HMC977LP4ETR [ADI]

GaAs, MMIC, I/Q, Downconverter, 20 GHz to 28 GHz;
HMC977LP4ETR
型号: HMC977LP4ETR
厂家: ADI    ADI
描述:

GaAs, MMIC, I/Q, Downconverter, 20 GHz to 28 GHz

文件: 总20页 (文件大小:797K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GaAs, MMIC, I/Q, Downconverter,  
20 GHz to 28 GHz  
Data Sheet  
HMC977  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
HMC977  
Conversion gain: 14 dB typical  
Image rejection: 21 dBc typical at 20 GHz to 26.5 GHz  
2× LO to RF isolation: 45 dB typical at 20 GHz to 26.5 GHz  
Noise figure: 2.5 dB typical at 20 GHz to 26.5 GHz  
Input IP3: 1 dBm typical at 20 GHz to 26.5 GHz  
LO drive range: 2 dBm to 6 dBm  
NIC  
NIC  
1
NIC  
GND  
IF2  
18  
17  
16  
15  
14  
13  
24-lead 4 mm × 4 mm LFCSP  
2
APPLICATIONS  
VDRF  
3
4
5
6
Point to point and point to multipoint radios  
Military radar, electronic warfare (EW), and electronic  
intelligence (ELINT)  
NIC  
IF1  
VDLO2  
VDLO1  
NIC  
×2  
GND  
Satellite communications  
Figure 1.  
GENERAL DESCRIPTION  
The HMC977 is a compact, gallium arsenide (GaAs),  
mixer eliminates the need for a filter following the LNA and  
removes thermal noise at the image frequency. I and Q mixer  
outputs are provided and an external 90° hybrid is required to  
select the required sideband. The HMC977 is a much smaller  
alternative to hybrid style image reject mixer downconverter  
assemblies and is compatible with surface-mount manufacturing  
techniques.  
monolithic microwave integrated circuit (MMIC), inphase and  
quadrature (I/Q) downconverter in a leadless, RoHS compliant,  
surface-mount technology (SMT) package. This device provides a  
small signal conversion gain of 14 dB with a noise figure of  
2.5 dB and 21 dBc of image rejection. The HMC977 utilizes a  
low noise amplifier (LNA) followed by an image reject mixer  
which is driven by an active 2× multiplier. The image reject  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2019 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
HMC977  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Data Taken as IRM with External 90° Hybrid at the IF Ports,  
IF = 1000 MHz, Lower Sideband ............................................. 10  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Specifications............................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Interface Schematics..................................................................... 6  
Typical Performance Characteristics ............................................. 7  
Data Taken as IRM with External 90° Hybrid at the IF Ports,  
IF = 2000 MHz, Upper Sideband ............................................. 11  
Data Taken as IRM with External 90° Hybrid at the IF Ports,  
IF = 2000 MHz, Lower Sideband ............................................. 12  
Data Taken as IRM with External 90° Hybrid at the IF Ports,  
IF = 3300 MHz, Upper Sideband ............................................. 13  
Data Taken as IRM with External 90° Hybrid at the IF Ports,  
IF = 3300 MHz, Lower Sideband ............................................. 14  
Spurious Performance ............................................................... 15  
Theory of Operation ...................................................................... 16  
Applications Information.............................................................. 17  
Evaluation PCB........................................................................... 18  
Layout .......................................................................................... 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
Data Taken as IRM with External 90° Hybrid at the IF Ports,  
IF = 1000 MHz, Upper Sideband ............................................... 7  
Quadrature Channel Data Taken Without 90° Hybrid at the  
IF Ports, IF = 1000 MHz, Upper Sideband ............................... 9  
REVISION HISTORY  
This Hittite Microwave Products data sheet has been reformatted  
to meet the styles and standards of Analog Devices, Inc.  
Added Figure 2; Renumbered Sequentially ...................................5  
Changes to M × N Spurious Outputs,  
IF = 1000 MHz Section.................................................................. 15  
Added Theory of Operation Section ........................................... 16  
Added Applications Information Section ................................... 17  
Changes to Figure 52...................................................................... 17  
Change to Table 6 ........................................................................... 18  
Added Figure 54 ............................................................................. 19  
11/2019—v02.0815 to Rev. D  
Updated Format..................................................................Universal  
Changed HMC977LP4E to HMC977..............................Universal  
Changes to Figure 1.......................................................................... 1  
Changes to the Electrical Specifications Section.......................... 3  
Rev. D | Page 2 of 20  
 
Data Sheet  
HMC977  
SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS  
20 GHz to 26.5 GHz  
TA = 25°C, IF = 1000 MHz, local oscillator (LO) = 6 dBm, drain bias voltage (VDD) = VDLO1 = VDLO2 = VDRF = 3.5 V dc, upper  
sideband. All measurements performed as downconverter with upper sideband selected and external 90° hybrid at the IF ports, unless  
otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ Max  
Units  
FREQUENCY RANGE  
RF  
LO  
IF  
20  
8.3  
DC  
2
26.5  
15  
3.5  
GHz  
GHz  
GHz  
dBm  
dB  
LO DRIVE RANGE  
6
CONVERSION GAIN (AS IMAGE REJECT  
MIXER (IRM))  
11  
14  
NOISE FIGURE  
2.5  
21  
−8  
dB  
IMAGE REJECTION  
dBc  
dBm  
INPUT POWER FOR 1 dB COMPRESSION (P1dB)  
ISOLATION  
2× LO to RF  
2× LO to IF  
35  
45  
20  
1
dB  
dB  
INPUT THIRD-ORDER INTERCEPT (IP3)  
AMPLITUDE BALANCE  
PHASE BALANCE  
dBm  
dB  
Data taken without external 90° hybrid at the IF ports  
Data taken without external 90° hybrid at the IF ports  
No power sequence is required  
0.3  
17  
Degree  
V
SUPPLY VOLTAGE  
3.325 3.5  
3.675  
TOTAL SUPPLY CURRENT  
170 210  
mA  
26.5 GHz to 28 GHz  
TA = 25°C, IF = 1000 MHz, LO = 6 dBm, VDD = VDLO1 = VDLO2 = VDRF = 3.5 V dc, upper sideband. All measurements performed as  
downconverter with upper sideband selected and external 90° hybrid at the IF ports, unless otherwise noted  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ Max  
Units  
FREQUENCY RANGE  
RF  
LO  
26.5  
11.5  
DC  
2
28  
15.7  
3.5  
GHz  
GHz  
GHz  
dBm  
dB  
IF  
LO DRIVE RANGE  
CONVERSION GAIN (AS IRM)  
NOISE FIGURE  
IMAGE REJECTION  
INPUT P1dB  
6
11  
14  
3
dB  
20  
−7  
dBc  
dBm  
ISOLATION  
2× LO to RF  
2× LO to IF  
34  
39  
30  
3
dB  
dB  
INPUT IP3  
dBm  
dB  
AMPLITUDE BALANCE  
PHASE BALANCE  
SUPPLY VOLTAGE  
TOTAL SUPPLY CURRENT  
Data taken without external 90° hybrid at the IF ports  
Data taken without external 90° hybrid at the IF ports  
No power sequence is required  
0.3  
12  
Degree  
V
3.325 3.5  
3.675  
170 210  
mA  
Rev. D | Page 3 of 20  
 
 
HMC977  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
THERMAL RESISTANCE  
Thermal resistance is directly linked to printed circuit board (PCB)  
design and operating environment. Close attention to PCB  
thermal design is required.  
Parameter  
RF Input Power  
LO Drive  
VDD  
Continuous Power Dissipation (PDISS), TA =  
85°C (Derates 17.7 mW/°C Above 85°C)1  
Temperature  
Junction (Channel), TJ  
Peak Reflow (Moisture Sensitivity Level 1,  
MSL12)  
Storage Range  
Rating  
2 dBm  
10 dBm  
5.0 V  
θJC is the channel to case thermal resistance, channel to bottom  
of package.  
1.6 W  
Table 4. Thermal Resistance  
Package Type1  
θJC  
Unit  
175°C  
260°C  
HCP-24-2  
56.3  
°C/W  
1 Thermal impedance simulated values are based on a JEDEC 2S2P test board  
with 4 mm × 4 mm thermal vias. Refer to JEDEC standard JESD51-2 for  
additional information.  
−65°C to +150°C  
−40°C to +85°C  
Operating Range  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
ESD CAUTION  
Class 1A (250 V)  
1 PDISS is a theoretical number calculated by (TJ − 85°C)/θJC.  
2 Based on IPC/JEDEC J-STD-20 MSL classifications.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. D | Page 4 of 20  
 
 
 
Data Sheet  
HMC977  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
18  
NIC  
NIC  
NIC  
17 GND  
16  
VDRF  
VDLO2  
VDLO1  
NIC  
IF2  
HMC977  
TOP VIEW  
15  
NIC  
14 IF1  
GND  
13  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED. DO NOT  
CONNECT TO THIS PIN.  
2. EPAD. THE EPAD MUST BE CONNECTED TO GND.  
Figure 2. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic  
Description  
1, 2, 6, 7, 10 to 12, NIC  
15, 18 to 22  
Not Internally Connected. These pins are not connected internally.  
3
VDRF  
Power Supply for the RF Low Noise Amplifier. See Figure 3 for the interface schematic.  
4
5
8
VDLO2  
VDLO1  
LO  
GND  
IF1  
Power Supply for the Second Stage LO Amplifier. See Figure 4 for the interface schematic.  
Power Supply for the First Stage LO Amplifier. See Figure 5 for the interface schematic.  
Local Oscillator. This pin is ac-coupled and matched to 50 Ω. See Figure 6 for the interface schematic.  
Ground Connect. Connect these pins to RF and dc ground. See Figure 7 for the interface schematic.  
First Intermediate Frequency Port. This pin is dc-coupled. For applications not requiring operation to  
dc, block this pin externally using a series capacitor with a value chosen to pass the necessary IF  
frequency range. For operation to dc, this pin must not source or sink more than 3 mA of current or  
device nonfunctionality or device failure may result. See Figure 8 for the interface schematic.  
9, 13, 17, 24  
14  
16  
23  
IF2  
Second Intermediate Frequency Port. This pin is dc-coupled. For applications not requiring operation  
to dc, block this pin externally using a series capacitor with a value chosen to pass the necessary IF  
frequency range. For operation to dc, this pin must not source or sink more than 3 mA of current or  
device nonfunctionality or device failure may result. See Figure 8 for the interface schematic.  
Radio Frequency Port. This pin is ac-coupled and matched to 50 Ω. See Figure 9 for the interface  
schematic.  
RF  
EPAD  
Exposed Pad. The EPAD must be connected to GND.  
Rev. D | Page 5 of 20  
 
HMC977  
Data Sheet  
INTERFACE SCHEMATICS  
VDRF  
GND  
Figure 7. GND Interface Schematic  
Figure 3. VDRF Interface Schematic  
IF1, IF2  
VDLO2  
Figure 8. IF1 and IF2 Interface Schematic  
Figure 4. VDLO2 Interface Schematic  
VDLO1  
RF  
Figure 5. VDLO1 Interface Schematic  
Figure 9. RF Interface Schematic  
LO  
Figure 6. LO Interface Schematic  
Rev. D | Page 6 of 20  
 
 
 
 
 
 
 
 
Data Sheet  
HMC977  
TYPICAL PERFORMANCE CHARACTERISTICS  
DATA TAKEN AS IRM WITH EXTERNAL 90° HYBRID AT THE IF PORTS, IF = 1000 MHz, UPPER SIDEBAND  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
+25°C  
–40°C  
0
20  
0
20  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 10. Conversion Gain vs. RF Frequency Over Temperature,  
LO Drive = 6 dBm  
Figure 13. Conversion Gain vs. RF Frequency at Various LO Drives  
0
–5  
0
–10  
–20  
–30  
–40  
–10  
–15  
–20  
–25  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
–50  
20  
–30  
20  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 11. Image Rejection vs. RF Frequency Over Temperature,  
LO Drive = 6 dBm  
Figure 14. RF Return Loss vs. RF Frequency Over Temperature,  
LO Frequency = 24 GHz  
0
0
IF1  
IF2  
–3  
–6  
–5  
–10  
–15  
–20  
–9  
–12  
–15  
+85°C  
+25°C  
–40°C  
–25  
10  
11  
12  
13  
14  
15  
16  
0
1
2
3
4
LO FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 12. LO Return Loss vs. LO Frequency Over Temperature,  
LO Drive = 6 dBm  
Figure 15. IF Return Loss vs. IF Frequency, LO Frequency = 24 GHz,  
LO Drive = 6 dBm, Data Taken Without External 90° Hybrid  
Rev. D | Page 7 of 20  
 
 
HMC977  
Data Sheet  
20  
0
2LO/RF  
LO/RF  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
10  
0
–10  
–20  
–30  
–40  
RF/IF2  
RF/IF1  
2LO/IF1  
2LO/IF2  
–50  
20  
21  
22  
23  
24  
25  
26  
27  
28  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 16. RF to IF and LO to IF Isolation vs. RF Frequency, LO Drive = 6 dBm,  
Data Taken Without External 90° Hybrid  
Figure 19. LO to RF Isolation vs. RF Frequency LO Drive = 6 dBm,  
Data Taken Without External 90° Hybrid  
0
–2  
15  
10  
5
–4  
–6  
–8  
0
–10  
–12  
–5  
–10  
+85°C  
+85°C  
+25°C  
–40°C  
–14  
+25°C  
–40°C  
–16  
20  
–15  
20  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 17. Input P1dB vs. RF Frequency Over Temperature, LO Drive = 6 dBm  
Figure 20. Input IP3 vs. RF Frequency Over Temperature, LO Drive = 6 dBm  
15  
10  
5
8
6
4
2
0
0
–5  
2dBm  
–10  
4dBm  
6dBm  
8dBm  
–15  
20  
21  
22  
23  
24  
25  
26  
27  
28  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 18. Input IP3 vs. RF Frequency at Various LO Drives  
Figure 21. Noise Figure vs. IF Frequency, LO Frequency = 10 GHz,  
LO Drive = 6 dBm, Data Taken Without External 90° Hybrid  
Rev. D | Page 8 of 20  
Data Sheet  
HMC977  
QUADRATURE CHANNEL DATA TAKEN WITHOUT 90° HYBRID AT THE IF PORTS, IF = 1000 MHZ, UPPER  
SIDEBAND  
6
5
4
3
2
1
0
20  
15  
10  
5
0
–5  
–10  
–15  
–20  
+85°C  
+25°C  
–40°C  
CONVERSION GAIN  
RETURN LOSS  
20  
21  
22  
23  
24  
25  
26  
27  
28  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 22. Noise Figure vs. RF Frequency Over Temperature,  
LO Drive = 6 dBm  
Figure 24. Conversion Gain and Return Loss Over IF Bandwidth  
35  
2.0  
2dBm  
4dBm  
6dBm  
1.5  
1.0  
30  
25  
20  
15  
10  
5
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
2dBm  
4dBm  
6dBm  
0
–5  
20  
21  
22  
23  
24  
25  
26  
27  
28  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 23. Amplitude Balance vs. RF Frequency at Various LO Drives  
Figure 25. Phase Balance vs. RF Frequency at Various LO Drives  
Rev. D | Page 9 of 20  
HMC977  
Data Sheet  
DATA TAKEN AS IRM WITH EXTERNAL 90° HYBRID AT THE IF PORTS, IF = 1000 MHz, LOWER SIDEBAND  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
+25°C  
–40°C  
0
20  
0
20  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 26. Conversion Gain vs. RF Frequency Over Temperature,  
LO Drive = 6 dBm  
Figure 29. Conversion Gain vs. RF Frequency at Various LO Drives  
0
0
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–2  
–4  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–6  
–8  
–10  
–12  
–14  
–16  
20  
21  
22  
23  
24  
25  
26  
27  
28  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 27. Image Rejection vs. RF Frequency Over Temperature,  
LO Drive = 6 dBm  
Figure 30. Input P1dB vs. RF Frequency Over Temperature, LO Drive = 6 dBm  
15  
15  
10  
5
+85°C  
+25°C  
–40°C  
10  
5
0
0
–5  
–5  
2dBm  
–10  
–15  
–10  
4dBm  
6dBm  
8dBm  
–15  
20  
21  
22  
23  
24  
25  
26  
27  
28  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 28. Input IP3 vs. RF Frequency Over Temperature, LO Drive = 6 dBm  
Figure 31. Input IP3 vs. RF Frequency at Various LO Drives  
Rev. D | Page 10 of 20  
Data Sheet  
HMC977  
DATA TAKEN AS IRM WITH EXTERNAL 90° HYBRID AT THE IF PORTS, IF = 2000 MHz, UPPER SIDEBAND  
15  
10  
5
25  
20  
15  
10  
5
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0
–5  
–10  
–15  
0
20  
21  
22  
23  
24  
25  
26  
27  
28  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 32. Conversion Gain vs. RF Frequency Over Temperature,  
LO Drive = 6 dBm  
Figure 35. Input IP3 vs. RF Frequency Over Temperature, LO Drive = 6 dBm  
15  
0
2dBm  
4dBm  
+85°C  
+25°C  
–40°C  
6dBm  
–10  
10  
8dBm  
–20  
–30  
–40  
–50  
–60  
5
0
–5  
–10  
–15  
20  
21  
22  
23  
24  
25  
26  
27  
28  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 33. Image Rejection vs. RF Frequency Over Temperature,  
LO Drive = 6 dBm  
Figure 36. Input IP3 vs. RF Frequency at Various LO Drives  
25  
20  
15  
10  
5
2dBm  
4dBm  
6dBm  
8dBm  
0
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
Figure 34. Conversion Gain vs. RF Frequency at Various LO Drives  
Rev. D | Page 11 of 20  
HMC977  
Data Sheet  
DATA TAKEN AS IRM WITH EXTERNAL 90° HYBRID AT THE IF PORTS, IF = 2000 MHz, LOWER SIDEBAND  
15  
10  
5
25  
20  
15  
10  
5
+85°C  
+25°C  
–40°C  
0
–5  
–10  
–15  
+85°C  
+25°C  
–40°C  
0
20  
21  
22  
23  
24  
25  
26  
27  
28  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 37. Conversion Gain vs. RF Frequency Over Temperature,  
LO Drive = 6 dBm  
Figure 40. Input IP3 vs. RF Frequency Over Temperature, LO Drive = 6 dBm  
15  
0
2dBm  
4dBm  
+85°C  
+25°C  
6dBm  
–40°C  
10  
8dBm  
–10  
5
0
–20  
–30  
–40  
–50  
–5  
–10  
–15  
20  
21  
22  
23  
24  
25  
26  
27  
28  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 38. Image Rejection vs. RF Frequency Over Temperature,  
LO Drive = 6 dBm  
Figure 41. Input IP3 vs. RF Frequency at Various LO Drives  
25  
20  
15  
10  
5
0
2dBm  
4dBm  
6dBm  
8dBm  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
Figure 39. Conversion Gain vs. RF Frequency at Various LO Drives  
Rev. D | Page 12 of 20  
Data Sheet  
HMC977  
DATA TAKEN AS IRM WITH EXTERNAL 90° HYBRID AT THE IF PORTS, IF = 3300 MHz, UPPER SIDEBAND  
15  
10  
5
25  
20  
15  
10  
5
0
–5  
–10  
–15  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0
20  
21  
22  
23  
24  
25  
26  
27  
28  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 42. Conversion Gain vs. RF Frequency Over Temperature,  
LO Drive = 6 dBm  
Figure 45. Input IP3 vs. RF Frequency Over Temperature, LO Drive = 6 dBm  
15  
10  
5
0
–10  
–20  
–30  
–40  
0
–5  
2dBm  
–10  
4dBm  
+85°C  
+25°C  
–40°C  
6dBm  
8dBm  
–50  
20  
–15  
20  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 43. Image Rejection vs. RF Frequency Over Temperature,  
LO Drive = 6 dBm  
Figure 46. Input IP3 vs. RF Frequency at Various LO Drives  
25  
20  
15  
10  
5
0
2dBm  
4dBm  
6dBm  
8dBm  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
Figure 44. Conversion Gain vs. RF Frequency at Various LO Drives  
Rev. D | Page 13 of 20  
HMC977  
Data Sheet  
DATA TAKEN AS IRM WITH EXTERNAL 90° HYBRID AT THE IF PORTS, IF = 3300 MHz, LOWER SIDEBAND  
15  
10  
5
25  
20  
15  
10  
5
+85°C  
+25°C  
–40°C  
0
–5  
–10  
–15  
+85°C  
+25°C  
–40°C  
0
20  
21  
22  
23  
24  
25  
26  
27  
28  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 47. Conversion Gain vs. RF Frequency Over Temperature,  
LO Drive = 6 dBm  
Figure 50. Input IP3 vs. RF Frequency Over Temperature, LO Drive = 6 dBm  
15  
0
+85°C  
+25°C  
–40°C  
2dBm  
4dBm  
6dBm  
10  
8dBm  
–10  
–20  
–30  
–40  
–50  
5
0
–5  
–10  
–15  
20  
21  
22  
23  
24  
25  
26  
27  
28  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 48. Image Rejection vs. RF Frequency Over Temperature,  
LO Drive = 6 dBm  
Figure 51. Input IP3 vs. RF Frequency at Various LO Drives  
25  
20  
15  
10  
5
2dBm  
4dBm  
6dBm  
8dBm  
0
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
Figure 49. Conversion Gain vs. RF Frequency at Various LO Drives  
Rev. D | Page 14 of 20  
Data Sheet  
HMC977  
SPURIOUS PERFORMANCE  
M × N Spurious Outputs, IF = 1000 MHz  
RF = 24 GHz, and RF input power = −20 dBm. LO frequency =  
11.5 GHz, and LO drive = 4 dBm. All values are in dBc below IF  
power level (RF − 2 × LO). Spur values are (M × RF) − (N × LO).  
N/A means not applicable.  
N × LO  
0
1
2
3
4
0
1
2
3
4
N/A  
−20  
−72.6  
N/A  
N/A  
−22.6  
−29.3  
−72.6  
N/A  
−7.4  
0
−28.8  
−33  
−37.2  
−37.3  
−51.6  
−74.6  
N/A  
M × RF  
−57.6  
−74.6  
N/A  
−43.6  
−74.6  
N/A  
N/A  
Rev. D | Page 15 of 20  
HMC977  
Data Sheet  
THEORY OF OPERATION  
The HMC977 is a compact, GaAs, MMIC, I/Q downconverter  
in a leadless, RoHS compliant, SMT package. The device can be  
used as either an image reject mixer or a SSB upconverter. The  
mixer uses two standard, double balanced, mixer cells and a  
90° hybrid. This device is a smaller alternative to a hybrid style  
image reject mixer and a SSB upconverter assembly. The  
HMC977 eliminates the need for wire bonding, allowing the  
use of the surface-mount manufacturing techniques.  
Rev. D | Page 16 of 20  
 
Data Sheet  
HMC977  
APPLICATIONS INFORMATION  
Figure 52 shows the typical application circuit for the HMC977.  
To select the appropriate sideband, an external 90° hybrid  
coupler is needed. For applications not requiring operation to  
dc, use an off chip dc blocking capacitor. The common-mode  
voltage for each IF port is 0 V.  
To select the lower sideband, connect the IF2 pin to the 90°  
port of the hybrid and the IF1 pin to the 0° port of the hybrid.  
To select the upper sideband (low side LO), connect the IF2 pin  
to the 0° port of the hybrid and the IF1 pin to the 90° port of  
the hybrid.  
AUTOMATIC  
GAIN  
BAND-PASS  
CONTROL  
FILTER  
COUPLER  
LO  
×2  
IF OUT  
8.3GHz TO 15.7GHz  
RF  
20GHz TO 28GHz  
Figure 52. Typical Application Circuit  
Rev. D | Page 17 of 20  
 
 
HMC977  
Data Sheet  
Table 6. List of Materials for Evaluation PCB 1316561  
EVALUATION PCB  
Item  
Description  
It is recommended to use RF circuit design techniques with the  
circuit board used in the application. Signal lines must have 50 Ω  
impedance, and the package ground leads and exposed paddle  
must be connected directly to the ground plane similar to that  
shown Figure 54. A sufficient number of via holes must be used  
to connect the top and bottom ground planes. The evaluation  
circuit board shown in Figure 53 is available from Analog  
Devices, Inc., upon request.  
J1  
PCB mount, Subminiature Version A (SMA), RF  
connector, SRI  
J2, J3  
PCB mount K connectors, SRI  
DC pins  
100 pF capacitors, 0402 package  
10 nF capacitors, 0402 package  
4.7 μF capacitors, Case A package  
HMC977  
J5 to J8  
C1, C4, C7  
C2, C5, C8  
C3, C6, C9  
U1  
PCB2  
131653 evaluation board  
1 Reference this number when ordering complete evaluation PCB.  
2 Circuit board material: Rogers 4350.  
131653-1  
VDL02 VDRF VDLO1  
GND  
J5 J6  
J7  
+
J8  
U1  
J3  
+
C3  
C9  
+
RFIN  
C6  
J2  
IF2  
C4  
C5  
C7  
H977  
XXXX  
C8  
IF1  
C2 C1  
J4  
LO  
J1  
Figure 53. Evaluation PCB  
Rev. D | Page 18 of 20  
 
 
Data Sheet  
HMC977  
0.178" SQUARE  
LAYOUT  
0.006" MASK/METAL OVERLAP  
0.010" MIN MASK WIDTH  
SOLDERMASK  
GROUND PAD  
Solder the exposed pad on the underside of the HMC977 to a  
low thermal and electrical impedance ground plane. This pad is  
typically soldered to an exposed opening in the solder mask on  
the evaluation board. Connect these ground vias to all other  
ground layers on the evaluation board to maximize heat  
dissipation from the device package. Figure 54 shows the PCB  
land pattern footprint for the HMC977 evaluation board.  
PAD SIZE  
0.026" × 0.010"  
PIN 1  
0.0197"  
[0.50]  
0.116"  
MASK  
OPENING  
0.034"  
TYPICAL  
VIA SPACING  
0.010"  
TYPICAL VIA  
0.010" REF  
0.030"  
MASK OPENING  
0.098" SQUARE MASK OPENING  
0.020 × 45° CHAMFER FOR PIN 1  
0.110" SQUARE  
GROUND PAD  
Figure 54. 131656-HMC977LP4E PCB Land Pattern Footprint  
Rev. D | Page 19 of 20  
 
HMC977  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
S
INDICATOR AR EA OP TION  
(SEE DETAIL A)  
24  
19  
18  
1
0.50  
BSC  
2.95  
2.80 SQ  
2.65  
EXPOSED  
PAD  
13  
12  
6
7
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
1.00  
0.90  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8.  
Figure 55. 24-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.90 mm Package Height  
(HCP-24-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
MSL  
Package  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Lead Finish  
Rating2 Option  
HMC977LP4E  
HMC977LP4ETR  
131656-HMC977LP4E  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Assembly Board  
100% Matte Sn MSL1  
100% Matte Sn MSL1  
HCP-24-2  
HCP-24-2  
1 The models are RoHS complaint parts.  
2 See the Absolute Maximum Ratings section.  
©2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D21858-0-11/19(D)  
Rev. D | Page 20 of 20  
 
 

相关型号:

HMC980

Active Bias Controller
HITTITE

HMC980

HMC980
ADI

HMC980LP4E

ACTIVE BIAS CONTROLLER HIGH CURRENT
HITTITE

HMC980LP4E

HMC980LP4E
ADI

HMC980LP4ETR

Telecom Circuit, 1-Func, PQCC24, ROHS COMPLIANT, PLASTIC, QFN-24
HITTITE

HMC980LP4ETR

HMC980LP4ETR
ADI

HMC980LP4E_1109

ACTIVE BIAS CONTROLLER HIGH CURRENT
HITTITE

HMC980_12

Active Bias Controller
HITTITE

HMC981

ACTIVE BIAS CONTROLLER
HITTITE

HMC981LP3E

ACTIVE BIAS CONTROLLER
HITTITE

HMC983LP5E

DC - 7 GHZ FRACTIONAL-N DIVIDER AND FREQUENCY SWEEPER
HITTITE

HMC983LP5E_12

DC - 7 GHz FRACTIONAL-N DIVIDER
HITTITE