LT3966 [ADI]

I2C Programmable Quad Monolithic Boost LED Driver;
LT3966
型号: LT3966
厂家: ADI    ADI
描述:

I2C Programmable Quad Monolithic Boost LED Driver

文件: 总36页 (文件大小:2437K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3966  
2
I C Programmable Quad  
Monolithic Boost LED Driver  
FEATURES  
DESCRIPTION  
2
The LT®3966 is an I C programmable monolithic boost  
n
Four Independent DC/DC Channels  
2
n
I C Programmable  
LED driver with four independent channels. Each chan-  
nel provides a 60V current mode boost converter with  
an internal 1.6A DMOS power switch, as well as inter-  
n
8192:1 True Color PWM™ Dimming  
n
8-Bit Analog Dimming Pin Scaled by DAC  
2
n
11-Channel, 8-Bit ADC with 2 External Inputs  
nal and external analog and PWM dimming features. I C  
n
1.6A, 60V Internal DMOS Switches  
Input Voltage: 3V to 60V  
programmable features include a 13-bit (8192:1) digital  
PWM generator, 8-bit analog dimming DAC, and flexible  
fault reporting and handling.  
n
n
Output Voltage and Current Monitoring to 60V  
n
High Side PMOS Disconnect and PWM Switch Driver  
An onboard 8-bit ADC allows measurement of each  
channel’s output voltage and output current, as well  
as chip input voltage and two external measurements.  
In addition, independent shutdown and standby con-  
trol of each channel provides flexible solutions for  
multitopology applications.  
n
Adjustable Frequency: 300kHz to 4MHz with Optional  
Frequency Synchronization  
n
Thermally Enhanced 6mm × 6mm 40-Lead QFN Package  
n
AEC-Q100 Qualification in Progress  
APPLICATIONS  
The LT3966 is available in a thermally enhanced 6mm ×  
6mm 40-Lead QFN package.  
n
Backlighting  
Heads Up Displays  
n
All registered trademarks and trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
100W Buck Mode LED Driver with I2C Dimming  
V
IN  
44V TO 52V  
ISP1  
330mΩ  
ISN1  
ISP2  
330mΩ  
ISN2  
ISP3  
330mΩ  
ISN3  
ISP4  
Efficiency  
4.7μF  
×4  
330mΩ  
ꢀ00  
ISN4  
TG1  
TG2  
TG3  
TG4  
ꢀꢁ  
ꢀ0  
1μF  
1μF  
1μF  
1μF  
ꢀꢁ  
68μH  
68μH  
68μH  
68μH  
ꢀ0  
ꢀ ꢁꢂ0ꢃꢄꢅ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
SW1  
SW2  
SW3  
SW4  
ISP1–4  
V
IN  
ꢀ ꢁꢂꢃ  
1MΩ  
33k  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀ0  
EN/UVLO  
0.0  
0.ꢀ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ISN1–4  
TG1–4  
FB1–4  
LT3966  
RT  
ꢀꢁꢂ ꢃꢄRRꢁꢅꢆ ꢇꢈꢉ  
ꢇꢊ ꢋ ꢌꢍ0ꢎꢈꢏꢊ ꢃꢐꢉ  
GND  
ꢀꢁꢂꢂ ꢃꢄ0ꢅꢆ  
EXT1  
CTRL/  
PWM1–4  
EXT2  
SDA SCL ALERT  
SYNC ADR1–2 INTV  
CC  
3966 TA01a  
97.6k  
150k  
2
360kHz  
MULTI-  
PHASE  
I C  
4.7μF  
BUS  
22.1k  
INTV  
CC  
Rev. 0  
1
Document Feedback  
For more information www.analog.com  
LT3966  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
ꢉꢊꢋ ꢌꢍꢎꢏ  
V , EN/UVLO, SW1, SW2, SW3, SW4, ISP1, ISP2,  
IN  
ISP3, ISP4, ISN1, ISN2, ISN3, ISN4......................62V  
ISP–ISN (Any Channel)...............................................2V  
TG1–4................................................................(Note 2)  
ꢂ0 ꢀꢁ ꢀꢃ ꢀꢄ ꢀꢅ ꢀꢆ ꢀꢂ ꢀꢀ ꢀꢇ ꢀꢈ  
ꢍꢞꢋꢈ  
ꢉꢐꢈ  
ꢀ0  
ꢇꢁ  
ꢇꢃ  
ꢍꢞꢋꢇ  
ꢉꢐꢇ  
INTV ............................................................... (Note 3)  
CC  
FB1–4, EXT1–2, CTRL/PWM1–4, ADR1–2, ALERT,  
SDA, SCL, SYNC..................................................5.5V  
RT...............................................................................2V  
Operating Junction Temperature Range (Notes 4, 5)  
LT3966E ............................................ –40°C to 125°C  
LT3966J............................................. –40°C to 150°C  
Storage Temperature Range .................. –65°C to 150°C  
ꢞꢏꢈ  
ꢞꢏꢈ  
ꢞꢏꢀ  
ꢞꢏꢀ  
ꢉꢐꢀ  
ꢞꢏꢇ  
ꢇꢄ ꢞꢏꢇ  
ꢇꢅ ꢞꢏꢂ  
ꢂꢈ  
ꢐꢑꢒ  
ꢇꢆ  
ꢞꢏꢂ  
ꢇꢂ ꢉꢐꢂ  
ꢇꢀ  
ꢍꢞꢋꢀ  
ꢍꢞꢑꢀ  
ꢍꢞꢋꢂ  
ꢇꢇ ꢍꢞꢑꢂ  
ꢇꢈ  
ꢔꢟꢀ ꢈ0  
ꢔꢟꢂ  
ꢈꢈ ꢈꢇ ꢈꢀ ꢈꢂ ꢈꢆ ꢈꢅ ꢈꢄ ꢈꢃ ꢈꢁ ꢇ0  
ꢓꢔꢑ ꢋꢕꢖꢗꢕꢐꢎ  
ꢂ0ꢘꢙꢎꢕꢒ ꢚꢅꢛꢛ ꢜ ꢅꢛꢛꢝ ꢋꢙꢕꢞꢉꢍꢖ ꢓꢔꢑ  
T
= 150°C, θ = 33°C/W EXPOSED PAD (PIN 41) IS GND  
JMAX  
JA  
AND MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3966EUJ#PBF  
LT3966JUJ#PBF  
TAPE AND REEL  
PART MARKING  
LT3966UJ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LT3966EUJ#TRPBF  
LT3966JUJ#TRPBF  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
LT3966UJ  
–40°C to 150°C  
Contact the factory for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.  
ELECTRICAL CHARACTERISTICS The l denotes specifications that apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VIN = 12V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
60  
UNITS  
V
l
V
IN  
V
IN  
V
IN  
Operating Range  
Quiescent Current  
Shutdown Current  
3
CTRL/PWM = 0V, EN/UVLO = 1.3V  
2.7  
3.3  
mA  
EN/UVLO = 0V  
EN/UVLO = 1.15V, CTRL/PWM = 0V  
0
190  
1
230  
µA  
µA  
l
EN/UVLO Shutdown Threshold Falling  
EN/UVLO Rising Hysteresis  
1.20  
1.23  
15  
1.26  
V
mV  
V
EN/UVLO Rising  
EN/UVLO Input Low Voltage  
I
< 1μA  
0.4  
VIN  
Rev. 0  
2
For more information www.analog.com  
LT3966  
ELECTRICAL CHARACTERISTICS The l denotes specifications that apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VIN = 12V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2
MAX  
100  
3.1  
UNITS  
µA  
EN/UVLO Bias Current Low  
EN/UVLO Bias Current High  
LDO Regulator  
EN/UVLO = 1.15V  
EN/UVLO = 1.3V  
10  
nA  
l
l
INTV Regulation Voltage  
I
= –1mA, Not Switching  
INTVCC  
2.9  
2.6  
3
V
%/V  
%/mA  
V
CC  
INTV Line Regulation  
3V ≤ V ≤ 60V  
0.03  
0.04  
2.7  
75  
CC  
IN  
INTV Load Regulation  
–20mA ≤ I  
≤ 0mA, Not Switching  
INTVCC  
CC  
INTV Undervoltage Lockout  
INTV Falling  
2.8  
CC  
CC  
INTV Undervoltage Lockout Hysteresis  
INTV Rising  
mV  
CC  
CC  
INTV Current Limit  
V
V
= 12V, INTV = 2.8V  
36  
mA  
CC  
IN  
IN  
CC  
INTV Dropout Voltage  
= 3V, I  
= –15mA  
320  
mV  
CC  
INTVCC  
Analog-to-Digital Converter  
Converter Resolution  
8
1.275  
5
Bits  
V
Converter Full-Scale Voltage  
Converter LSB Size  
1.266  
4.95  
1.284  
5.05  
mV  
µs  
Conversion Time (t  
)
R = 100kΩ, MPHASE = 0, AUTO = 0  
t
20  
CONV  
EXT1, EXT2 Input Impedance  
V
= V  
= 1V  
10  
100  
1.7  
2.2  
MΩ  
V
EXT1  
EXT1  
EXT2  
l
l
EXT1, EXT2 Internal Voltage Clamp  
EXT1, EXT2 Internal Voltage Clamp Impedance  
Channel 1–4 LED Current Sense Amplifiers  
ISP Common Mode Voltage Range  
Full-Scale Current Sense Threshold  
I
= I  
EXT2  
= 100μA  
1.4  
1.9  
V
EXT1  
= V  
= 2V to 5.5V  
kΩ  
EXT2  
3
55  
V
ISP = 55V, CTRL/PWM =1.5V, ADIM[7:0] = 0xFF  
ISP = 3V, CTRL/PWM = 1.5V, ADIM[7:0] = 0xFF  
l
l
242  
242  
250  
250  
255  
255  
mV  
mV  
(V –V  
ISP ISN  
)
Externally Adjusted Half-Scale Threshold  
(V –V  
ISP = 55V, CTRL/PWM = 0.7V, ADIM[7:0] = 0xFF  
ISP = 3V, CTRL/PWM = 0.7V, ADIM[7:0] = 0xFF  
l
l
122  
122  
125  
125  
128  
128  
mV  
mV  
)
ISP ISN  
Externally Adjusted 1/10th Scale Threshold  
(V –V  
ISP = 55V, CTRL/PWM = 0.3V, ADIM[7:0] = 0xFF  
ISP = 3V, CTRL/PWM = 0.3V, ADIM[7:0] = 0xFF  
l
l
20  
20  
25  
25  
31  
31  
mV  
mV  
)
ISP ISN  
Internally Adjusted Half-Scale Threshold  
(V –V  
ISP = 55V, CTRL/PWM = 1.5V, ADIM[7:0] =  
0x7F  
ISP = 3V, CTRL/PWM = 1.5V, ADIM[7:0] = 0x7F  
l
l
121  
121  
125  
125  
129  
129  
mV  
mV  
)
ISP ISN  
Internally Adjusted 1/10th Scale Threshold  
(V –V  
ISP = 55V, CTRL/PWM = 1.5V, ADIM[7:0] =  
0x19  
ISP = 3V, CTRL/PWM = 1.5V, ADIM[7:0] = 0x19  
l
l
20  
20  
25  
25  
31  
31  
mV  
mV  
)
ISP ISN  
Overcurrent Protection Threshold (V –V  
)
ISP = 60V  
ISP = 60V  
370  
22  
mV  
mV  
ISP ISN  
C/10 Threshold  
14  
90  
30  
ISP/ISN Input Bias Current (Combined)  
CTRL/PWM = 3V (Active), ISP = ISN = 55V  
CTRL/PWM = 0V (Standby), ISP = ISN = 55V  
440  
13  
µA  
µA  
17  
l
PWM Threshold  
CTRL/PWM Falling  
103  
115  
mV  
Rev. 0  
3
For more information www.analog.com  
LT3966  
ELECTRICAL CHARACTERISTICS The l denotes specifications that apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VIN = 12V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ISP Voltage Regulation Threshold  
Channel 1–4 Voltage Feedback Amplifiers  
62  
V
FB Regulation Threshold (V  
)
FB  
CTRL/PWM = 2V  
1.188  
1.170  
1.200  
1.200  
1.208  
1.218  
V
V
l
l
FB Overvoltage Threshold  
FB Open LED Threshold  
FB Shorted LED Threshold  
FB Input Bias Current  
FB Line Regulation  
Oscillator  
V
+ 50mV  
– 40mV  
280  
V
+ 60mV  
– 50mV  
300  
V
+ 70mV  
– 60mV  
320  
V
V
FB  
FB  
FB  
FB  
FB  
V
V
V
FB  
mV  
nA  
Current Out of Pin, FB = 1V  
10  
100  
3.3V ≤ V ≤ 60V  
0.0004  
%/V  
IN  
RT Pin Voltage  
1.0  
V
Switching Frequency in Single-Phase Mode  
R = 261kΩ  
l
l
l
370  
0.93  
1.85  
400  
1.00  
2.00  
430  
1.07  
2.15  
kHz  
MHz  
MHz  
T
R = 100kΩ  
T
R = 47.5kΩ  
T
Switching Frequency in Multiphase Mode  
R = 174kΩ  
l
l
l
279  
0.93  
1.85  
300  
1.00  
2.00  
321  
1.07  
2.15  
kHz  
MHz  
MHz  
T
R = 47.5kΩ  
T
R = 21kΩ  
T
Minimum Off Time  
30  
35  
50  
60  
65  
75  
ns  
ns  
V
Minimum On Time  
SYNC Input High (SYNC In Mode)  
SYNC Input Low (SYNC In Mode)  
SYNC Input Duty Cycle  
SYNCOUT = 0  
SYNCOUT = 0  
1.5  
0.4  
90  
V
10  
%
kΩ  
%
V
SYNC Resistance to GND (SYNC In Mode)  
SYNC Output Mode Duty Cycle  
SYNC Output Voltage High (SYNC Out Mode)  
SYNC Output Voltage Low (SYNC Out Mode)  
Channel 1–4 Power Switch  
SW On-Resistance  
SYNCOUT = 0  
95  
55  
SYNCOUT = 1  
45  
65  
l
l
SYNCOUT = 1, Load = 3kΩ  
SYNCOUT = 1, Load = 3kΩ  
2.4  
0.4  
V
I
= 200mA  
= 62V  
200  
2
mΩ  
A
SW  
l
SW Current Limit  
1.6  
7.4  
2.4  
3
SW Leakage Current  
V
μA  
SW  
External PMOS Gate Driver  
TG ON Voltage (V –V  
)
ISP = 24V  
ISP = 24V  
8.2  
0
9
V
V
ISP TG  
TG OFF Voltage (V –V  
)
0.3  
ISP TG  
TG Turn-On Time  
TG Turn-Off Time  
C
LOAD  
C
LOAD  
= 470pF, ISP = 24V  
= 470pF, ISP = 24V  
50  
60  
ns  
ns  
2
I C Port  
2
I C Address  
Programmed by ADR2, ADR1 Pins  
101XXXX[R/W]  
l
l
l
l
l
l
ADR1, ADR2 Input High Voltage  
ADR1, ADR2 Input Low Voltage  
0.9 • V  
V
V
INTVCC  
0.1 • V  
INTVCC  
ADR1, ADR2 Pull-Down Current in HIGH State  
ADR1, ADR2 Pull-Up Current in LOW State  
SDA, SCL Input High Voltage  
V
V
, V  
= 3V, Current Into Pin  
9
9
13  
13  
17  
µA  
µA  
V
ADR1 ADR2  
, V  
= 0V, Current Out of Pin  
17  
ADR1 ADR2  
1.5  
SDA ,SCL Input Low Voltage  
0.4  
V
Rev. 0  
4
For more information www.analog.com  
LT3966  
ELECTRICAL CHARACTERISTICS The l denotes specifications that apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VIN = 12V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
50  
UNITS  
nA  
nA  
V
SDA, SCL Input Low Leakage  
SDA, SCL Input High Leakage  
SDA Output Low Voltage  
ALERT Output Low Voltage  
Current Out of Pin, SDA = SCL = 0V  
Current Into Pin, SDA = SCL = 3V  
50  
I
I
= 3mA  
0.4  
0.4  
400  
SDA  
= 3mA  
V
ALERT  
2
I C Clock Operating Frequency  
kHz  
µs  
Bus Free Time Between Stop and Start  
1.3  
Condition (t  
)
BUF  
Hold Time After Repeated Start Condition (t  
)
0.6  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ms  
HD_SDA  
Repeated Start Condition Set-Up Time (t  
)
0.6  
SU_STA  
Stop Condition Set-Up Time (t  
)
0.6  
SU_STO  
Data Hold Time Output (t  
)
0
0
900  
HD_DAT(O)  
Data Hold Time Input (t  
)
HD_DAT(I)  
Data Set-Up Time (t  
)
100  
SU_DAT  
SCL Clock Low Period (t  
)
1.3  
LOW  
SCL Clock High Period (t  
Clock/Data Fall Time  
Clock/Data Rise Time  
)
0.6  
HIGH  
C = Capacitance of One Bus Line (pF)  
20 + 0.1C  
20 + 0.1C  
300  
300  
50  
B
B
C = Capacitance of One Bus Line (pF)  
B
B
Input Spike Suppression Pulse Width (t  
Watchdog Timeout Period  
)
SP  
WDTEN = 1  
75  
100  
125  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
design, characterization and correlation with statistical process controls.  
The LT3966J is guaranteed to meet performance specifications over the  
full –40°C to 150°C operating junction temperature range. High junction  
temperatures degrade operating lifetimes. Operating lifetime is derated at  
junction temperatures greater than 125°C.  
Note 2: Do not apply a positive or negative voltage source to TG pins,  
otherwise permanent damage may occur.  
Note 3: Do not apply a positive or negative voltage source to INTV pin,  
otherwise permanent damage may occur. I  
external load that can be applied.  
Note 4: The LT3966E is guaranteed to meet performance specifications  
from the 0°C to 125°C junction temperature. Specifications over the  
–40°C to 125°C operating junction temperature range are assured by  
Note 5: The LT3966 includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed the maximum operating junction temperature  
when overtemperature is active. Continuous operating above the specified  
maximum operating junction temperature may impair device reliability.  
Note 6: Guaranteed by a combination of design, testing, and  
characterization over the operating temperature range, and automated  
testing at ambient temperature.  
CC  
= 2mA is the maximum  
INTVCC  
ꢁꢊꢋ  
ꢁꢂ  
ꢁꢄꢆꢊꢋꢇ  
ꢁꢄꢆꢁꢇꢋ  
ꢃꢄꢅ  
ꢉꢊꢆꢊꢋꢇꢈ  
ꢉꢊꢆꢊꢋꢇꢎ  
ꢉꢊꢆꢁꢇꢋ  
ꢁꢄꢆꢁꢇꢈ  
ꢁꢂ  
ꢑꢒꢓꢓ ꢇꢊ  
ꢁꢌꢐ  
ꢉꢊꢆꢁꢇꢋ  
Rꢏꢂꢏꢋꢇꢏꢊ ꢁꢇꢋRꢇ  
ꢌꢈꢍꢊꢎꢇꢎꢈꢍ  
Rꢏꢂꢏꢋꢇꢏꢊ ꢁꢇꢋRꢇ  
ꢌꢈꢍꢊꢎꢇꢎꢈꢍ  
ꢁꢇꢈꢂ  
ꢌꢈꢍꢊꢎꢇꢎꢈꢍ  
ꢁꢇꢋRꢇ  
ꢌꢈꢍꢊꢎꢇꢎꢈꢍ  
Rev. 0  
5
For more information www.analog.com  
LT3966  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Shutdown and Standby Current  
vs Input Voltage  
Shutdown and Standby Current  
vs Temperature  
EN/UVLO Thresholds  
vs Temperature  
ꢀ.ꢁ0  
ꢀꢁ0  
ꢀ00  
ꢀꢁ0  
ꢀ00  
ꢀ0  
ꢀꢁ0  
ꢀ00  
ꢀꢁ0  
ꢀ00  
ꢀ0  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
Rꢀꢁꢀꢂꢃ ꢄꢅRꢆꢁꢅꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅꢆ ꢇ 0ꢄ  
ꢀꢁꢂꢃꢄꢅꢆ ꢇ ꢈ.ꢈꢉꢄ  
ꢀꢁꢂꢃꢄꢅꢆ ꢇ 0ꢄ  
ꢀꢁꢂꢃꢄꢅꢆ ꢇ ꢈ.ꢈꢉꢄ  
ꢀ.ꢁꢂ  
ꢀꢁꢂꢂꢃꢄꢅ ꢆꢇRꢈꢉꢇꢊꢂꢋ  
ꢀ.ꢁꢁ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
0
ꢀ.ꢁ0  
0
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀꢁꢂ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁ  
ꢀꢁꢂꢂ ꢃ0ꢄ  
ꢀꢁꢂꢂ ꢃ0ꢀ  
ꢀꢁꢂꢂ ꢃ0ꢄ  
EN/UVLO Hysteresis Current  
vs Temperature  
Quiescent Current vs Input Voltage  
INTVCC Voltage vs Input Voltage  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢇ ꢈ.ꢈꢉꢄ  
ꢀꢁꢂꢃꢄꢅꢆ ꢇ ꢈ ꢉ ꢊꢋRꢅꢂꢌꢍꢎꢏ ꢐꢑ ꢇ 0 ꢉ  
ꢀꢁꢂꢃꢄ ꢅ ꢂ.ꢆꢇ  
ꢅ ꢆꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢄꢄ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢃꢀꢄ  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂ ꢃꢀꢄ  
ꢁꢂ  
ꢀꢁꢂꢂ ꢃ0ꢄ  
ꢀꢁꢂꢂ ꢃ0ꢄ  
ꢀꢁꢂꢂ ꢃ0ꢂ  
INTVCC Current Limit  
vs Temperature  
INTVCC Dropout vs  
Temperature  
INTVCC Voltage vs Temperature  
ꢀ.ꢁ0  
ꢀ.0ꢁ  
ꢀ.0ꢁ  
ꢀ.0ꢁ  
ꢀ.0ꢁ  
ꢀ.00  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢀ  
ꢀ.ꢁ0  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
0
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢀ ꢁ.ꢂꢃ  
ꢀꢀ  
ꢀꢁꢂꢃ ꢀ ꢁꢂꢃꢄꢅ  
ꢀꢀ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢂ ꢃ0ꢄ  
ꢀꢁꢂꢂ ꢃ0ꢄ  
ꢀꢁꢂꢂ ꢃ0ꢁ  
Rev. 0  
6
For more information www.analog.com  
LT3966  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
INTVCC Dropout vs  
Temperature Load  
Switching Frequency  
vs Temperature  
ꢀ0ꢁ0  
Switching Frequency vs RT  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ00  
ꢀꢁ0  
ꢀ00  
ꢀꢁ0  
ꢀ00  
ꢀ0  
R
ꢀ ꢁ00ꢂ  
ꢀ0ꢁ0  
ꢀ0ꢁ0  
ꢀ000  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
0.ꢀ  
0
ꢀ00  
ꢀ0  
ꢀ00  
(kΩ)  
ꢀꢁ  
0
ꢀꢁ  
ꢀꢁ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
R
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃ ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂꢂ ꢃꢄꢄ  
ꢀꢁꢂꢂ ꢃꢄ0  
ꢀꢁꢂꢂ ꢃꢄꢅ  
V
FB vs Temperature  
ISP Voltage Limit vs Temperature  
VISP–ISN vs Temperature  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢀ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢀ  
ꢀꢁ0  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢀ  
ꢀ.ꢁ0  
ꢀ.ꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢀꢁ  
ꢀꢁꢂ ꢃ ꢄꢅꢆ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢀ  
VISP–ISN Threshold vs  
Temperature Overcurrent Protection  
VISP–ISN vs VISP  
VISP–ISN vs ADIM VCTRL/PWM  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢁ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀ00  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢀ  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ ꢃ ꢄꢅꢆ  
ꢀꢁꢂ ꢃ ꢄꢅꢆ  
ꢀ0  
ꢀꢁ  
0
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
0
0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ  
ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.0  
0
ꢀꢁ ꢀꢁ ꢀꢁ ꢀ0 ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ0  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂ  
ꢀꢁRꢂꢃꢄꢅꢆ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢂ  
Rev. 0  
7
For more information www.analog.com  
LT3966  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
V
ISP–ISN vs ADIM VFB  
VISP–ISN vs VFB  
ILED Measured Code vs VISP–ISN  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀ00  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ0  
ꢀꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀ00  
ꢀꢁ  
ꢀꢁꢂ ꢃ ꢄꢅꢆ  
ꢀꢁꢂ ꢃ ꢄꢅꢆ  
ꢀꢁ  
ꢀ0  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ ꢃ ꢄꢅꢆ  
0
0
0
ꢀ.ꢀ0 ꢀ.ꢀꢁ ꢀ.ꢀꢁ ꢀ.ꢀꢁ ꢀ.ꢀꢁ ꢀ.ꢁ0 ꢀ.ꢁꢁ  
0
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢂ ꢀꢁ0 ꢀꢁꢂ ꢀꢀꢁ ꢀꢁꢂ ꢀꢁꢁ ꢀꢁ0  
0
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢂ ꢀꢁ0 ꢀꢁꢂ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢁꢆ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃꢀꢁꢄ  
ꢀꢁꢂꢂ ꢃꢄ0  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢁ  
Switch On-Resistance  
vs Temperature  
Switch Current Limit  
vs Temperature  
FB Measured Code vs VFB  
ꢀ00  
ꢀꢁ0  
ꢀ00  
ꢀꢁ0  
ꢀ00  
ꢀꢁ0  
ꢀ00  
ꢀ0  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂ  
ꢀꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
0
0
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
0
0.ꢀꢁꢁ  
0.ꢀꢁ0  
0.ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ.0ꢁ0  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁ  
ꢀꢁꢂꢂ ꢃꢄꢀ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢄ  
Switch Current Limit  
vs Duty Cycle  
Minimum On/Off Time  
vs Temperature  
TG Rise/Fall Time vs CLOAD  
ꢀꢁ0  
ꢀꢁ0  
ꢀ00  
ꢀ0  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
Rꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢁꢀꢃꢀ ꢄꢂ  
ꢀꢁꢂꢁꢀꢃꢀ ꢄꢅꢅ  
ꢀꢁꢂ ꢃ ꢄꢅꢆ  
ꢀ0  
ꢀ0  
ꢀ0  
0
0
ꢀ00  
ꢀ00  
ꢀ00  
ꢀꢁꢂꢃ  
ꢀ00  
ꢀ000  
0
ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ00  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁꢂꢃ ꢄꢃꢄꢅꢆ ꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢂ ꢃꢄꢂ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
Rev. 0  
8
For more information www.analog.com  
LT3966  
PIN FUNCTIONS  
2
FB1, FB2, FB3, FB4 (Pins 39, 32, 10, 21): Voltage  
Feedback Pin. The FB pin is used for output voltage regu-  
lation and limiting. Tie to a resistor divider from the output  
voltage. When FB reaches 1.2V, the switch current will  
reduce in order to maintain the output voltage at this level.  
If ISP/ISN senses less than 10% of full output current  
when FB reaches regulation, an OPENLED condition will  
be flagged for that channel. If FB is driven above 1.26V,  
the external PMOS will be switched off and an OVFB con-  
dition will be flagged. If FB remains below 0.3V after the  
internal soft start has completed, a SHORTLED condition  
will be flagged. See the Applications Information section  
for more information on faults and fault handling.  
ADR1, ADR2, (Pins 16, 17): I C Address Select. These  
pins are configured as three-state inputs (HIGH, LOW,  
FLOAT). See Table 1 for address selection.  
ALERT (Pin 20): Chip Status Reporting Pin. Depending  
on channel configuration, the ALERT pin can be pulled  
low due to any of the following faults: FB Overvoltage,  
Open LED, Shorted LED, and LED Overcurrent. See the  
Applications Information section for more information on  
faults and fault handling.  
2
SDA (Pin 18): Serial Data Line for I C Communications.  
Combination input and open-drain output.  
2
SCL (Pin 19): Serial Clock for I C Communications.  
ISP1, ISP2, ISP3, ISP4 (Pins 1, 30, 8, 23): Positive  
Terminal of the LED Current Sense Amplifier. Also serves  
as the positive supply of the TG gate driver. Connect to  
positive side of LED current sense resistor and minimize  
resistance in this path.  
SYNC (Pin 34): Oscillator Synchronization Pin. By default,  
this pin acts as an input for an external clock to define  
the switching frequency of the LT3966. By setting the  
SYNCOUT configuration bit, the input function is disabled  
and instead SYNC becomes a clock output for driving  
other external circuits.  
ISN1, ISN2, ISN3, ISN4 (Pins 40, 31, 9, 22): Negative  
Terminal of the LED Current Sense Amplifier. Kelvin con-  
nects to negative side of LED current sense resistor.  
RT (Pin 33): Timing Resistor Set Pin. Set the master clock  
frequency using a resistor to GND. Do not leave the RT  
pin open.  
TG1, TG2, TG3, TG4 (Pins 2, 29, 7, 24): Top Gate Driver  
Output. Connect to gate of external PMOS pass transistor.  
TG is an inverted and level-shifted version of the PWM  
EN/UVLO (Pin 36): Enable/Undervoltage Lockout Pin.  
This pin is used for general ON/OFF control and to enable  
the LT3966 at a specific input voltage. Drive with a logic  
level greater than 1.5V for simple ON/OFF control, or tie to  
a resistor divider of input voltage for precision shutdown  
threshold. This pin has a falling threshold of 1.23V, rising  
hysteresis of roughly 15mV, and a 2µA hysteresis current  
dimming signal, and drives between VISP (OFF) and VISP  
8.2V (ON) for LED PWM dimming as well as fault mode  
disconnect. Leave unconnected if not used.  
SW1, SW2, SW3, SW4 (Pins 3–4, 27–28, 5–6, 25–26):  
Power DMOS Drain. Connect to switching end of the  
inductor. Minimize copper area to increase efficiency and  
reduce EMI.  
when below threshold. Tie this pin to V if unused.  
IN  
INTV (Pin 37): Internal 3V LDO Output. This pin is the  
LDO CoCutput and power supply for all internal circuitry.  
Place a 4.7μF filter capacitor to GND as close to this pin  
as possible. Do not drive this pin externally. Users may  
apply a load of up to 2mA to this pin.  
CTRL/PWM1, CTRL/PWM2, CTRL/PWM3, CTRL/PWM4  
(Pins 11, 12, 13, 14): Combination Analog/PWM Dimming  
Input. Drive from below 100mV to above 1.5V for full-  
scale PWM dimming. Or drive with an analog voltage from  
0.2V to 1.2V for 0% to 100% analog dimming. Do not  
V (Pin 38): Input Voltage Supply. This pin is the power  
IN  
leave these pins floating, tie to INTV if unused.  
CC  
supply input to the LDO and the rest of the internal cir-  
cuitry. It must be locally bypassed with a capacitor to GND  
as close to the pin as possible.  
EXT1, EXT2 (Pins 15, 35): External Input to ADC. The  
working range of the EXT input is 0V (Code 0) to 1.275V  
(Code 255). These pins are internally clamped to 1.7V.  
Tie to GND if unused.  
Rev. 0  
9
For more information www.analog.com  
LT3966  
BLOCK DIAGRAM  
R
Rꢊ  
ꢍꢠꢃꢀ  
ꢄꢃꢝꢇꢓꢅꢖ  
ꢉꢃ  
ꢂꢆRꢏ  
ꢂꢆRꢒ  
ꢔꢂꢇꢏꢐꢋ  
ꢌꢀꢅꢟ  
ꢉꢃꢊꢓ  
ꢄꢃꢇꢓ  
ꢀꢀ  
ꢏ.ꢒꢓ  
ꢛꢂꢃꢆꢕꢂꢈ  
ꢖꢍꢀꢉꢅꢅꢂꢊꢖR  
ꢀꢅꢟꢏꢐꢋ  
ꢍꢀꢅ  
ꢍꢀꢅ  
ꢍꢆꢂ  
ꢉ ꢀ ꢉꢃꢊꢄRꢔꢂꢀꢄ  
ꢂꢃꢆ  
ꢉꢃꢊꢓ  
ꢧꢓ  
ꢀꢀ  
ꢍꢆꢂ  
ꢕꢅꢖꢛꢂꢅ ꢅꢖꢕꢉꢀ  
ꢂꢀꢟꢝꢍꢆꢂ0  
ALERT  
ꢓꢀꢀꢇꢓ  
ꢂꢅꢄRꢊ  
ꢏ.0ꢑꢓ  
ꢄꢜꢊꢏ  
ꢄꢜꢊꢒ  
ꢉꢃ  
ꢄꢜꢊꢏ  
ꢄꢜꢊꢒ  
ꢂꢆꢀ  
ꢌꢇꢜ  
ꢂꢆꢀꢑ  
ꢔꢛꢏꢐꢋ  
ꢓꢅꢄꢆꢏꢐꢋ  
ꢆꢂꢊꢂ  
Rꢝꢎ  
ꢀꢅꢟꢏ  
ꢍꢅꢖꢈꢄ ꢀꢖꢌꢈ  
ꢍꢎꢏ  
ꢀWꢁꢂ  
R
ꢔꢛꢏ  
ꢏ.ꢒꢡꢓ  
ꢀꢇRRꢄꢃꢊ  
ꢍꢄꢃꢍꢖR  
ꢏ.ꢡꢂ  
ꢔꢛꢏ  
ꢖꢓꢔꢛꢏ  
ꢏ.ꢏꢤꢓ  
ꢔꢛꢏ  
ꢖꢈꢄꢃꢅꢄꢆꢏ  
ꢅꢄꢆꢖꢀꢏ  
ꢔꢂꢇꢏ  
ꢀꢁꢂꢃꢃꢄꢅ  
ꢓꢅꢄꢆꢏ  
0.ꢏꢓ  
ꢏ.ꢒꢓ  
ꢅꢖꢕꢉꢀ ꢨ ꢔꢂꢇꢅꢊ  
ꢓꢅꢄꢆꢏ  
ꢤ0ꢥꢓ  
ꢣꢋ  
Rꢇꢃꢏ  
ꢍꢁꢖRꢊꢏ  
ꢊꢍꢆ  
ꢁꢂꢃꢆꢅꢉꢃꢕ  
ꢓꢀꢏ  
Rꢏ  
ꢉꢍꢈꢏ  
ꢉꢍꢃꢏ  
ꢓꢅꢄꢆꢏ  
ꢏ.ꢤꢓ  
R
ꢉꢍꢈ  
ꢓꢀꢀꢇꢓ  
ꢖꢇꢊ  
ꢔꢛꢏ  
ꢀꢊRꢅꢝ  
ꢈꢎꢌꢏ  
ꢍꢖꢔꢞ  
ꢍꢊꢂRꢊ  
Rꢄꢔ  
ꢅꢂꢊꢖꢔꢔ  
0.ꢧꢓ  
ꢏ.ꢒꢓ  
ꢆꢂꢀꢑ  
ꢍꢍꢆꢖꢃꢄꢏ  
ꢏ.ꢚꢓ  
Rꢏ  
ꢣꢋ  
ꢍꢍꢏ  
ꢂꢆꢉꢌꢏꢗꢚꢘ0ꢙ  
ꢈꢎꢄꢜꢊꢏ  
0.ꢏꢓ  
ꢉꢍꢈꢏ  
ꢊꢕꢏ  
ꢈꢎꢌꢏ  
ꢔꢂꢇꢏ  
ꢈꢎꢉꢃꢊꢏ  
ꢆꢉꢌꢌꢉꢃꢕ  
ꢕꢄꢃꢄRꢂꢊꢖR  
ꢆꢉꢌꢄꢃꢏ  
ꢛꢂꢌꢏ  
ꢉꢍꢈꢏ ꢐꢑ.ꢒꢓ  
ꢍꢄꢅꢏꢗꢒꢘ0ꢙ  
ꢆꢉꢌꢏꢗꢏꢒꢘ0ꢙ  
ꢀꢁꢂꢃꢃꢄꢅ ꢆꢇꢈꢅꢉꢀꢂꢊꢄꢆ ꢋ ꢊꢉꢌꢄꢍ  
Rev. 0  
10  
For more information www.analog.com  
LT3966  
OPERATION  
PWM dimming can be controlled externally by toggling  
CTRL/PWM, or internally programmed using the LT3966  
onboard PWM generator. This PWM generator offers res-  
olution from 6-bit (64:1) to 13-bit (8192:1), as well as the  
choice between standard PWM modulation and optional  
BAM (Bit Angle Modulation) control.  
OVERVIEW  
The LT3966 is a 4-channel monolithic boost LED driver  
2
with I C programmability and onboard ADC. The 4 inde-  
pendent LED driver channels each consist of a 1.6A  
monolithic boost converter with high side LED current  
sensing and high side gate driver for PWM dimming and  
fault protection. The analog LED current setpoint can be  
The LED drivers have detection and protection from  
overvoltage, overcurrent, open LED, and shorted LED  
conditions. Fault handling is autonomous, with optional  
2
controlled externally and also programmed through I C.  
The LED dimming can be controlled with an external PWM  
2
2
readback, fault reporting, and latchoff functions using I C.  
signal or through I C using the internal PWM generator.  
Additionally, the LT3966 contains an 11-input, 8-bit ADC  
used to measure regulation parameters of each of the LED  
driver channels as well as input voltage, die temperature,  
and two external inputs.  
2
The device I C address is programmable to one of eight  
different addresses or standalone mode using the two tri-  
mode ADR pins. Reliable and robust I C communication  
is ensured by use of CRC error checking and an optional  
watchdog timer.  
2
LT3966 operates from input voltages of 3V to 60V. The  
1.23V EN threshold allows programmable external UVLO  
using a resistor divider from the input voltage. All inter-  
nal circuitry is powered from an onboard LDO regulator  
2
I C OPERATION  
2
supplying 3V at the INTV pin. Although the internal cir-  
I C Transactions and Error Correction Operation  
CC  
cuitry operates at 3V, all I/O pins are 5V tolerant. The LDO  
is current limited to 36mA and should not be externally  
loaded, and the device provides an internal UVLO to pre-  
2
I C communication revolves around read and write trans-  
actions. In LT3966, Packet Error Checking (PEC) is used  
to guarantee reliable communication between the host  
system and the device. This consists of a trailing byte on  
both the read and write transactions that offers a CRC  
check of all bytes since the last start. The CRC polyno-  
mial used in LT3966 is identical to that used in SMBus:  
vent switching when INTV falls below 2.7V. Bypass and  
CC  
filtering of the LDO require a capacitor of at least 4.7μF  
from INTV to GND located close to the pins.  
CC  
The boost converters are internally compensated current  
mode converters with a 1.6A power FET each. The boost  
converters can operate from 300Hz to 4MHz, and switch-  
8
2
1
X + X + X + 1.  
2
The structure of an I C write is shown in Figure 1. Data  
being written to LT3966 must follow this format. The PEC  
code (Figure 2) should be computed by the host system  
using the CRC formula on the Chip Address, Sub Address,  
and Data Bytes. If a valid PEC is received, the LT3966 will  
acknowledge (ACK) on the 9th clock of the PEC transfer,  
and the data will be transferred to the LT3966 register. If  
an invalid PEC is received, the LT3966 will not ACK, and  
the data will be discarded.  
2
ing can be synchronized to an external clock. Through I C,  
the LT3966 allows the options of multiphase switching for  
lower input ripple as well as clock sync output.  
The LED drivers use high side current sensing with a  
250mV threshold. This analog threshold is externally  
adjustable by using the CTRL/PWM pin, and is also inter-  
nally programmable through I2C. A high side gate driver  
for an external PMOS transistor allows accurate PWM  
dimming, fast fault protection, and output disconnect.  
Rev. 0  
11  
For more information www.analog.com  
LT3966  
OPERATION  
ꢋꢓꢔꢐ ꢊꢑꢑRꢕꢍꢍ  
ꢍꢖꢗ ꢊꢑꢑRꢕꢍꢍ  
ꢑꢊꢎꢊ  
ꢐꢕꢋ ꢘꢋRꢋꢙ  
0
0
0
ꢍꢆ ꢍꢅ ꢍꢄ ꢍꢃ ꢍꢂ ꢍꢁ ꢍꢀ ꢍ0  
ꢑꢆ ꢑꢅ ꢑꢄ ꢑꢃ ꢑꢂ ꢑꢁ ꢑꢀ ꢑ0  
ꢐꢄ ꢐꢃ ꢐꢂ ꢐꢁ  
ꢐꢆ ꢐꢅ  
ꢐꢀ ꢐ0  
ꢍꢎꢊRꢎ  
ꢍꢎꢏꢐ  
ꢍꢑꢊ  
ꢍꢋꢒ  
0
0 ꢊꢋꢌ  
ꢊꢋꢌ  
ꢊꢋꢌ  
ꢊꢋꢌ  
ꢂꢈꢅꢅ ꢉ0ꢀ  
Figure 1. I2C Write Transaction with PEC  
// Bytewise CRC-8 for LT3966 using X8 + X2 + X + 1  
// Takes a running sum (or 0) as <in>, and current byte to CRC as <data>  
// Returns the CRC-8 of <in> and <data> for sending or further CRC’ing  
int8_t doCRC(int8_t in, int8_t data){  
int8_t crc;  
int8_t i;  
crc = in ^ data;  
for(i = 0; i < 8; i++){  
if (crc & 0x80) {  
crc <<= 1;  
crc ^= 0x07;  
} else {  
// XOR the incoming bytes  
// Step through each bit  
// If MSB is set  
// Shift up, then  
// XOR with the low byte of polynomial  
// If MSB is unset  
// Simply shift up  
crc <<= 1;  
}
}
// Repeat for rest of bits  
// Finally, send back the result  
return crc;  
}
// Usage, where CHIPADDR, SUBADDR, and DATA are the bytes to send to LT3966  
int8_t myCRC;  
myCRC = doCRC(0, CHIPADDR);  
myCRC = doCRC(myCRC, SUBADDR);  
myCRC = doCRC(myCRC, DATA);  
// myCRC now holds the completed PEC byte for sending to LT3966  
Figure 2. Example Linduino® Code for Calculating CRC-8 PEC  
2
Multiple transactions can take place before an I C stop by  
using the repeated start signaling. Any start, including a  
repeated start, restarts the CRC calculation for the new  
transaction. The host system should calculate a new PEC  
code for the bytes of that transaction, and the LT3966 will  
evaluate the PEC code on a per transaction basis. A failure  
in a single transaction will cause only that transaction’s  
data to be discarded, and other successful transaction  
data would be accepted.  
several writes can take place with their action occurring  
simultaneously upon execution of the stop signal.  
2
Structure of an I C read is shown in Figure 3. It begins  
with a write of Chip Address and Sub Address to set the  
internal pointer. No PEC is required to set the pointer. A  
stop/start pair, or repeated start, ends the write portion  
and starts the read portion of the transaction. During a  
read transaction, the PEC code is generated by LT3966  
over the Chip Address and Data bytes, and is sent to the  
host after the data byte. Reading the PEC code is manda-  
tory. The host system should evaluate the PEC for validity  
and respond accordingly.  
Once all transactions are completed, the host system  
can execute a stop signal to transfer the written data to  
the output of the registers. The written data does not  
take effect until a stop signal is detected. In this manner,  
Rev. 0  
12  
For more information www.analog.com  
LT3966  
OPERATION  
I C OPERATION – I C ADDRESS SETTINGS  
2
2
All other address selections start up with channels and  
dimming generators enabled, but with the PWM DIM reg-  
ister set to code 0 (0% on time). The converter channels  
are active, but not switching since the DIM register is set  
to 0. To enable light output, write a value to the chan-  
nel’s DIM register, or write a channel’s DIMEN bit to 0 to  
disable dimming and provide 100% LED on time. Faults  
will be indicated in a channel’s STATUS register, but not  
indicated on the ALERT pin unless the mask bit is enabled  
for that channel.  
Normal and Standalone Mode  
ADR2, ADR1 = GND, GND programs the LT3966 into a  
special standalone mode that does not require I C com-  
2
munication. All channels are enabled, and all channel dim-  
ming generators are disabled (100% on time). The device  
will start up and immediately begin soft-start switching.  
Analog and PWM dimming in standalone mode are con-  
trolled by the channel CTRL/PWM pins. Faults are not  
latched, but are indicated on the ALERT line.  
ꢋꢖꢗꢐ ꢊꢑꢑRꢓꢍꢍ  
ꢍꢘꢙ ꢊꢑꢑRꢓꢍꢍ  
0
0
0
ꢍꢆ ꢍꢅ ꢍꢄ ꢍꢃ ꢍꢂ ꢍꢁ ꢍꢀ ꢍ0  
ꢍꢎꢊRꢎ  
ꢍꢎꢏꢐ  
ꢊꢋꢌ  
ꢍꢑꢊ  
ꢍꢋꢒ  
0
0 ꢊꢋꢌ  
ꢊꢑꢑRꢓꢍꢍ  
ꢑꢊꢎꢊ  
ꢐꢓꢋ ꢔꢋRꢋꢕ  
0
0
ꢑꢆ ꢑꢅ ꢑꢄ ꢑꢃ ꢑꢂ ꢑꢁ ꢑꢀ ꢑ0  
ꢐꢄ ꢐꢃ ꢐꢂ ꢐꢁ  
ꢐꢆ ꢐꢅ  
ꢐꢀ ꢐ0  
ꢍꢎꢊRꢎ  
ꢍꢎꢏꢐ  
ꢍꢑꢊ  
ꢍꢋꢒ  
0
ꢀ ꢊꢋꢌ  
ꢊꢋꢌ  
ꢊꢋꢌ  
ꢂꢈꢅꢅ ꢉ0ꢂ  
Figure 3. I2C Read Transaction with PEC  
Table 1. I2C Address Settings  
Write  
Read  
ADR2  
GND  
GND  
GND  
Float  
Float  
Float  
ADR1  
GND  
Float  
A3  
A2  
0
A1  
0
A0  
0
Address  
Address  
Mode  
0
0
0
0
0
0
1
1
1
0xA0  
0xA2  
0xA6  
0xA8  
0xAA  
0xAE  
0xB8  
0xBA  
0xBE  
0xA1  
0xA3  
0xA7  
0xA9  
0xAB  
0xAF  
0xB9  
0xBB  
0xBF  
Standalone  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
0
0
1
V
0
1
1
CC  
GND  
Float  
1
0
0
1
0
1
V
1
1
1
CC  
V
V
V
GND  
Float  
1
0
0
CC  
CC  
CC  
1
0
1
V
1
1
1
CC  
Rev. 0  
13  
For more information www.analog.com  
LT3966  
APPLICATIONS INFORMATION  
PROGRAMMING THE LED CURRENT  
On the high side of the CTRL/PWM range, the threshold  
adjustment will roll over to a fixed maximum of 250mV  
threshold as the CTRL/PWM pin exceeds 1.2V. To use  
the fixed 250mV threshold, it is recommended to tie the  
CTRL/PWM pin to a voltage higher than 1.2V. For conve-  
The LED current is programmed using an external current  
sense resistor and an adjustable sense threshold. The full-  
scale value of this threshold is 250mV. Choose a current  
sense resistor which will develop 250mV at the maximum  
nience, the CTRL/PWM pin can simply be tied to INTV .  
CC  
LED current, I , Equation 1.  
LED  
The required CTRL/PWM voltage for a desired current  
0.250mV  
RISP  
=
(1)  
sense threshold is given by Equation 2.  
(2)  
ILED  
VCTRLPWM = 4 • V  
+ 0.2V  
(ISP–ISN)  
Adjustment of this current sense threshold in LT3966 is  
generated from the combination of the external CTRL/  
PWM pin voltage and the register value of an internal  
multiplying DAC (MDAC). The relevant circuitry from the  
block diagram is shown in Figure 4.  
The overall profile of current sense threshold vs CTRL/  
PWM voltage is shown in Figure 5.  
The ADIM register takes the setpoint programmed by  
the CTRL/PWM pin and applies to it an 8-bit DAC func-  
tion, where code 0 is equal to 1/256th of the CTRL/PWM  
threshold and code 255 is equal to the full CTRL/PWM  
threshold. For the case of the fixed 250mV threshold, the  
ADIM-adjusted threshold can be computed by Equation 3.  
Both the CTRL/PWM pin and the ADIM register have the  
ability to adjust the current sense threshold, and they  
can be used independently or in combination. In gen-  
eral, the CTRL/PWM pin is used for externally controlled  
applications and the ADIM register is used for internally  
controlled applications.  
250mV • (ADIM + 1)  
V
=
(3)  
(ISP–ISN)  
256  
The CTRL/PWM pin provides a linear adjustment of the  
current sense threshold over the range of 0.2V to 1.2V.  
The low side of the CTRL/PWM range is set to allow a true  
zero current setting while tolerating offset in any external  
circuitry. Below 0.2V, the CTRL/PWM pin will be request-  
ing zero LED current, and below 0.1V on CTRL/PWM will  
be interpreted as a PWM off signal.  
When adjusting with both external and internal control  
in combination, it is important to consider the accuracy  
of the overall system: Although it is possible to program  
both the CTRL/PWM pin and the ADIM register to very  
small values, the product of those two small values may  
be too tiny for the amplifier to accurately regulate.  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀ00  
ꢀꢁ  
ꢝ0ꢞꢛ  
Rꢙ  
ꢉꢗꢕ  
R
ꢉꢗꢕ  
ꢉꢗꢘ  
ꢐꢑꢆ  
ꢙ.ꢚꢛ  
ꢒꢆRꢅꢔ  
ꢕꢖꢊ  
Rꢏꢃ  
ꢈꢇꢒꢓ  
ꢀꢁꢂꢂ  
ꢀ0  
ꢇꢈꢉꢊꢋꢌꢍ0ꢎ  
ꢀꢁ  
Rꢙ  
ꢜꢄ  
0
0
0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ  
ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.0  
ꢀꢁꢂ  
ꢀꢁRꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢂ ꢃ0ꢄ  
ꢀꢁꢂꢂ ꢃ0ꢄ  
Figure 4.  
Figure 5.  
Rev. 0  
14  
For more information www.analog.com  
LT3966  
APPLICATIONS INFORMATION  
FAULT DETECTION USING ISP, ISN  
Since the gate charging current passes through the LED  
current sense resistor, 2µs blanking time is added to the  
LED overcurrent sensing to avoid false tripping during TG  
transitions. This problem is most often seen when using  
a high value sense resistor for a small LED current. An  
alternative for this case is to use a smaller value sense  
resistor and a lower ISP–ISN threshold by adjusting the  
CTRL/PWM pin or ADIM register.  
LT3966 uses the ISP, ISN sense amplifier to detect over-  
current conditions in the LED. If the voltage between ISP/  
ISN exceeds 150% of the regulation threshold (370mV),  
an overcurrent fault is detected. The LT3966 will terminate  
switching on the faulted channel and pull TG high to dis-  
connect the output. The fault status will be latched in the  
channel’s OC status bit, and the ALERT flag will assert if  
reporting is enabled by the channel’s OC_EN bit.  
PWM DIMMING  
Response to overcurrent will depend on the state of that  
channel’s LATOFF bit. If LATOFF is not set, the channel  
will enter a 7168-cycle cooldown mode before retrying  
a new soft-start cycle. This is commonly referred to as  
“hiccup” mode. If the LATOFF bit is set, the channel will  
stay in the off state until the fault or the LATOFF bit is  
cleared by the host.  
PWM dimming of LEDs provides efficiency, accuracy,  
and color rendering benefits over analog dimming. The  
LT3966 provides both internal and external control of LED  
dimming. During PWM dimming off time, the switching  
is suspended, the TG pin is pulled up to turn off the  
external PMOS, and the internal control voltages are tri-  
stated to hold their value. In this manner, the chip can  
quickly resume its appropriate operating condition at next  
LED turn-on.  
For the case of a problem with the LT3966 voltage feed-  
back, an additional limiter is incorporated to regulate the  
ISP pin to a maximum of 62V. If the ISP pin reaches 62V,  
the switching setpoint will be reduced to prevent the ISP  
pin from exceeding 62V.  
External LED dimming is controlled using the CTRL/PWM  
pin, and internal dimming is controlled using the onboard  
dimming generator. The final dimming control signal is  
the logical AND of both the CTRL/PWM input and the  
internal dimming generator. When the dimming generator  
is disabled by the DIMEN bit or by standalone mode, the  
dimming is controlled solely by the CTRL/PWM pin. The  
logical representation is shown in Figure 7.  
TG DRIVER AND EXTERNAL PMOS SELECTION  
PWM dimming and output disconnect are controlled  
by the TG pin through the use of an external PMOS  
pass device. TG provides a level-shifted MOSFET driver  
intended to drive the gate of the external PMOS between  
V
and V – 8.2V.  
ISP  
ISP  
ꢀꢁꢂꢂ  
ꢒꢆRꢅꢗ  
ꢘꢙꢌ  
0.ꢇꢈ  
ꢑꢒꢅꢓꢔꢕ0ꢖ  
ꢊꢋꢌꢓꢇꢔꢕ0ꢖ  
ꢃꢄꢅ  
R
ꢃꢄꢅ  
ꢚꢏꢌ  
ꢃꢄꢏ  
ꢒꢓꢔꢔ  
ꢅꢐꢑ  
ꢊꢋꢌꢌꢋꢍꢉ  
ꢉꢎꢍꢎRꢏꢆꢐR  
ꢆꢉꢇ  
ꢃLR  
ꢊꢋꢌꢎꢍ  
ꢀꢁꢂ  
ꢀAꢁLTꢂ  
ꢊꢋꢌ  
ꢊꢍꢎꢌ  
ꢃꢄꢅ ꢆ ꢇ.ꢈꢉ  
ꢒꢓꢔꢔ ꢕ0ꢔ  
ꢀꢁꢂꢂ ꢃ0ꢄ  
Figure 6.  
Figure 7.  
Rev. 0  
15  
For more information www.analog.com  
LT3966  
APPLICATIONS INFORMATION  
It is important to note that both the DIMEN signal and  
the CTRL/PWM pin have the ability to clear the dimming  
generator’s counter. This is advantageous when using a  
combination of internal dimming and external ON/OFF  
control with CTRL/PWM. By restarting the dimming gen-  
erator’s counter in sync with the external ON/OFF signal,  
light output remains flicker free from full duty cycle to zero.  
the dimming resolution, and also the dimming frequency  
based on the MCLK value set by R , Equation 4.  
T
fSW  
2(6+SCL)  
(4)  
fDIM  
=
For example, a 13-bit dimming cycle using SCL = 111b  
would provide 8192:1 resolution at a dimming frequency  
of 244Hz using a 2MHz MCLK frequency (R = 47.5k).  
T
The CTRL/PWM threshold for PWM dimming is 0.1V. For  
simple on/off control, the PWM pin can be driven with any  
standard logic signal between 1.5V and 5V. For dimming  
with analog control, drive the pin with a DAC providing  
output shutdown, or simply shunt a resistor divider using  
a small NMOS transistor (Figure 8).  
The DIM[12:0] and BAM registers control the duty  
cycle and modulation strategy of the dimming genera-  
tor. In PWM (Pulse-Width Modulation) dimming mode  
(BAM = 0), the PWMOUT signal is high while the value  
in the DIM register is greater than the Counter. In BAM  
(Bit-Angle Modulation) mode, the PWMOUT signal is high  
anytime the MSB of the Counter matches the position of  
a 1 in the value in the DIM register.  
ꢀꢁꢂꢂ  
ꢌꢍꢆꢎ  
ꢇꢇ  
A comparison of the resulting waveforms of each of these  
strategies is shown in Figure 10. For a DIM value of 13,  
PWM mode provides a single pulse of 13 clock cycles  
starting at the 1st counter cycle. BAM mode provides  
pulses of duration 1, 4, and 8 cycles at the 1st, 4th, and  
8th counter cycle, respectively. The total pulse duration  
in BAM mode still equals 13-clock cycles.  
ꢇꢆRꢅꢈ  
ꢉꢊꢋ  
ꢀWꢁ  
ꢀꢁꢂꢂ ꢃ0ꢄ  
Figure 8.  
The internal dimming generator is based on a vari-  
able-length counter updated at the master clock rate, deter-  
mined by R . An overview of the logic is shown in Figure 9.  
ꢄꢀ  
T
ꢅꢆꢇ  
ꢈꢉꢇ  
ꢀꢁꢂꢂ ꢃꢄ0  
ꢆꢇꢈꢉꢊꢋꢌ0ꢍ  
Figure 10.  
ꢘꢀꢑꢉꢋꢌ0ꢍ  
ꢎꢏRꢇꢏꢐꢑꢅ ꢑꢅꢃꢒꢄꢓ  
ꢔꢕꢖꢊꢗ ꢐꢇꢄꢘꢙ ꢀꢁꢈꢚꢏRꢅ  
ꢚꢝꢈꢁꢂꢄ  
The duty cycle of the dimming generator can be com-  
puted using Equation 5.  
ꢐꢏꢈ  
ꢀꢁꢂꢃꢄꢅR  
DIM  
2(6+SCL)  
(5)  
Duty =  
ꢆꢇꢈꢈꢇꢃꢒ ꢒꢅꢃꢅRꢏꢄꢁR  
ꢗꢛꢕꢕ ꢜ0ꢛ  
Figure 9.  
The system should be aware of the counter scale as  
defined by SCL, and avoid writing DIM values larger than  
the maximum value of counter. In the case where a DIM  
value is larger than the counter range, the DIM value will  
be truncated below bit (6+SCL). A DIM value of 0 0000  
0000 0001 would be interpreted as 0 in all cases except  
SCL = 111b.  
The scale (SCL[2:0]) bits set the compare length and cycle  
length of the dimming generator, from 6-bit at SCL = 000b,  
to 13-bit at SCL = 111b. This cycle length determines  
Rev. 0  
16  
For more information www.analog.com  
LT3966  
APPLICATIONS INFORMATION  
DIMMING CODE CHANGES AND DIMMING  
SYNCHRONIZATION  
Choose R1 and R2 so that the output voltage reaches the  
desired maximum when FB reaches its 1.2V regulation point,  
Equation 6.  
To ensure glitch-free changes of the DIM, a new value  
of DIM is only loaded upon completion of the previous  
dimming cycle, at the rollover of the counter to 0. This  
prevents short or otherwise malformed pulses at the out-  
put, but will introduce a small latency depending on the  
dimming cycle length.  
R1  
R2  
(6)  
VOUT = 1.2 • 1+  
For the case of driving LEDs, the output voltage setting  
should be programmed higher than the maximum forward  
voltage of the LEDs being driven, when accounting for  
process and temperature variation.  
If a channel’s dimming generator is disabled by setting the  
DIMEN bit to 0 or by bringing the channel’s CTRL/PWM pin  
low, the counter for that channel will be halted and cleared  
to 0. Upon re-enabling the dimming generator, the counter  
value may not be synchronized to the other channels.  
LT3966 allows all dimming generators on the I2C bus  
to be synchronized by initiating a write to the broadcast  
address, 0x18 (Figure 11).  
FAULT DETECTION USING FB  
LT3966 uses the FB pin voltage to detect shorted and  
overvoltage output conditions, as well as open output  
conditions. The conditions for these faults and response  
are as follows:  
n
A shorted output is detected by the FB voltage remain-  
ꢓRꢏꢊꢑꢋꢊꢍꢎ ꢊꢑꢑRꢔꢍꢍ ꢕꢖRꢗꢎꢔꢘ  
ing at 300mV or lower after the device’s soft-start has  
completed. In response, the channel’s SHORT status  
bit will be asserted, and the device’s ALERT pin will  
also assert if SHORT_EN is set. The device will either  
latchoff or enter a hiccup retry cycle dependent on the  
state of the faulted channel’s LATOFF bit.  
0
0
0
0
0
0
ꢍꢎꢊRꢎ  
ꢍꢎꢏꢐ  
ꢍꢑꢊ  
ꢍꢋꢒ  
0
0
0
0
0
0 ꢊꢋꢌ  
ꢂꢈꢅꢅ ꢉꢀꢀ  
Figure 11. I2C Broadcast Write  
n
Output overvoltage is detected by the FB pin exceeding  
the regulation point by 60mV (1.26V total). In response,  
the channel’s OVFB status bit will be asserted, and the  
device’s ALERT pin will also assert if OVFB_EN is set.  
The device will stop switching and raise TG to discon-  
nect the output, and will resume normal operation once  
the FB has fallen by 25mV.  
When synchronizing the dimming generators or enabling a  
dimming generator by changing the DIMEN bit from 0 to 1,  
a one-clock low time will be seen at the output as the  
device clears the counter and loads the latest DIM code.  
FB OUTPUT VOLTAGE SETTING  
n
An open output is detected by the combination of FB  
An output voltage limit is required for the case of an  
open LED strand. By connecting FB to a resistor divider  
between the output voltage and GND, a maximum output  
voltage limit can be set (see Figure 12).  
voltage reaching at least 1.15V and the LED current  
falling to less than 10% of full-scale value. In response,  
the channel’s OPEN status bit will be asserted, and  
the ALERT pin will also assert if OPEN_EN is set. This  
condition is considered to be standard constant voltage  
regulation, and the channel will continue to switch  
while regulating FB to 1.2V.  
ꢊꢋꢇ  
ꢀꢁꢂꢂ  
Rꢄ  
Rꢅ  
ꢃꢈ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
Figure 12.  
Rev. 0  
17  
For more information www.analog.com  
LT3966  
APPLICATIONS INFORMATION  
ENABLE AND EXTERNAL UVLO  
If the EN pin is used in a multiple-tap resistor divider,  
be aware that although the pin voltage may safely reach  
60V, a small amount of current will be drawn when EN is  
greater than 6V.  
The LT3966 enable pin provides a high voltage tolerant  
precision comparator and a 2µA hysteresis current source  
for generating programmable external UVLO.  
The EN pin can be driven with a logic level signal greater than  
1.5V for simple ON/OFF control, or can be tied to the input  
(up to 60V) for always-on operation. The pin is internally  
clamped to 6V through a 1MEG resistor, and will draw a small  
amount of current when driven to a voltage greater than 6V.  
FREQUENCY SETTING USING RT  
LT3966 uses a single master oscillator from which all  
internal clocks and the switching clocks are derived.  
2
Through I C, the channels can be programmed to switch  
90° out of phase.  
To use the EN pin as an external UVLO, simply tie the EN  
pin to a resistor divider between VIN and GND (Figure 13).  
The shutdown (falling threshold) is 1.23V and the ris-  
ing threshold provides 15mV internal hysteresis plus  
user-programmable external hysteresis through the use  
of a 2µA hysteresis current that is active anytime the EN  
pin is below the threshold.  
Switching frequency is set with a single resistor from the  
RT pin to GND.  
ꢀꢁꢂꢂ  
Rꢇ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢊꢈ  
ꢀꢁꢂꢂ  
R
Rꢀ  
Rꢋ  
ꢇꢈ  
Figure 14.  
ꢀꢁꢂꢂ ꢃꢄꢀ  
Determine the proper RT value for a desired switching  
frequency using Table 2 or Table 3.  
Figure 13.  
To select an appropriate resistor divider for the EN pin, first  
determine the top resistor required for the desired hystere-  
sis. Larger value resistors provide more external hysteresis  
due to the 2µA hysteresis current source, Equation 7.  
Table 2. Single-Phase Switching Frequency vs RT Value  
SWITCHING FREQUENCY (SINGLE-PHASE)  
R (kΩ)  
T
300kHz  
400kHz  
500kHz  
600kHz  
700kHz  
800kHz  
900kHz  
1MHz  
499  
261  
205  
174  
147  
127  
113  
100  
82.5  
69.8  
59  
VHYST – 0.015V  
(7)  
R3 =  
2µA  
A common choice is 487k for roughly 1V total hysteresis.  
Next, determine the bottom resistor value by program-  
ming the accurate falling UVLO threshold based on R3  
and the 1.23V EN falling threshold, Equation 8.  
1.2MHz  
1.4MHz  
1.6MHz  
1.8MHz  
2MHz  
R3  
R4 =  
(8)  
V
EN-FALL  
1.23  
–1  
52.3  
47.5  
The UVLO rising threshold will therefore be given by Equation 9.  
1 + R3  
R4  
(9)  
VEN-RISE  
=
+ 2µA • R3  
Rev. 0  
18  
For more information www.analog.com  
LT3966  
APPLICATIONS INFORMATION  
Table 3. Multi-Phase Switching Frequency vs RT Value  
system. In this mode, the SYNC pin outputs a 50% duty  
square wave of 0V to 2.5V. To use SYNC as an output,  
the SYNCOUT register bit should be set to 1. Do not drive  
the SYNC pin with an external clock when the SYNCOUT  
bit is set.  
SWITCHING FREQUENCY (MULTI-PHASE)  
R (kΩ)  
T
300kHz  
400kHz  
500kHz  
600kHz  
700kHz  
800kHz  
900kHz  
1MHz  
174  
127  
100  
82.5  
69.8  
59  
MULTIPHASE SWITCHING  
To reduce input ripple current, the four boost converters  
can operate in 4-phase mode, where the rising edge of  
each converter’s switching cycle is separated by 90° of  
phase shift.  
52.3  
47.5  
37.4  
31.6  
27.4  
23.7  
21  
1.2MHz  
1.4MHz  
1.6MHz  
1.8MHz  
2MHz  
To enable multiphase operation, set the MPHASE reg-  
ister bit to 1. In multiphase operation, the boost con-  
verter clocks run at half the speed of MCLK set by R ,  
T
and their phase is shifted by 90° per channel as illustrated  
in Figure 15.  
RT LIMITS  
ꢀꢁꢂꢃꢄ  
In order to provide safe and reliable operation, both min-  
imum and maximum limits are set on the oscillator range  
using RT. For the case of an open circuit on RT, a low limit  
of roughly 230kHz is provided through a small internal  
bias. The RT pin itself is also current limited to provide  
an upper limit and to protect against a short circuit on the  
RT pin. This limit is 125µA, corresponding to a maximum  
frequency of roughly 7.5MHz.  
ꢅꢆꢇꢈꢂꢉꢊꢋꢌꢍꢅꢉ  
ꢀꢎꢆꢋꢌꢍꢅꢉ  
ꢅꢐꢑ  
ꢅꢐꢒ  
ꢅꢐꢓ  
ꢅꢐꢔ  
ꢓꢕꢖꢖ ꢗꢑꢘ  
Figure 15.  
FREQUENCY SYNCHRONIZATION INPUT AND OUTPUT  
Typically, the MCLK frequency is set using R to be equal  
T
The LT3966 provides a bidirectional clock synchroniza-  
tion pin, SYNC, for synchronization input and output. The  
default state of SYNC is an input, used to synchronize  
the LT3966 to an external clock source. Drive the SYNC  
input with any logic-level clock output from 1.5V to 5V  
to provide external synchronization. Duty cycle of the  
external clock is not critical as long as the high time of  
the incoming clock is greater than 100ns. When synchro-  
to 2× the desired switching frequency when multiphase  
switching is used.  
Although the boost channels operate at half frequency,  
the system MCLK continues to operate at the frequency  
determined by RT. This simplifies synchronization to other  
LT3966 devices, since the SYNC output and SYNC input  
always uses the full MCLK frequency determined by R  
T
nizing to an external clock, the R resistor should be set  
T
regardless of the multiphase setting of any individual  
LT3966. However, since the ADC converter is clocked from  
the master clock, using very high frequency MCLK set-  
tings may require the use of the ADC clock prescaler. More  
details on this setting are available in the ADC section.  
to give an unsynchronized frequency roughly 5% lower  
than the expected synchronization frequency. This mini-  
mizes disturbances during any transitions from internal  
to external clock.  
The SYNC pin can also be programmed as an output, to  
provide a synchronization signal to other LT3966 in the  
Rev. 0  
19  
For more information www.analog.com  
LT3966  
APPLICATIONS INFORMATION  
IN PHASE/OUT OF PHASE DIMMING  
frequency allows the use of smaller inductance value at  
the expense of increased switching loss.  
To reduce input ripple current, each channel’s dimming  
operation can be independently programmed in one of  
the two modes: in-phase mode and out-of-phase mode  
(see Figure 16). When operating in in-phase mode, the  
start of CH2/CH3/CH4’s dimming cycle is aligned with  
CH1’s. When operating in out-of-phase mode, the start  
of CH2/CH3/CH4’s dimming cycle is behind of CH1’s by a  
quarter/a half/three quarters of CH2/CH3/CH4’s dimming  
cycle. To enable the in-phase/out-of-phase operation, set  
the INPH register bit to 1/0. Please note that after the  
The saturation current rating of the inductor should be  
selected appropriately for the 2.4A current limit of the  
LT3966. An approximation for maximum inductor cur-  
rent (efficiency = 100%) is based on the maximum LED  
current and the input-output ratio, Equation 10.  
VOUT  
IL =  
ILED  
(10)  
V
IN  
The desired inductance is determined by the steady-state  
current ripple. A typical rule of thumb is to set the inductor  
current ripple to a maximum of 20% of the maximum induc-  
tor current, Equation 11, Equation 12 and Equation 13.  
2
INPH bit change, an I C broadcast write (see Figure 11) is  
required to reset all dimming generators for this function  
to work properly.  
Boost:  
POWER COMPONENT SELECTION  
V
IN(MIN) •(VOUT(MAX) – V  
)
IN(MIN)  
Since the LT3966 is an internally-compensated converter,  
the external power components are selected to ensure  
system stability. By following a few simple guidelines, this  
process can be made simple and streamlined.  
LBOOST  
(11)  
(12)  
VOUT(MAX) • 0.45A • fSW  
Buck:  
VOUT(MAX) •(VIN(MIN) – VOUT(MAX)  
)
Inductor Selection  
LBUCK  
VIN(MIN) • 0.45A • fSW  
Inductor selection consists of two parameters: saturation  
current rating, and inductance value. Higher switching  
ꢆꢇ ꢈꢁꢉꢊꢋ ꢌꢆꢍꢍꢆꢇꢎ ꢏꢆꢇꢈꢁ ꢐ ꢂꢑ  
ꢀꢁꢂ  
ꢀꢁꢃ  
ꢀꢁꢄ  
ꢀꢁꢅ  
ꢂꢖꢅ ꢌꢆꢍꢍꢆꢇꢎ  
ꢀꢗꢀꢘꢋ  
ꢒꢓꢔ ꢒꢕ ꢈꢁꢉꢊꢋ ꢌꢆꢍꢍꢆꢇꢎ ꢏꢆꢇꢈꢁ ꢐ 0ꢑ  
ꢀꢁꢂ  
ꢀꢁꢃ  
ꢀꢁꢄ  
ꢀꢁꢅ  
ꢄꢙꢚꢚ ꢕꢂꢚ  
Figure 16.  
Rev. 0  
20  
For more information www.analog.com  
LT3966  
APPLICATIONS INFORMATION  
Buck-Boost:  
FAULTS AND FAULT HANDLING  
V
IN(MIN) VOUT(MAX) / VIN(MIN) + VOUT(MAX)  
Status Bits and ALERT  
LBUCK  
(13)  
0.45A • fSW  
The LT3966 has independent fault handling for each  
LED driver channel. Four types of faults are detected:  
LED Overcurrent, Shorted LED, Open LED, and Output  
Overvoltage. Additional information on the detection con-  
ditions is provided in the LED current sense amplifier, and  
FB amplifier sections.  
Table 4 provides some recommended inductor vendors.  
Table 4. Inductor Manufacturers  
VENDOR  
WEB  
Wurth Elektronik  
Coilcraft  
www.we-online.com  
www.coilcraft.com  
www.cooperet.com  
As described, each type of fault is indicated in a channel’s  
status bit and can optionally be indicated on the open-  
drain ALERT pin through the setting of fault enable bits in  
the same register. When a fault’s enable bit is set, the fault  
status will be latched and the ALERT pin will be asserted  
if a fault is detected. Write a 0 to the status bit to clear, or  
write a 0 to the status bit enable bit to clear and disable  
the fault. If a fault’s EN mask bit is not set, reading the  
status bit will always give the status of the fault at that  
time, but the status will not be latched nor indicated on  
the ALERT pin.  
Cooper  
Output Capacitor Selection  
In addition to smoothing the output voltage, the output  
capacitor in combination with the small signal forward  
resistance of the LEDs provides an output pole for the  
frequency compensation.  
The LED forward resistance (RLED) is determined from  
the LED data sheet, and is roughly 10Ω for the case of  
a typical 150mA LED. Forward resistance is highest at  
low currents, and lowest at the maximum drive current.  
The total forward resistance of a series strand of LED is  
In standalone mode, the mask bits are ignored and the  
logical OR of all faults is indicated on the ALERT pin. This  
indicator is not latched, and will only be asserted as long as  
a fault is present. The ALERT pin will return to high imped-  
ance when no faults are detected in standalone mode.  
n • R , where n is the number of LEDs in the strand.  
LED  
For the LT3966, we choose C  
to keep the minimum  
OUT  
frequency of the output pole > 2kHz, Equation 14.  
1
Hiccup and Latchoff Mode  
(14)  
COUT  
12500•n • RLED  
The LED overcurrent and shorted LED conditions result in  
an internal fault response that is dependent on the state  
of the channels’ latchoff (LATOFF) bit. In the case of one  
of these faults, switching is terminated, the channel’s TG  
pin is pulled high to disconnect the output, and the device  
waits for a 7168-cycle cooldown period.  
In most cases, a 2.2µF output capacitor is a suitable choice.  
Schottky Rectifier Diode  
The power Schottky diode conducts the switching current  
during the power switch off time. Select a diode rated for  
at least 1.5 • ILED to provide operating margin. The reverse  
breakdown voltage should be at least 20% greater than  
the maximum output voltage expected in circuit. Keep in  
mind that in the case of disconnected LEDs, the output  
voltage will be driven to the limit defined by the FB divider.  
At this point if the channel’s LATOFF bit is set, the device  
will stay in this non-switching rest state until reset by tog-  
gling the EN pin or system power, toggling the channel’s  
OFF bit, or by clearing the LATOFF bit itself.  
If the channel’s LATOFF bit is not set, the device will  
attempt a new soft-start cycle after completion of the  
cooldown period. Sustained faults will result in continuing  
cooldown and retry attempts, often referred to as “hic-  
cup” mode (see Figure 17 and Figure 18).  
Rev. 0  
21  
For more information www.analog.com  
LT3966  
APPLICATIONS INFORMATION  
a new broadcast attempt while keeping the ALERT line  
asserted. Once LT3966 successfully completes arbitration  
it will release its’ pull-down on the ALERT line. The fault  
status bits can then be read by the host to determine the  
cause of the ALERT.  
ꢁꢂꢃꢄꢅꢆ  
ꢇ0ꢀꢈꢉꢃꢀ  
ꢀꢁꢂRꢃ  
ꢄꢅꢆꢇꢈꢅ  
ꢀꢁꢂRꢃꢄꢅ ꢂꢆꢃꢇꢆꢃ  
ꢀꢁꢂꢂꢃꢄꢅ  
Once an ARA arbitration has released the ALERT line, the  
LT3966 will not pull the ALERT line low again until the  
faulted status bit has been cleared, and a new fault has  
been detected.  
ꢁꢂꢃ  
ꢄꢅꢆꢃꢀꢇ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆ  
Figure 17. Scope Shot HICCUP  
ADDITIONAL FEATURES  
Watchdog Timer  
ꢁꢂꢃꢄꢅꢆ  
ꢇ0ꢀꢈꢉꢃꢀ  
2
To ensure reliability against a break in the I C bus, an  
optional watchdog timer feature is available. The watchdog  
timer is enabled through the WDTEN bit in register 0x00.  
ꢀꢁꢂRꢃ  
ꢄꢅꢆꢇꢈꢅ  
ꢀꢁꢂRꢃꢄꢅ ꢂꢆꢃꢇꢆꢃ  
The watchdog timer contains a standalone 40kHz oscil-  
lator and 100ms counter that is reset by the detection  
ꢁꢂꢃ  
ꢄꢅꢆꢃꢀꢇ  
2
ꢀꢁꢂꢂ ꢃꢄꢅ  
of any I C start condition on the bus. Once enabled, the  
ꢀꢁꢂꢃꢄꢅꢆ  
watchdog requires the host to occasionally initiate an  
I2C transaction using an I2C start. Data transfer is not  
required to reset the watchdog timer.  
Figure 18. Scope Shot LATOFF  
Broadcast Alert Response  
In the event that the 100ms watchdog period expires  
2
In order to determine which device on a common bus is  
faulted, the LT3966 supports Broadcast Alert Response  
on the standard address of 0001100 (Figure 19). Any  
LT3966 with a fault on an enabled fault status bit will  
enter arbitration upon receiving a broadcast read com-  
mand (0x19). PEC is not used during arbitration. It is  
neither sent, not expected. During arbitration, the faulted  
LT3966 will attempt to clock out its own address to the  
without detecting an I C start, the LT3966 will reset to  
the power-on default conditions and the watchdog flag  
bit (WDTFLAG) will be set in register 0x00.  
Device ID Register  
The LT3966 contains a device identifier in the highest  
three addresses in the register space. When read, the  
addresses 0xFD, 0xFE, and 0xFF will contain the BCD-  
encoded values 03, 96 and 60, respectively.  
2
host. Since the I C data line is common drain, the device  
with the lowest address will eventually win arbitration by  
outputting a 0 when other devices attempt to output a  
1. If the LT3966 fails arbitration, it will stop and wait for  
ANALOG-TO-DIGITAL CONVERTER OPERATION  
ADC Structure and Operation  
ꢊRꢋꢇꢌꢈꢇꢅꢆ ꢇꢌꢌRꢍꢅꢅ ꢎRꢍꢇꢌꢏ  
ꢇꢖꢍRꢆ Rꢍꢅꢕꢋꢘꢅꢍ ꢃRꢋꢙ ꢀꢁꢂꢂ  
0
0
0
0
0
0
LT3966 contains an 11-input, 8-bit SAR ADC used to mea-  
sure various parameters of the system. These parameters  
include FB voltage and LED current for each of the 4 LED  
driver channels, scaled input voltage, and two uncommit-  
ted external inputs. An overview of the ADC architecture  
ꢅꢆꢋꢕ  
ꢅꢆꢇRꢆ  
ꢇꢈꢉ  
0
0
0
0
0
0
ꢅꢌꢇ  
ꢅꢈꢖ  
ꢄ ꢘꢇꢈꢉ  
ꢀꢁꢂꢂ ꢃꢄꢁ  
Figure 19. I2C Broadcast Alert Response  
is shown in Figure 20.  
Rev. 0  
22  
For more information www.analog.com  
LT3966  
APPLICATIONS INFORMATION  
ꢚꢙꢏꢢꢙꢏ RꢍꢗꢉꢅꢏꢍRꢅ  
and enters sleep mode. Reading the ADC result without  
clearing the RUN bit will trigger a new conversion at the  
0ꢎꢖꢐ  
0ꢎꢖꢛ  
0ꢎꢖꢋ  
0ꢎꢖꢖ  
0ꢎꢖꢝ  
0ꢎꢖꢕ  
0ꢎꢖꢌ  
0ꢎꢖꢜ  
0ꢎꢖꢄ  
0ꢎꢖꢓ  
0ꢎꢖꢂ  
ꢈꢉꢊꢋꢌ  
ꢍꢎꢏꢐ  
ꢍꢎꢏꢑ  
ꢈꢒꢓꢐ  
ꢉꢔꢍꢃꢐ  
ꢈꢒꢓꢑ  
ꢉꢔꢍꢃꢑ  
ꢈꢒꢓꢛ  
ꢉꢔꢍꢃꢛ  
ꢈꢒꢓꢋ  
ꢉꢔꢍꢃꢋ  
2
ꢏꢗꢏꢞꢛꢟ0ꢠ ꢂꢔꢡꢅꢍꢔꢞꢐꢟ0ꢠ  
I C Stop signal following the data read. In this manner,  
an unlimited number of conversions and reads can be  
executed in series.  
ꢂꢚꢊꢏRꢚꢔ  
ꢔꢚꢗꢉꢂ  
ꢄꢙꢏꢚ  
ꢅꢇꢉꢒꢏ RꢍꢗꢉꢅꢏꢍR  
ꢂꢃꢄꢂ  
When repeated conversions are used, a conversion time  
2
(t  
) of at least 20ADC clock periods between an I C  
CONV  
ꢐ.ꢑꢕꢖꢈ  
ꢗꢊꢃ  
2
Stop and the next I C Start is required to complete the  
conversion before data can be read. This time is depen-  
ꢉꢊꢆꢋꢌ  
ꢍꢎꢏꢐ  
ꢍꢎꢏꢑ  
ꢄꢃꢂ  
ꢘꢙꢎ  
dent upon R and the value in the ADC’s CLKSEL register  
T
ꢅꢆꢇ  
ꢛꢜꢝꢝ ꢒꢐꢕ  
2
ꢒꢓꢐꢁꢋ  
bits. If a new I C Start occurs before the data is ready,  
ꢈꢔꢍꢃꢐꢁꢋ  
the data read will be the prior conversion’s data, and the  
2
new data will be transferred upon the next I C Stop. The  
Figure 20. Scope Shot LATOFF  
appropriate timing is shown in Figure 21.  
When measuring a voltage, the range of the ADC is 0V to  
1.275V and the LSB is 5mV.  
Automatic Mode  
The ADC will operate in automatic mode when the AUTO  
bit is set. In this mode, the ADC runs continuously, mea-  
suring each active input and updating the target data reg-  
ister. This sequence repeats indefinitely, and does not wait  
The ADC can be used in manual (single) or automatic  
mode. In manual mode, one conversion is taken for a  
single target specified by the TGT[3:0] register, and the  
result is stored in the target’s data register. The ADC pow-  
ers down after completion. In automatic mode (RUN =  
AUTO = 1), all active targets will be continuously mea-  
sured in a round-robin fashion. When the last target is  
completed, the converter will start again with the first  
target. This ensures that fresh data is available for all  
enabled targets at any given time.  
2
for an I C Stop to begin the next round of conversions.  
Additionally, data can be read at any time. In this man-  
ner, automatic mode will always provide fresh data for all  
active targets.  
In the case of a disabled channel (OFF = 1), both the FB  
and I  
measurements for that channel will be skipped.  
LED  
For a channel that is enabled, but is in a PWM off time  
from either CTRL/PWM or dimming generator low time,  
the converter will not skip that channel but will instead wait  
for the channel’s PWM signal to rise before sampling. Be  
aware that when using CTRL/PWM for external dimming,  
long off times in the external signal will result in equivalent  
pauses in the ADC converter’s measurement sequence.  
Manual Mode – Repeated Conversions  
In manual mode (RUN = 1, AUTO = 0), multiple repeated  
conversions on the same target can be performed with lit  
tle overhead. The first conversion starts upon detection of  
the I2C Stop signal in the transfer in which the ADC’s RUN  
bit is written to 1. The ADC completes one conversion  
-
ꢁꢂꢃꢄ  
ꢁꢂꢃꢄ  
ꢁꢇꢍ ꢅꢇꢎꢋꢍꢈ  
ꢁꢂꢃꢄꢈRꢅꢉꢂꢃ ꢃ  
ꢆRꢇꢃꢅꢏꢈR  
ꢁꢇꢍ ꢅꢇꢎꢋꢍꢈ  
ꢁꢂꢃꢄꢈRꢅꢉꢂꢃ ꢃ ꢐ ꢑ ꢆRꢇꢃꢅꢏꢈR  
ꢅꢆꢇRꢆ ꢁꢂꢃꢄꢈRꢅꢉꢂꢃ  
ꢅꢆꢇRꢆ ꢁꢂꢃꢄꢈRꢅꢉꢂꢃ  
ꢅꢌꢇ  
ꢅꢁꢍ  
ꢁꢖꢉꢋ ꢇꢌꢌRꢈꢅꢅ  
ꢌꢇꢆꢇ ꢃ  
ꢋꢈꢁ  
ꢒꢓꢔꢔ ꢏꢑꢕ  
ꢉ ꢁ ꢅꢆꢂꢋ  
ꢉ ꢁ ꢅꢆꢇRꢆ  
Rꢈꢇꢌ ꢇꢌꢁ Rꢈꢅꢗꢆ  
ꢉ ꢁ ꢅꢆꢂꢋ  
Figure 21.  
Rev. 0  
23  
For more information www.analog.com  
LT3966  
APPLICATIONS INFORMATION  
When switching from manual to automatic mode, con-  
version will start from the target specified by TGT[3:0].  
the EXT1 and EXT2 inputs will draw current but no dam-  
age will occur. For any voltage above 1.275V, the ADC  
conversion will read full scale, 0xF F.  
ADC Target 0 – VIN/48  
ADC Targets 4–11 – LED Driver Parameters  
The first target (TGT = 000) is a 1/48th scaled version  
of the chip input voltage, suitable for monitoring input  
voltage or battery state. The resolution of 5mV/LSB and  
48× scale results in a resolution at the input of roughly  
The final 8 targets are FB voltage, and LED current for  
each of the 4 channels in turn. The FB measurement is a  
direct representation of the voltage at the FB pin, and the  
LED current measurement is a 4× multiplied version of  
the sense voltage between ISP and ISN.  
240mV/LSB. Input range for V is 3V to 60V, resulting in  
IN  
a code range of roughly 12 to 250 decimal. To determine  
the input voltage from the conversion data, use Equation  
15.  
ADC Clock Selection  
The ADC clock is derived from the system master clock,  
MCLK, programmed by RT. For best results, an ADC clock  
between 1μs and 2μs is recommended. Scaling down of  
MCLK to ADC clock is accomplished through the use of  
the CLKSEL[1:0] bits.  
(15)  
V
(V) = 0.24 • V [7:0]  
IN  
IN  
ADC Targets 2–3 – External Inputs  
LT3966 provides two external analog inputs to the ADC,  
on EXT1 and EXT2. The working range of these inputs are  
0V to 1.275V, and the conversion resolution is 5mV/LSB.  
CLKSEL[1:0]  
ADC CLOCK  
MCLK  
00  
01  
10  
11  
The EXT1 and EXT2 inputs are internally clamped to 1.7V  
with a 2k series resistance, but the pins are rated up to  
5.5V ABSMAX. If the clamp voltage of 1.7V is exceeded,  
MCLK/2  
MCLK/4  
MCLK/8  
Rev. 0  
24  
For more information www.analog.com  
LT3966  
REGISTER TABLE  
ADDR  
NAME  
DESCRIPTION  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Global Registers  
0x00  
Channel 1  
0x10  
GLBCFG  
Global Config  
WDTFLAG  
WDTEN  
MPHASE  
CLKOUT  
OFF4  
OFF3  
OFF2  
OFF1  
STAT1  
CFG1  
Status/Status CFG  
Channel 1 Config  
OC_EN 1  
x
SHORT_EN1  
x
OPEN_EN1  
x
OVFB_EN1  
x
OC1  
SHORT1  
FLAT1  
OPEN1  
BAM1  
OVFB1  
DIMEN1  
DIM10  
0x11  
INPH1  
DIM13  
DIM18  
ADIM13  
0x12  
DIM1H  
DIM1L  
ADIM1  
PWM Dim Value CH1  
PWM Dim Value CH1  
Analog Dimming CH1  
SCL12  
DIM112  
ADIM17  
SCL11  
SCL10  
DIM110  
ADIM15  
DIM14  
DIM19  
ADIM14  
DIM12  
DIM17  
ADIM12  
DIM11  
DIM16  
ADIM11  
0x13  
DIM111  
ADIM16  
DIM15  
0x14  
ADIM10  
Channel 2  
0x20  
STAT2  
CFG2  
Status/Status CFG  
Channel 2 Config  
OC_EN 2  
x
SHORT_EN2  
x
OPEN_ EN2  
x
OVFB_EN2  
x
OC2  
SHORT2  
FLAT2  
OPEN2  
BAM2  
OVFB2  
DIMEN2  
DIM20  
0x21  
INPH2  
DIM23  
DIM28  
ADIM23  
0x22  
DIM2H  
DIM2L  
ADIM2  
PWM Dim Value CH2  
PWM Dim Value CH2  
Analog Dimming CH2  
SCL22  
DIM212  
ADIM27  
SCL21  
SCL20  
DIM210  
ADIM25  
DIM24  
DIM29  
ADIM24  
DIM22  
DIM27  
ADIM22  
DIM21  
DIM26  
ADIM21  
0x23  
DIM211  
ADIM26  
DIM25  
0x24  
ADIM20  
Channel 3  
0x30  
STAT3  
CFG3  
Status/Status CFG  
Channel 3 Config  
OC_EN3  
x
SHORT_EN3  
x
OPEN_EN3  
x
OVFB_EN3  
x
OC3  
SHORT3  
FLAT3  
OPEN3  
BAM3  
OVFB3  
DIMEN3  
DIM30  
0x31  
INPH3  
DIM33  
DIM38  
ADIM33  
0x32  
DIM3H  
DIM3L  
ADIM3  
PWM Dim Value CH3  
PWM Dim Value CH3  
Analog Dimming CH3  
SCL32  
DIM312  
ADIM37  
SCL31  
SCL30  
DIM310  
ADIM35  
DIM34  
DIM39  
ADIM34  
DIM32  
DIM37  
ADIM32  
DIM31  
DIM36  
ADIM31  
0x33  
DIM311  
ADIM36  
DIM35  
0x34  
ADIM30  
Channel 4  
0x40  
STAT4  
CFG4  
Status/Status CFG  
Channel 4 Config  
OC_EN4  
x
SHORT_EN4  
x
OPEN_EN4  
x
OVFB_EN4  
x
OC4  
SHORT4  
FLAT4  
OPEN4  
BAM4  
OVFB4  
DIMEN4  
DIM40  
0x41  
INPH4  
DIM43  
DIM48  
ADIM43  
0x42  
DIM4H  
DIM4L  
ADIM4  
PWM Dim Value CH4  
PWM Dim Value CH4  
Analog Dimming CH4  
SCL42  
DIM412  
ADIM47  
SCL41  
SCL40  
DIM410  
ADIM45  
DIM44  
DIM49  
ADIM44  
DIM42  
DIM47  
ADIM42  
DIM41  
DIM46  
ADIM41  
0x43  
DIM411  
ADIM46  
DIM45  
0x44  
ADIM40  
Analog-to-Digital Converter  
0x50  
0x51  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
ADCCFG  
VIN  
ADC Config  
Scaled Input Voltage  
External Voltage 1  
External Voltage 2  
Ch 1 FB Voltage  
Ch 1 LED Current  
Ch 2 FB Voltage  
Ch 2 LED Current  
Ch 3 FB Voltage  
Ch 3 LED Current  
Ch 4 FB Voltage  
Ch 4 LED Current  
RUN  
AUTO  
VIN6  
CLKSEL1  
VIN5  
CLKSEL0  
VIN4  
TGT3  
VIN3  
TGT2  
VIN2  
TGT1  
VIN1  
TGT0  
VIN0  
VIN7  
EXT1  
EXT2  
VFB1  
ILED1  
VFB2  
ILED2  
VFB3  
ILED3  
VFB4  
ILED4  
EXT17  
EXT27  
VFB17  
ILED17  
VFB27  
ILED27  
VFB37  
ILED37  
VFB47  
ILED47  
EXT16  
EXT26  
VFB16  
ILED16  
VFB26  
ILED26  
VFB36  
ILED36  
VFB46  
ILED46  
EXT15  
EXT25  
VFB15  
ILED15  
VFB25  
ILED25  
VFB35  
ILED35  
VFB45  
ILED45  
EXT14  
EXT24  
VFB14  
ILED14  
VFB24  
ILED24  
VFB34  
ILED34  
VFB44  
ILED44  
EXT13  
EXT23  
VFB13  
ILED13  
VFB23  
ILED23  
VFB33  
ILED33  
VFB43  
ILED43  
EXT12  
EXT22  
VFB12  
ILED12  
VFB22  
ILED22  
VFB32  
ILED32  
VFB42  
ILED42  
EXT11  
EXT21  
VFB11  
ILED11  
VFB21  
ILED21  
VFB31  
ILED31  
VFB41  
ILED41  
EXT10  
EXT20  
VFB10  
ILED10  
VFB20  
ILED20  
VFB30  
ILED30  
VFB40  
ILED40  
Rev. 0  
25  
For more information www.analog.com  
LT3966  
REGISTER TABLE  
ADDR  
NAME  
DESCRIPTION  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Part ID (BCD Encoded, “03 96 60”)  
0xFD  
0xFE  
0xFF  
ID0  
ID1  
ID2  
Part ID High  
Part ID Mid  
Part ID Low  
0
1
0
0
0
1
0
0
1
0
1
0
0
0
0
0
1
0
1
1
0
1
0
0
GLOBAL CONFIGURATION REGISTER  
Default Value: 0000 0000  
ADDR  
NAME  
DESCRIPTION  
b7  
WDTFLAG  
b6  
WDTEN  
b5  
b4  
CLKOUT  
b3  
OFF3  
b2  
OFF2  
b1  
OFF1  
b0  
0x00  
GLBCFG  
Channel Config  
MPHASE  
OFF0  
Bit Description  
b[7]  
WDTFLAG: Watchdog Timer Status. This bit indicates if the device has been reset by the WDT. It is cleared  
by disabling the WDT.  
2
b[6]  
WDTEN: Watchdog Timer Enable. When set, LT3966 requires an I C start condition every 100ms to verify  
2
the communication interface is good. If the WDT expires without an I C start being detected, the chip will  
force a power-on-reset to the default state.  
b[5]  
b[4]  
MPHASE: Multiphase DC/DC Converter Clocking. When MPHASE is set, the 4 DC/DC channels operate at  
MCLK/2, with 90° of phase shift between each channel.  
CLKOUT: SYNC Pin Direction. Default = 0, SYNC = Input. When set, the SYNC pin becomes an output and  
drives the MCLK signal, for synchronizing other devices. The output frequency is always that of MLCK,  
regardless of the state of MPHASE. This allows a slave LT3966 to run at equal frequency to the master  
LT3966 even in multiphase mode.  
b[3:0]  
OFF[3:0]: OFF/ON Control for Each Channel. Channels are all on by default, and controlled by EN. Set the  
OFF bit to disable a channel.  
Rev. 0  
26  
For more information www.analog.com  
LT3966  
REGISTER DETAILS  
LED DRIVER CHANNEL REGISTERS  
Each of the 4 LED driver channels is configured through its 4-register bank. The channel registers are located at address  
0x10–0x13, 0x20–0x23, 0x30–0x33, and 0x40–0x43 for the 4 channels, respectively.  
Default Values: 0000 0000, 0000 0000, 0000 0000, 1111 1111  
OFFSET  
0x00  
NAME  
STAT  
CFG  
DESCRIPTION  
Status/Status CFG  
Channel Config  
PWM Dim Value  
PWM Dim Value  
Analog Dimming  
b7  
b6  
SHORT_EN  
x
b5  
b4  
b3  
OC  
b2  
b1  
b0  
OC_EN  
x
OPEN_EN OVFB_EN  
SHORT  
LATOFF  
DIM2  
OPEN  
BAM  
OVFB  
DIMEN  
DIM0  
DIM5  
ADIM0  
0x01  
x
x
INPH  
DIM3  
DIM8  
ADIM3  
0x02  
DIMH  
DIML  
ADIM  
SCL2  
DIM12  
ADIM7  
SCL1  
SCL0  
DIM10  
ADIM5  
DIM4  
DIM9  
ADIM4  
DIM1  
DIM6  
ADIM1  
0x03  
DIM11  
ADIM6  
DIM7  
0x04  
ADIM2  
Bit Descriptions  
STAT  
OFFSET NAME  
DESCRIPTION  
b7  
OC_EN  
b6  
b5  
b4  
OVFB_EN  
b3  
OC  
b2  
b1  
b0  
0x00  
STAT  
Status/Status CFG  
SHORT_EN OPEN_EN  
SHORT  
OPEN  
OVFB  
b[7] OC_EN: LED Overcurrent Reporting Enable. Set this bit high to enable LED overcurrent fault reporting on the  
ALERT pin. If clear, ALERT is not triggered during an LED overcurrent event.  
b[6] SHORT_EN: Shorted LED Reporting Enable. Set this bit high to enable SHORTLED fault reporting on the  
ALERT pin. If clear, ALERT is not triggered during a SHORTLED event.  
b[5] OPEN_EN: Open LED Reporting Enable. Set this bit high to enable OPENLED fault reporting on the ALERT  
pin. If clear, ALERT is not triggered during an OPENLED event.  
b[4] OVFB_EN: FB Overvoltage Reporting Enable. Set this bit high to enable FB overvoltage fault reporting on the  
ALERT pin. If clear, ALERT is not triggered during an OPENLED event.  
b[3] OC: LED Overcurrent Status. This bit is asserted when a differential of 375mV or greater is detected at the  
ISP–ISN sense amplifier. If the corresponding OC_EN bit is enabled, ALERT is asserted and the status bit is  
latched until either OC or OC_EN is written to 0 by the host. If the corresponding enable bit is clear, the status  
is not latched and will reflect the present state of the LED overcurrent detector.  
If the channel’s LATOFF (latchoff) bit is set, an LED overcurrent fault will result in latched shutdown of the  
faulted channel until either OC or LATOFF is written to 0 by the host. If the channel’s LATOFF bit is not set,  
the faulted channel will enter the hiccup cycle of shutdown and attempted restart.  
Rev. 0  
27  
For more information www.analog.com  
LT3966  
REGISTER TABLE  
b[2] SHORT: Shorted LED Status. This bit is asserted when the corresponding channel’s FB pin is below 300mV  
and the internal soft start has completed. If the corresponding SHORT_EN bit is enabled, ALERT is asserted  
and the fault status is latched until either SHORT or SHORT_EN is written to 0 by the host. If the correspond-  
ing enable bit is clear, the status is not latched and will reflect the present state of the Shorted LED detector.  
If the channel’s LATOFF (latchoff) bit is set, a Shorted LED fault will result in latched shutdown of the faulted  
channel until either SHORT or LATOFF is written to 0 by the host. If the channel’s LATOFF bit is not set, the  
faulted channel will enter the hiccup cycle of shutdown and attempt to restart.  
b[1] OPEN: OPENLED Status. This bit is asserted when the corresponding channel’s FB pin is above 1.15V and  
ISP–ISN is less than 25mV. If the corresponding OPEN_EN bit is enabled, ALERT is asserted and the fault  
status is latched until either OPEN or OPEN_EN is written to 0 by the host. If the corresponding enable bit is  
clear, the status is not latched and will reflect the present state of the open LED detector.  
Open LED does not generate a hiccup or latchoff event.  
b[0] OVFB: FB Overvoltage Status. This bit is asserted when the corresponding channel’s FB pin is above 1.26V. If  
the corresponding OVFB_EN bit is enabled, ALERT is asserted and the status bit is latched until either OVFB  
or OVFB_EN is written to 0 by the host. If the corresponding enable bit is clear, the status is not latched and  
will reflect the present state of the FB overvoltage detector.  
FB overvoltage does not generate a hiccup or latchoff event.  
LED Driver Configuration  
OFFSET  
NAME  
DESCRIPTION  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
0x01  
CFG  
Channel Config  
x
x
x
x
INPH  
LATOFF  
BAM  
DIMEN  
Bit Description  
b[7:4] RFU: Reserved for Future Use. Bits read as 0, writes do nothing.  
b[3]  
INPH: In Phase Mode Select. When set to 1, the dimming is in phase, which means that the start of the  
channel’s dimming cycle is aligned with CH1’s. When set to 0, the dimming is out of phase. In this case,  
the start of CH2/CH3/CH4’s dimming cycle is behind of CH1’s by a quarter/a half/three quarters of CH2/  
CH3/CH4’s dimming cycle.  
b[2]  
b[1]  
LATOFF: Latchoff Mode. When set, OC or SHORT fault cause channel to latchoff until the fault bit is cleared  
by master. When LATOFF is clear, channel will enter hiccup mode to retry.  
BAM: Bit Angle Modulation Select. When set to 1, the dimming generator outputs Bit-Angle-Modulation.  
When set to 0, the dimming generator outputs Pulse Width Modulation.  
b[3:0] DIMEN: Dimming Generator Enable Bits. PWM dimming is the logical AND of the dimming generator output  
and the CTRL/PWM comparator output. When DIMEN = 0, the PWM generator is disabled and bypassed  
and dimming is controlled solely by the CTRL/PWM comparator.  
Rev. 0  
28  
For more information www.analog.com  
LT3966  
REGISTER TABLE  
LED Driver Dimming Generator  
OFFSET  
NAME  
DIMH  
DIML  
DESCRIPTION  
PWM Dim Value  
PWM Dim Value  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
0x02  
SCL2  
DIM12  
SCL1  
DIM11  
SCL0  
DIM10  
DIM4  
DIM9  
DIM3  
DIM8  
DIM2  
DIM7  
DIM1  
DIM6  
DIM0  
DIM5  
0x03  
Bit Description  
b[7]  
SCL[2:0]: PWM Cycle Length Select. Value from 0 to 7 chooses PWM counter length from 6 to 13 bits. This  
(6 + SEL)  
sets the period of the PWM generator to n = 2  
counts of the master clock. In the case where a DIM  
value is larger than the counter length, the DIM value will be truncated below bit (6+SCL). A DIM value of  
0 0000 0000 0001 would be interpreted as 0 in all cases except SCL = 111b.  
b[4]  
DIM[12:0]: PWM Dimming Setpoint. Specifies the on time of the PWM generator, where period is defined  
by SEL. PWM duty cycle is therefore: DIM/n and ranges from 0 to (n-1)/n. To reach 100% on time, simply  
disable the dimming generator using the DIMEN bit.  
LED Driver Analog Dimming  
Offset  
Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
0x04  
ADIM  
Analog Dimming  
ADIM7  
ADIM6  
ADIM5  
ADIM4  
ADIM3  
ADIM2  
ADIM1  
ADIM0  
Bit Description  
b[7]  
ADIM[7:0]: Modulates the external current sense threshold set by CTRL by the value in the ADIM register.  
The default value for ADIM[7:0] is 255.  
ANALOG-TO-DIGITAL CONVERTER REGISTERS  
ADC Configuration  
Default Value: 0000 0000  
ADDR  
NAME  
DESCRIPTION  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
0x50  
ADCCFG  
ADC Config  
RUN  
AUTO  
CLKSEL1  
CLKSEL0  
TGT3  
TGT2  
TGT1  
TGT0  
Rev. 0  
29  
For more information www.analog.com  
LT3966  
REGISTER TABLE  
Bit Description  
ADCCFG1  
b[7]  
b[6]  
RUN: Set to 1 to start conversion.  
AUTO: Set to 0 for single conversion on a target specified by TGT[3:0]. Set to 1 for automatic continuous  
conversion. In automatic continuous mode, all active inputs will be repeatedly measured in a round-robin  
fashion. Any channels that are disabled (OFF) will be skipped, but channels that are enabled yet in PWM  
low will cause the ADC to wait for the next PWM high. Upon PWM high, a conversion will take place  
and the sequence will continue. Data is double-buffered so result registers will always contain valid data.  
b[5:4] CLKSEL[1:0]: Choose ADC clock divider. For best results, set ADC bit time >1μs.  
CLKSEL[1:0]  
ADC CLOCK  
MCLK  
00  
01  
10  
11  
MCLK/2  
MCLK/4  
MCLK/8  
b[3:0] TGT[3:0]: Only used in single conversion mode. Sets conversion target as shown in the table below.  
TGT[3:0]  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
TARGET  
Scaled V  
TGT[3:0]  
0x08  
TARGET  
CH3 V  
IN  
FB  
Not Valid  
External 1  
External 2  
0x09  
CH3 I  
LED  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
CH4 V  
FB  
CH4 I  
LED  
CH1 V  
Not valid  
Not valid  
Not valid  
Not valid  
FB  
CH1 I  
LED  
CH2 V  
FB  
CH2 I  
0x0F  
LED  
Rev. 0  
30  
For more information www.analog.com  
LT3966  
REGISTER TABLE  
ADC Result Registers  
Default Value: Indeterminate Until Written by ADC  
ADDR  
0x51  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
NAME  
VIN  
DESCRIPTION  
VIN/48  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
VIN7  
VIN6  
VIN5  
VIN4  
VIN3  
VIN2  
VIN1  
VIN0  
EXT1  
EXT2  
VFB1  
ILED1  
VFB2  
ILED2  
VFB3  
ILED3  
VFB4  
ILED4  
External Voltage 1  
External Voltage 2  
Ch 1 FB Voltage  
Ch 1 LED Current  
Ch 2 FB Voltage  
Ch 2 LED Current  
Ch 3 FB Voltage  
Ch 3 LED Current  
Ch 4 FB Voltage  
Ch 4 LED Current  
EXT17  
EXT27  
VFB17  
ILED17  
VFB27  
ILED27  
VFB37  
ILED37  
VFB47  
ILED47  
EXT16  
EXT26  
VFB16  
ILED16  
VFB26  
ILED26  
VFB36  
ILED36  
VFB46  
ILED46  
EXT15  
EXT25  
VFB15  
ILED15  
VFB25  
ILED25  
VFB35  
ILED35  
VFB45  
ILED45  
EXT14  
EXT24  
VFB14  
ILED14  
VFB24  
ILED24  
VFB34  
ILED34  
VFB44  
ILED44  
EXT13  
EXT23  
VFB13  
ILED13  
VFB23  
ILED23  
VFB33  
ILED33  
VFB43  
ILED43  
EXT12  
EXT22  
VFB12  
ILED12  
VFB22  
ILED22  
VFB32  
ILED32  
VFB42  
ILED42  
EXT11  
EXT21  
VFB11  
ILED11  
VFB21  
ILED21  
VFB31  
ILED31  
VFB41  
ILED41  
EXT10  
EXT20  
VFB10  
ILED10  
VFB20  
ILED20  
VFB30  
ILED30  
VFB40  
ILED40  
Registers 0x51 and 0x53–0x5C hold the ADC results for the 11 channels. They are read-only registers.  
All measurements are 5mV per LSB  
0x51: V . A scaled (1/48) measurement of the chip input voltage.  
IN  
0x53: EXT1. External Input 1. Working range is 0V–1.275V, pin is clamped at 1.7V.  
0x54: EXT2. External Input 1. Working range is 0V–1.275V, pin is clamped at 1.7V.  
0x55, 0x57, 0x59, 0x5A: FB1–4. Channel feedback voltage measurement.  
0x56, 0x58, 0x5A, 0x5C: VLED1–4. LED current measurement. Equal to 4× the sensed voltage on ISP–ISN.  
Rev. 0  
31  
For more information www.analog.com  
LT3966  
TYPICAL APPLICATIONS  
100W, Quad 750mA × 12 LED Buck Mode Driver with I2C Dimming  
V
IN  
44V TO 52V  
ISP1  
330mΩ  
ISN1  
ISP2  
330mΩ  
ISN2  
ISP3  
330mΩ  
ISN3  
ISP4  
330mΩ  
ISN4  
4.7μF  
4×  
TG1  
TG2  
TG3  
TG4  
M1  
M2  
M3  
M4  
10μF  
10μF  
10μF  
10μF  
L1  
68μH  
L2  
68μH  
L3  
68μH  
L4  
68μH  
D1  
D2  
D3  
D4  
SW1  
SW2  
SW3  
SW4  
V
IN  
1MΩ  
33k  
ISP1–4  
ISN1–4  
TG1–4  
FB1–4  
EN/UVLO  
LT3966  
RT  
GND  
EXT1  
CTRL/  
PWM1–4 SDA SCL ALERT  
EXT2  
SYNC ADR1–2 INTV  
CC  
3966 TA03a  
97.6k  
150k  
2
360kHz  
MULTI-  
PHASE  
I C  
22.1k  
BUS  
4.7μF  
INTV  
CC  
D1, D2, D3, D4: PMEG6020  
M1, M2, M3, M4: SI7309  
L1, L2, L3, L4: WURTH 744 373 49680  
Multiphase  
Efficiency  
8192:1 Dimming  
ꢀ00  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢂ  
ꢃ0ꢄꢅꢆꢇꢄ  
ꢁꢂꢃꢄꢅꢆ  
ꢇ0ꢀꢈꢉꢃꢀ  
ꢀꢁ ꢂ  
ꢃ0ꢄꢅꢆꢇꢄ  
ꢀꢁꢂꢃꢄꢅꢆR  
ꢇꢈꢉꢂꢀꢊ  
ꢀꢁ ꢂ  
ꢃ0ꢄꢅꢆꢇꢄ  
ꢁꢂꢃ  
ꢄ00ꢅꢆꢇꢃꢀꢈ  
ꢀꢁ ꢂ  
ꢃ0ꢄꢅꢆꢇꢄ  
ꢀꢁꢂꢂ ꢃꢄ0ꢀꢅ  
ꢀꢁꢂꢂ ꢃꢄ0ꢀꢅ  
ꢀ ꢁꢂ0ꢃꢄꢅ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ  
0.ꢀꢁꢂꢃꢄꢅꢆ  
ꢀ ꢁꢂꢃ ꢄ ꢅꢆꢇeꢈ  
ꢃ ꢄ0ꢀ  
ꢃ ꢈꢉꢀ  
ꢁꢂ  
ꢅꢆꢇ  
ꢀ ꢁꢂꢃ  
ꢄ ꢌꢍꢉ  
ꢄ ꢅꢌꢉ  
ꢄ 0.ꢓꢔꢕ  
ꢊꢋ  
ꢎꢏꢀ  
0.0  
0.ꢀ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢐꢑꢒ  
ꢀꢁꢂ ꢃꢄRRꢁꢅꢆ ꢇꢈꢉ  
ꢇꢊ ꢋ ꢌꢍ0ꢎꢈꢏꢊ ꢃꢐꢉ  
ꢀꢁꢂꢂ ꢃꢄ0ꢀꢅ  
Rev. 0  
32  
For more information www.analog.com  
LT3966  
TYPICAL APPLICATIONS  
2.2MHz, 4 × 150mA × 12 Boost White LED Backlight with 8192:1 Dimming Ratio  
V
IN  
7V TO 25V  
L1  
6.8μH  
L2  
6.8μH  
L3  
6.8μH  
L4  
6.8μH  
4.7μF  
4×  
D1  
D2  
D3  
D4  
ISP1  
4.7μF 1.67Ω  
ISN1  
ISP2  
4.7μF 1.67Ω  
ISN2  
ISP3  
4.7μF 1.67Ω  
ISN3  
ISP4  
4.7μF 1.67Ω  
ISN4  
M1  
M2  
M3  
M4  
TG1  
TG2  
TG3  
TG4  
SW1  
SW2  
SW3  
SW4  
V
IN  
1MΩ  
220k  
ISP1–4  
ISN1–4  
TG1–4  
FB1–4  
ISP1–4  
EN/UVLO  
LT3966  
1MΩ  
GND  
EXT1  
CTRL/  
EXT2  
PWM1–4  
SDA  
SCL  
ALERT  
RT  
SYNC ADR1–2 INTV  
CC  
21.5k  
3966 TA04a  
42.2k  
2.2MHz  
SINGLE-  
PHASE  
INTV  
2
CC  
I C  
BUS  
4.7μF  
INTV  
CC  
2
I C–8192:1  
D1, D2, D3, D4: PMEG6020  
M1, M2, M3, M4: SI2309  
PWM DIMMING  
L1, L2, L3, L4: WURTH 744 778 5006  
Efficiency  
8192:1 Dimming  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀꢁꢂꢃꢄꢅꢆR  
ꢇ00ꢈꢉꢊꢂꢀꢋ  
ꢁꢂꢃ  
ꢄ00ꢅꢆꢇꢃꢀꢈ  
ꢃ ꢄꢅꢀ  
ꢁꢂ  
ꢁꢂ  
ꢃ ꢄꢅꢀ  
ꢀꢁꢂꢂ ꢃꢄ0ꢅꢆ  
ꢀ ꢁ.ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ0ꢂꢃꢄꢅꢆꢇ  
ꢀ ꢁꢂꢃ ꢄ ꢅ00ꢆꢇeꢈ  
ꢀ ꢁꢁꢂ  
ꢄ ꢌꢍꢉ  
ꢄ ꢐꢐꢉ  
ꢊꢋ  
ꢎꢏꢀ  
0
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀꢁꢂ ꢃꢄRRꢁꢅꢆ ꢇꢈꢉꢊ  
ꢇꢋꢈꢉ ꢌ ꢍꢎ0ꢈꢉꢏꢋ ꢃꢐꢊ  
ꢀꢁꢂꢃ ꢄꢅ0ꢆꢇ  
Rev. 0  
33  
For more information www.analog.com  
LT3966  
TYPICAL APPLICATIONS  
5V to 40V Buck-Boost Mode Driver for 4 Series 330mA LEDs  
V
= 5V  
IN  
TO 40V  
4.7μF  
4×  
L1  
47μH  
L2  
47μH  
L3  
47μH  
L4  
47μH  
M1  
M2  
M3  
M4  
TG1  
ISN1  
TG2  
TG3  
TG4  
ISN2  
ISN3  
ISN4  
750mΩ  
D1  
750mΩ  
D2  
750mΩ  
D3  
750mΩ  
D4  
ISP1  
ISP2  
ISP3  
ISP4  
1M  
1M  
1M  
1M  
4.7μF  
2×  
4.7μF  
2×  
4.7μF  
2×  
4.7μF  
2×  
FB1  
FB2  
FB3  
FB4  
21.5k  
21.5k  
21.5k  
21.5k  
SW1  
SW2  
SW3  
SW4  
V
IN  
ISP1–4  
ISN1–4  
TG1–4  
FB1–4  
EN/UVLO  
1MΩ  
LT3966  
GND  
EXT1  
EXT2  
CTRL/  
PWM1–4  
SDA  
SCL  
ALERT  
RT  
SYNC ADR1–2 INTV  
CC  
3966 TA05a  
EXTERNAL  
POTENTIOMETER  
MEASUREMENT  
100k  
1MHz  
SINGLE-  
PHASE  
2
I C  
4.7μF  
INTV  
BUS  
CC  
D1, D2, D3, D4: PMEG6020  
M1, M2, M3, M4: SI2309  
L1, L2, L3, L4: WURTH 744 373 49470  
8192:1 Dimming  
Efficiency  
Hiccup Mode  
ꢀ00  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢀ  
ꢀ0  
ꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅ  
ꢇ0ꢀꢈꢉꢃꢀ  
ꢀ0ꢁꢂꢃꢄꢁ  
ꢀꢁꢂRꢃ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂꢃꢄꢅꢆR  
0.ꢇꢈꢉꢂꢀꢊ  
ꢀꢁꢂRꢃꢄꢅ ꢂꢆꢃꢇꢆꢃ  
ꢀꢁꢂꢂꢃꢄꢅ  
ꢀ ꢁꢂꢃ ꢄ ꢅꢆꢇeꢈ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅ  
ꢁꢂꢃ  
ꢃ ꢄꢅ ꢆ ꢀ  
ꢃꢄꢅ ꢆ ꢁ ꢃ 0.ꢍꢍꢎ  
ꢊꢋꢌ  
0.ꢄꢅꢆꢃꢀꢇ  
ꢁꢂ  
ꢇꢈꢉ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂꢂ ꢃꢄ0ꢅe  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢂ ꢃꢄ0ꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀ ꢁꢂꢃ  
ꢀ.0ꢁꢂꢃꢄꢅꢆ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀ 0.ꢁꢁꢂ  
ꢀꢁꢂ  
0
0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ ꢀ.0 ꢀ.ꢁ ꢀ.ꢁ  
ꢀꢁꢂ ꢃꢄRRꢁꢅꢆ ꢇꢈꢉ  
ꢇꢊꢋꢈ ꢌ ꢍꢍ0ꢋꢈꢎꢊ ꢃꢏꢉ  
ꢀꢁꢂꢂ ꢃꢄ0ꢅꢆ  
Rev. 0  
34  
For more information www.analog.com  
LT3966  
PACKAGE DESCRIPTION  
UJ Package  
40-Lead Plastic QFN (6mm × 6mm)  
ꢂReꢫeꢬeꢭꢮe ꢕꢋꢑ ꢆꢎꢏ ꢯ 0ꢢꢘ0ꢰꢘꢁꢧꢙꢰ Rev ꢪꢈ  
0.ꢧ0 0.0ꢢ  
ꢀ.ꢢ0 0.0ꢢ  
ꢢ.ꢁ0 0.0ꢢ  
ꢃ.ꢃꢙ 0.0ꢢ  
ꢃ.ꢢ0 0.0ꢢ  
ꢂꢃ ꢄꢅꢆꢇꢄꢈ  
ꢃ.ꢃꢙ 0.0ꢢ  
ꢒꢍꢑꢓꢍꢏꢇ ꢊꢔꢋꢕꢅꢉꢇ  
0.ꢙꢢ 0.0ꢢ  
0.ꢢ0 ꢝꢄꢑ  
Rꢇꢑꢊꢛꢛꢇꢉꢆꢇꢆ ꢄꢊꢕꢆꢇR ꢒꢍꢆ ꢒꢅꢋꢑꢞ ꢍꢉꢆ ꢆꢅꢛꢇꢉꢄꢅꢊꢉꢄ  
ꢍꢒꢒꢕꢡ ꢄꢊꢕꢆꢇR ꢛꢍꢄꢓ ꢋꢊ ꢍRꢇꢍꢄ ꢋꢞꢍꢋ ꢍRꢇ ꢉꢊꢋ ꢄꢊꢕꢆꢇRꢇꢆ  
0.ꢧꢢ 0.0ꢢ  
R ꢣ 0.ꢁꢁꢢ  
ꢋꢡꢒ  
ꢀ.00 0.ꢁ0  
ꢂꢃ ꢄꢅꢆꢇꢄꢈ  
R ꢣ 0.ꢁ0  
ꢋꢡꢒ  
ꢚꢥ ꢃ0  
0.ꢃ0 0.ꢁ0  
ꢒꢅꢉ ꢁ ꢋꢊꢒ ꢛꢍRꢓ  
ꢂꢄꢇꢇ ꢉꢊꢋꢇ ꢀꢈ  
ꢒꢅꢉ ꢁ ꢉꢊꢋꢑꢞ  
R ꢣ 0.ꢃꢢ ꢊR  
0.ꢚꢢ × ꢃꢢꢤ  
ꢑꢞꢍꢛꢗꢇR  
ꢃ.ꢃꢙ 0.ꢁ0  
ꢃ.ꢢ0 Rꢇꢗ  
ꢂꢃꢘꢄꢅꢆꢇꢄꢈ  
ꢃ.ꢃꢙ 0.ꢁ0  
ꢂꢔꢐꢃ0ꢈ ꢩꢗꢉ Rꢇꢖ ꢪ 0ꢃ0ꢀ  
0.ꢙ00 Rꢇꢗ  
0.ꢙꢢ 0.0ꢢ  
0.ꢢ0 ꢝꢄꢑ  
0.00 ꢨ 0.0ꢢ  
ꢉꢊꢋꢇꢌ  
ꢝꢊꢋꢋꢊꢛ ꢖꢅꢇꢎꢦꢇꢜꢒꢊꢄꢇꢆ ꢒꢍꢆ  
ꢁ. ꢆRꢍꢎꢅꢉꢏ ꢅꢄ ꢍ ꢐꢇꢆꢇꢑ ꢒꢍꢑꢓꢍꢏꢇ ꢊꢔꢋꢕꢅꢉꢇ ꢖꢍRꢅꢍꢋꢅꢊꢉ ꢊꢗ ꢂꢎꢐꢐꢆꢘꢙꢈ  
ꢙ. ꢆRꢍꢎꢅꢉꢏ ꢉꢊꢋ ꢋꢊ ꢄꢑꢍꢕꢇ  
ꢚ. ꢍꢕꢕ ꢆꢅꢛꢇꢉꢄꢅꢊꢉꢄ ꢍRꢇ ꢅꢉ ꢛꢅꢕꢕꢅꢛꢇꢋꢇRꢄ  
ꢃ. ꢆꢅꢛꢇꢉꢄꢅꢊꢉꢄ ꢊꢗ ꢇꢜꢒꢊꢄꢇꢆ ꢒꢍꢆ ꢊꢉ ꢝꢊꢋꢋꢊꢛ ꢊꢗ ꢒꢍꢑꢓꢍꢏꢇ ꢆꢊ ꢉꢊꢋ ꢅꢉꢑꢕꢔꢆꢇ  
ꢛꢊꢕꢆ ꢗꢕꢍꢄꢞ. ꢛꢊꢕꢆ ꢗꢕꢍꢄꢞꢟ ꢅꢗ ꢒRꢇꢄꢇꢉꢋꢟ ꢄꢞꢍꢕꢕ ꢉꢊꢋ ꢇꢜꢑꢇꢇꢆ 0.ꢙ0ꢠꢠ ꢊꢉ ꢍꢉꢡ ꢄꢅꢆꢇꢟ ꢅꢗ ꢒRꢇꢄꢇꢉꢋ  
ꢢ. ꢇꢜꢒꢊꢄꢇꢆ ꢒꢍꢆ ꢄꢞꢍꢕꢕ ꢝꢇ ꢄꢊꢕꢆꢇR ꢒꢕꢍꢋꢇꢆ  
ꢀ. ꢄꢞꢍꢆꢇꢆ ꢍRꢇꢍ ꢅꢄ ꢊꢉꢕꢡ ꢍ RꢇꢗꢇRꢇꢉꢑꢇ ꢗꢊR ꢒꢅꢉ ꢁ ꢕꢊꢑꢍꢋꢅꢊꢉ ꢊꢉ ꢋꢞꢇ ꢋꢊꢒ ꢍꢉꢆ ꢝꢊꢋꢋꢊꢛ ꢊꢗ ꢒꢍꢑꢓꢍꢏꢇ  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
35  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LT3966  
TYPICAL APPLICATIONS  
30W Boost RGBW Digital Color Blending Circuit Featuring BAM Modulation  
V
= 7V  
IN  
TO 17V  
L1  
L2  
6.8μH  
L3  
6.8μH  
L4  
6.8μH  
3.3μF  
4×  
6.8μH  
D1  
D2  
D3  
D4  
ISP1  
1Ω  
ISP2  
1Ω  
ISP3  
1Ω  
ISP4  
1Ω  
ISN4  
TG4  
4.7μF  
4.7μF  
4.7μF  
M4  
4.7μF  
ISN1  
ISN2  
ISN3  
TG1  
TG2  
TG3  
M1  
M2  
M3  
NOTE: CURRENTS  
SET USING ADIM CODE.  
RED  
250mA  
GREEN  
156mA  
BLUE  
180mA  
WHITE  
200mA  
SW1  
SW2  
SW3  
SW4  
V
IN  
1MΩ  
221k  
ISP1–4  
ISN1–4  
TG1–4  
FB1–4  
ISP1–4  
EN/UVLO  
LT3966  
1MΩ  
GND  
EXT1  
EXT2  
CTRL/  
SDA  
SCL  
ALERT  
RT  
SYNC ADR1–2 INTV  
CC  
PWM1–4  
34k  
3966 TA02a  
69.8k  
1.4MHz  
SINGLE-  
PHASE  
D1, D2, D3, D4: PMEG6020  
M1, M2, M3, M4: SI2309  
L1, L2, L3, L4: WURTH 744 778 5006  
2
I C  
BUS  
4.7μF  
INTV  
CC  
Efficiency  
ꢀ00  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
BAM Modulation  
ꢀꢁꢂꢃꢄꢅꢆR  
ꢇ00ꢈꢉꢊꢂꢀꢋ  
ꢁꢂꢃ  
ꢀ ꢁ.ꢂꢃꢄꢅ  
ꢀꢁ  
ꢀꢁ  
ꢄ00ꢅꢆꢇꢃꢀꢈ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂꢂ ꢃꢄ0ꢅꢆ  
ꢀ ꢁ0ꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ  
0
0.ꢀ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ ꢃꢄRRꢁꢅꢆ ꢇꢈꢉ  
ꢀꢁ ꢂ ꢃꢄ0ꢅꢆꢇꢁ ꢈꢉꢊ  
ꢀ ꢁ0ꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ ꢃꢄ0ꢅꢆ  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
V : 4V to 40V, V  
2
LT3964  
LT3492  
LT3476  
Dual 1.5A/40V Sync Buck LED Driver with I C  
= 40V, 3000:1 True Color PWM Dimming,  
OUT(MAX)  
IN  
ISD < 1μA, 5mm × 6mm QFN-36 Package  
60V, Triple Output 750mA, 1MHz High Current LED Driver with  
3000:1 Dimming with PMOS Disconnect FET Drivers  
V : 3V to 30V, V = 60V, 3000:1 True Color PWM Dimming,  
IN  
OUT(MAX)  
ISD < 1μA, TSSOP-28 and 4mm × 5mm QFN-28 Packages  
Quad Output 1.5A, 2MHz High Current LED Driver with 1,000:1 V : 2.8V to 16V, V  
True Color PWM Dimming  
= 36V, ISD< 10μA, 5mm × 7mm  
IN  
OUT(MAX)  
QFN Package  
Rev. 0  
10/20  
www.analog.com  
ANALOG DEVICES, INC. 2020  
36  

相关型号:

LT3966EUJ

I2C Programmable Quad Monolithic Boost LED Driver
ADI

LT3966JUJ

I2C Programmable Quad Monolithic Boost LED Driver
ADI

LT3967

I2C to CAN-Physical Transceiver
ADI

LT3970

40V, 350mA Step-Down Regulator with 2.5μA Quiescent Current and Integrated Diodes
Linear

LT3970

High Efficiency, 65V 500mA Synchronous Step-Down Converter
Linear System

LT3970-3.3

40V, 350mA Step-Down Regulator with 2.5μA Quiescent Current and Integrated Diodes
Linear

LT3970-5

40V, 350mA Step-Down Regulator with 2.5μA Quiescent Current and Integrated Diodes
Linear

LT3970EDDB#PBF

LT3970 Series - 40V, 350mA Step-Down Regulator with 2.5&#181;A Quiescent Current and Integrated Diodes; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3970EDDB#TRMPBF

LT3970 Series - 40V, 350mA Step-Down Regulator with 2.5&#181;A Quiescent Current and Integrated Diodes; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3970EDDB#TRPBF

LT3970 Series - 40V, 350mA Step-Down Regulator with 2.5&#181;A Quiescent Current and Integrated Diodes; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3970EDDB-3.3#PBF

LT3970 Series - 40V, 350mA Step-Down Regulator with 2.5&#181;A Quiescent Current and Integrated Diodes; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3970EDDB-3.3#TRMPBF

LT3970 Series - 40V, 350mA Step-Down Regulator with 2.5&#181;A Quiescent Current and Integrated Diodes; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear