  
–4dBm  
4
4
3
2
1
0
3
2
1
0
4.6  
5.1  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
4.6  
5.1  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 30. Noise Figure vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 33. Noise Figure vs. RF Frequency over LO Powers, TA = 25°C  
Rev. A | Page 11 of 31  
HMC951A  
Data Sheet  
10  
10  
8
+85°C  
+25°C  
–40°C  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
8
6
6
4
4
2
2
0
0
–2  
4.6  
–2  
4.6  
5.1  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
5.1  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 34. Input IP3 vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 36. Input IP3 vs. RF Frequency over LO Powers, TA = 25°C  
0
0
–2  
–4  
–2  
–4  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
+85°C  
+25°C  
–40°C  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–10  
–12  
–14  
–16  
4.6  
5.1  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
4.6  
5.1  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 35. Input P1dB vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 37. Input P1dB vs. RF Frequency over LO Powers, TA = 25°C  
Rev. A | Page 12 of 31  
Data Sheet  
HMC951A  
UPPER SIDEBAND (LOW-SIDE LO)  
IF = 150 MHz and RF input power = −20 dBm. Data de-embedded for RF trace loss, unless otherwise noted.  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
+85°C  
+25°C  
–40°C  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
6
6
4
4
2
2
0
5.6  
0
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 38. Conversion Gain vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 41. Conversion Gain vs. RF Frequency over LO Powers, TA = 25°C  
50  
45  
40  
35  
30  
25  
50  
45  
40  
35  
30  
25  
20  
20  
+85°C  
+4dBm  
15  
+25°C  
–40°C  
15  
10  
5
+2dBm  
0dBm  
–2dBm  
10  
–4dBm  
5
0
5.6  
0
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 39. Image Rejection vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 42. Image Rejection vs. RF Frequency over LO Powers, TA = 25°C  
6
6
+85°C  
+25°C  
–40°C  
+4dBm  
5
5
+2dBm  
0dBm  
–2dBm  
–4dBm  
4
4
3
2
1
0
3
2
1
0
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 40. Noise Figure vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 43. Noise Figure vs. RF Frequency over LO Powers, TA = 25°C  
Rev. A | Page 13 of 31  
 
HMC951A  
Data Sheet  
10  
10  
8
+85°C  
+25°C  
–40°C  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
8
6
6
4
4
2
2
0
0
–2  
5.6  
–2  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 44. Input IP3 vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 46. Input IP3 vs. RF Frequency over LO Powers, TA = 25°C  
0
0
–1  
–2  
–1  
+4dBm  
+2dBm  
0dBm  
–2dBm  
+85°C  
+25°C  
–40°C  
–2  
–3  
–3  
–4dBm  
–4  
–4  
–5  
–5  
–6  
–6  
–7  
–7  
–8  
–8  
–9  
–9  
–10  
5.6  
–10  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 45. Input P1dB vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 47. Input P1dB vs. RF Frequency over LO Powers, TA = 25°C  
Rev. A | Page 14 of 31  
Data Sheet  
HMC951A  
IF = 1000 MHz and RF input power = −20 dBm. Data de-embedded for RF trace loss, unless otherwise noted.  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
+85°C  
+25°C  
–40°C  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
6
6
4
4
2
2
0
5.6  
0
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 48. Conversion Gain vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 51. Conversion Gain vs. RF Frequency over LO Powers, TA = 25°C  
50  
45  
40  
35  
30  
25  
50  
45  
40  
35  
30  
25  
20  
20  
+85°C  
+4dBm  
15  
+25°C  
–40°C  
15  
10  
5
+2dBm  
0dBm  
–2dBm  
10  
–4dBm  
5
0
5.6  
0
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 49. Image Rejection vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 52. Image Rejection vs. RF Frequency over LO Powers, TA = 25°C  
6
6
+85°C  
+25°C  
–40°C  
+4dBm  
5
5
+2dBm  
0dBm  
–2dBm  
–4dBm  
4
4
3
2
1
0
3
2
1
0
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 50. Noise Figure vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 53. Noise Figure vs. RF Frequency over LO Powers, TA = 25°C  
Rev. A | Page 15 of 31  
HMC951A  
Data Sheet  
10  
10  
8
+85°C  
+25°C  
–40°C  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
8
6
6
4
4
2
2
0
0
–2  
5.6  
–2  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 54. Input IP3 vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 56. Input IP3 vs. RF Frequency over LO Powers, TA = 25°C  
0
0
–2  
–4  
–2  
–4  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
+85°C  
+25°C  
–40°C  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–10  
–12  
–14  
–16  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 55. Input P1dB vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 57. Input P1dB vs. RF Frequency over LO Powers, TA = 25°C  
Rev. A | Page 16 of 31  
Data Sheet  
HMC951A  
IF = 3100 MHz and RF input power = −20 dBm. Data de-embedded for RF trace loss, unless otherwise noted.  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
+85°C  
+25°C  
–40°C  
6
6
4
4
2
2
0
6.6  
0
6.6  
7.1  
7.6  
8.1  
8.6  
9.1  
9.6  
7.1  
7.6  
8.1  
8.6  
9.1  
9.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 58. Conversion Gain vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 61. Conversion Gain vs. RF Frequency over LO Powers, TA = 25°C  
100  
100  
90  
90  
80  
80  
70  
70  
+4dBm  
60  
60  
+2dBm  
0dBm  
+85°C  
+25°C  
–40°C  
–2dBm  
50  
50  
–4dBm  
40  
40  
30  
6.6  
30  
6.6  
7.1  
7.6  
8.1  
8.6  
9.1  
9.6  
7.1  
7.6  
8.1  
8.6  
9.1  
9.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 59. Image Rejection vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 62. Image Rejection vs. RF Frequency over LO Powers, TA = 25°C  
6
6
+85°C  
+25°C  
–40°C  
+4dBm  
+2dBm  
0dBm  
5
5
–2dBm  
–4dBm  
4
4
3
2
1
0
3
2
1
0
7.6  
7.8  
8.0  
8.2  
8.4  
8.6  
8.8  
9.0  
9.2  
9.4  
9.6  
7.6  
7.8  
8.0  
8.2  
8.4  
8.6  
8.8  
9.0  
9.2  
9.4  
9.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 60. Noise Figure vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 63. Noise Figure vs. RF Frequency over LO Powers, TA = 25°C  
Rev. A | Page 17 of 31  
HMC951A  
Data Sheet  
10  
10  
8
8
+85°C  
+25°C  
–40°C  
6
4
6
4
2
2
0
0
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
–2  
–4  
–6  
–2  
–4  
–6  
6.6  
7.1  
7.6  
8.1  
8.6  
9.1  
9.6  
6.6  
7.1  
7.6  
8.1  
8.6  
9.1  
9.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 64. Input IP3 vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 66. Input IP3 vs. RF Frequency over LO Powers, TA = 25°C  
0
0
–2  
–4  
–6  
–8  
–2  
–4  
+85°C  
+25°C  
–40°C  
–6  
–8  
–10  
–12  
–14  
–16  
–10  
–12  
–14  
–16  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
6.6  
7.1  
7.6  
8.1  
8.6  
9.1  
9.6  
6.6  
7.1  
7.6  
8.1  
8.6  
9.1  
9.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 65. Input P1dB vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 67. Input P1dB vs. RF Frequency over LO Powers, TA = 25°C  
Rev. A | Page 18 of 31  
Data Sheet  
HMC951A  
ISOLATION AND RETURN LOSS  
40  
70  
60  
50  
40  
30  
20  
10  
0
IF1 +85°C  
IF1 +25°C  
IF1 –40°C  
IF2 +85°C  
IF2 +25°C  
IF2 –40°C  
35  
30  
25  
20  
15  
10  
5
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
0
3
4
5
6
7
8
9
10  
11  
12  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
LO FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 68. LO to IF Isolation vs. LO Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 71. LO to RF Isolation vs. RF Frequency over LO Powers, TA = 25°C  
40  
30  
IF1 +85°C  
IF1 +4dBm  
IF1 +2dBm  
IF1 0dBm  
IF1 –2dBm  
IF1 –4dBm  
IF2 +4dBm  
IF2 +2dBm  
IF2 0dBm  
IF2 –2dBm  
IF2 –4dBm  
35  
30  
25  
20  
15  
10  
5
IF1 +25°C  
IF1 –40°C  
IF2 +85°C  
IF2 +25°C  
IF2 –40°C  
25  
20  
15  
10  
5
0
0
–5  
5.6  
3
4
5
6
7
8
9
10  
11  
12  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
LO FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 69. LO to IF Isolation vs. LO Frequency over LO Powers, TA = 25°C  
Figure 72. RF to IF Isolation vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
70  
60  
50  
40  
30  
25  
20  
15  
10  
30  
+85°C  
+25°C  
–40°C  
IF1 +4dBm  
IF1 +2dBm  
IF1 0dBm  
IF1 –2dBm  
IF1 –4dBm  
IF2 +4dBm  
IF2 +2dBm  
IF2 0dBm  
IF2 –2dBm  
IF2 –4dBm  
20  
10  
0
5
0
–5  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 70. LO to RF Isolation vs. RF Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 73. RF to IF Isolation vs. RF Frequency over LO Powers, TA = 25°C  
Rev. A | Page 19 of 31  
 
HMC951A  
Data Sheet  
0
0
–2  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
–5  
–4  
–6  
–10  
–15  
–20  
–25  
–30  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
+85°C  
+25°C  
–40°C  
3
4
5
6
7
8
9
10  
11  
12  
13  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
LO FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 74. LO Return Loss vs. LO Frequency over Temperatures,  
LO Power = 0 dBm  
Figure 77. RF Return Loss vs. RF Frequency over LO Powers,  
LO Frequency = 7 GHz, TA = 25°C  
0
0
IF1 +85°C  
IF1 +25°C  
IF1 –40°C  
IF2 +85°C  
IF2 +25°C  
IF2 –40°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–5  
–10  
–15  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
–20  
–25  
–30  
3
4
5
6
7
8
9
10  
11  
12  
13  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
LO FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 75. LO Return Loss vs. LO Frequency over LO Powers,  
Figure 78. IF Return Loss vs. IF Frequency over Temperatures,  
LO Frequency = 7 GHz, LO Power = 0 dBm  
T
A = 25°C  
0
–2  
0
–5  
+85°C  
+25°C  
–40°C  
–4  
–10  
–15  
–20  
–25  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–30  
–35  
–40  
IF1 +4dBm  
IF1 +2dBm  
IF1 0dBm  
IF1 –2dBm  
IF1 –4dBm  
IF2 +4dBm  
IF2 +2dBm  
IF2 0dBm  
IF2 –2dBm  
IF2 –4dBm  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 76. RF Return Loss vs. RF Frequency over Temperatures,  
LO Frequency = 7 GHz, LO Power = 0 dBm  
Figure 79. IF Return Loss vs. IF Frequency over LO Powers,  
LO Frequency = 7 GHz, TA = 25°C  
Rev. A | Page 20 of 31  
Data Sheet  
HMC951A  
IF BANDWIDTH PERFORMANCE  
Lower Sideband (High-Side LO)  
20  
20  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
+85°C  
6
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
6
+25°C  
–40°C  
4
4
2
0
2
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 80. Conversion Gain vs. IF Frequency over Temperatures,  
LO Frequency = 7 GHz, LO Power = 0 dBm  
Figure 82. Conversion Gain vs. IF Frequency over LO Powers,  
LO Frequency = 7 GHz, TA = 25°C  
10  
10  
+85°C  
+25°C  
–40°C  
+4dBm  
+2dBm  
0dBm  
8
6
8
–2dBm  
–4dBm  
6
4
4
2
2
0
0
–2  
0.5  
–2  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 81. Input IP3 vs. IF Frequency over Temperatures,  
LO Frequency = 7 GHz, LO Power = 0 dBm  
Figure 83. Input IP3 vs. IF Frequency over LO Powers,  
LO Frequency = 7 GHz, TA = 25°C  
Rev. A | Page 21 of 31  
 
HMC951A  
Data Sheet  
Upper Sideband (Low-Side LO)  
20  
20  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
+85°C  
6
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
6
+25°C  
–40°C  
4
4
2
0
2
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 84. Conversion Gain vs. IF Frequency over Temperatures,  
LO Frequency = 7 GHz, LO Power = 0 dBm  
Figure 86. Conversion Gain vs. IF Frequency over LO Powers,  
LO Frequency = 7 GHz, TA = 25°C  
10  
10  
+85°C  
+25°C  
–40°C  
+4dBm  
+2dBm  
0dBm  
8
6
8
–2dBm  
–4dBm  
6
4
4
2
2
0
0
–2  
0.5  
–2  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 85. Input IP3 vs. IF Frequency over Temperatures,  
LO Frequency = 7 GHz, LO Power = 0 dBm  
Figure 87. Input IP3 vs. IF Frequency over LO Powers,  
LO Frequency = 7 GHz, TA = 25°C  
Rev. A | Page 22 of 31  
Data Sheet  
HMC951A  
AMPLITUDE AND PHASE IMBALANCE PERFORMANCE  
2.0  
10  
8
1.5  
+85°C  
+85°C  
+25°C  
–40°C  
+25°C  
–40°C  
6
1.0  
0.5  
4
2
0
0
–2  
–4  
–6  
–8  
–10  
–0.5  
–1.0  
–1.5  
–2.0  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 88. Amplitude Imbalance vs. RF Frequency over Temperatures,  
LO Power = 0 dBm, IF = 1000 MHz, Lower Sideband  
Figure 91. Phase Imbalance vs. RF Frequency over Temperatures,  
LO Power = 0 dBm, IF = 1000 MHz, Lower Sideband  
2.0  
10  
+4dBm  
+2dBm  
0dBm  
–2dBm  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
8
1.5  
6
–4dBm  
4
1.0  
0.5  
2
0
0
–2  
–4  
–6  
–8  
–10  
–0.5  
–1.0  
–1.5  
–2.0  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 89. Amplitude Imbalance vs. RF Frequency over LO Powers,  
IF = 1000 MHz, TA = 25°C, Lower Sideband  
Figure 92. Phase Imbalance vs. RF Frequency over LO Powers,  
IF = 1000 MHz, TA = 25°C, Lower Sideband  
2.0  
10  
+85°C  
+85°C  
+25°C  
–40°C  
6
+25°C  
–40°C  
8
1.5  
1.0  
0.5  
4
2
0
0
–2  
–4  
–6  
–8  
–10  
–0.5  
–1.0  
–1.5  
–2.0  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
5.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 90. Amplitude Imbalance vs. RF Frequency over Temperatures,  
LO Power = 0 dBm, IF = 1000 MHz, Upper Sideband  
Figure 93. Phase Imbalance vs. RF Frequency over Temperatures,  
LO Power = 0 dBm, IF = 1000 MHz, Upper Sideband  
Rev. A | Page 23 of 31  
 
HMC951A  
Data Sheet  
2.0  
10  
8
1.5  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
6
1.0  
4
0.5  
2
0
0
–2  
–4  
–6  
–8  
–10  
–0.5  
–1.0  
–1.5  
–2.0  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
6.1  
6.6  
7.1  
7.6  
8.1  
8.6  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 94. Amplitude Imbalance vs. RF Frequency over LO Powers,  
IF = 1000 MHz, TA = 25°C, Upper Sideband  
Figure 95. Phase Imbalance vs. RF Frequency over LO Powers,  
IF = 1000 MHz, TA = 25°C, Upper Sideband  
Rev. A | Page 24 of 31  
Data Sheet  
HMC951A  
M × N Spurious Output, IF = 1000 MHz  
SPURIOUS PERFORMANCE  
RF = 5600 MHz, LO frequency = 6600 MHz at LO input power =  
0 dBm, IF input power = −20 dBm.  
Mixer spurious products are measured in dBc from the RF  
output power level. Spur values are (M × RF) − (N × LO). N/A  
means not applicable.  
N × LO  
M × N Spurious Outputs, IF = 150 MHz  
0
1
2
3
4
0
1
2
3
4
N/A  
17  
55  
75  
86  
16  
0
24  
47  
55  
61  
90  
26  
43  
61  
76  
76  
42  
50  
63  
86  
77  
RF = 5600 MHz, LO frequency = 5750 MHz at LO input power =  
0 dBm, RF input power = −20 dBm.  
M × RF  
61  
88  
89  
N × LO  
0
1
2
3
4
0
1
2
3
4
N/A  
17  
57  
70  
84  
15  
0
33  
30  
60  
59  
88  
18  
37  
57  
59  
70  
34  
43  
71  
68  
81  
M × RF  
60  
78  
87  
RF = 6100 MHz, LO frequency = 7100 MHz at LO input power =  
0 dBm, IF input power = −20 dBm.  
N × LO  
0
1
2
3
4
0
1
2
3
4
N/A  
23  
57  
72  
82  
17  
0
14  
49  
54  
65  
91  
21  
41  
68  
68  
83  
32  
59  
68  
87  
77  
RF = 6100 MHz, LO frequency = 6250 MHz at LO input power =  
0 dBm, IF input power = −20 dBm.  
M × RF  
54  
83  
89  
N × LO  
0
1
2
3
4
0
1
2
3
4
N/A  
22  
58  
71  
83  
18  
0
26  
39  
68  
70  
88  
27  
38  
68  
62  
77  
29  
41  
73  
82  
81  
M × RF  
72  
80  
87  
RF = 8500 MHz, LO frequency = 9500 MHz at LO input power =  
0 dBm, IF input power = −20 dBm.  
N × LO  
0
1
2
3
4
0
1
2
3
4
N/A  
28  
52  
78  
77  
13  
0
19  
39  
55  
88  
86  
13  
44  
68  
76  
87  
39  
57  
82  
84  
81  
RF = 8500 MHz, LO frequency = 8650 MHz at LO input power =  
0 dBm, IF input power = −20 dBm.  
M × RF  
78  
81  
82  
N × LO  
0
1
2
3
4
0
1
2
3
4
N/A  
28  
53  
79  
79  
16  
0
13  
46  
63  
85  
86  
23  
53  
69  
68  
84  
28  
59  
64  
86  
82  
M × RF  
78  
82  
79  
Rev. A | Page 25 of 31  
 
HMC951A  
Data Sheet  
M × N Spurious Outputs, IF = 3100 MHz  
RF = 8500 MHz, LO frequency = 11600 MHz at LO input  
power = 0 dBm, IF input power = −20 dBm.  
RF = 5600 MHz, LO frequency = 8700 MHz at LO input power =  
0 dBm, IF input power = −20 dBm.  
N × LO  
N × LO  
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
N/A  
27  
53  
80  
77  
4
24  
28  
67  
84  
86  
27  
65  
57  
86  
83  
0
0
1
2
3
4
N/A  
14  
54  
74  
84  
21  
0
14  
32  
61  
59  
78  
23  
43  
62  
83  
88  
37  
52  
68  
77  
88  
0
75  
70  
82  
86  
M × RF  
61  
85  
80  
M × RF  
50  
81  
88  
RF = 6100 MHz, LO frequency = 9200 MHz at LO input power =  
0 dBm, IF input power = −20 dBm.  
N × LO  
0
1
2
3
4
0
1
2
3
4
N/A  
19  
55  
68  
81  
16  
0
19  
33  
59  
64  
86  
14  
47  
56  
84  
86  
29  
50  
65  
81  
88  
M × RF  
56  
80  
86  
Rev. A | Page 26 of 31  
Data Sheet  
HMC951A  
THEORY OF OPERATION  
The HMC951A is a compact GaAs, MMIC, I/Q downconverter  
in a RoHS compliant package optimized for point to point and  
point to multipoint microwave radio applications operating in  
the 5.6 GHz to 8.6 GHz input RF frequency range. The HMC951A  
supports LO input frequencies of 4.5 GHz to 12.1 GHz and IF  
output frequencies of dc to 3.5 GHz.  
Inc., wideband synthesizer portfolio without the need for an  
external LO driver amplifier.  
MIXER  
The mixer is an I/Q double balanced mixer, and this mixer  
topology reduces the need for filtering the unwanted sideband.  
An external 90° hybrid is required to select the desired sideband  
of operation.  
The HMC951A uses an RF LNA amplifier followed by an I/Q  
double balanced mixer, where a driver amplifier drives the LO  
(see Figure 1). The combination of design, process, and  
packaging technology allows the functions of these subsystems  
to be integrated into a single die, using mature packaging and  
interconnection technologies to provide a high performance,  
low cost design with excellent electrical, mechanical, and  
thermal properties. In addition, the need for external  
LNA  
The LNA is self biased, and it requires only a single dc bias  
voltage (VDRF) to operate. The bias current for the LNA is  
75 mA at 5 V typically.  
The typical application circuit (see Figure 96) provided shows  
the necessary external components on the bias lines to eliminate  
any undesired stability problems for the RF amplifier and the  
LO amplifier.  
components is minimized, optimizing cost and size.  
LO DRIVER AMPLIFIER  
The LO driver amplifier takes a single LO input and amplifies it  
to the desired LO signal level for the mixer to operate optimally.  
The LO driver amplifier is self biased, and it only requires a  
single dc bias voltage (VDLO) to operate. The bias current for  
the LO amplifier is 80 mA at 5 V typically. The LO drive range  
of −4 dBm to +4 dBm makes it compatible with Analog Devices,  
The HMC951A is a much smaller alternative to hybrid style  
image reject converter assemblies, and it eliminates the need for  
wire bonding by allowing the use of surface-mount manufacturing  
assemblies.  
The HMC951A downconverter comes in a compact, 4 mm ×  
4 mm, 24-lead LFCSP. The HMC951A operates over the −40°C  
to +85°C temperature range.  
Rev. A | Page 27 of 31  
 
 
 
 
HMC951A  
Data Sheet  
APPLICATIONS INFORMATION  
LO suppression is <3 mA for each IF port to prevent damage to  
the device. The common-mode voltage for each IF port is 0 V.  
TYPICAL APPLICATION CIRCUIT  
Figure 96 shows the typical application circuit for the  
To select the lower sideband, connect the IF1 pin to the 90° port  
of the hybrid and the IF2 pin to the 0° port of the hybrid. To  
select the upper sideband, connect the IF1 pin to the 0° port of  
the hybrid and the IF2 pin to the 90° port of the hybrid.  
HMC951A. To select the appropriate sideband, an external 90°  
hybrid is required. For applications not requiring operation to  
dc, use an off-chip, dc blocking capacitor. For applications that  
require the LO signal at the output to be suppressed, use a bias  
tee or RF feed. Ensure that the source or sink current used for  
HYBRID  
COUPLER  
IF  
VDRF  
OUTPUT  
4.7µF  
0.01µF  
100pF  
IF1  
IF2  
1
18  
NIC  
NIC  
17  
2
VDRF  
NIC  
16  
3
NIC  
VDLO  
15  
4
HMC951A  
NIC  
14  
GND  
RFIN  
GND  
RFIN  
5
6
NIC  
100pF  
13  
NIC  
0.01µF  
4.7µF  
LOIN  
VDLO  
Figure 96. Typical Application Circuit  
Rev. A | Page 28 of 31  
 
 
 
Data Sheet  
HMC951A  
ground planes. The evaluation circuit board shown in Figure 100  
is available from Analog Devices upon request.  
PERFORMANCE AT LOWER IF FREQUENCIES  
The HMC951A can operate at low IF frequencies approaching  
dc. Figure 97 and Figure 98 show the conversion gain and image  
rejection performance at lower IF frequencies.  
25  
EV1HMC951ALP4 Power-On Sequence  
To power on the EV1HMC951ALP4, take the following steps:  
1. Power up VDRF and VDLO with a 5 V supply.  
2. Connect LOIN to the LO signal generator with an LO  
power of 0 dBm (typical).  
20  
15  
10  
5
3. Apply the RF signal.  
EV1HMC951ALP4 Power-Off Sequence  
To power off the EV1HMC951ALP4, take the following steps:  
1. Turn off the LO and RF signals.  
2. Set VDRF and VDLO to 0 V and then turn VDRF and  
VDLO off.  
Layout  
0
100  
1k  
10k  
100k  
1M  
10M  
Solder the exposed pad on the underside of the HMC951A to a  
low thermal and electrical impedance ground plane. This pad  
is typically soldered to an exposed opening in the solder mask  
on the evaluation board. Connect these ground vias to all  
other ground layers on the evaluation board to maximize heat  
dissipation from the device package. Figure 99 shows the PCB  
land pattern footprint for the HMC951A evaluation board.  
IF FREQUENCY (Hz)  
Figure 97. Conversion Gain vs. IF Frequency at Low IF Frequencies,  
LO = 7 GHz at 4 dBm, Upper Sideband (Low-Side LO)  
60  
50  
40  
30  
20  
10  
0
0.178" SQUARE  
0.006" MASK/METAL OVERLAP  
SOLDERMASK  
0.010" MIN MASK WIDTH  
GROUND PAD  
PAD SIZE  
0.026" × 0.010"  
PIN 1  
0.0197"  
[0.50]  
0.116"  
MASK  
100  
1k  
10k  
100k  
1M  
10M  
OPENING  
0.034"  
IF FREQUENCY (Hz)  
TYPICAL  
VIA SPACING  
Figure 98. Image Rejection vs. IF Frequency at Low IF Frequencies,  
LO = 7 GHz at 4 dBm, Upper Sideband (Low-Side LO)  
EVALUATION BOARD INFORMATION  
0.010"  
TYPICAL VIA  
The circuit board used in the application must use RF circuit  
design techniques. Signal lines must have 50 Ω impedance and  
connect the package ground leads and exposed pad directly to  
the ground plane similarly to that shown in Figure 99. Use a  
sufficient number of via holes to connect the top and bottom  
0.010" REF  
0.030"  
MASK OPENING  
0.098" SQUARE MASK OPENING  
0.020 × 45° CHAMFER FOR PIN 1  
0.110" SQUARE  
GROUND PAD  
Figure 99. EV1HMC951ALP4 PCB Land Pattern Footprint  
Rev. A | Page 29 of 31  
 
 
 
 
 
HMC951A  
Data Sheet  
Figure 100. EV1HMC951ALP4 Evaluation Board Top Layer  
Table 6. Bill of Materials for the EV1HMC951ALP41, 2 Evaluation Board PCB  
Qty. Reference Designator Description  
Manufacturer  
Part Number  
129744-1  
1
Not applicable  
PCB, EV1HMC951ALP4; circuit board material:  
Rogers 4350  
Analog Devices, Inc.  
2
4
1
1
6
6
2
1
J1, J2  
J3, J4  
J5  
SMA RF connectors, SRI  
Johnson connectors, SRI  
Header connectors, 2 mm, four vertical positions, SMT  
Header connectors, 2 mm, four vertical positions, SMT  
SRI Connector Gage Co. 25-146-1000-92  
Johnson Components  
Molex  
142-0701-851  
87759-0414  
J6  
Molex  
87759-0614  
C1, C4, C6, C8, C10, C13 Ceramic capacitors, 100 pF, 5%, 50 V, C0G, 0402  
C2, C5, C7, C9, C11, C14 Ceramic capacitors, 0.01 µF, 50 V, 10%, X7R, 0603  
C3, C12  
H951A  
Kemet  
Murata  
AVX Corp.  
Analog Devices, Inc.  
C0402C101J5GACTU  
RM155R71H102KA01D  
TAJA475M016R  
HMC951A  
Tantalum capacitors, 4.7 μF, 25 V, 10%, SMD, Case A  
Device under test, HM951A  
1 Reference this number when ordering the evaluation board PCB.  
2 This is a generic evaluation board. Some components or bias lines shown in Figure 100 are not used for the HMC951A.  
Rev. A | Page 30 of 31  
 
Data Sheet  
HMC951A  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
24  
19  
18  
1
0.50  
BSC  
2.85  
2.70 SQ  
2.55  
EXPOSED  
PAD  
13  
12  
6
7
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.95  
0.85  
0.75  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
Figure 101. 24-Lead Lead Frame Chip Scale Package [LFCSP],  
4 mm × 4 mm Body and 0.85 mm Package Height  
(HCP-24-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Lead  
Package  
Model1  
Temperature Range  
Package Body Material  
Finish Package Description  
MSL Rating2 Option  
HMC951ALP4E  
−40°C to +85°C  
Low Stress, Injected  
Molded Plastic  
Ag  
24-Lead LFCSP  
MSL3  
HCP-24-3  
HMC951ALP4ETR  
EV1HMC951ALP4  
−40°C to +85°C  
Low Stress, Injected  
Molded Plastic  
Ag  
24-Lead LFCSP  
MSL3  
HCP-24-3  
Evaluation PCB Assembly  
1 The HMC951ALP4E and the HMC951ALP4ETR are RoHS Compliant Parts.  
2 See the Absolute Maximum Ratings section.  
©2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16348-0-4/18(A)  
Rev. A | Page 31 of 31  
 
 

相关型号:

HMC951ALP4E

5.6 GHz to 8.6 GHz, GaAs, MMIC, I/Q Downconverter
ADI

HMC951ALP4ETR

5.6 GHz to 8.6 GHz, GaAs, MMIC, I/Q Downconverter
ADI

HMC951BLP4E

I/Q Downconverter SMT, 5.6 - 8.6 GHz
ADI

HMC951BLP4ETR

I/Q Downconverter SMT, 5.6 - 8.6 GHz
ADI

HMC951LP4E

GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz
HITTITE

HMC951LP4E

I/Q Downconverter SMT, 5.6 - 8.6 GHz
ADI

HMC951LP4ETR

I/Q Downconverter SMT, 5.6 - 8.6 GHz
ADI

HMC951LP4ETR

Down Converter
HITTITE

HMC951LP4E_11

GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz
HITTITE

HMC952

GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER
HITTITE

HMC954LC4B

WITH PROGRAMMABLE OUTPUT VOLTAGE
HITTITE

HMC954LC4B_12

WITH PROGRAMMABLE OUTPUT VOLTAGE
HITTITE