LT6200CS6#TR [ADI]

LT6200 - 165MHz, Rail-to-Rail Input and Output, 0.95nV/√Hz Low Noise, Op Amp Family; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C;
LT6200CS6#TR
型号: LT6200CS6#TR
厂家: ADI    ADI
描述:

LT6200 - 165MHz, Rail-to-Rail Input and Output, 0.95nV/√Hz Low Noise, Op Amp Family; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C

文件: 总26页 (文件大小:534K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6200/LT6200-5  
LT6200-10/LT6201  
165MHz, Rail-to-Rail Input  
and Output, 0.95nV/Hz  
Low Noise, Op Amp Family  
FeaTures  
DescripTion  
n
Low Noise Voltage: 0.95nV/√Hz (100kHz)  
The LT®6200/LT6201 are single and dual ultralow noise,  
rail-to-rail input and output unity gain stable op amps  
that feature 0.95nV/√Hz noise voltage. These amplifiers  
combine very low noise with a 165MHz gain bandwidth,  
50V/µs slew rate and are optimized for low voltage signal  
conditioning systems. A shutdown pin reduces supply  
current during standby conditions and thermal shutdown  
protects the part from overload conditions.  
n
Gain Bandwidth Product:  
LT6200/LT6201 165MHz A = 1  
LT6200-5  
V
800MHz A ≥ 5  
V
LT6200-10  
1.6GHz  
A ≥ 10  
V
n
n
n
n
n
n
n
n
n
n
Low Distortion: –80dB at 1MHz, R = 100Ω  
L
Dual LT6201 in Tiny DFN Package  
Input Common Mode Range Includes Both Rails  
Output Swings Rail-to-Rail  
Low Offset Voltage: 1mV Max  
Wide Supply Range: 2.5V to 12.6V  
Output Current: 60mA Min  
Operating Temperature Range 40°C to 85°C  
Power Shutdown, Thermal Shutdown  
SO-8 and Low Profile (1mm) ThinSOT™ Packages  
The LT6200-5/LT6200-10 are single amplifiers optimized  
for higher gain applications resulting in higher gain  
bandwidth and slew rate. The LT6200 family maintains  
its performance for supplies from 2.5V to 12.6V and are  
specified at 3V, 5V and 5V.  
For compact layouts the LT6200/LT6200-5/LT6200-10 are  
availableinthe6-leadThinSOTTM andthe8-pinSOpackage.  
The dual LT6201 is available in an 8-pin SO package with  
standard pinouts as well as a tiny, dual fine pitch leadless  
package (DFN). These amplifiers can be used as plug-in  
replacements for many high speed op amps to improve  
input/output range and noise performance.  
applicaTions  
Transimpedance Amplifiers  
Low Noise Signal Processing  
Active Filters  
Rail-to-Rail Buffer Amplifiers  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners.  
Driving A/D Converters  
Typical applicaTion  
Distortion vs Frequency  
Single Supply, 1.5nV/√Hz, Photodiode Amplifier  
–50  
A
V
V
= 1  
V
O
S
= 2V  
P-P  
C
5V  
F
–60  
–70  
=
2ꢀ5V  
R
I
PD  
F
HD2, R = 1k  
L
PHILIPS  
BF862  
10k  
–80  
+
HD2, R = 100Ω  
L
HD3, R = 1k  
L
–90  
V
≈ 2V  
F
PHOTO  
DIODE  
OUT  
PD  
1k  
LT6200  
+I • R  
HD3, R = 100Ω  
L
–100  
–110  
100k  
1M  
10M  
10k  
0.1µF  
FREQUENCY (Hz)  
6200 TA01  
6200 G35  
62001ff  
1
LT6200/LT6200-5  
LT6200-10/LT6201  
absoluTe MaxiMuM raTings  
(Note 1)  
+
Total Supply Voltage (V to V )..............................12.6V  
Specified Temperature Range (Note 5) ....–40°C to 85°C  
Junction Temperature ........................................... 150°C  
Junction Temperature (DD Package).................... 125°C  
Storage Temperature Range...................–65°C to 150°C  
Storage Temperature Range  
(DD Package)........................................ 65°C to 125°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
+
Total Supply Voltage (V to V ) (LT6201DD)...............7V  
Input Current (Note 2)......................................... 40mA  
Output Short-Circuit Duration (Note 3) ............ Indefinite  
Pin Current While Exceeding Supplies  
(Note 12) .............................................................. 30mA  
Operating Temperature Range (Note 4)....–40°C to 85°C  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
+
NC  
SHDN  
–IN  
1
2
3
4
8
7
6
5
OUT 1  
6 V  
+
V
+
5 SHDN  
4 –IN  
V
2
OUT  
NC  
+IN  
+IN 3  
V
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
= 150°C, θ = 160°C/W (Note 10)  
JMAX  
JA  
T
JMAX  
= 150°C, θ = 100°C/W  
JA  
TOP VIEW  
TOP VIEW  
+
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
V
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
OUT B  
–IN B  
+IN B  
OUT B  
–IN B  
+IN B  
+
A
B
+
V
V
S8 PACKAGE  
8-LEAD PLASTIC SO  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
T
= 150°C, θ = 160°C/W (NOTE 3)  
T = 150°C, θ = 100°C/W  
JMAX JA  
JMAX  
JA  
UNDERSIDE METAL CONNECTED TO V  
orDer inForMaTion  
SPECIFIED  
LEAD FREE FINISH  
LT6200CS6#PBF  
LT6200IS6#PBF  
TAPE AND REEL  
PART MARKING*  
LTJZ  
PACKAGE DESCRIPTION  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
8-Lead Plastic SO  
TEMPERATURE RANGE  
LT6200CS6#TRPBF  
LT6200IS6#TRPBF  
LT6200CS6-5#TRPBF  
LT6200IS6-5#TRPBF  
LT6200CS6-10#TRPBF  
LT6200IS6-10#TRPBF  
LT6200CS8#TRPBF  
LT6200IS8#TRPBF  
LT6200CS8-5#TRPBF  
LT6200IS8-5#TRPBF  
0°C to 70°C  
LTJZ  
40°C to 85°C  
0°C to 70°C  
LT6200CS6-5#PBF  
LT6200IS6-5#PBF  
LT6200CS6-10#PBF  
LT6200IS6-10#PBF  
LT6200CS8#PBF  
LT6200IS8#PBF  
LTACB  
LTACB  
LTACC  
LTACC  
6200  
40°C to 85°C  
0°C to 70°C  
40°C to 85°C  
0°C to 70°C  
6200I  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
LT6200CS8-5#PBF  
LT6200IS8-5#PBF  
62005  
6200I5  
8-Lead Plastic SO  
8-Lead Plastic SO  
–40°C to 85°C  
62001ff  
2
LT6200/LT6200-5  
LT6200-10/LT6201  
orDer inForMaTion  
SPECIFIED  
LEAD FREE FINISH  
LT6200CS8-10#PBF  
LT6200IS8-10#PBF  
LT6201CDD#PBF  
LT6201CS8#PBF  
LT6201IS8 #PBF  
TAPE AND REEL  
PART MARKING*  
620010  
200I10  
PACKAGE DESCRIPTION  
8-Lead Plastic SO  
TEMPERATURE RANGE  
LT6200CS8-10#TRPBF  
LT6200IS8-10#TRPBF  
LT6201CDD #TRPBF  
LT6201CS8 #TRPBF  
LT6201IS8 #TRPBF  
0°C to 70°C  
8-Lead Plastic SO  
–40°C to 85°C  
LADG  
0°C to 70°C  
0°C to 70°C  
–40°C to 85°C  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead Plastic SO  
6201  
6201I  
8-Lead Plastic SO  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
elecTrical characTerisTics  
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, VSHDN = OPEN,  
unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
V = 5V, V = Half Supply  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
0.1  
0.9  
1
2.5  
mV  
mV  
OS  
S
CM  
V = 3V, V = Half Supply  
S
CM  
+
+
V = 5V, V = V to V  
0.6  
1.8  
2
4
mV  
mV  
S
CM  
V = 3V, V = V to V  
S
CM  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 11)  
V
CM  
V
CM  
= Half Supply  
0.2  
0.5  
1.1  
2.2  
mV  
mV  
+
= V to V  
I
B
Input Bias Current  
V
CM  
V
CM  
V
CM  
= Half Supply  
–40  
–50  
–10  
8
–23  
µA  
µA  
µA  
+
= V  
18  
= V  
+
+
∆I  
B
I Shift  
V
V
= V to V  
31  
68  
5
µA  
µA  
B
CM  
CM  
I Match (Channel-to-Channel) (Note 11)  
B
= V to V  
0.3  
I
OS  
Input Offset Current  
V
CM  
V
CM  
V
CM  
= Half Supply  
0.1  
0.02  
0.4  
4
4
5
µA  
µA  
µA  
+
= V  
= V  
Input Noise Voltage  
0.1Hz to 10Hz  
f = 100kHz, V = 5V  
600  
nV  
P-P  
e
n
Input Noise Voltage Density  
1.1  
1.5  
nV/√Hz  
nV/√Hz  
S
f = 10kHz, V = 5V  
2.4  
S
i
n
Input Noise Current Density, Balanced Source  
f = 10kHz, V = 5V  
2.2  
3.5  
pA/√Hz  
pA/√Hz  
S
Unbalanced Source f = 10kHz, V = 5V  
S
Input Resistance  
Input Capacitance  
Large-Signal Gain  
Common Mode  
0.57  
2.1  
MΩ  
kΩ  
Differential Mode  
C
A
Common Mode  
Differential Mode  
3.1  
4.2  
pF  
pF  
IN  
V = 5V, V = 0.5V to 4.5V, R = 1k to V /2  
70  
11  
17  
120  
18  
70  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
S
S
S
V = 5V, V = 1V to 4V, R = 100Ω to V /2  
S
O
L
V = 3V, V = 0.5V to 2.5V, R = 1k to V /2  
S
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
65  
85  
60  
90  
112  
85  
dB  
dB  
dB  
S
CM  
V = 5V, V = 1.5V to 3.5V  
S
CM  
+
V = 3V, V = V to V  
S
CM  
CMRR Match (Channel-to-Channel) (Note 11)  
Power Supply Rejection Ratio  
V = 5V, V = 1.5V to 3.5V  
80  
60  
65  
2.5  
105  
68  
dB  
dB  
dB  
S
CM  
V = 2.5V to 10V, LT6201DD V = 2.5V to 7V  
S
S
PSRR Match (Channel-to-Channel) (Note 11)  
Minimum Supply Voltage (Note 6)  
V = 2.5V to 10V, LT6201DD V = 2.5V to 7V  
100  
S
S
V
62001ff  
3
LT6200/LT6200-5  
LT6200-10/LT6201  
elecTrical characTerisTics  
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, VSHDN = OPEN,  
unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Output Voltage Swing LOW (Note 7)  
No Load  
9
50  
mV  
mV  
mV  
mV  
OL  
I
= 5mA  
50  
100  
290  
300  
SINK  
V = 5V, I  
= 20mA  
= 20mA  
150  
160  
S
SINK  
SINK  
V = 3V, I  
S
V
OH  
Output Voltage Swing HIGH (Note 7)  
No Load  
55  
95  
220  
240  
110  
190  
400  
450  
mV  
mV  
mV  
mV  
I
= 5mA  
SOURCE  
SOURCE  
SOURCE  
V = 5V, I  
= 20mA  
= 20mA  
S
V = 3V, I  
S
I
I
Short-Circuit Current  
V = 5V  
S
60  
50  
90  
80  
mA  
mA  
SC  
S
V = 3V  
Supply Current per Amplifier  
V = 5V  
16.5  
15  
1.3  
20  
18  
1.8  
mA  
mA  
mA  
S
S
V = 3V  
S
Disabled Supply Current per Amplifier  
V
= 0.3V  
SHDN  
I
SHDN Pin Current  
V
SHDN  
= 0.3V  
200  
280  
0.3  
µA  
V
SHDN  
V
V
V
V
Pin Input Voltage LOW  
Pin Input Voltage HIGH  
L
SHDN  
SHDN  
+
V –0.5  
V
H
Shutdown Output Leakage Current  
Turn-On Time  
V
SHDN  
V
SHDN  
V
SHDN  
= 0.3V  
0.1  
180  
180  
75  
µA  
ns  
ns  
t
t
= 0.3V to 4.5V, R = 100Ω, V = 5V  
L S  
ON  
Turn-Off Time  
= 4.5V to 0.3V, R = 100Ω, V = 5V  
L S  
OFF  
GBW  
Gain Bandwidth Product  
Frequency = 1MHz, V = 5V  
S
LT6200, LT6201  
LT6200-5  
145  
750  
1450  
MHz  
MHz  
MHz  
LT6200-10  
SR  
Slew Rate  
V = 5V, A = 1, R = 1k, V = 4V  
S V L O  
LT6200, LT6201  
31  
44  
V/µs  
V = 5V, A = 10, R = 1k, V = 4V  
S
V
L
O
LT6200-5  
210  
340  
V/µs  
V/µs  
LT6200-10  
FPBW  
Full Power Bandwidth (Note 9)  
Settling Time (LT6200, LT6201)  
V = 5V, V  
= 3V (LT6200)  
3.28  
4.66  
165  
MHz  
ns  
S
OUT  
P-P  
t
S
0.1%, V = 5V, V  
= 2V, A = –1, R = 1k  
STEP V L  
S
The denotes the specifications which apply over 0°C < TA < 70°C temperature range. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,  
VSHDN = OPEN, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
V = 5V, V = Half Supply  
MIN  
TYP  
MAX  
UNITS  
l
l
V
Input Offset Voltage  
0.2  
1
1.2  
2.7  
mV  
mV  
OS  
S
CM  
V = 3V, V = Half Supply  
S
CM  
+
+
l
l
V = 5V, V = V to V  
0.3  
1.5  
3
4
mV  
mV  
S
CM  
V = 3V, V = V to V  
S
CM  
l
l
Input Offset Voltage Match  
(Channel-to-Channel) (Note 11)  
V
CM  
V
CM  
= Half Supply  
0.2  
0.4  
1.8  
2.8  
mV  
mV  
+
= V to V  
l
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
V
= Half Supply  
= Half Supply  
2.5  
8
µV/ºC  
OS  
CM  
l
l
l
I
B
V
V
V
–40  
–50  
–10  
8
–23  
µA  
µA  
µA  
CM  
CM  
CM  
+
= V  
18  
= V  
+
+
l
l
I Match (Channel-to-Channel) (Note 11)  
V
V
= V to V  
0.5  
31  
6
µA  
µA  
B
CM  
CM  
∆I  
B
I Shift  
B
= V to V  
68  
l
l
l
I
OS  
Input Offset Current  
V
CM  
V
CM  
V
CM  
= Half Supply  
0.1  
0.02  
0.4  
4
4
5
µA  
µA  
µA  
+
= V  
= V  
62001ff  
4
LT6200/LT6200-5  
LT6200-10/LT6201  
The denotes the specifications which apply over 0°C < TA < 70°C  
elecTrical characTerisTics  
temperature range. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, VSHDN = OPEN, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
A
Large-Signal Gain  
V = 5V, V = 0.5V to 4.5V,R = 1k to V /2  
46  
7.5  
13  
80  
13  
22  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
S
V = 5V, V = 1.5V to 3.5V,R = 100Ω to V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V,R = 1k to V /2  
S
O
L
S
+
l
l
l
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
64  
80  
60  
88  
105  
83  
dB  
dB  
dB  
S
CM  
V = 5V, V = 1.5V to 3.5V  
S
CM  
+
V = 3V, V = V to V  
S
CM  
l
l
l
l
CMRR Match (Channel-to-Channel) (Note 11) V = 5V, V = 1.5V to 3.5V  
80  
60  
60  
3
105  
65  
dB  
dB  
dB  
V
S
CM  
Power Supply Rejection Ratio  
V = 3V to 10V, LT6201DD V = 3V to 7V  
S S  
PSRR Match (Channel-to-Channel) (Note 11)  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing LOW (Note 7)  
V = 3V to 10V, LT6201DD V = 3V to 7V  
100  
S
S
l
l
l
l
V
No Load  
12  
55  
170  
170  
60  
mV  
mV  
mV  
mV  
OL  
OH  
I
= 5mA  
110  
310  
310  
SINK  
S
S
V = 5V, I  
= 20mA  
= 20mA  
SINK  
SINK  
V = 3V, I  
l
l
l
l
V
Output Voltage Swing HIGH (Note 7)  
No Load  
65  
120  
210  
440  
490  
mV  
mV  
mV  
mV  
I
= 5mA  
SOURCE  
SOURCE  
115  
260  
270  
SOURCE  
V = 5V, I  
= 20mA  
= 20mA  
S
V = 3V, I  
S
l
l
I
I
Short-Circuit Current  
V = 5V  
S
60  
45  
90  
75  
mA  
mA  
SC  
S
V = 3V  
l
l
l
Supply Current per Amplifier  
V = 5V  
20  
19  
1.35  
23  
22  
1.8  
mA  
mA  
mA  
S
S
V = 3V  
S
Disabled Supply Current per Amplifier  
V
= 0.3V  
SHDN  
l
l
l
l
l
l
I
SHDN Pin Current  
V
= 0.3V  
215  
295  
0.3  
µA  
V
SHDN  
SHDN  
V
V
V
V
Pin Input Voltage LOW  
Pin Input Voltage HIGH  
L
SHDN  
SHDN  
+
V –0.5  
V
H
Shutdown Output Leakage Current  
Turn-On Time  
V
V
V
= 0.3V  
0.1  
180  
180  
75  
µA  
ns  
ns  
SHDN  
SHDN  
SHDN  
t
t
= 0.3V to 4.5V, R = 100Ω, V = 5V  
L S  
ON  
Turn-Off Time  
= 4.5V to 0.3V, R = 100Ω, V = 5V  
L S  
OFF  
SR  
Slew Rate  
V = 5V, A = 1, R = 1k, V = 4V  
S V L O  
LT6200, LT6201  
l
29  
42  
V/µs  
V = 5V, A = 10, R = 1k, V = 4V  
S
V
L
O
l
l
LT6200-5  
190  
310  
V/µs  
V/µs  
LT6200-10  
l
FPBW  
Full Power Bandwidth (Note 9)  
V = 5V, V  
= 3V (LT6200)  
3.07  
4.45  
MHz  
S
OUT  
P-P  
The denotes the specifications which apply over –40°C < TA < 85°C temperature range. Excludes the LT6201 in the DD package (Note 3).  
VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, VSHDN = OPEN, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
V = 5V, V = Half Supply  
MIN  
TYP  
MAX  
UNITS  
l
l
V
Input Offset Voltage  
0.2  
1
1.5  
2.8  
mV  
mV  
OS  
S
CM  
V = 3V, V = Half Supply  
S
CM  
+
+
l
l
V = 5V, V = V to V  
0.3  
1.5  
3.5  
4.3  
mV  
mV  
S
CM  
V = 3V, V = V to V  
S
CM  
l
l
Input Offset Voltage Match  
(Channel-to-Channel) (Note 11)  
V
CM  
V
CM  
= Half Supply  
0.2  
0.4  
2
3
mV  
mV  
+
= V to V  
l
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
V
= Half Supply  
= Half Supply  
2.5  
8
µV/ºC  
OS  
CM  
l
l
l
I
V
V
V
–40  
–50  
–10  
8
–23  
µA  
µA  
µA  
B
CM  
CM  
CM  
+
= V  
18  
= V  
62001ff  
5
LT6200/LT6200-5  
LT6200-10/LT6201  
The denotes the specifications which apply over –40°C < TA < 85°C  
elecTrical characTerisTics  
temperature range. Excludes the LT6201 in the DD package (Note 3). VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, VSHDN = OPEN,  
unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
31  
1
MAX  
68  
UNITS  
µA  
+
+
l
l
∆I  
B
I Shift  
B
V
CM  
V
CM  
= V to V  
I Match (Channel-to-Channel) (Note 11)  
B
= V to V  
9
µA  
l
l
l
I
Input Offset Current  
V
CM  
V
CM  
V
CM  
= Half Supply  
0.1  
0.02  
0.4  
4
4
5
µA  
µA  
µA  
OS  
+
= V  
= V  
l
l
l
A
Large-Signal Gain  
V = 5V, V = 0.5V to 4.5V, R = 1k to V /2  
40  
7.5  
11  
70  
13  
20  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
S
V = 5V, V = 1.5V to 3.5V, R = 100Ω to V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V,R = 1k to V /2  
S
O
L
S
+
l
l
l
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
60  
80  
60  
80  
100  
80  
dB  
dB  
dB  
S
CM  
V = 5V, V = 1.5V to 3.5V  
S
CM  
+
V = 3V, V = V to V  
S
CM  
l
l
l
l
CMRR Match (Channel-to-Channel) (Note 11) V = 5V, V = 1.5V to 3.5V  
75  
60  
60  
3
105  
68  
dB  
dB  
dB  
V
S
CM  
Power Supply Rejection Ratio  
V = 3V to 10V  
S
PSRR Match (Channel-to-Channel) (Note 11) V = 3V to 10V  
100  
S
Minimum Supply Voltage (Note 6)  
l
l
l
l
V
V
Output Voltage Swing LOW (Note 7)  
Output Voltage Swing HIGH (Note 7)  
No Load  
= 5mA  
18  
60  
70  
mV  
mV  
mV  
mV  
OL  
OH  
I
120  
310  
315  
SINK  
V = 5V, I  
= 20mA  
= 20mA  
170  
175  
S
S
SINK  
SINK  
V = 3V, I  
l
l
l
l
No Load  
65  
120  
210  
450  
500  
mV  
mV  
mV  
mV  
I
= 5mA  
SOURCE  
SOURCE  
115  
270  
280  
SOURCE  
V = 5V, I  
= 20mA  
= 20mA  
S
V = 3V, I  
S
l
l
I
I
Short-Circuit Current  
V = 5V  
S
50  
30  
80  
60  
mA  
mA  
SC  
S
V = 3V  
l
l
l
Supply Current per Amplifier  
V = 5V  
22  
20  
1.4  
25.3  
23  
1.9  
mA  
mA  
mA  
S
S
V = 3V  
S
Disabled Supply Current per Amplifier  
V
= 0.3V  
SHDN  
l
l
l
l
l
l
I
SHDN Pin Current  
V
= 0.3V  
220  
300  
0.3  
µA  
V
SHDN  
SHDN  
V
V
V
V
Pin Input Voltage LOW  
Pin Input Voltage HIGH  
L
SHDN  
SHDN  
+
V – 0.5  
V
H
Shutdown Output Leakage Current  
Turn-On Time  
V
V
V
= 0.3V  
0.1  
180  
180  
75  
µA  
ns  
ns  
SHDN  
SHDN  
SHDN  
t
t
= 0.3V to 4.5V, R = 100Ω, V = 5V  
L S  
ON  
Turn-Off Time  
= 4.5V to 0.3V, R = 100Ω, V = 5V  
L S  
OFF  
SR  
Slew Rate  
V = 5V, A = 1, R = 1k, V = 4V  
S V L O  
LT6200, LT6201  
l
23  
33  
V/µs  
V = 5V, A = 10, R = 1k, V = 4V  
S
V
L
O
l
l
LT6200-5  
160  
260  
V/µs  
V/µs  
LT6200-10  
l
FPBW  
Full Power Bandwidth (Note 9)  
V = 5V, V  
S
= 3V (LT6200)  
2.44  
3.5  
MHz  
OUT  
P-P  
TA = 25°C, VS = 5V, VCM = VOUT = 0V, VSHDN = OPEN, unless otherwise noted. Excludes the LT6201 in the DD package (Note 3).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
= Half Supply  
1.4  
2.5  
2.5  
4
6
6
mV  
mV  
mV  
OS  
+
= V  
= V  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 11)  
V
CM  
V
CM  
= 0V  
0.2  
0.4  
1.6  
3.2  
mV  
mV  
+
= V to V  
62001ff  
6
LT6200/LT6200-5  
LT6200-10/LT6201  
TA = 25°C, VS = 5V, VCM = VOUT = 0V, VSHDN = OPEN, unless otherwise noted.  
elecTrical characTerisTics  
Excludes the LT6201 in the DD package (Note 3).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input Bias Current  
V
CM  
V
CM  
V
CM  
= Half Supply  
40  
–10  
8
–23  
µA  
µA  
µA  
B
+
= V  
18  
= V  
–50  
+
+
∆I  
B
I Shift  
V
CM  
V
CM  
= V to V  
31  
68  
6
µA  
µA  
B
I Match (Channel-to-Channel) (Note 11)  
B
= V to V  
0.2  
I
OS  
Input Offset Current  
V
CM  
V
CM  
V
CM  
= Half Supply  
1.3  
1
3
7
7
12  
µA  
µA  
µA  
+
= V  
= V  
Input Noise Voltage  
0.1Hz to 10Hz  
600  
nV  
P-P  
e
n
Input Noise Voltage Density  
f = 100kHz  
f = 10kHz  
0.95  
1.4  
nV/√Hz  
nV/√Hz  
2.3  
i
n
Input Noise Current Density, Balanced Source  
f = 10kHz  
2.2  
3.5  
pA/√Hz  
pA/√Hz  
Unbalanced Source f = 10kHz  
Input Resistance  
Common Mode  
Differential Mode  
0.57  
2.1  
MΩ  
kΩ  
C
A
Input Capacitance  
Common Mode  
3.1  
4.2  
pF  
pF  
IN  
Differential Mode  
Large-Signal Gain  
V = 4.5V, R = 1k  
115  
15  
200  
26  
V/mV  
V/mV  
VOL  
O
L
V = 2V, R = 100  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V
V
= V to V  
68  
75  
96  
dB  
dB  
CM  
CM  
= –2V to 2V  
100  
CMRR Match (Channel-to-Channel) (Note 11)  
Power Supply Rejection Ratio  
V
= –2V to 2V  
80  
60  
65  
105  
68  
dB  
dB  
dB  
CM  
V = 1.25V to 5V  
S
PSRR Match (Channel-to-Channel) (Note 6)  
Output Voltage Swing LOW (Note 7)  
V = 1.25V to 5V  
100  
S
V
No Load  
12  
55  
150  
50  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 20mA  
110  
290  
SINK  
SINK  
V
Output Voltage Swing HIGH (Note 7)  
No Load  
70  
110  
225  
130  
210  
420  
mV  
mV  
mV  
I
I
= 5mA  
SOURCE  
SOURCE  
= 20mA  
I
I
Short-Circuit Current  
60  
90  
mA  
SC  
Supply Current per Amplifier  
Disabled Supply Current per Amplifier  
20  
1.6  
23  
mA  
mA  
S
V
V
= 0.3V  
= 0.3V  
2.1  
SHDN  
I
SHDN Pin Current  
200  
280  
0.3  
µA  
V
SHDN  
SHDN  
V
V
V
V
Pin Input Voltage LOW  
Pin Input Voltage HIGH  
L
SHDN  
SHDN  
+
V –0.5  
V
H
Shutdown Output Leakage Current  
Turn-On Time  
V
SHDN  
V
SHDN  
V
SHDN  
= 0.3V  
0.1  
180  
180  
75  
µA  
ns  
ns  
t
t
= 0.3V to 4.5V, R = 100Ω, V = 5V  
L S  
ON  
Turn-Off Time  
= 4.5V to 0.3V, R = 100Ω, V = 5V  
L S  
OFF  
GBW  
Gain Bandwidth Product  
Frequency = 1MHz  
LT6200, LT6201  
LT6200-5  
110  
530  
1060  
165  
800  
1600  
MHz  
MHz  
MHz  
LT6200-10  
SR  
Slew Rate  
A = –1, R = 1k, V = 4V  
V L O  
LT6200, LT6201  
35  
50  
V/µs  
A
= –10, R = 1k, V = 4V  
L O  
V
LT6200-5  
175  
315  
250  
450  
V/µs  
V/µs  
LT6200-10  
62001ff  
7
LT6200/LT6200-5  
LT6200-10/LT6201  
TA = 25°C, VS = 5V, VCM = VOUT = 0V, VSHDN = OPEN, unless otherwise  
elecTrical characTerisTics  
noted. Excludes the LT6201 in the DD package (Note 3).  
SYMBOL  
PARAMETER  
CONDITIONS  
= 3V (LT6200-10)  
MIN  
TYP  
47  
MAX  
UNITS  
MHz  
ns  
FPBW  
Full Power Bandwidth (Note 9)  
Setting Time (LT6200, LT6201)  
V
33  
OUT  
P-P  
t
0.1%, V  
= 1, R = 1k  
140  
S
STEP  
L
The denotes the specifications which apply over 0°C < TA < 70°C temperature range. Excludes the LT6201 in the DD package (Note  
3). VS = 5V, VCM = VOUT = 0V, VSHDN = OPEN, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
= Half Supply  
1.9  
3.5  
3.5  
4.5  
7.5  
7.5  
mV  
mV  
mV  
OS  
+
= V  
= V  
l
l
Input Offset Voltage Match  
(Channel-to-Channel) (Note 11)  
V
CM  
V
CM  
= 0V  
0.2  
0.4  
1.8  
3.4  
mV  
mV  
+
= V to V  
l
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
V
= Half Supply  
= Half Supply  
8.2  
24  
µV/ºC  
OS  
CM  
l
l
l
I
V
V
V
–40  
–50  
–10  
8
–23  
µA  
µA  
µA  
B
CM  
CM  
CM  
+
= V  
18  
= V  
+
+
l
l
∆I  
I Shift  
V
CM  
V
CM  
= V to V  
31  
1
68  
9
µA  
µA  
B
B
I Match (Channel-to-Channel) (Note 11)  
B
= V to V  
l
l
l
I
Input Offset Current  
V
CM  
V
CM  
V
CM  
= Half Supply  
1.3  
1
3.5  
10  
10  
15  
µA  
µA  
µA  
OS  
+
= V  
= V  
l
l
A
Large-Signal Gain  
V = 4.5V, R = 1k  
46  
7.5  
80  
13.5  
V/mV  
V/mV  
VOL  
O
L
V = 2V, R = 100  
O
L
+
l
l
CMRR  
PSRR  
Common Mode Rejection Ratio  
V
V
= V to V  
65  
75  
90  
dB  
dB  
CM  
CM  
= –2V to 2V  
100  
l
l
l
CMRR Match (Channel-to-Channel) (Note 11)  
Power Supply Rejection Ratio  
V
= –2V to 2V  
75  
60  
60  
105  
65  
dB  
dB  
dB  
CM  
V = 1.5V to 5V  
S
PSRR Match (Channel-to-Channel) (Note 6)  
Output Voltage Swing LOW (Note 7)  
V = 1.5V to 5V  
100  
S
l
l
l
V
V
No Load  
16  
60  
170  
70  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 20mA  
120  
310  
SINK  
SINK  
l
l
l
Output Voltage Swing HIGH (Note 7)  
No Load  
85  
125  
265  
150  
230  
480  
mV  
mV  
mV  
I
I
= 5mA  
SOURCE  
SOURCE  
= 20mA  
l
I
I
Short-Circuit Current  
60  
90  
mA  
SC  
l
l
Supply Current per Amplifier  
Disabled Supply Current per Amplifier  
25  
1.6  
29  
mA  
mA  
S
V
V
= 0.3V  
= 0.3V  
2.1  
SHDN  
SHDN  
l
l
l
l
l
l
I
SHDN Pin Current  
215  
295  
0.3  
µA  
V
SHDN  
V
V
V
V
Pin Input Voltage LOW  
Pin Input Voltage HIGH  
L
SHDN  
SHDN  
+
V – 0.5  
V
H
Shutdown Output Leakage Current  
Turn-On Time  
V
V
V
A
= 0.3V  
0.1  
180  
180  
75  
µA  
ns  
ns  
SHDN  
SHDN  
SHDN  
t
t
= 0.3V to 4.5V, R = 100Ω, V = 5V  
L S  
ON  
Turn-Off Time  
= 4.5V to 0.3V, R = 100Ω, V = 5V  
L S  
OFF  
SR  
Slew Rate  
= –1, R = 1k, V = 4V  
V L O  
l
LT6200, LT6201  
31  
44  
V/µs  
A
= –10, R = 1k, V = 4V  
L O  
V
l
l
LT6200-5  
150  
290  
215  
410  
V/µs  
V/µs  
LT6200-10  
l
FPBW  
Full Power Bandwidth (Note 9)  
V
= 3V (LT6200-10)  
30  
43  
MHz  
OUT  
P-P  
62001ff  
8
LT6200/LT6200-5  
LT6200-10/LT6201  
The denotes the specifications which apply over 40°C < TA < 85°C  
elecTrical characTerisTics  
temperature range. Excludes the LT6201 in the DD package (Note 3). VS = 5V, VCM = VOUT = 0V, VSHDN = OPEN, unless  
otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
= Half Supply  
1.9  
3.5  
3.5  
4.5  
7.5  
7.5  
mV  
mV  
mV  
OS  
+
= V  
= V  
l
l
Input Offset Voltage Match  
(Channel-to-Channel) (Note 11)  
V
CM  
V
CM  
= 0V  
0.2  
0.4  
2
3.6  
mV  
mV  
+
= V to V  
l
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
V
= Half Supply  
= Half Supply  
8.2  
24  
µV/ºC  
OS  
CM  
l
l
l
I
V
V
V
–40  
–50  
–10  
8
–23  
µA  
µA  
µA  
B
CM  
CM  
CM  
+
= V  
18  
= V  
+
l
l
∆I  
I Shift  
V
CM  
= V to V  
31  
4
68  
12  
µA  
µA  
B
B
I Match (Channel-to-Channel) (Note 11)  
B
l
l
l
I
Input Offset Current  
V
CM  
V
CM  
V
CM  
= Half Supply  
1.3  
1
3.5  
10  
10  
15  
µA  
µA  
µA  
OS  
+
= V  
= V  
l
l
A
Large-Signal Gain  
V = 4.5V, R = 1k  
46  
7.5  
80  
13.5  
V/mV  
V/mV  
VOL  
O
L
V = 2V, R = 100  
O
L
+
l
l
CMRR  
PSRR  
Common Mode Rejection Ratio  
V
V
= V to V  
65  
75  
90  
dB  
dB  
CM  
CM  
100  
= –2V to 2V  
l
l
l
CMRR Match (Channel-to-Channel) (Note 11)  
Power Supply Rejection Ratio  
V
= –2V to 2V  
75  
60  
60  
105  
65  
dB  
dB  
dB  
CM  
V = 1.5V to 5V  
S
PSRR Match (Channel-to-Channel) (Note 6)  
Output Voltage Swing LOW (Note 7)  
V = 1.5V to 5V  
100  
S
l
l
l
V
V
No Load  
16  
60  
170  
75  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 20mA  
125  
310  
SINK  
SINK  
l
l
l
Output Voltage Swing HIGH (Note 7)  
No Load  
85  
125  
265  
150  
230  
480  
mV  
mV  
mV  
I
I
= 5mA  
SOURCE  
SINK  
= 20mA  
l
I
I
Short-Circuit Current  
60  
90  
mA  
SC  
l
l
Supply Current  
Disabled Supply Current  
25  
1.6  
29  
mA  
mA  
S
2.1  
V
V
= 0.3V  
= 0.3V  
SHDN  
SHDN  
l
l
l
l
l
l
I
SHDN Pin Current  
215  
295  
0.3  
µA  
V
SHDN  
V
V
V
V
Pin Input Voltage LOW  
Pin Input Voltage HIGH  
L
SHDN  
SHDN  
+
V – 0.5  
V
H
Shutdown Output Leakage Current  
Turn-On Time  
V
V
V
A
= 0.3V  
0.1  
180  
180  
75  
µA  
ns  
ns  
SHDN  
SHDN  
SHDN  
t
t
= 0.3V to 4.5V, R = 100Ω, V = 5V  
L S  
ON  
Turn-Off Time  
= 4.5V to 0.3V, R = 100Ω, V = 5V  
L S  
OFF  
SR  
Slew Rate  
= –1, R = 1k, V = 4V  
V L O  
l
31  
44  
V/µs  
LT6200, LT6201  
A
= –10, R = 1k, V = 4V  
L O  
V
l
l
125  
260  
180  
370  
V/µs  
V/µs  
LT6200-5  
LT6200-10  
l
FPBW  
Full Power Bandwidth (Note 9)  
V
= 3V (LT6200-10)  
27  
39  
MHz  
OUT  
P-P  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime  
Note 2: Inputs are protected by back-to-back diodes. If the differential  
input voltage exceeds 0.7V, the input current must be limited to less  
than 40mA. This parameter is guaranteed to meet specified performance  
through design and/or characterization. It is not 100% tested.  
62001ff  
9
LT6200/LT6200-5  
LT6200-10/LT6201  
elecTrical characTerisTics  
Note 3: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
indefinitely. The LT6201 in the DD package is limited by power dissipation  
Note 8: This parameter is not 100% tested.  
Note 9: Full-power bandwidth is calculated from the slew rate:  
FPBW = SR/2πV  
P
to V ≤ 5V, 0V over the commercial temperature range only.  
S
Note 10: Thermal resistance varies depending upon the amount of PC board  
Note 4: The LT6200C/LT6200I and LT6201C/LT6201I are guaranteed functional  
over the temperature range of –40°C and 85°C (LT6201DD excluded).  
Note 5: The LT6200C/LT6201C are guaranteed to meet specified  
performance from 0°C to 70°C. The LT6200C/LT6201C are designed,  
characterized and expected to meet specified performance from –40°C  
to 85°C, but are not tested or QA sampled at these temperatures. The  
LT6200I is guaranteed to meet specified performance from –40°C to 85°C.  
metal attached to the V– pin of the device. θ is specified for a certain  
JA  
amount of 2oz copper metal trace connecting to the V– pin as described in  
the thermal resistance tables in the Application Information section.  
Note 11: Matching parameters on the LT6201 are the difference between  
the two amplifiers. CMRR and PSRR match are defined as follows: CMRR  
and PSRR are measured in µV/V on the identical amplifiers. The difference  
is calculated in µV/V. The result is converted to dB.  
Note 6: Minimum supply voltage is guaranteed by power supply rejection  
ratio test.  
Note 7: Output voltage swings are measured between the output and  
power supply rails.  
Note 12: There are reverse biased ESD diodes on all inputs and outputs, as  
shown in Figure 1. If these pins are forced beyond either supply, unlimited  
current will flow through these diodes. If the current is transient in nature  
and limited to less than 30mA, no damage to the device will occur.  
Typical perForMance characTerisTics  
VOS Distribution, VCM = V+/2  
VOS Distribution, VCM = V+  
VOS Distribution, VCM = V–  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V, 0V  
V = 5V, 0V  
S
V
= 5V, 0V  
S
S
SO-8  
SO-8  
SO-8  
0
400  
800 1200 1600  
–1000  
–600  
–200  
200  
600  
1000  
–16001200800 –400  
0
400  
800 1200 1600  
–16001200800 –400  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
6200 G03  
6200 G01  
6200 G02  
Offset Voltage  
vs Input Common Mode Voltage  
Input Bias Current  
vs Common Mode Voltage  
Supply Current vs Supply Voltage  
30  
25  
20  
15  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
20  
10  
V
= 5V, 0V  
V
= 5V, 0V  
S
S
T
= 125°C  
A
TYPICAL PART  
0
T
= 25°C  
A
T
= 125°C  
A
–10  
T
= 25°C  
A
T
= –55°C  
A
T
= –55°C  
10  
5
–20  
–30  
–40  
A
T
= –55°C  
–0.5  
–1.0  
A
T
T
= 25°C  
A
= 125°C  
A
0
–1.5  
8
12  
14  
0
2
4
6
10  
3
5
6
–1  
0
1
2
4
0
4
5
1
2
3
TOTAL SUPPLY VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
6200 G04  
6200 G05  
6200 G06  
62001ff  
10  
LT6200/LT6200-5  
LT6200-10/LT6201  
Typical perForMance characTerisTics  
Input Bias Current  
vs Temperature  
Output Saturation Voltage  
Output Saturation Voltage  
vs Load Current (Output High)  
10  
vs Load Current (Output Low)  
20  
15  
10  
1
V
= 5V, 0V  
V
= 5V, 0V  
V
= 5V, 0V  
S
S
S
V
CM  
= 5V  
10  
5
1
0.1  
0
0.1  
–5  
T
= 125°C  
A
–10  
–15  
–20  
–25  
–30  
T
= 125°C  
A
T
= –55°C  
A
0.01  
T
= 25°C  
V
CM  
= 0V  
T
= 25°C  
A
A
T
= –55°C  
A
0.001  
0.01  
0.1  
1
10  
100  
0.1  
1
10  
100  
–50 –35 –20 –5 10 25 40 55 70 85  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
6200 G09  
6200 G08  
6200 G07  
Output Short-Circuit Current  
vs Power Supply Voltage  
Minimum Supply Voltage  
Open-Loop Gain  
120  
100  
80  
1.0  
0.5  
2.5  
2.0  
SOURCING  
V
CM  
= V /2  
S
V
= 3V, 0V  
= 25°C  
T
= –55°C  
S
A
A
T
T
A
= 25°C  
1.5  
T
= 125°C  
A
60  
1.0  
40  
0
0.5  
20  
T
= –55°C  
A
R
L
= 1k  
L
0
–0.5  
0
–20  
–40  
–60  
–80  
–100  
–120  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
T
= 25°C  
A
R
= 100Ω  
–1.0  
–1.5  
–2.0  
SINKING  
T
= 25°C  
T
= 125°C  
A
A
T
= –55°C  
A
T
= 125°C  
2.5  
A
1.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
2
3
0
0.5  
1.5  
2
2.5  
1
POWER SUPPLY VOLTAGE ( Vꢀ  
TOTAL SUPPLY VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
6200 G11  
6200 G10  
6200 G12  
Open-Loop Gain  
Open-Loop Gain  
Offset Voltage vs Output Current  
15  
10  
2.5  
2.0  
2.5  
2.0  
V
= 5V, 0V  
= 25°C  
V
= 5V  
= 25°C  
V
=
S
5V  
S
A
S
A
T
T
1.5  
1.5  
1.0  
1.0  
T
T
= 125°C  
= –55°C  
A
A
5
0
0.5  
0.5  
T
= 25°C  
R
L
= 1k  
A
L
0
0
R
= 1k  
L
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
R
= 100Ω  
R
2
= 100Ω  
L
–5  
–10  
–15  
0
1
3
4
5
–100  
–60  
–20  
20  
60  
100  
2
–5 –4 –3  
1
3
4
5
–2 –1  
0
OUTPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
OUTPUT VOLTAGE (V)  
6200 G13  
6200 G15  
6200 G14  
62001ff  
11  
LT6200/LT6200-5  
LT6200-10/LT6201  
Typical perForMance characTerisTics  
Warm-Up Drift  
vs Time (LT6200S8)  
Input Noise Voltage vs Frequency  
Total Noise vs Source Resistance  
100  
10  
1
300  
250  
200  
150  
100  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
V
= ±±V  
= 0V  
V
T
= 5V, 0V  
= 25°C  
T
= 25°C  
S
CM  
S
A
A
LT6200  
TOTAL NOISE  
f = 100kHz  
UNBALANCED  
SOURCE  
V
S
=
5V  
PNP ACTIVE  
= 0.5V  
V
CM  
RESISTORS  
RESISTOR  
NOISE  
NPN ACTIVE  
V
= 4.5V  
CM  
BOTH ACTIVE  
LT6200 AMPLIFIER  
NOISE VOLTAGE  
V
= 1ꢀ5V  
S
V
= 2.5V  
CM  
V
= 2ꢀ5V  
S
0.1  
0
0
100 120  
TIME AFTER POWER-UP (SEC)  
0
20 40 60 80  
140 160  
10  
100  
1k  
10k  
100k  
1k  
10  
100  
10k  
100k  
SOURCE RESISTANCE (Ω)  
FREQUENCY (Hz)  
6200 G17  
6200 G16  
6200 G18  
Balanced Noise Current  
vs Frequency  
Unbalanced Noise Current  
vs Frequency  
0.1Hz to 10Hz Output  
Noise Voltage  
800  
600  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
V
T
= 5V, 0V  
= 25°C  
V
T
= 5V, 0V  
S
A
V
V
= 5V, 0V  
= V /2  
S
A
S
CM  
= 25°C  
S
UNBALANCED  
SOURCE  
RESISTANCE  
BALANCED  
SOURCE  
RESISTANCE  
PNP ACTIVE  
= 0.5V  
400  
PNP ACTIVE  
V
CM  
V
CM  
= 0.5V  
200  
BOTH ACTIVE  
= 2.5V  
BOTH ACTIVE  
= 2.5V  
V
CM  
0
V
CM  
NPN ACTIVE  
= 4.5V  
–200  
–400  
–600  
–800  
V
CM  
NPN ACTIVE  
V
CM  
= 4.5V  
0
0
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
TIME (5SEC/DIV)  
FREQUENCY (Hz)  
6200 G20  
6200 G19  
6200 G21  
Supply Current  
vs SHDN Pin Voltage  
SHDN Pin Current  
vs SHDN Pin Voltage  
22  
20  
18  
16  
14  
12  
10  
8
50  
0
V
= 5V, 0V  
V
S
= 5V, 0V  
S
T
= 125°C  
A
T
= 25°C  
A
A
–50  
T
A
= –55°C  
T
A
= 25°C  
–100  
–150  
–200  
–250  
–300  
T
= 125°C  
6
T
= –55°C  
2
A
4
2
0
1
2
3
5
0
4
0
1
3
4
5
SHDN PIN VOLTAGE (V)  
SHDN PIN VOLTAGE (V)  
6200 G21b  
6200 G21a  
62001ff  
12  
LT6200/LT6200-5  
LT6200-10/LT6201  
Typical perForMance characTerisTics LT6200, LT6201  
Gain Bandwidth and Phase  
Margin vs Temperature  
Open-Loop Gain vs Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
70  
60  
50  
V
=
5V  
S
PHASE  
V
= 3V, 0V  
S
V
CM  
= 0.5V  
PHASE MARGIN  
60  
40  
GAIN  
V
= 4.5V  
CM  
40  
20  
V
= 5V  
S
180  
160  
140  
120  
0
V
= 0.5V  
V
= 4.5V  
CM  
CM  
–20  
–40  
–60  
–80  
V
= 3V, 0V  
S
V
C
= 5V, 0V  
= 5pF  
= 1k  
S
L
L
GAIN BANDWIDTH  
–10  
–20  
R
100  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
–50 –25  
0
25  
125  
50  
75 100  
TEMPERATURE (°C)  
6200 G23  
6200 G22  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Open-Loop Gain vs Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
80  
70  
60  
50  
40  
30  
T
= 25°C  
= 1k  
= 5pF  
A
L
L
PHASE  
R
PHASE MARGIN  
C
V
= 5V  
S
60  
GAIN  
V
=
1ꢀ5V  
5V  
S
40  
20  
180  
160  
140  
120  
100  
80  
V
=
S
0
V
= 1ꢀ5V  
S
GAIN BANDWIDTH  
–20  
–40  
–60  
–80  
V
C
= 0V  
= 5pF  
= 1k  
CM  
L
–10  
–20  
R
L
0
4
6
8
10  
12  
14  
2
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
TOTAL SUPPLY VOLTAGE (V)  
6200 G24  
6200 G25  
Common Mode Rejection Ratio  
vs Frequency  
Slew Rate vs Temperature  
Output Impedance vs Frequency  
1000  
100  
10  
120  
140  
120  
100  
80  
V
S
= 5V, 0V  
V
V
= 5V, 0V  
= V /2  
A
= –1  
G
= 1k  
S
CM  
V
F
L
R = R = 1k  
S
R
100  
80  
V
S
=
5V RꢀSꢀIG  
V
S
= 5V FALLꢀIG  
A
= 10  
V
60  
40  
A
V
= 2  
60  
1
A
= 1  
V
V
S
=
2ꢁ5V RꢀSꢀIG  
40  
V
= 2ꢁ5V FALLꢀIG  
S
0.1  
0.01  
20  
0
20  
0
–55 –35 –15  
5
25 45 65 85 105 125  
10k  
100k  
1M  
10M  
100M  
1G  
0.1  
1
10  
100  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
6200 G28  
6200 G27  
6200 G26  
62001ff  
13  
LT6200/LT6200-5  
LT6200-10/LT6201  
Typical perForMance characTerisTics LT6200, LT6201  
Power Supply Rejection Ratio  
Overshoot vs Capacitive Load  
vs Frequency  
Overshoot vs Capacitive Load  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
35  
30  
25  
20  
15  
10  
5
V
V
T
= 5V, 0V  
= V /2  
V
A
= 5V, 0V  
= 2  
V
A
= 5V, 0V  
= 1  
S
CM  
A
S
V
S
V
S
= 25°C  
R
S
= 10Ω  
R
S
= 10Ω  
R
S
= 20Ω  
R
= 20Ω  
S
POSITIVE  
SUPPLY  
NEGATIVE  
SUPPLY  
R
R
= 50Ω  
= 50Ω  
S
L
R
= 50Ω  
= 50Ω  
S
L
R
0
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
6200 G29  
6200 G31  
6200 G30  
Settling Time vs Output Step  
(Noninverting)  
Settling Time vs Output Step  
(Inverting)  
Maximum Undistorted Output  
Signal vs Frequency  
10  
9
200  
150  
100  
50  
200  
150  
100  
50  
500Ω  
V
A
T
=
5V  
V
A
T
= 5V  
S
V
A
S
V
A
+
= 1  
= –1  
A
V
= –1  
500Ω  
+
= 25°C  
= 25°C  
A
V
= 2  
V
IN  
V
OUT  
500Ω  
V
8
OUT  
V
IN  
7
6
1mV  
1mV  
1mV  
1mV  
5
4
10mV  
10mV  
3
10mV  
10mV  
3
V
=
5V  
S
A
3
T
= 25°C  
HD2, HD3 < –40dBc  
0
0
2
–4 –3 –2 –1  
0
1
2
4
–4 –3 –2 –1  
0
1
2
4
10k  
100k  
1M  
10M  
OUTPUT STEP (V)  
OUTPUT STEP (V)  
FREQUENCY (Hz)  
6200 G34  
6200 G32  
6200 G33  
Distortion vs Frequency, AV = 1  
Distortion vs Frequency, AV = 1  
Distortion vs Frequency, AV = 2  
–50  
–60  
–50  
–60  
–40  
–50  
A
V
V
= 1  
A
V
V
O
V
S
= 1  
A
V
V
= 2  
V
O
S
V
O
S
= 2V  
= 2V  
= 2V  
P-P  
P-P  
P-P  
=
5V  
=
2ꢀ5V  
=
2ꢀ5V  
–60  
–70  
–70  
HD2, R = 100Ω  
L
HD2, R = 1k  
HD2, R = 1k  
L
HD3, R = 100Ω  
L
–70  
L
–80  
–80  
HD2, R = 1k  
L
HD2, R = 100Ω  
L
–80  
HD2, R = 100Ω  
L
HD3, R = 1k  
L
HD3, R = 1k  
L
–90  
–90  
–90  
HD3, R = 1k  
L
HD3, R = 100Ω  
L
–100  
–100  
–100  
HD3, R = 100Ω  
L
–110  
–110  
–110  
100k  
1M  
FREQUENCY (Hz)  
10M  
100k  
1M  
10M  
100k  
10M  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6200 G36  
6200 G35  
6200 G37  
62001ff  
14  
LT6200/LT6200-5  
LT6200-10/LT6201  
Typical perForMance characTerisTics LT6200, LT6201  
Distortion vs Frequency, AV = 2  
Channel Separation vs Frequency  
0
–10  
–40  
–50  
T
= 25°C  
= 1  
A
V
V
O
V
S
= 2  
A
A
V
= 2V  
V
S
P-P  
–20  
=
5V  
=
5V  
–30  
–60  
–40  
–50  
HD2, R = 100Ω  
–70  
L
–60  
HD2, R = 1k  
L
–80  
–70  
HD3, R = 1k  
–80  
L
–90  
–90  
–100  
–110  
–120  
–100  
HD3, R = 100Ω  
L
–110  
0.1  
1
10  
100  
100k  
10M  
1M  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
6200 G38a  
6200 G38  
5V Large-Signal Response  
5V Large-Signal Response  
5V  
1V/DIV  
0V  
2V/DIV  
0V  
6200 G39  
6200 G40  
V
A
= 5V, 0V  
= 1  
= 1k  
200ns/DIV  
V
A
= ±±V  
= 1  
= 1k  
200ns/DIV  
S
V
L
S
V
L
R
R
Output Overdrive Recovery  
5V Small-Signal Response  
V
0V  
0V  
50mV/DIV  
IN  
1V/DIV  
V
out  
2V/DIV  
6200 G41  
6200 G42  
V
A
= 5V, 0V  
= 2  
200ns/DIV  
V
A
= 5V, 0V  
= 1  
= 1k  
200ns/DIV  
S
V
S
V
L
R
62001ff  
15  
LT6200/LT6200-5  
LT6200-10/LT6201  
Typical perForMance characTerisTics LT6200-5  
Gain Bandwidth and Phase Margin  
vs Temperature  
Slew Rate vs Temperature  
Overshoot vs Capacitive Load  
450  
400  
350  
300  
250  
200  
150  
100  
0
90  
80  
70  
60  
50  
60  
50  
40  
30  
20  
10  
0
V
A
= 5V, 0V  
= 5  
A
= –5  
S
V
V
F
G
R = R = 1k  
L
V
= 5V  
S
PHASE MARGIN  
R
= 200Ω  
V = 5V RꢀSꢀIG  
S
R
= 0Ω  
S
V
= 5V FALLꢀIG  
S
V
= 3V, 0V  
S
1000  
900  
800  
700  
600  
GAIN BANDWIDTH  
V
=
5V  
R = 10Ω  
S
S
V
=
2ꢁ5V FALLꢀIG  
S
V
= 2ꢁ5V RꢀSꢀIG  
S
R
S
= 20Ω  
V
= 3V, 0V  
R = 50Ω  
S
S
500  
–55 –25  
0
25  
50  
75 100 125  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
–50 –25  
0
25  
125  
50  
75 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6200 G47  
6200 G46  
6200 G45  
Power Supply Rejection Ratio  
vs Frequency  
Output Impedance vs Frequency  
Open-Loop Gain vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
POSITIVE  
SUPPLY  
V = 5V, 0V  
S
V
= 5V, 0V  
S
A
PHASE  
T
= 25°C  
V
= 5V  
S
V
= V /2  
CM  
S
NEGATIVE  
SUPPLY  
V
= 1ꢀ5V  
S
A
= 50  
V
GAIN  
A
= 5  
1
V
V
= 5V  
S
0.1  
V
= 1ꢀ5V  
V
C
= 0V  
= 5pF  
= 1k  
S
CM  
L
R
L
0.01  
–10  
1k  
10k  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6200 G48  
6200 G49  
6200 G50  
Gain Bandwidth and Phase Margin  
vs Supply Voltage  
Open-Loop Gain vs Frequency  
Gain Bandwidth vs Resistor Load  
100  
120  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
90  
80  
70  
60  
T
R
C
= 25°C  
= 1k  
= 5pF  
A
L
L
PHASE  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
V
= 0.5V  
PHASE MARGIN  
CM  
60  
V
= 4.5V  
CM  
40  
20  
GAIN  
50  
0
1000  
800  
600  
400  
–20  
–40  
–60  
–80  
–100  
V
= 0.5V  
GAIN BANDWIDTH  
CM  
V
= 5V  
S
F
G
V
= 4.5V  
10M  
CM  
R = 10k  
V
C
= 5V, 0V  
= 5pF  
S
L
L
R
T
= 1k  
= 25°C  
R
= 1k  
A
–10  
2
4
8
0
10  
12  
6
0
100 200 300 400 500  
1000  
100k  
1M  
100M  
1G  
600 700 800 900  
RESISTOR LOAD (Ω)  
FREQUENCY (Hz)  
TOTAL SUPPLY VOLTAGE (V)  
6200 G51  
6200 G52  
G200 G53  
62001ff  
16  
LT6200/LT6200-5  
LT6200-10/LT6201  
Typical perForMance characTerisTics LT6200-5  
Common Mode Rejection Ratio  
vs Frequency  
Maximum Undistorted Output  
Signal vs Frequency  
2nd and 3rd Harmonic Distortion  
vs Frequency  
120  
100  
80  
60  
40  
20  
0
10  
9
8
7
6
5
4
3
2
1
0
–40  
V
V
= 5V, 0V  
S
A
V
V
O
V
S
= 5  
= V /2  
CM  
S
= 2V  
P-P  
–50  
–60  
=
2ꢀ5V  
R
= 100Ω, 3RD  
L
R
L
= 100Ω, 2ND  
–70  
R = 1k, 2ND  
L
R
= 1k, 3RD  
L
–80  
V
A
=
5V  
S
V
A
–90  
= 5  
T
= 25°C  
–100  
10k  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6200 G54  
6200 G55  
6200 G56  
2nd and 3rd Harmonic Distortion  
vs Frequency  
5V Large-Signal Response  
Output-Overdrive Recovery  
–40  
–50  
A
V
V
O
V
S
= 5  
= 2V  
P-P  
5V  
=
5V  
V
IN  
1V/DIV  
–60  
0V  
0V  
R
= 100Ω, 2ND  
L
2V/DIV 0V  
–5V  
–70  
R
L
= 100Ω, 3RD  
V
OUT  
2V/DIV  
R
L
= 1k, 2ND  
–80  
–90  
6200 G58  
6200 G59  
R
L
= 1k, 3RD  
–100  
V
=
5V  
50ns/DIV  
V
A
= 5V, 0V  
= 5  
50ns/DIV  
S
V
L
S
V
A
= 5  
R
C
= 1k  
CL = 10.8pF SCOPE PROBE  
–110  
= 10.8pF SCOPE PROBE  
10k  
100k  
1M  
10M  
L
FREQUENCY (Hz)  
6200 G57  
Input Referred High Frequency  
Noise Spectrum  
5V Small-Signal Response  
10  
9
8
7
6
5
4
3
2
1
0
50mV/DIV 0V  
6200 G60  
V
A
R
C
= 5V, 0V  
= 5  
50ns/DIV  
S
V
L
= 1k  
= 10.8pF SCOPE PROBE  
0
15 30 45  
150  
60 75 90 105 120 135  
L
FREQUENCY (15MHz/DIV)  
6200 G61  
62001ff  
17  
LT6200/LT6200-5  
LT6200-10/LT6201  
Typical perForMance characTerisTics LT6200-10  
Gain Bandwidth and Phase Margin  
vs Temperature  
Slew Rate vs Temperature  
Overshoot vs Capacitive Load  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
A
= –10  
V
A
= 5V, 0V  
= 10  
V
F
G
S
V
R = R = 1k  
L
V
= 5V  
S
PHASE MARGIN  
R
= 100Ω  
V
=
5V RꢀSꢀIG  
S
R
S
= 0Ω  
S
V
= 5V FALLꢀIG  
S
V
= 3V, 0V  
S
R
= 10Ω  
2000  
1800  
1600  
1400  
1200  
1000  
GAIN BANDWIDTH  
V
=
5V  
= 3V, 0V  
S
V
=
2ꢁ5V FALLꢀIG  
S
R
S
= 20Ω  
V
S
= 2ꢁ5V RꢀSꢀIG  
V
S
R
S
= 50Ω  
–50  
0
25  
50  
75 100 125  
–25  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
–50 –25  
0
25  
125  
50  
75 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6200 G64  
6200 G63  
6200 G62  
Power Supply Rejection Ratio  
vs Frequency  
Output Impedance vs Frequency  
Open-Loop Gain vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
POSITIVE  
SUPPLY  
V
= 5V, 0V  
V = 5V, 0V  
S
S
A
PHASE  
T
= 25°C  
= V /2  
V
V
= 5V  
CM  
S
S
NEGATIVE  
SUPPLY  
V
= 1ꢀ5V  
A
= 100  
S
V
GAIN  
A
= 10  
V
V
S
=
1ꢀ5V  
V = 5V  
S
1
0.1  
V
C
= 0V  
= 5pF  
= 1k  
CM  
L
R
L
0.01  
–10  
1k  
10k  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6200 G65  
6200 G66  
6200 G67  
Gain Bandwidth and Phase Margin  
vs Supply Voltage  
Open-Loop Gain vs Frequency  
Gain Bandwidth vs Resistor Load  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
90  
80  
70  
60  
T
= 25°C  
= 1k  
= 5pF  
A
L
L
PHASE  
100  
80  
R
V
= 0.5V  
CM  
C
60  
PHASE MARGIN  
V
= 4.5V  
CM  
40  
20  
GAIN  
1800  
1600  
1400  
1200  
1000  
50  
0
V
= 0.5V  
100M  
V
= 4.5V  
CM  
CM  
–20  
–40  
–60  
–80  
–100  
GAIN BANDWIDTH  
V
= 5V  
S
F
G
R = 10k  
V
C
= 5V, 0V  
= 5pF  
S
L
L
R
T
= 1k  
= 25°C  
R
= 1k  
A
–10  
2
4
8
0
10  
12  
6
100k  
1M  
10M  
FREQUENCY (Hz)  
1G  
0
100 200 300 400 500  
1000  
600 700 800 900  
TOTAL SUPPLY VOLTAGE (V)  
RESISTOR LOAD (Ω)  
6200 G68  
6200 G69  
G200 G70  
62001ff  
18  
LT6200/LT6200-5  
LT6200-10/LT6201  
Typical perForMance characTerisTics LT6200-10  
Common Mode Rejection Ratio  
vs Frequency  
Maximum Undistorted Output  
Signal vs Frequency  
2nd and 3rd Harmonic Distortion  
vs Frequency  
120  
100  
80  
60  
40  
20  
0
10  
9
8
7
6
5
4
3
2
1
0
–40  
V
V
= 5V, 0V  
= V /2  
A
V
V
= 10  
= 2V  
S
CM  
V
O
S
S
P-P  
–50  
–60  
=
2ꢀ5V  
R
L
= 100Ω, 2ND  
R
= 100Ω, 3RD  
L
–70  
R
L
= 1k, 3RD  
–80  
V
A
=
5V  
–90  
S
V
A
= 10  
R
L
= 1k, 2ND  
1M  
T
= 25°C  
–100  
10k  
100k  
10M  
10k  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6200 G71  
6200 G72  
6200 G73  
2nd and 3rd Harmonic Distortion  
vs Frequency  
5V Large-Signal Response  
Output-Overdrive Recovery  
–40  
–50  
A
V
V
= 10  
= 2V  
V
O
S
P-P  
5V  
=
5V  
V
IN  
R
= 100Ω, 2ND  
L
1V/DIV  
–60  
0V  
0V  
R
L
= 100Ω, 3RD  
2V/DIV 0V  
–70  
R
= 1k, 3RD  
L
V
OUT  
2V/DIV  
–80  
–90  
–5V  
6200 G75  
6200 G76  
–100  
V
A
R
C
=
= 10  
= 1k  
5V  
50ns/DIV  
V
A
C
= 5V, 0V  
= 10  
50ns/DIV  
R
= 1k, 2ND  
1M  
S
V
L
S
V
L
L
= 10.8pF SCOPE PROBE  
–110  
= 10.8pF SCOPE PROBE  
10k  
100k  
10M  
L
FREQUENCY (Hz)  
6200 G74  
Input Referred High Frequency  
Noise Spectrum  
5V Small-Signal Response  
10  
9
8
7
6
5
4
3
2
1
0
50mV/DIV 0V  
6200 G77  
V
A
= 5V, 0V  
= 10  
= 1k  
50ns/DIV  
S
V
R
L
L
0
15 30 45  
150  
C
= 10.8pF SCOPE PROBE  
60 75 90 105 120 135  
FREQUENCY (15MHz/DIV)  
6200 G78  
62001ff  
19  
LT6200/LT6200-5  
LT6200-10/LT6201  
applicaTions inForMaTion  
Amplifier Characteristics  
The LT6200-5/LT6200-10 are decompensated op amps  
for higher gain applications. These amplifiers maintain  
identical DC specifications with the LT6200, but have a  
Figure 1 shows a simplified schematic of the LT6200  
family, which has two input differential amplifiers in paral-  
lel that are biased on simultaneously when the common  
modevoltageisatleast1.5Vfromeitherrail.Thistopology  
allows the input stage to swing from the positive supply  
voltage to the negative supply voltage. As the common  
reduced Miller compensation capacitor C . This results  
M
in a significantly higher slew rate and gain bandwidth  
product.  
Input Protection  
mode voltage swings beyond V – 1.5V, current source I  
CC  
1
There are back-to-back diodes, D1 and D2, across the  
+ and – inputs of these amplifiers to limit the differential  
input voltage to 0.7V. The inputs of the LT6200 family  
do not have internal resistors in series with the input  
transistors. This technique is often used to protect the  
input devices from overvoltage that causes excessive  
currents to flow. The addition of these resistors would  
significantly degrade the low noise voltage of these  
amplifiers. For instance, a 100Ω resistor in series with  
each input would generate 1.8nV/√Hz of noise, and the  
total amplifier noise voltage would rise from 0.95nV/√Hz  
to 2.03nV/√Hz. Once the input differential voltage ex-  
ceeds 0.7V, steady-state current conducted though  
the protection diodes should be limited to 40mA.  
This implies 25Ω of protection resistance per volt of  
continuous overdrive beyond 0.7V. The input diodes  
are rugged enough to handle transient currents due to  
amplifier slew rate overdrive or momentary clipping  
without these resistors.  
saturates and current in Q1/Q4 is zero. Feedback is main-  
tained through the Q2/Q3 differential amplifier, but with  
an input g reduction of one-half. A similar effect occurs  
m
with I when the common mode voltage swings within  
2
1.5V of the negative rail. The effect of the g reduction is  
m
a shift in the V as I or I saturate.  
OS  
1
2
Input bias current normally flows out of the “+” and “–”  
inputs. The magnitude of this current increases when the  
input common mode voltage is within 1.5V of the negative  
rail, and only Q1/Q4 are active. The polarity of this current  
reverses when the input common mode voltage is within  
1.5V of the positive rail and only Q2/Q3 are active.  
The second stage is a folded cascode and current mir-  
ror that converts the input stage differential signals to a  
single ended output. Capacitor C1 reduces the unity cross  
frequency and improves the frequency stability with-  
out degrading the gain bandwidth of the amplifier. The  
differential drive generator supplies current to the output  
transistors that swing from rail-to-rail.  
+
V
R1  
R2  
DESD7  
V
I
BIAS  
SHDN  
1
DESD8  
–V  
Q11  
+V  
–V  
Q6  
Q5  
Q8  
C
M
DESD1  
+
DESD2  
+V  
–V  
Q1  
Q4  
Q2  
Q3  
C1  
+V  
Q9  
D1  
D2  
DESD5  
DESD6  
DIFFERENTIAL  
DRIVE  
GENERATOR  
DESD3  
DESD4  
Q7  
–V  
+V  
Q10  
R3  
R4  
R5  
D3  
I
2
V
6203/04 F01  
Figure 1. Simplified Schematic  
62001ff  
20  
LT6200/LT6200-5  
LT6200-10/LT6201  
applicaTions inForMaTion  
Figure 2 shows the input and output waveforms of the  
Power Dissipation  
LT6200 driven into clipping while connected in a gain of  
The LT6200 combines high speed with large output cur-  
rent in a small package, so there is a need to ensure that  
the die’s junction temperature does not exceed 150°C.  
The LT6200 is housed in a 6-lead TSOT-23 package. The  
A = 1. In this photo, the input signal generator is clipping  
V
at 35mA,andtheoutputtransistorssupplythisgenerator  
current through the protection diodes.  
package has the V supply pin fused to the lead frame to  
enhance the thermal conductance when connecting to a  
ground plane or a large metal trace. Metal trace and plated  
through-holescanbeusedtospreadtheheatgeneratedby  
the device to the backside of the PC board. For example,  
V
CC  
2.5V  
2
on a 3/32" FR-4 board with 2oz copper, a total of 270mm  
0V  
connects to Pin 2 of the LT6200 (in a TSOT-23 package)  
bringing the thermal resistance, θ , to about 135°C/W.  
JA  
Without an extra metal trace beside the power line con-  
necting to the V pin to provide a heat sink, the thermal  
V
EE  
–2.5V  
resistance will be around 200°C/W. More information on  
thermal resistance with various metal areas connecting  
to the V pin is provided in Table 1.  
6200 F02  
Figure 2. VS = 2.5V, AV = 1 with Large Overdrive  
Table 1. LT6200 6-Lead TSOT-23 Package  
COPPER AREA  
TOPSIDE (mm )  
BOARD AREA  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
ESD  
2
2
(mm )  
270  
100  
20  
2500  
2500  
2500  
2500  
135ºC/W  
145ºC/W  
160ºC/W  
200ºC/W  
The LT6200 has reverse-biased ESD protection diodes on  
all inputs and outputs, as shown in Figure 1. If these pins  
are forced beyond either supply, unlimited current will  
flow through these diodes. If the current is transient and  
limitedto30mAorless,nodamagetothedevicewilloccur.  
0
Device is mounted on topside.  
Junction temperature T is calculated from the ambient  
Noise  
J
temperature T and power dissipation P as follows:  
A
D
The noise voltage of the LT6200 is equivalent to that of  
a 56Ω resistor—and for the lowest possible noise, it is  
desirable to keep the source and feedback resistance  
T = T + (P θ )  
J
A
D
JA  
The power dissipation in the IC is the function of the sup-  
ply voltage, output voltage and the load resistance. For  
a given supply voltage, the worst-case power dissipation  
at or below this value (i.e., R + R //R ≤ 56Ω). With  
S
G
FB  
R + R //R = 56Ω the total noise of the amplifier is:  
S
n
G
FB  
e = √(0.95nV)2 + (0.95nV)2 = 1.35nV. Below this resis-  
P
occurs at the maximum quiescent supply current  
D(MAX)  
tance value the amplifier dominates the noise, but in the  
resistance region between 56Ω and approximately 6kΩ,  
the noise is dominated by the resistor thermal noise. As  
the total resistance is further increased, beyond 6k, the  
noise current multiplied by the total resistance eventually  
dominates the noise.  
and at the output voltage which is half of either supply  
voltage (or the maximum swing if it is less than half the  
supply voltage). P  
is given by:  
D(MAX)  
2
P
= (V • I  
) + (V /2) /R  
D(MAX)  
S
S(MAX)  
S
L
Example: An LT6200 in TSOT-23 mounted on a 2500mm2  
area of PC board without any extra heat spreading plane  
connected to its Vpin has a thermal resistance of  
For a complete discussion of amplifier noise, see the  
LT1028 data sheet.  
62001ff  
21  
LT6200/LT6200-5  
LT6200-10/LT6201  
applicaTions inForMaTion  
200°C/W, θJA. Operating on 5V supplies driving 50Ω  
loads, the worst-case power dissipation is given by:  
a PCB. Table 2 summarizes the thermal resistance from  
the die junction-to-ambient that can be obtained using  
various amounts of topside metal (2oz copper) area. On  
multilayerboards,furtherreductionscanbeobtainedusing  
additional metal on inner PCB layers connected through  
vias beneath the package.  
2
P
= (10 • 23mA) + (2.5) /50  
D(MAX)  
= 0.23 + 0.125 = 0.355W  
The maximum ambient temperature that the part is  
allowed to operate is:  
Table 2. LT6200 8-Lead DD Package  
COPPER AREA  
TOPSIDE (mm )  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
T = T – (P • 200°C/W)  
D(MAX)  
A
J
2
= 150°C – (0.355W • 200°C/W) = 79°C  
4
160ºC/W  
135ºC/W  
110ºC/W  
95ºC/W  
16  
32  
64  
130  
To operate the device at a higher ambient temperature,  
connect more metal area to the V pin to reduce the  
thermal resistance of the package, as indicated in Table 1.  
70ºC/W  
DD Package Heat Sinking  
The LT6200 amplifier family has thermal shutdown to  
protect the part from excessive junction temperature. The  
amplifier will shut down to approximately 1.2mA supply  
current per amplifier if 160°C is exceeded. The LT6200  
will remain off until the junction temperature reduces to  
about 150°C, at which point the amplifier will return to  
normal operation.  
The underside of the DD package has exposed metal  
2
(4mm ) from the lead frame where the die is attached.  
This provides for the direct transfer of heat from the die  
junction to printed circuit board metal to help control the  
maximumoperatingjunctiontemperature.Thedual-in-line  
pin arrangement allows for extended metal beyond the  
ends of the package on the topside (component side) of  
62001ff  
22  
LT6200/LT6200-5  
LT6200-10/LT6201  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698 Rev C)  
R = 0.125  
0.40 ± 0.10  
TYP  
5
8
0.70 ±0.05  
3.5 ±0.05  
2.10 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PACKAGE  
OUTLINE  
(DD8) DFN 0509 REV C  
4
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.25 ± 0.05  
0.50 BSC  
0.50  
BSC  
2.38 ±0.10  
2.38 ±0.05  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302 REV B  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
62001ff  
23  
LT6200/LT6200-5  
LT6200-10/LT6201  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
62001ff  
24  
LT6200/LT6200-5  
LT6200-10/LT6201  
revision hisTory (Revision history begins at Rev D)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
D
3/10  
Change to Input Noise Voltage Density in the Electrical Characteristics section.  
Change to X-Axis Range on Graph G61.  
7
17  
E
F
9/11  
Updated typical value for t in the Electrical Characteristics section.  
4-9  
ON  
Replaced curves G61 and G78 in the Typical Performance Characteristics section.  
17, 19  
4-10  
12/11 Revised formatting of Slew Rate and Gain Bandwidth in Electrical Characteristics tables.  
62001ff  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
25  
LT6200/LT6200-5  
LT6200-10/LT6201  
Typical applicaTion  
Rail-to-Rail, High Speed, Low Noise Instrumentation Amplifier  
+
100Ω  
LT6200-10  
1k  
604Ω  
604Ω  
49.9Ω  
+
49.9Ω  
LT6200-10  
V
OUT  
150pF  
49.9Ω  
1k  
A
= 10  
V
100Ω  
LT6200-10  
+
A
= 13  
V
6200 TA03  
Instrumentation Amplifier Frequency Response  
42.3dB  
10  
FREQUENCY (MHZ)  
= 85MHz  
100  
6200 TA04  
A
= 130  
–3dB  
V
BW  
SLEW RATE = 500V/µs  
CMRR = 55dB at 10MHz  
relaTeD parTs  
PART NUMBER  
LT1028  
DESCRIPTION  
COMMENTS  
Single, Ultralow Noise 50MHz Op Amp  
1.1nV/√Hz  
LT1677  
Single, Low Noise Rail-to-Rail Amplifier  
3V Operation, 2.5mA, 4.5nV/√Hz, 60µV Max V  
OS  
LT1722/LT1723/LT1724  
LT1806/LT1807  
LT6203  
Single/Dual/Quad Low Noise Precision Op Amp  
Single/Dual, Low Noise 325MHz Rail-to-Rail Amplifier  
Dual, Low Noise, Low Current Rail-to-Rail Amplifier  
70V/µs Slew Rate, 400µV Max V , 3.8nV/√Hz, 3.7mA  
OS  
2.5V Operation, 550µV Max V , 3.5nV/√Hz  
OS  
1.9nV/√Hz, 3mA Max, 100MHz Gain Bandwidth  
62001ff  
LT 1211 REV F • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
26  
LINEAR TECHNOLOGY CORPORATION 2002  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY