LT1809CS8#PBF [ADI]

Single 180MHz, 350V/µs Rail-to-Rail Input and Output Low Distortion Op Amps;
LT1809CS8#PBF
型号: LT1809CS8#PBF
厂家: ADI    ADI
描述:

Single 180MHz, 350V/µs Rail-to-Rail Input and Output Low Distortion Op Amps

放大器 光电二极管
文件: 总24页 (文件大小:291K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1809/LT1810  
Single/Dual 180MHz, 350V/µs  
Rail-to-Rail Input and Output  
Low Distortion Op Amps  
DESCRIPTION  
FEATURES  
TheLT®1809/LT1810aresingle/duallowdistortionrail-to-  
rail input and output op amps with a 350V/μs slew rate.  
These amplifiers have a –3dB bandwidth of 320MHz at  
n
–3dB Bandwidth: 320MHz, A = 1  
V
n
Gain-Bandwidth Product: 180MHz, A ≥ 10  
V
n
Slew Rate: 350V/μs  
n
Wide Supply Range: 2.5V to 12.6V  
unity-gain,again-bandwidthproductof180MHz(A 10)  
V
n
Large Output Current: 85mA  
andan85mAoutputcurrenttottheneedsoflowvoltage,  
n
Low Distortion, 5MHz: 90dBc  
high performance signal conditioning systems.  
n
Input Common Mode Range Includes Both Rails  
The LT1809/LT1810 have an input range that includes  
both supply rails and an output that swings within 20mV  
of either supply rail to maximize the signal dynamic range  
in low supply applications.  
n
Output Swings Rail-to-Rail  
n
Input Offset Voltage, Rail-to-Rail: 2.5mV Max  
n
Common Mode Rejection: 89dB Typ  
n
Power Supply Rejection: 87dB Typ  
n
The LT1809/LT1810 have very low distortion (–90dBc) up  
to 5MHz that allows them to be used in high performance  
data acquisition systems.  
Open-Loop Gain: 100V/mV Typ  
n
Shutdown Pin: LT1809  
n
Single in 8-Pin SO and 6-Pin SOT-23 Packages  
n
Dual in 8-Pin SO and MSOP Packages  
TheLT1809/LT1810maintaintheirperformanceforsupplies  
from 2.5V to 12.6V and are specified at 3V, 5V and 5V  
supplies. The inputs can be driven beyond the supplies  
without damage or phase reversal of the output.  
n
Operating Temperature Range: –40°C to 85°C  
n
Low Profile (1mm) SOT-23 (ThinSOT™) Package  
APPLICATIONS  
The LT1809 is available in the 8-pin SO package with the  
standard op amp pinout and the 6-pin SOT-23 package.  
The LT1810 features the standard dual op amp pinout and  
isavailablein8-pinSOandMSOPpackages.Thesedevices  
can be used as a plug-in replacement for many op amps  
to improve input/output range and performance.  
n
Driving A/D Converters  
n
Low Voltage Signal Processing  
n
Active Filters  
n
Rail-to-Rail Buffer Amplifiers  
n
Video Line Driver  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Distortion vs Frequency  
–40  
A
V
V
= +1  
= 2V  
High Speed ADC Driver  
V
IN  
S
P-P  
–50  
–60  
5V  
=
5V  
5V  
V
P-P  
IN  
R3  
49.9Ω  
+
LTC®1420  
PGA GAIN = 1  
REF = 2.048V  
1V  
–70  
12 BITS  
10Msps  
R
L
= 100Ω, 2ND  
LT1809  
–5V  
+A  
IN  
C1  
470pF  
–80  
–A  
IN  
R2  
1k  
–90  
1809 TA01a  
R
L
= 100Ω, 3RD  
R
= 1k, 3RD  
L
–5V  
–100  
R1  
1k  
R
L
= 1k, 2ND  
–110  
0.3  
1
10  
30  
FREQUENCY (MHz)  
1809 TA01b  
180910fa  
1
LT1809/LT1810  
ABSOLUTE MAXIMUM RATINGS  
Total Supply Voltage (V to V ) .............................12.6V  
Input Voltage (Note 2)............................................... V  
Input Current (Note 2)......................................... 10mA  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Operating Temperature Range (Note 4) ...40°C to 85°C  
(Note 1)  
+
Specified Temperature Range (Note 5) ....–40°C to 85°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
S
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
+
SHDN  
–IN  
1
2
3
4
8
7
6
5
NC  
OUT 1  
6 V  
+
V
+
V
2
5 SHDN  
4 –IN  
+IN  
OUT  
NC  
+IN 3  
V
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
= 150°C, θ = 145°C/W (Note 9)  
JMAX  
JA  
T
JMAX  
= 150°C, θ = 100°C/W (Note 9)  
JA  
TOP VIEW  
+
TOP VIEW  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
OUT A  
–IN A  
+IN A  
1
2
3
4
8 V  
OUT B  
–IN B  
+IN B  
7 OUT B  
6 –IN B  
5 +IN B  
A
V
B
V
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
= 150°C, θ = 130°C/W (Note 9)  
JA  
JMAX  
T
JMAX  
= 150°C, θ = 100°C/W (Note 9)  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1809CS6#PBF  
LT1809IS6#PBF  
LT1809CS8#PBF  
LT1809IS8#PBF  
LT1810CMS8#PBF  
LT1810IMS8#PBF  
LT1810CS8#PBF  
LT1810IS8#PBF  
TAPE AND REEL  
PART MARKING  
LTKY  
PACKAGE DESCRIPTION  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
8-Lead Plastic SO  
SPECIFIED TEMPERATURE RANGE  
LT1809CS6#TRPBF  
LT1809IS6#TRPBF  
LT1809CS8#TRPBF  
LT1809IS8#TRPBF  
LT1810CMS8#TRPBF  
LT1810IMS8#TRPBF  
LT1810CS8#TRPBF  
LT1810IS8#TRPBF  
0°C to 70°C  
LTUF  
–40°C to 85°C  
0°C to 70°C  
1809  
1809I  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
LTRF  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic SO  
LTTQ  
–40°C to 85°C  
0°C to 70°C  
1810  
1810I  
8-Lead Plastic SO  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
180910fa  
2
LT1809/LT1810  
ELECTRICAL CHARACTERISTICS TA = 25°C. VS = 5V, 0V; VS = 3V, 0V; VSHDN = open; VCM = VOUT = half supply,  
unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
= V  
= V  
= V  
= V  
LT1809 SO-8  
LT1809 SO-8  
0.6  
0.6  
0.6  
0.6  
2.5  
2.5  
3.0  
3.0  
mV  
mV  
mV  
mV  
OS  
+
+
+
Input Offset Shift  
V
CM  
V
CM  
= V to V  
LT1809 SO-8  
0.3  
0.3  
2.0  
2.5  
mV  
mV  
ΔV  
OS  
= V to V  
Input Offset Voltage Match (Channel-to-Channel)  
(Note 10)  
0.7  
6
mV  
+
I
B
Input Bias Current  
V
CM  
V
CM  
= V  
1.8  
–13  
8
μA  
μA  
= V + 0.2V  
–27.5  
+
Input Bias Current Shift  
V
CM  
= V + 0.2V to V  
14.8  
35.5  
μA  
ΔI  
B
+
Input Bias Current Match (Channel-to-Channel)  
(Note 10)  
V
CM  
V
CM  
= V  
0.1  
0.2  
4
8
μA  
μA  
= V + 0.2V  
+
I
OS  
Input Offset Current  
V
CM  
V
CM  
= V  
0.05  
0.2  
1.2  
4
μA  
μA  
= V + 0.2V  
+
Input Offset Current Shift  
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
V
= V + 0.2V to V  
0.25  
16  
5
5.2  
μA  
nV/√Hz  
pA/√Hz  
pF  
ΔI  
CM  
OS  
e
f = 10kHz  
f = 10kHz  
n
i
n
C
A
2
IN  
Large-Signal Voltage Gain  
V = 5V, V = 0.5V to 4.5V, R = 1k to V /2  
25  
4
15  
80  
10  
42  
V/mV  
V/mV  
V/mV  
VOL  
S
S
S
O
O
O
L
S
S
S
V = 5V, V = 1V to 4V, R = 100ꢀ to V /2  
L
V = 3V, V = 0.5V to 2.5V, R = 1k to V /2  
L
+
+
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
66  
61  
82  
78  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
+
+
CMRR Match (Channel-to-Channel) (Note 10)  
V = 5V, V = V to V  
60  
55  
82  
78  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
+
Input Common Mode Range  
V
V
V
dB  
dB  
V
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
71  
65  
87  
87  
S
CM  
PSRR Match (Channel-to-Channel) (Note 10)  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing LOW (Note 7)  
V = 2.5V to 10V, V = 0V  
S
CM  
2.3  
2.5  
V
V
No Load  
12  
50  
180  
50  
120  
375  
mV  
mV  
mV  
OL  
I
I
= 5mA  
= 25mA  
SINK  
SINK  
Output Voltage Swing HIGH (Note 7)  
Short-Circuit Current  
No Load  
20  
80  
80  
mV  
mV  
mV  
OH  
I
I
= 5mA  
180  
650  
SOURCE  
SOURCE  
= 25mA  
330  
I
I
V = 5V  
45  
35  
85  
70  
mA  
mA  
SC  
S
V = 3V  
S
Supply Current per Amplifier  
Supply Current, Shutdown  
12.5  
17  
mA  
S
V = 5V, V  
= 0.3V  
= 0.3V  
0.55  
0.31  
1.25  
0.90  
mA  
mA  
S
SHDN  
SHDN  
V = 3V, V  
S
I
SHDN Pin Current  
V = 5V, V  
S
= 0.3V  
= 0.3V  
420  
220  
750  
500  
μA  
μA  
SHDN  
S
SHDN  
SHDN  
V = 3V, V  
Output Leakage Current, Shutdown  
SHDN Pin Input Voltage Low  
SHDN Pin Input Voltage High  
Turn-On Time  
V
= 0.3V  
0.1  
75  
μA  
V
SHDN  
V
V
0.3  
L
V – 0.5  
S
V
H
t
ON  
V
SHDN  
= 0.3V to 4.5V, R = 100  
80  
ns  
L
180910fa  
3
LT1809/LT1810  
TA = 25°C. VS = 5V, 0V; VS = 3V, 0V; VSHDN = open; VCM = VOUT = half supply,  
ELECTRICAL CHARACTERISTICS  
unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
= 4.5V to 0.3V, R = 100  
MIN  
TYP  
50  
MAX  
UNITS  
ns  
t
Turn-Off Time  
V
SHDN  
OFF  
L
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 2MHz  
160  
300  
23.5  
86  
27  
MHz  
V/μs  
MHz  
dB  
V = 5V, A = 1, R = 1k, V = 4V  
S
V
L
O
P-P  
FPBW  
THD  
Full Power Bandwidth  
Total Harmonic Distortion  
Settling Time  
V = 5V, V  
= 4V  
OUT P-P  
S
V = 5V, A = 1, R = 1k, V = 2V , f = 5MHz  
S
V
L
O
P-P C  
t
S
0.1%, V = 5V, V  
= 2V, A = 1, R = 500ꢀ  
ns  
S
STEP  
V
L
Differential Gain (NTSC)  
Differential Phase (NTSC)  
V = 5V, A = 2, R = 150ꢀ  
0.015  
0.05  
%
ΔG  
S
V
L
V = 5V, A = 2, R = 150ꢀ  
Deg  
Δθ  
S
V
L
The l denotes the specifications which apply over the 0°C ≤ TA ≤ 70°C temperature range. VS = 5V, 0V; VS = 3V, 0V; VSHDN = open;  
VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
= V  
= V  
= V  
= V  
LT1809 SO-8  
LT1809 SO-8  
1
1
1
1
3.0  
3.0  
3.5  
3.5  
mV  
mV  
mV  
mV  
OS  
+
+
l
l
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Offset Voltage Shift  
V
V
= V  
= V  
9
9
25  
25  
μV/°C  
μV/°C  
OS  
CM  
CM  
+
+
l
l
V
V
= V to V  
LT1809 SO-8  
0.5  
0.5  
2.5  
3.0  
mV  
mV  
ΔV  
CM  
CM  
OS  
= V to V  
+
l
Input Offset Voltage Match (Channel-to-Channel)  
(Note 10)  
V
= V , V = V  
1.2  
6.5  
10  
40  
mV  
CM  
CM  
+
l
l
I
Input Bias Current  
V
CM  
V
CM  
= V – 0.2V  
2
–14  
μA  
μA  
B
= V + 0.4V  
–30  
+
l
l
Input Bias Current Shift  
V
CM  
= V + 0.4V to V – 0.2V  
16  
μA  
ΔI  
B
+
Input Bias Current Match (Channel-to-Channel)  
(Note 10)  
V
CM  
V
CM  
= V – 0.2V  
0.1  
0.5  
5
10  
μA  
μA  
= V + 0.4V  
+
l
l
I
OS  
Input Offset Current  
V
CM  
V
CM  
= V – 0.2V  
0.05  
0.40  
1.5  
4.5  
μA  
μA  
= V + 0.4V  
+
l
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.4V to V – 0.2V  
0.45  
6
μA  
ΔI  
CM  
OS  
l
l
l
A
VOL  
V = 5V, V = 0.5V to 4.5V, R = 1k to V /2  
20  
3.5  
12  
75  
8.5  
40  
V/mV  
V/mV  
V/mV  
S
S
S
O
L
S
S
S
V = 5V, V = 1V to 4V, R = 100ꢀ to V /2  
O
L
V = 3V, V = 0.5V to 2.5V, R = 1k to V /2  
O
L
+
+
l
l
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
64  
60  
80  
75  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
+
+
l
CMRR Match (Channel-to-Channel) (Note 10)  
V = 5V, V = V , V = V  
58  
54  
80  
75  
dB  
dB  
S
CM  
CM  
V = 3V, V = V , V = V  
S
CM  
CM  
+
l
l
l
l
Input Common Mode Range  
V
V
V
dB  
dB  
V
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
70  
64  
83  
83  
S
CM  
PSRR Match (Channel-to-Channel) (Note 10)  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing LOW (Note 7)  
V = 2.5V to 10V, V = 0V  
S
CM  
2.3  
2.5  
l
l
l
V
No Load  
12  
55  
200  
60  
140  
400  
mV  
mV  
mV  
OL  
I
I
= 5mA  
= 25mA  
SINK  
SINK  
180910fa  
4
LT1809/LT1810  
The l denotes the specifications which apply over the 0°C ≤ TA ≤ 70°C  
ELECTRICAL CHARACTERISTICS  
temperature range. VS = 5V, 0V; VS = 3V, 0V; VSHDN = open; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
Output Voltage Swing HIGH (Note 7)  
No Load  
50  
110  
370  
120  
220  
700  
mV  
mV  
mV  
OH  
I
I
= 5mA  
SOURCE  
SOURCE  
= 25mA  
l
l
I
I
Short-Circuit Current  
V = 5V  
S
40  
30  
75  
65  
mA  
mA  
SC  
S
V = 3V  
l
Supply Current per Amplifier  
Supply Current, Shutdown  
15  
20  
mA  
S
l
l
V = 5V, V  
= 0.3V  
= 0.3V  
0.58  
0.35  
1.4  
1.1  
mA  
mA  
S
SHDN  
SHDN  
V = 3V, V  
S
l
l
I
SHDN Pin Current  
V = 5V, V  
S
= 0.3V  
= 0.3V  
420  
220  
850  
550  
μA  
μA  
SHDN  
S
SHDN  
SHDN  
V = 3V, V  
l
l
l
l
l
l
l
l
Output Leakage Current, Shutdown  
SHDN Pin Input Voltage Low  
SHDN Pin Input Voltage High  
Turn-On Time  
V
= 0.3V  
2
μA  
V
SHDN  
V
V
0.3  
L
V – 0.5  
S
V
H
t
t
V
V
= 0.3V to 4.5V, R = 100  
80  
50  
ns  
ON  
OFF  
SHDN  
SHDN  
L
Turn-Off Time  
= 4.5V to 0.3V, R = 100  
ns  
L
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 2MHz  
145  
250  
20  
MHz  
V/μs  
MHz  
V = 5V, A = 1, R = 1k, V = 4V  
S
V
L
O
P-P  
FPBW  
Full Power Bandwidth  
V = 5V, V  
S
= 4V  
OUT P-P  
The l denotes the specifications which apply over the 40°C ≤ TA ≤ 85°C temperature range. VS = 5V, 0V; VS = 3V, 0V; VSHDN = open;  
VCM = VOUT = half supply, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
= V  
= V  
= V  
= V  
LT1809 SO-8  
LT1809 SO-8  
1
1
1
1
3.5  
3.5  
4.0  
4.0  
mV  
mV  
mV  
mV  
OS  
+
+
l
l
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Offset Voltage Shift  
V
V
= V  
= V  
9
9
25  
25  
μV/°C  
μV/°C  
OS  
CM  
CM  
+
l
l
V
CM  
V
CM  
= V to V  
LT1809 SO-8  
0.5  
0.5  
3.0  
3.5  
mV  
mV  
ΔV  
OS  
= V  
+
l
Input Offset Voltage Match (Channel-to-Channel) V = V , V = V  
1.2  
7
mV  
CM  
CM  
(Note 10)  
+
l
l
I
Input Bias Current  
V
V
= V – 0.2V  
2
12  
47  
μA  
μA  
B
CM  
CM  
= V + 0.4V  
–35  
–17  
+
l
Input Bias Current Shift  
V
CM  
= V + 0.4V to V – 0.2V  
19  
μA  
ΔI  
B
+
l
l
Input Bias Current Match (Channel-to-Channel)  
(Note 10)  
V
V
= V – 0.2V  
0.2  
0.6  
6
12  
μA  
μA  
CM  
CM  
= V + 0.4V  
+
l
l
I
OS  
Input Offset Current  
V
CM  
V
CM  
= V – 0.2V  
0.08  
0.5  
2
6
μA  
μA  
= V + 0.4V  
+
l
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.4V to V – 0.2V  
0.58  
7.5  
μA  
ΔI  
CM  
OS  
l
l
l
A
VOL  
V = 5V, V = 0.5V to 4.5V, R = 1k to V /2  
17  
2.5  
10  
60  
7
35  
V/mV  
V/mV  
V/mV  
S
S
S
O
L
S
S
S
V = 5V, V = 1V to 4V, R = 100ꢀ to V /2  
O
L
V = 3V, V = 0.5V to 2.5V, R = 1k to V /2  
O
L
180910fa  
5
LT1809/LT1810  
The l denotes the specifications which apply over the 40°C ≤ TA ≤ 85°C  
ELECTRICAL CHARACTERISTICS  
temperature range. VS = 5V, 0V; VS = 3V, 0V; VSHDN = open; VCM = VOUT = half supply, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
V = 5V, V = V to V  
MIN  
TYP  
MAX  
UNITS  
+
+
l
l
CMRR  
Common Mode Rejection Ratio  
63  
58  
80  
75  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
+
+
l
l
CMRR Match (Channel-to-Channel) (Note 10)  
V = 5V, V = V to V  
57  
52  
78  
72  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
+
l
l
l
l
Input Common Mode Range  
V
V
V
dB  
dB  
V
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
69  
63  
83  
83  
S
CM  
PSRR Match (Channel-to-Channel) (Note 10)  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing LOW (Note 7)  
V = 2.5V to 10V, V = 0V  
S
CM  
2.3  
2.5  
l
l
l
V
V
No Load  
18  
60  
210  
70  
150  
450  
mV  
mV  
mV  
OL  
I
I
= 5mA  
= 25mA  
SINK  
SINK  
l
l
l
Output Voltage Swing HIGH (Note 7)  
Short-Circuit Current  
No Load  
55  
130  
240  
750  
mV  
mV  
mV  
OH  
I
I
= 5mA  
120  
375  
SOURCE  
SOURCE  
= 25mA  
l
l
I
I
V = 5V  
30  
25  
70  
60  
mA  
mA  
SC  
S
V = 3V  
S
l
Supply Current per Amplifier  
Supply Current, Shutdown  
15  
21  
mA  
S
l
l
V = 5V, V  
= 0.3V  
= 0.3V  
0.58  
0.35  
1.5  
1.2  
mA  
mA  
S
SHDN  
SHDN  
V = 3V, V  
S
I
SHDN Pin Current  
V = 5V, V  
S
= 0.3V  
= 0.3V  
420  
220  
900  
600  
μA  
μA  
SHDN  
S
SHDN  
SHDN  
V = 3V, V  
Output Leakage Current, Shutdown  
SHDN Pin Input Voltage Low  
SHDN Pin Input Voltage High  
Turn-On Time  
V
= 0.3V  
3
μA  
V
SHDN  
V
V
0.3  
L
V – 0.5  
S
V
H
t
t
V
V
= 0.3V to 4.5V, R = 100  
80  
50  
ns  
ON  
OFF  
SHDN  
L
Turn-Off Time  
= 4.5V to 0.3V, R = 100  
ns  
SHDN  
L
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 2MHz  
V = 5V, A = -1, R = 1k, V = 4V  
P-P  
140  
180  
14  
MHz  
V/μs  
MHz  
S
V
L
O
FPBW  
Full Power Bandwidth  
V = 5V, V  
S
= 4V  
OUT P-P  
TA = 25°C. VS = 5V, VSHDN = open, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
= V  
= V  
= V  
= V  
LT1809 SO-8  
LT1809 SO-8  
0.8  
0.8  
0.8  
0.8  
3.0  
3.0  
3.5  
3.5  
mV  
mV  
mV  
mV  
OS  
+
+
+
Input Offset Voltage Shift  
V
CM  
V
CM  
= V to V  
LT1809 SO-8  
0.35  
0.35  
2.5  
3.0  
mV  
mV  
ΔV  
OS  
= V to V  
+
Input Offset Voltage Match (Channel-to-Channel)  
(Note 10)  
V
= V , V = V  
1
6
mV  
CM  
CM  
+
I
Input Bias Current  
V
CM  
V
CM  
= V  
2
10  
μA  
μA  
B
= V + 0.2V  
–30  
–12.5  
180910fa  
6
LT1809/LT1810  
ELECTRICAL CHARACTERISTICS  
TA = 25°C. VS = 5V, VSHDN = open, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
Input Bias Current Shift  
V
CM  
= V + 0.2V to V  
14.5  
40  
μA  
ΔI  
B
+
Input Bias Current Match (Channel-to-Channel)  
(Note 10)  
V
V
= V  
0.1  
0.4  
5
10  
μA  
μA  
CM  
CM  
= V + 0.2V  
+
I
OS  
Input Offset Current  
V
CM  
V
CM  
= V  
0.05  
0.40  
2
5
μA  
μA  
= V + 0.2V  
+
Input Offset Current Shift  
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
V
= V + 0.2V to V  
0.45  
16  
5
7
μA  
nV/√Hz  
pA/√Hz  
pF  
ΔI  
CM  
OS  
e
f = 10kHz  
f = 10kHz  
f = 100kHz  
n
i
n
C
IN  
2
A
VOL  
Large-Signal Voltage Gain  
V = –4V to 4V, R = 1k  
30  
4.5  
100  
12  
V/mV  
V/mV  
O
L
V = –2.5V to 2.5V, R = 100ꢀ  
O
L
+
CMRR  
Common Mode Rejection Ratio  
V
CM  
V
CM  
= V to V  
70  
64  
89  
89  
dB  
dB  
V
+
CMRR Match (Channel-to-Channel) (Note 10)  
Input Common Mode Range  
= V to V  
+
V
V
+
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
71  
65  
87  
90  
dB  
dB  
+
PSRR Match (Channel-to-Channel) (Note 10)  
Output Voltage Swing LOW (Note 7)  
V = 2.5V to 10V, V = 0V  
No Load  
V
V
12  
50  
180  
60  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 25mA  
140  
425  
SINK  
SINK  
Output Voltage Swing HIGH (Note 7)  
No Load  
SOURCE  
SOURCE  
35  
90  
310  
100  
200  
700  
mV  
mV  
mV  
I
I
= 5mA  
= 25mA  
I
I
Short-Circuit Current  
Supply Current per Amplifier  
Supply Current, Shutdown  
SHDN Pin Current  
55  
85  
15  
mA  
mA  
mA  
μA  
SC  
20  
1.3  
750  
75  
S
V
V
V
= 0.3V  
= 0.3V  
= 0.3V  
0.6  
420  
0.1  
SHDN  
SHDN  
SHDN  
I
SHDN  
Output Leakage Current, Shutdown  
SHDN Pin Input Voltage Low  
SHDN Pin Input Voltage High  
Turn-On Time  
μA  
V
V
0.3  
V
L
+
V – 0.5  
V
H
t
t
V
V
= 0.3V to 4.5V, R = 100  
80  
50  
ns  
ON  
OFF  
SHDN  
SHDN  
L
Turn-Off Time  
= 4.5V to 0.3V, R = 100  
ns  
L
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 2MHz  
A = –1, R = 1k, V = 4V,  
110  
175  
180  
350  
MHz  
V/μs  
V
L
O
Measured at V = 3V  
O
FPBW  
THD  
Full Power Bandwidth  
Total Harmonic Distortion  
Settling Time  
V
= 8V  
14  
–90  
34  
MHz  
dB  
OUT  
P-P  
A = 1, R = 1k, V = 2V , f = 5MHz  
V
L
O
P-P C  
t
S
0.1%, V  
= 8V, A = 1, R = 500ꢀ  
ns  
STEP  
V
L
Differential Gain (NTSC)  
Differential Phase (NTSC)  
A = 2, R = 150ꢀ  
0.01  
0.01  
%
ΔG  
V
L
A = 2, R = 150ꢀ  
Deg  
Δθ  
V
L
180910fa  
7
LT1809/LT1810  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the 0°C ≤ TA ≤ 70°C  
temperature range. VS = 5V, VSHDN = open, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
= V  
= V  
= V  
= V  
LT1809 SO-8  
LT1809 SO-8  
1
1
1
1
3.25  
3.25  
3.75  
3.75  
mV  
mV  
mV  
mV  
OS  
+
+
l
l
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Offset Voltage Shift  
V
V
= V  
= V  
10  
10  
25  
25  
μV/°C  
μV/°C  
OS  
CM  
CM  
+
+
l
l
V
V
= V to V  
LT1809 SO-8  
0.5  
0.5  
2.75  
3.25  
mV  
mV  
ΔV  
CM  
CM  
OS  
= V to V  
+
l
Input Offset Voltage Match (Channel-to-Channel)  
(Note 10)  
V
= V to V  
1.2  
6.5  
mV  
CM  
+
l
l
l
I
Input Bias Current  
V
CM  
V
CM  
V
CM  
= V – 0.2V  
2.5  
–15  
17.5  
12.5  
μA  
μA  
μA  
B
= V + 0.4V  
–37.5  
+
ΔI  
Input Bias Current Shift  
= V + 0.4V to V – 0.2V  
50  
B
+
l
l
Input Bias Current Match (Channel-to-Channel)  
(Note 10)  
V
V
= V – 0.2V  
0.1  
0.5  
6
12  
μA  
μA  
CM  
CM  
= V + 0.4V  
+
l
l
I
OS  
Input Offset Current  
V
CM  
V
CM  
= V – 0.2V  
0.06  
0.5  
2.25  
6
μA  
μA  
= V + 0.4V  
+
l
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.4V to V – 0.2V  
0.56  
8.25  
μA  
ΔI  
CM  
OS  
l
l
A
VOL  
V = –4V to 4V, R = 1k  
V = –2.5V to 2.5V, R = 100ꢀ  
27  
3.5  
80  
10  
V/mV  
V/mV  
O
O
L
L
+
l
l
l
l
l
CMRR  
Common Mode Rejection Ratio  
V
V
= V to V  
69  
63  
86  
86  
dB  
dB  
V
CM  
CM  
+
CMRR Match (Channel-to-Channel) (Note 10)  
Input Common Mode Range  
= V to V  
+
V
V
+
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
70  
64  
83  
83  
dB  
dB  
+
PSRR Match (Channel-to-Channel) (Note 10)  
Output Voltage Swing LOW (Note 7)  
V = 2.5V to 10V, V = 0V  
l
l
l
V
V
No Load  
20  
50  
210  
80  
160  
475  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 25mA  
SINK  
SINK  
l
l
l
Output Voltage Swing HIGH (Note 7)  
No Load  
60  
120  
370  
140  
240  
750  
mV  
mV  
mV  
I
I
= 5mA  
SOURCE  
SOURCE  
= 25mA  
l
l
l
l
l
l
l
l
l
l
l
I
I
Short-Circuit Current  
Supply Current per Amplifier  
Supply Current, Shutdown  
SHDN Pin Current  
45  
75  
17.5  
0.6  
420  
3
mA  
mA  
mA  
μA  
SC  
25  
1.5  
850  
S
V
V
V
= 0.3V  
= 0.3V  
= 0.3V  
SHDN  
SHDN  
SHDN  
I
SHDN  
Output Leakage Current, Shutdown  
SHDN Pin Input Voltage Low  
SHDN Pin Input Voltage High  
Turn-On Time  
μA  
V
V
0.3  
V
L
+
V – 0.5  
V
H
t
t
V
V
= 0.3V to 4.5V, R = 100  
80  
50  
ns  
ON  
OFF  
SHDN  
SHDN  
L
Turn-Off Time  
= 4.5V to 0.3V, R = 100  
ns  
L
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 2MHz  
A = –1, R = 1k, V = 4V,  
85  
170  
300  
MHz  
V/μs  
140  
V
L
O
Measured at V = 3V  
O
l
FPBW  
Full Power Bandwidth  
V
OUT  
= 8V  
12  
MHz  
P-P  
180910fa  
8
LT1809/LT1810  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the 40°C ≤ TA ≤ 85°C  
temperature range. VS = 5V, VSHDN = open, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
+
–v  
l
l
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
= V  
= V  
= V  
= V  
LT1809 SO-8  
LT1809 SO-8  
1
1
1
1
3.75  
3.75  
4.25  
4.25  
mV  
mV  
mV  
mV  
OS  
+
l
l
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Offset Voltage Shift  
V
V
= V  
= V  
10  
10  
25  
25  
μV/°C  
μV/°C  
OS  
CM  
CM  
+
+
l
l
V
CM  
V
CM  
= V to V  
LT1809 SO-8  
0.5  
0.5  
3.00  
3.75  
mV  
mV  
ΔV  
OS  
= V to V  
+
l
Input Offset Voltage Match (Channel-to-Channel)  
(Note 10)  
V
= V to V  
1.2  
7.5  
14  
59  
mV  
CM  
+
l
l
I
Input Bias Current  
V
V
= V – 0.2V  
2.8  
–17  
μA  
μA  
B
CM  
CM  
= V + 0.4V  
–45  
+
l
Input Bias Current Shift  
V
CM  
= V + 0.4V to V – 0.2V  
19.8  
μA  
ΔI  
B
+
l
l
Input Bias Current Match (Channel-to-Channel)  
(Note 10)  
V
V
= V – 0.2V  
0.1  
0.6  
7
14  
μA  
μA  
CM  
CM  
= V + 0.4V  
+
l
l
I
OS  
Input Offset Current  
V
V
= V – 0.2V  
0.08  
0.6  
2.5  
8
μA  
μA  
CM  
CM  
= V + 0.4V  
+
l
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.4V to V – 0.2V  
0.68  
10.5  
μA  
ΔI  
CM  
OS  
l
l
A
VOL  
V = –4V to 4V, R = 1k  
V = –2.5V to 2.5V, R = 100ꢀ  
22  
3
70  
10  
V/mV  
V/mV  
O
O
L
L
+
l
l
l
l
l
CMRR  
Common Mode Rejection Ratio  
V
V
= V to V  
68  
86  
86  
dB  
dB  
V
CM  
CM  
+
CMRR Match (Channel-to-Channel) (Note 10)  
Input Common Mode Range  
= V to V  
62  
+
V
V
+
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
69  
63  
83  
83  
dB  
dB  
+
PSRR Match (Channel-to-Channel) (Note 10)  
Output Voltage Swing LOW (Note 7)  
V = 2.5V to 10V, V = 0V  
No Load  
l
l
l
V
V
23  
60  
220  
100  
170  
525  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 25mA  
SINK  
SINK  
l
l
l
Output Voltage Swing HIGH (Note 7)  
No Load  
75  
130  
375  
160  
260  
775  
mV  
mV  
mV  
I
I
= 5mA  
SOURCE  
SOURCE  
= 25mA  
l
l
l
l
l
l
l
l
l
l
I
I
Short-Circuit Current  
Supply Current per Amplifier  
Supply Current, Shutdown  
SHDN Pin Current  
30  
75  
19  
mA  
mA  
mA  
μA  
SC  
25  
1.6  
900  
S
V
V
V
= 0.3V  
= 0.3V  
= 0.3V  
0.65  
420  
4
SHDN  
SHDN  
SHDN  
I
SHDN  
Output Leakage Current, Shutdown  
SHDN Pin Input Voltage Low  
SHDN Pin Input Voltage High  
Turn-On Time  
μA  
V
V
0.3  
V
L
+
V – 0.5  
V
H
t
t
V
V
= 0.3V to 4.5V, R = 100  
80  
50  
ns  
ON  
OFF  
SHDN  
SHDN  
L
Turn-Off Time  
= 4.5V to 0.3V, R = 100  
ns  
L
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 2MHz  
A = –1, R = 1k, V = 4V,  
80  
160  
220  
MHz  
V/μs  
l
l
110  
V
L
O
Measured at V = 3V  
O
l
FPBW  
Full Power Bandwidth  
V
= 8V  
8.5  
MHz  
OUT  
P-P  
180910fa  
9
LT1809/LT1810  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: Minimum supply voltage is guaranteed by power supply rejection  
ratio test.  
Note 7: Output voltage swings are measured between the output and  
power supply rails.  
Note 2: The inputs are protected by back-to-back diodes. If the differential  
input voltage exceeds 1.4V, the input current should be limited to less than  
10mA.  
Note 3: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
indefinitely.  
Note 8: This parameter is not 100% tested.  
Note 9: Thermal resistance varies depending upon the amount of PC board  
metal attached to the V pin of the device. θ is specified for a certain  
JA  
amount of 2oz of copper metal trace connecting to the V pin as described  
in the thermal resistance tables in the Applications Information section.  
Note 10: Matching parameters are the difference between the two  
amplifiers of the LT1810.  
Note 4: The LT1809C/LT1809I and LT1810C/LT1810I are guaranteed  
functional over the operating temperature range of 40°C and 85°C.  
Note 5: The LT1809C/LT1810C are guaranteed to meet specified  
performance from 0°C to 70°C. The LT1809C/LT1810C are designed,  
characterized and expected to meet specified performance from –40°C  
to 85°C but are not tested or QA sampled at these temperatures. The  
LT1809I/LT1810I are guaranteed to meet specified performance from  
–40°C to 85°C.  
180910fa  
10  
LT1809/LT1810  
TYPICAL PERFORMANCE CHARACTERISTICS  
VOS Distribution, VCM = 0V  
(PNP Stage)  
VOS Distribution, VCM = 5V  
(NPN Stage)  
ΔVOS Shift for VCM = 0V to 5V  
50  
40  
30  
20  
50  
40  
30  
20  
25  
20  
15  
10  
V
= 5V, 0V  
V
= 5V, 0V  
V
= 5V, 0V  
S
S
S
10  
0
10  
0
5
0
–3  
–1  
0
1
2
3
–2  
–3  
–1  
0
1
2
3
–2  
–1  
0
0.25 0.5 0.75  
1
–0.75 –0.5 –0.25  
INPUT OFFSET VOLTAGE (mV)  
INPUT OFFSET VOLTAGE (mV)  
INPUT OFFSET VOLTAGE (mV)  
1809 G01  
1809 G02  
1809 G03  
Offset Voltage  
Input Bias Current  
Supply Current vs Supply Voltage  
vs Input Common Mode  
vs Common Mode Voltage  
2.0  
1.5  
10  
5
25  
20  
15  
V
= 5V, 0V  
V
= 5V, 0V  
S
S
TYPICAL PART  
T
= 25°C  
A
T
= 125°C  
= 25°C  
A
0
T
= 125°C  
A
T
= 125°C  
A
1.0  
0.5  
T
= –55°C  
A
–5  
T
= 25°C  
A
T
A
–10  
–15  
–20  
–25  
–30  
T
A
= –55°C  
A
0
10  
5
T
= 25°C  
A
T
= –55°C  
A
–0.5  
–1.0  
–1.5  
T
= 125°C  
T
= –55°C  
2
A
0
1
3
5
0
4
0
1
3
4
5
6
–1  
2
0
1
2
3
4
5
6
7
8
9
10  
INPUT COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
TOTAL SUPPLY VOLTAGE (V)  
1809 G05  
1809 G06  
1809 G04  
Output Saturation Voltage  
Output Saturation Voltage  
Input Bias Current vs Temperature  
vs Load Current (Output Low)  
vs Load Current (Output High)  
10  
1
5
3
10  
1
V
= 5V, 0V  
V
= 5V, 0V  
V
= 5V, 0V  
S
S
S
V
= 5V  
CM  
1
–1  
–3  
–5  
–7  
–9  
–11  
–13  
–15  
T
= 125°C  
= 25°C  
0.1  
A
0.1  
V
= 0V  
CM  
T
T
= 125°C  
A
A
0.01  
0.001  
0.01  
0.001  
T
= –55°C  
T
= 25°C  
A
A
T
= –55°C  
A
0.01  
0.1  
1
10  
100  
–50 –35 –20 –5 10 25 40 55 70 85  
TEMPERATURE (°C)  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
1809 G09  
1809 G08  
1809 G07  
180910fa  
11  
LT1809/LT1810  
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current  
vs SHDN Pin Voltage  
Output Short-Circuit Current  
Minimum Supply Voltage  
vs Power Supply Voltage  
1.0  
0.8  
120  
100  
80  
18  
16  
14  
12  
10  
8
V
= V– + 0.5V  
= –55°C  
CM  
V
= 5V, 0V  
T
= 25°C  
T
= –55°C  
S
A
A
T
= 125°C  
A
0.6  
T
= 125°C  
60  
A
0.4  
“SINKING”  
40  
0.2  
T
A
= 25°C  
T
A
20  
0
0
T
= 125°C  
A
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–20  
–40  
–60  
–80  
–100  
“SOURCING”  
6
T
= 25°C  
A
T
= –55°C  
A
4
T
= 125°C  
A
T
= –55°C  
A
2
T
= 25°C  
2.0  
A
0
1.5  
2.5 3.0 3.5  
4.0 4.5 5.0  
1.5  
2.5 3.0 3.5  
4.0 4.5 5.0  
2.0  
0
4
5
1
2
3
POWER SUPPLY VOLTAGE ( V)  
TOTAL SUPPLY VOLTAGE (V)  
SHDN PIN VOLTAGE (V)  
1809 G11  
1809 G10  
1809 G12  
SHDN Pin Current  
vs SHDN Pin Voltage  
Open-Loop Gain  
Open-Loop Gain  
2.5  
2.0  
2.5  
2.0  
50  
0
V
= 3V, 0V  
V
= 5V, 0V  
V
= 5V, 0V  
S
S
S
1.5  
1.5  
–50  
1.0  
1.0  
–100  
–150  
–200  
–250  
–300  
–350  
–400  
–450  
T
= 125°C  
A
0.5  
0.5  
T
= –55°C  
R
= 1k  
T
A
= 25°C  
R = 1k  
L
A
L
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
R
= 100Ω  
R = 100Ω  
L
L
0
1
2
3
4
5
0
0.5  
1.5  
2.0  
2.5  
3.0  
1.0  
0
1
3
OUTPUT VOLTAGE (V)  
4
5
2
OUTPUT VOLTAGE (V)  
SHDN PIN VOLTAGE (V)  
1809 G13  
1809 G14  
1809 G15  
Warm-Up Drift vs Time  
(LT1809S8)  
Open-Loop Gain  
Offset Voltage vs Output Current  
15  
10  
2.5  
2.0  
180  
160  
140  
120  
100  
80  
V
S
=
5V  
T = 25°C  
A
V
=
5V  
S
V
S
= 5V  
1.5  
T
= 25°C  
A
1.0  
5
0
T
A
= 125°C  
0.5  
R
L
= 1k  
L
0
T
= –55°C  
V
= 5V, 0V  
= 3V, 0V  
A
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
S
–5  
–10  
–15  
60  
V
S
R
= 100Ω  
40  
20  
0
–10080 –60 –40 –20  
0
20 40 60 80 100  
40  
TIME AFTER POWER UP (SEC)  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
0
20  
60 80 100 120 140 160  
OUTPUT CURRENT (mA)  
OUTPUT VOLTAGE (V)  
1809 G17  
1809 G16  
1809 G18  
180910fa  
12  
LT1809/LT1810  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.1Hz to 10Hz  
Output Voltage Noise  
Input Noise Voltage vs Frequency  
Input Noise Current vs Frequency  
100  
90  
20  
16  
12  
8
10  
8
V
= 5V, 0V  
V
= 5V, 0V  
S
S
80  
6
70  
4
60  
50  
2
0
NPN ACTIVE  
= 4.5V  
40  
30  
20  
10  
0
–2  
–4  
–6  
–8  
–10  
PNP ACTIVE  
= 2.5V  
V
CM  
V
CM  
PNP ACTIVE  
4
V
CM  
= 2.5V  
NPN ACTIVE  
V
CM  
= 4.5V  
0
0.1  
1
10  
100  
0.1  
1
10  
100  
TIME (2s/DIV)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1809 G19  
1809 G20  
1809 G21  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Gain Bandwidth and Phase  
Margin vs Temperature  
Slew Rate vs Temperature  
55  
55  
50  
45  
40  
35  
450  
T
= 25°C  
= 1k  
A
L
50  
45  
40  
35  
30  
V
=
5V  
R
S
400  
350  
300  
250  
200  
150  
100  
50  
PHASE MARGIN  
V
= 5V  
S
PHASE MARGIN  
V
= 3V, 0V  
S
V
= 5V, 0V  
S
190  
185  
180  
175  
170  
165  
160  
200  
190  
180  
170  
160  
150  
V
=
5V  
S
GAIN BANDWIDTH  
A
= 1  
V
F
L
R = R = 1k  
V
= 3V, 0V  
G
S
R
= 1k  
RISING AND FALLING  
SLEW RATE  
GAIN BANDWIDTH  
–55  
0
25  
50  
75 100 125  
–25  
0
50  
75 100 125  
0
2
4
6
8
10  
–25  
–55  
25  
TEMPERATURE (°C)  
TOTAL SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
1809 G23  
1809 G22  
1809 G24  
Gain and Phase vs Frequency  
Closed-Loop Gain vs Frequency  
Closed-Loop Gain vs Frequency  
15  
12  
9
15  
12  
9
60  
50  
100  
A
= +1  
A = +2  
V
V
PHASE  
80  
V
= 3V, 0V  
V = 5V  
S
S
40  
60  
6
6
V
= 3V  
V
= 3V  
5V  
S
S
30  
40  
3
3
V
= 5V  
S
V
=
S
0
0
20  
20  
V
= 5V  
S
V
= 3V, 0V  
S
–3  
–6  
–9  
–12  
–15  
–3  
–6  
–9  
10  
0
GAIN  
0
–20  
–40  
–60  
–10  
–20  
C
= 5pF  
= 1k  
L
L
–12  
R
–15  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M 500M  
100k  
1M  
10M  
100M 500M  
FREQUENCY (Hz)  
1809 G25  
1809 G26  
1809 G27  
180910fa  
13  
LT1809/LT1810  
TYPICAL PERFORMANCE CHARACTERISTICS  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
vs Frequency  
Output Impedance vs Frequency  
vs Frequency  
110  
100  
90  
600  
100  
100  
90  
V
= 5V, 0V  
V
= 5V, 0V  
= 25°C  
V
= 5V, 0V  
S
S
A
S
T
80  
POSITIVE  
SUPPLY  
80  
70  
10  
1
70  
60  
60  
50  
A
= 10  
NEGATIVE  
SUPPLY  
V
A
= 2  
V
50  
40  
30  
20  
10  
40  
30  
20  
10  
0
A
= 1  
V
0.1  
0.01  
10k  
100k  
1M  
10M  
100M 500M  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M 500M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1809 G29  
1809 G28  
1809 G30  
Series Output Resistor  
vs Capacitive Load  
Series Output Resistor  
vs Capacitive Load  
0.01% Settling Time  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
INPUT SIGNAL  
GENERATION  
(2V/DIV)  
V
A
= 5V, 0V  
= +2  
V
A
= 5V, 0V  
= +1  
S
V
S
V
R
R
= 10Ω  
= ∞  
S
L
OUTPUT  
SETTLING  
RESOLUTION  
(2mV/DIV)  
R
S
R
L
= 10Ω,  
= ∞  
R
R
= 20Ω  
= ∞  
S
L
R
S
= 20Ω, R = ∞  
L
R
= R = 50Ω  
S
L
1809 G33  
20ns/DIV)  
V
V
A
=
OUT  
= –1  
= 500Ω  
5V  
4V  
S
R
= R = 50Ω  
S
L
=
0
0
V
10  
100  
CAPACITIVE LOAD (pF)  
1000  
10  
100  
1000  
R
L
CAPACITIVE LOAD (pF)  
t
= 110ns (SETTLING TIME)  
S
1809 G32  
1809 G31  
Distortion vs Frequency  
Distortion vs Frequency  
Distortion vs Frequency  
–40  
–50  
–40  
–50  
–40  
–50  
A
V
V
= +2  
= 2V  
A
V
V
= +1  
= 2V  
= 5V  
A
V
V
= +1  
= 2V  
V
O
S
V
O
S
V
O
S
P-P  
P-P  
P-P  
=
5V  
=
5V  
–60  
–60  
–60  
R
L
= 100Ω, 2ND  
R
= 1k, 2ND  
L
–70  
–70  
–70  
R
= 100Ω, 2ND  
L
R
R
= 100Ω, 2ND  
= 100Ω, 3RD  
1
L
–80  
–80  
–80  
R
L
= 1k, 2ND  
–90  
–90  
–90  
R
L
= 100Ω, 3RD  
L
R
L
= 1k, 3RD  
10  
R
= 1k, 3RD  
L
R
= 1k, 3RD  
10  
R
1
= 100Ω, 3RD  
L
L
–100  
–100  
–100  
R
= 1k, 2ND  
L
–110  
–110  
–110  
0.3  
30  
0.3  
30  
0.3  
1
10  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1809 G36  
1809 G35  
1809 G34  
180910fa  
14  
LT1809/LT1810  
TYPICAL PERFORMANCE CHARACTERISTICS  
Maximum Undistorted Output  
Signal vs Frequency  
Distortion vs Frequency  
–40  
–50  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
V
= 5V  
S
A
V
V
= +2  
= 2V  
= 5V  
V
O
S
P-P  
A
= –1  
V
–60  
R
= 100Ω, 2ND  
L
–70  
A
= +2  
V
R
= 100Ω, 3RD  
L
–80  
R
= 1k, 2ND  
L
R
= 1k, 3RD  
L
–90  
–100  
–110  
0.3  
1
10  
30  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1809 G37  
1809 G38  
5V Large-Signal Response  
5V Small-Signal Response  
5V Large-Signal Response  
1809 G39  
1809 G41  
1809 G40  
10ns/DIV)  
10ns/DIV)  
10ns/DIV)  
V
A
=
= +1  
= 1k  
5V  
V
A
=
= +1  
= 1k  
5V  
V
A
= 5V  
= +1  
= 1k  
S
V
L
S
V
L
S
V
L
R
R
R
5V Small-Signal Response  
Output Overdriven Recovery  
Shutdown Response  
V
IN  
(1V/DIV)  
V
SHDN  
0V)  
0V)  
0V)  
V
OUT  
V
OUT  
0V)  
(2V/DIV)  
1809 G42  
1809 G43  
1809 G44  
10ns/DIV)  
10ns/DIV)  
100ns/DIV)  
V
A
=
= +1  
= 1k  
5V  
V
A
= 5V, 0V  
= +2  
V
A
= 5V, 0V  
= +2  
= 100Ω  
S
V
L
S
V
S
V
L
R
R
180910fa  
15  
LT1809/LT1810  
APPLICATIONS INFORMATION  
Rail-to-Rail Characteristics  
Power Dissipation  
TheLT1809/LT1810haveaninputandoutputsignalrange  
that includes both negative and positive power supply.  
Figure 1 depicts a simplified schematic of the amplifier.  
Theinputstageiscomprisedoftwodifferentialamplifiers,  
a PNP stage Q1/Q2 and a NPN stage Q3/Q4 that are active  
overdifferentrangesofcommonmodeinputvoltage.The  
PNP differential pair is active for common mode voltages  
betweenthenegativesupplytoapproximately1.5Vbelow  
the positive supply. As the input voltage moves closer  
toward the positive supply, the transistor Q5 will steer  
The LT1809/LT1810 amplifiers combine high speed with  
large output current in a small package, so there is a need  
to ensure that the die’s junction temperature does not  
exceed 150°C. The LT1809 is housed in an SO-8 package  
or a 6-lead SOT-23 package and the LT1810 is in an SO-8  
or 8-lead MSOP package. All packages have the V sup-  
ply pin fused to the lead frame to enhance the thermal  
conductancewhenconnectingtoagroundplaneoralarge  
metal trace. Metal trace and plated through-holes can be  
used to spread the heat generated by the device to the  
backside of the PC board. For example, on a 3/32" FR-4  
board with 2oz copper, a total of 660 square millimeters  
connected to Pin 4 of LT1810 in an SO-8 package (330  
square millimeters on each side of the PC board) will bring  
the tail current I to the current mirror Q6/Q7, activating  
1
the NPN differential pair and causing the PNP pair to  
become inactive for the rest of the input common mode  
range up to the positive supply.  
the thermal resistance, θ , to about 85°C/W. Without  
JA  
A pair of complementary common emitter stages  
Q14/Q15 form the output stage, enabling the output to  
swing from rail-to-rail. The capacitors C1 and C2 form  
the local feedback loops that lower the output impedance  
at high frequency. These devices are fabricated on Linear  
Technology’s proprietary high speed complementary  
bipolar process.  
extra metal trace connected to the V pin to provide a heat  
sink, the thermal resistance will be around 105°C/W. More  
information on thermal resistance for all packages with  
various metal areas connecting to the V pin is provided  
in Tables 1, 2 and 3 for thermal consideration.  
+
V
R6  
10k  
R3  
R4  
R5  
Q16  
Q17  
+
+
V
V
V
Q12  
ESDD5  
D9  
D1  
ESDD1  
ESDD2  
Q11  
Q13  
Q15  
R7  
100k  
I
1
C2  
SHDN  
+IN  
–IN  
D6  
D5  
D8  
D7  
Q5  
V
BIAS  
I
2
D2  
ESDD6  
OUT  
C
C
V
V
Q4 Q3  
Q1 Q2  
D3  
BUFFER  
AND  
ESDD4  
ESDD3  
OUTPUT BIAS  
Q10  
+
V
V
D4  
Q9  
R1  
Q8  
R2  
BIAS  
GENERATION  
C1  
Q14  
Q7  
Q6  
V
1809 F01  
Figure 1. LT1809 Simplified Schematic Diagram  
180910fa  
16  
LT1809/LT1810  
APPLICATIONS INFORMATION  
Example:AnLT1810inSO-8mountedona2500mm2 area  
of PC board without any extra heat spreading plane con-  
nected to its Vpin has a thermal resistance of 105°C/W,  
θJA. Operating on 5V supplies with both amplifiers  
simultaneously driving 50ꢀ loads, the worst-case power  
dissipation is given by:  
Table 1. LT1809 6-Lead SOT-23 Package  
COPPER AREA  
TOPSIDE (mm )  
BOARD AREA  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
2
2
(mm )  
270  
2500  
2500  
2500  
2500  
135°C/W  
145°C/W  
160°C/W  
200°C/W  
100  
20  
0
2
P
= 2 • (10 • 25mA) + 2 • (2.5) /50  
= 0.5 + 0.250 = 0.750W  
D(MAX)  
Device is mounted on topside.  
Table 2. LT1809/LT1810 SO-8 Package  
COPPER AREA  
The maximum ambient temperature that the part is al-  
lowed to operate is:  
TOPSIDE  
(mm )  
BACKSIDE BOARD AREA  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
2
2
2
(mm )  
(mm )  
T = T – (P • 105°C/W)  
D(MAX)  
A
J
1100  
330  
35  
1100  
330  
35  
0
2500  
2500  
2500  
2500  
2500  
65°C/W  
85°C/W  
95°C/W  
100°C/W  
105°C/W  
= 150°C – (0.750W • 105°C/W) = 71°C  
To operate the device at higher ambient temperature, con-  
35  
nect more metal area to the V pin to reduce the thermal  
resistance of the package as indicated in Table 2.  
0
0
Device is mounted on topside.  
Input Offset Voltage  
Table 3. LT1810 8-Lead MSOP Package  
COPPER AREA  
The offset voltage will change depending upon which  
input stage is active and the maximum offset voltage is  
TOPSIDE  
BACKSIDE BOARD AREA  
THERMAL RESISTANCE  
guaranteed to be less than 3mV. The change of V over  
OS  
2
2
2
(mm )  
(mm )  
(mm )  
(JUNCTION-TO-AMBIENT)  
the entire input common mode range (CMRR) is less than  
2.5mV on a single 5V and 3V supply.  
540  
100  
100  
30  
540  
100  
0
2500  
2500  
2500  
2500  
2500  
110°C/W  
120°C/W  
130°C/W  
135°C/W  
140°C/W  
Input Bias Current  
0
The input bias current polarity depends upon a given input  
common voltage at whichever input stage is operating.  
When the PNP input stage is active, the input bias cur-  
rents flow out of the input pins and flow into the input pins  
when the NPN input stage is activated. Because the input  
offset current is less than the input bias current, matching  
the source resistances at the input pin will reduce total  
offset error.  
0
0
Device is mounted on topside.  
Junction temperature T is calculated from the ambient  
J
temperature T and power dissipation P as follows:  
A
D
T = T + (P • θ )  
J
A
D
JA  
The power dissipation in the IC is the function of the  
supply voltage, output voltage and the load resistance.  
For a given supply voltage, the worst-case power dis-  
Output  
The LT1809/LT1810 can deliver a large output current,  
so the short-circuit current limit is set around 90mA to  
prevent damage to the device. Attention must be paid to  
keepthejunctiontemperatureoftheICbelowtheabsolute  
maximumratingof150°C(refertothePowerDissipation  
section)whentheoutputiscontinuouslyshort-circuited.  
sipation P  
occurs at the maximum supply current  
D(MAX)  
with the output voltage at half of either supply voltage (or  
the maximum swing is less than 1/2 the supply voltage).  
P
is given by:  
D(MAX)  
2
P
= (V • I  
) + (V /2) /R  
S(MAX) S L  
D(MAX)  
S
180910fa  
17  
LT1809/LT1810  
APPLICATIONS INFORMATION  
The output of the amplifier has reverse-biased diodes  
connected to each supply. If the output is forced beyond  
either supply, unlimited current will flow through these  
diodes. If the current is transient and limited to several  
hundred milliamps, no damage to the device will occur.  
of 10ꢀ to 50ꢀ should be connected between the output  
and the capacitive load to avoid ringing or oscillation. The  
feedback should still be taken from the output so that the  
resistor will isolate the capacitive load to ensure stability.  
Graphsoncapacitiveloadsindicatethetransientresponse  
of the amplifier when driving capacitive load with a speci-  
fied series resistor.  
Overdrive Protection  
When the input voltage exceeds the power supplies, two  
pairs of crossing diodes, D1 to D4, will prevent the out-  
put from reversing polarity. If the input voltage exceeds  
either power supply by 700mV, diodes D1/D2 or D3/D4  
will turn on, keeping the output at the proper polarity.  
For the phase reversal protection to perform properly,  
the input current must be limited to less than 5mA. If  
the amplifier is severely overdriven, an external resistor  
should be used to limit the overdrive current.  
Feedback Components  
Whenfeedbackresistorsareusedtosetupgain,caremust  
be taken to ensure that the pole formed by the feedback  
resistors and the total capacitance at the inverting input  
does not degrade stability. For instance, the LT1809 in a  
noninverting gain of 2, set up with two 1k resistors and a  
capacitance of 3pF (device plus PC board), will probably  
ring in transient response. The pole that is formed at  
106MHzwillreducephasemarginby34degreeswhenthe  
crossover frequency of the amplifier is around 70MHz. A  
capacitor of 3pF or higher connected across the feedback  
resistor will eliminate any ringing or oscillation.  
The LT1809/LT1810’s input stages are also protected  
against differential input voltages of 1.4V or higher by  
back-to-back diodes, D5/D8, that prevent the emitter-  
base breakdown of the input transistors. The current in  
these diodes should be limited to less than 10mA when  
they are active. The worst-case differential input voltage  
usually occurs when the input is driven while the output  
is shorted to ground in a unity-gain configuration. In ad-  
dition, the amplifier is protected against ESD strikes up  
to 3kV on all pins by a pair of protection diodes on each  
pin that are connected to the power supplies as shown  
in Figure 1.  
SHDN Pin  
The LT1809 has a SHDN pin to reduce the supply current  
to less than 1.25mA. When the SHDN pin is pulled low,  
it will generate a signal to power down the device. If the  
pin is left unconnected, an internal pull-up resistor of 10k  
will keep the part fully operating as shown in Figure 1. The  
output will be high impedance during shutdown, and the  
turn-on and turn-off time is less than 100ns. Because the  
inputs are protected by a pair of back-to-back diodes, the  
input signal will feed through to the output during shut-  
down mode if the amplitude of signal between the inputs  
is larger than 1.4V.  
Capacitive Load  
The LT1809/LT1810 is optimized for high bandwidth and  
low distortion applications. It can drive a capacitive load  
about 20pF in a unity-gain configuration and more with  
highergain.Whendrivingalargercapacitiveload,aresistor  
180910fa  
18  
LT1809/LT1810  
TYPICAL APPLICATIONS  
Driving A/D Converters  
andresistors,anNPOchipcapacitorandmetal-filmsurface  
mount resistors, should be used since these components  
can add to distortion. The voltage glitch of the converter,  
due to its sampling nature, is buffered by the LT1809 and  
the ability of the amplifier to settle it quickly will affect the  
spurious-free dynamic range of the system. Figure 2 to  
Figure7depicttheLT1809drivingtheLTC1420atdifferent  
configurations and voltage supplies. The FFT responses  
showbetterthan90dBofSFDRfora 5Vsupply,and80dB  
on a 5V single supply for the 1.394MHz signal.  
The LT1809/LT1810 have a 27ns settling time to 0.1% of  
a 2V step signal and 20ꢀ output impedance at 100MHz  
makingitidealfordrivinghighspeedA/Dconverters. With  
the rail-to-rail input and output and low supply voltage  
operation, the LT1809 is also desirable for single supply  
applications. As shown in Figure 2, the LT1809 drives a  
10Msps, 12-bit ADC, the LTC1420. The lowpass filter, R3  
and C1, reduces the noise and distortion products that  
might come from the input signal. High quality capacitors  
0
–20  
5V  
–40  
–60  
5V  
V
P-P  
IN  
R3  
49.9Ω  
+
1V  
LTC1420  
PGA GAIN = 1  
REF = 2.048V  
12 BITS  
10Msps  
LT1809  
–5V  
+A  
IN  
–80  
–100  
–120  
C1  
470pF  
–A  
IN  
R2  
1k  
1809 F02  
–5V  
R1  
1k  
0
1
2
3
4
5
FREQUENCY (MHz)  
1809 F03  
Figure 2. Noninverting A/D Driver  
Figure 3. 4096 Point FFT Response  
0
1k  
–20  
5V  
5V  
–40  
–60  
1k  
V
P-P  
IN  
2V  
49.9Ω  
LTC1420  
PGA GAIN = 1  
REF = 2.048V  
12 BITS  
10Msps  
LT1809  
–5V  
+A  
IN  
–A  
IN  
+
470pF  
–80  
–100  
–120  
1809 F04  
–5V  
0
1
2
3
4
5
FREQUENCY (MHz)  
1809 F05  
Figure 5. 4096 Point FFT Response  
Figure 4. Inverting A/D Driver  
180910fa  
19  
LT1809/LT1810  
TYPICAL APPLICATIONS  
0
–20  
5V  
5V  
–40  
–60  
V
P-P  
ON 2.5V DC  
IN  
3
2
7
1V  
+
49.9Ω  
470pF  
LTC1420  
PGA GAIN = 2  
REF = 4.096V  
6
1
12 BITS  
10Msps  
LT1809  
+A  
IN  
1
–A  
IN  
–80  
–100  
–120  
2
4
V
CM  
3
1809 F06  
1k  
1μF  
1k  
0
1
2
3
4
5
0.15μF  
FREQUENCY (MHz)  
1809 F07  
Figure 7. 4096 Point FFT Response  
Figure 6. Single Supply A/D Driver  
5
4
V
= 5V  
5V  
S
3
C1  
33μF  
R1  
5k  
2
C3  
1000μF  
3
2
7
LT1809  
4
75Ω  
COAX CABLE  
R5  
75Ω  
V
+
IN  
1
6
R
R2  
5k  
T
V
OUT  
0
75Ω  
R
LOAD  
–1  
–2  
–3  
–4  
–5  
75Ω  
R4  
1k  
1809 F08  
C4  
R3  
1k  
3pF  
+
C2  
150μF  
0.2  
1
10  
100  
FREQUENCY (MHz)  
1809 F09  
Figure 8. 5V Single Supply Video Line Driver  
Figure 9. Video Line Driver Frequency Response  
Single Supply Video Line Driver  
resistor, R5. The back termination will eliminate any re-  
flection of the signal that comes from the load. The input  
The LT1809 is a wideband rail-to-rail op amp with a large  
output current that allows it to drive video signals in low  
supply applications. Figure 8 depicts a single supply  
video line driver with AC coupling to minimize the qui-  
escent power dissipation. Resistors R1 and R2 are used  
to level-shift the input and output to provide the largest  
signal swing. A gain of 2 is set up with R3 and R4 to re-  
termination resistor, R , is optional—it is used only if  
T
matching of the incoming line is necessary. The values of  
C1, C2 and C3 are selected to minimize the droop of the  
luminancesignal.Insomelessstringentrequirements,the  
valueofcapacitorscouldbereduced.The3dBbandwidth  
of the driver is about 95MHz on 5V supply and the amount  
of peaking will vary upon the value of capacitor C4.  
store the signal at V , which is attenuated by 6dB due  
OUT  
to the matching of the 75ꢀ line with the back-terminated  
180910fa  
20  
LT1809/LT1810  
PACKAGE DESCRIPTION  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660 Rev F)  
0.889 0.127  
(.035 .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.65  
(.0256)  
BSC  
0.42 0.038  
(.0165 .0015)  
TYP  
8
7 6 5  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 0.152  
(.021 .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.1016 0.0508  
(.009 – .015)  
(.004 .002)  
0.65  
(.0256)  
BSC  
TYP  
MSOP (MS8) 0307 REV F  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
180910fa  
21  
LT1809/LT1810  
PACKAGE DESCRIPTION  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636 Rev B)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302 REV B  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
180910fa  
22  
LT1809/LT1810  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
.160 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
180910fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LT1809/LT1810  
TYPICAL APPLICATION  
Single 3V Supply, 4MHz, 4th Order Butterworth Filter  
in Figure 10. On a 3V supply, the filter has a passband of  
Benefiting from a low voltage supply operation, low dis-  
tortion and rail-to-rail output of LT1809, a low distortion  
filter that is suitable for antialiasing can be built as shown  
4MHz with 2.5V signal and a stopband that is greater  
P-P  
than 70dB to frequency of 100MHz.  
232Ω  
47pF  
274Ω  
22pF  
232Ω  
665Ω  
220pF  
V
IN  
274Ω  
562Ω  
470pF  
1/2 LT1810  
V
1/2 LT1810  
+
OUT  
+
V
S
1809 F10  
2
Figure 10. Single 3V Supply, 4MHz, 4th Order Butterworth Filter  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
V
V
= 3V, 0V  
S
–80  
–90  
= 2.5V  
P-P  
IN  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
1809 F11  
Figure 11. Filter Frequency Response  
RELATED PARTS  
PART NUMBER  
LT1395  
DESCRIPTION  
COMMENTS  
800V/μs Slew Rate, Shutdown  
High DC Accuracy, 1.35mV V  
400MHz Current Feedback Amplifier  
Dual/Quad 45MHz, 45V/μs Rail-to-Rail Input and Output Op Amps  
LT1632/LT1633  
, 70mA Output Current,  
OS(MAX)  
Max Supply Current 5.2mA per Amplifier  
LT1630/LT1631  
LT1806/LT1807  
Dual/Quad 30MHz, 10V/μs Rail-to-Rail Input and Output Op Amps  
High DC Accuracy, 525μV V , 70mA Output Current,  
OS(MAX)  
Max Supply Current 4.4mA per Amplifier  
Single/Dual 325MHz, 140V/μs Rail-to-Rail Input and Output Op Amps High DC Accuracy, 550μV V  
, Low Noise 3.5nV/√Hz,  
OS(MAX)  
Low Distortion –80dBc at 5MHz  
180910fa  
LT 0709 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2000  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1809CS8#TR

LT1809 - Single 180MHz, 350V/µs Rail-to-Rail Input and Output Low Distortion Op Amps; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1809CS8#TRPBF

暂无描述
Linear

LT1809IS6

Single/Dual 180MHz, 350V/ms Rail-to-Rail Input and Output Low Distortion Op Amps
Linear

LT1809IS6#PBF

LT1809 - Single 180MHz, 350V/µs Rail-to-Rail Input and Output Low Distortion Op Amps; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C
ADI

LT1809IS6#TRM

LT1809 - Single 180MHz, 350V/µs Rail-to-Rail Input and Output Low Distortion Op Amps; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LT1809IS6#TRMPBF

Single 180MHz, 350V/µs Rail-to-Rail Input and Output Low Distortion Op Amps
ADI

LT1809IS6#TRPBF

LT1809 - Single 180MHz, 350V/µs Rail-to-Rail Input and Output Low Distortion Op Amps; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LT1809IS8

180MHz, 350V/ms Rail-to-Rail Input and Output Low Distortion Op Amp
Linear

LT1809IS8#PBF

暂无描述
Linear

LT1809IS8#TR

Operational Amplifier, 1 Func, 4250uV Offset-Max, PDSO8
ADI

LT1809IS8#TRPBF

LT1809 - Single 180MHz, 350V/µs Rail-to-Rail Input and Output Low Distortion Op Amps; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT1809_1

Single/Dual 180MHz, 350V/ms Rail-to-Rail Input and Output Low Distortion Op Amps
Linear