LT8337-1 [ADI]

28V, 5A Low IQ Synchronous Step-Up Silent Switcher with PassThru;
LT8337-1
型号: LT8337-1
厂家: ADI    ADI
描述:

28V, 5A Low IQ Synchronous Step-Up Silent Switcher with PassThru

文件: 总20页 (文件大小:1637K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT8338  
40V, 1.2A Micropower Synchronous  
Boost Converter with PassThru  
FEATURES  
DESCRIPTION  
The LT®8338 is a synchronous monolithic step-up reg-  
n
Wide Input Voltage Range: 3.0V to 40V  
Low Quiescent Current in Burst Mode® Operation  
ulator that provides high efficiency for input and output  
up to 40V. It consumes only 6µA quiescent current at  
Burst Mode operation to maintain high efficiency at very  
low output current, while keeping the output ripple below  
20mVP-P. The LT8338 switching frequency can be set with  
an external resistor over the range of 300kHz to 3MHz.  
A SYNC/MODE pin allows synchronization to an external  
clock. It can also be used to select between Burst Mode  
operation and pulse-skipping mode, or to enable spread  
spectrum modulation to reduce EMI. The EN/UVLO pin  
has an accurate 1V threshold and can be used to program  
n
n
<6µA I  
Q
n
<20mV Output Ripple  
P-P  
n
n
n
Synchronous Operation for High Efficiency  
Monolithic 40V, 240mΩ Power Switches  
100% Duty Cycle PassThru™ Mode for Boost  
Preregulation Applications  
n
n
n
n
n
n
n
n
Adjustable and Synchronizable: 300kHz to 3MHz  
Spread Spectrum for Reduced EMI/EMC Emissions  
Accurate EN/UVLO  
Internal Compensation  
20MΩ Internal Feedback Divider  
Output Voltage Up to 40V  
Available in 10-Lead MSOP Package  
AEC-Q100 Automotive Qualification in Progress  
V
UVLO or to shut down the part. The LT8338 enters  
IN  
100% duty cycle PassThru mode when V is higher than  
IN  
the regulated V  
The LT8338 also features frequency  
OUT.  
foldback and internal soft-start for inductor current con-  
trol during start-up.  
All registered trademarks and trademarks are the property of their respective owners.  
APPLICATIONS  
n
Industrial and Automotive Power Supplies  
Battery-Powered Systems  
n
n
General Purpose Step-Up  
TYPICAL APPLICATION  
8V to 16V Input, 36V Output Micropower Synchronous Boost Converter  
Efficiency  
ꢀ0ꢁꢂ  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
0
ꢁꢂ  
ꢃꢄꢀ ꢅꢆ ꢇꢈꢀꢉ  
0.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢁꢂ  
ꢀꢁ0ꢂꢃ ꢃꢄ ꢅꢆ ꢆ  
ꢇꢈ  
1MΩ  
ꢀꢁ0ꢂꢃ ꢃꢄ ꢅꢆꢇ ꢇ  
ꢈꢉ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢄꢅꢆꢀꢇ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢂꢃꢃꢂ  
ꢃ ꢄꢀ  
ꢃ ꢄꢅꢀ  
ꢃ ꢄꢅꢀ  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢀ.ꢀꢁꢂ  
Rꢀ  
ꢀꢁꢂ  
ꢀꢁRꢂ  
ꢀ0ꢁꢂ  
ꢀ0.ꢁꢂ  
ꢁ.ꢁ0ꢃꢄꢅ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
0.0ꢀꢁꢂ  
1MΩ  
ꢀ0  
ꢀ00  
ꢀꢁ  
ꢀꢁꢁꢀ ꢂꢃ0ꢄꢅ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁꢁꢀ ꢂꢃ0ꢄꢅ  
Rev. 0  
1
Document Feedback  
For more information www.analog.com  
LT8338  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
V , V , EN/UVLO, SW ..........................................40V  
IN OUT  
SYNC/MODE ..............................................................6V  
ꢊꢌꢙ ꢅꢆꢔꢋ  
CTRL Above INTV ................................................0.3V  
CC  
ꢀ0 ꢆꢇꢊꢅ  
ꢒꢒ  
ꢆꢇ  
ꢈꢉꢊ  
ꢉꢋ  
ꢉꢋ  
ꢒꢊRꢓ  
RT .....................................................................(Note 2)  
ꢚꢇꢘ  
ꢀꢀ  
ꢔꢇꢕꢍꢅꢓꢌ  
Rꢊ  
INTV ..............................................................(Note 2)  
CC  
ꢉꢖꢇꢒꢕꢗꢌꢘꢔ  
ꢌꢍꢊ  
BST Above SW ..................................................(Note 2)  
Operating Junction Temperature Range (Notes 2, 3)  
LT8338E ............................................ –40°C to 125°C  
LT8338J............................................. –40°C to 150°C  
Storage Temperature Range .................. –65°C to 150°C  
ꢗꢉꢔ ꢙꢛꢒꢜꢛꢚꢔ  
ꢀ0ꢝꢓꢔꢛꢘ ꢙꢓꢛꢉꢊꢆꢒ ꢗꢉꢌꢙ  
θ
ꢟ ꢃ0ꢠꢒꢕꢋ  
ꢞꢛ  
ꢔꢡꢙꢌꢉꢔꢘ ꢙꢛꢘ ꢢꢙꢆꢇ ꢀꢀꢣ ꢆꢉ ꢚꢇꢘꢤ ꢗꢍꢉꢊ ꢈꢔ ꢉꢌꢓꢘꢔRꢔꢘ ꢊꢌ ꢙꢒꢈ  
ORDER INFORMATION  
LEAD FREE FINISH  
LT8338EMSE#PBF  
LT8338JMSE#PBF  
TAPE AND REEL  
PART MARKING*  
LTHGQ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT8338EMSE#TRPBF  
LT8338JMSE#TRPBF  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
–40°C to 125°C  
–40°C to 150°C  
LTHGQ  
Contact the factory for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.  
Rev. 0  
2
For more information www.analog.com  
LT8338  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VOUT = 36V, CTRL = 2.0V, EN/UVLO = 12V, INTVCC = 2.2µF to  
GND, RT = 40.2kΩ to GND, BST = 0.1µF to SW and SYNC/MODE is tied to GND.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
40  
1
UNITS  
V
l
V
V
Operating Voltage  
3.0  
IN  
IN  
Quiescent Current (Note 5)  
EN/UVLO = 0V (Shutdown Mode)  
EN/UVLO = 2V, SYNC/MODE = 0V,  
Not Switching, V –V = +100mV  
(Burst Mode Operation)  
0.1  
6
µA  
18  
µA  
OUT IN  
EN/UVLO = 2V, SYNC/MODE = 0V,  
12  
35  
µA  
µA  
Not Switching, V –V < –100mV  
OUT IN  
(PassThru Mode)  
EN/UVLO = 2V, SYNC/MODE = 2.6V  
(Pulse-Skipping Mode + SSFM)  
1200  
1500  
l
l
l
l
V
Regulation (Note 6)  
V
V
V
= 3.3V, CTRL = 0.5V (D = 33.33%)  
= 9V, CTRL = 1.0V (D = 50%)  
8.8  
9.00  
18.00  
36.00  
41.4  
9.2  
V
V
OUT  
IN  
IN  
IN  
17.8  
35.6  
40.2  
18.2  
36.4  
= 24V, CTRL = 2.0V (D = 66.67%)  
V
V
V
Limit Threshold Voltage (Note 6)  
V
OUT  
OUT  
I in Shutdown  
Q
EN/UVLO = 0V  
5
µA  
l
l
l
EN/UVLO Threshold Voltage  
EN/UVLO Falling  
0.975  
1.000  
50  
1.025  
V
EN/UVLO Rising Hysteresis  
EN/UVLO = 2V  
mV  
nA  
EN/UVLO Input Bias Current  
–40  
40  
INTV Regulation Voltage  
2.56  
2.6  
2.64  
0.02  
0.04  
18.15  
V
CC  
INTV Line Regulation  
3V ≤ V ≤ 40V  
%/V  
%/mA  
V/V  
MΩ  
nA  
CC  
IN  
INTV Load Regulation  
1µA ≤ I  
≤ 10mA  
CC  
INTVCC  
V
V
-to-CTRL Divider Ratio (Note 6)  
OUT  
Internal Divider Resistance  
OUT  
9V ≤ V  
≤ 36V  
17.85  
18.00  
20  
OUT  
CTRL Pin Input Current  
Switching Frequency  
–20  
270  
1.05  
2.00  
0.3  
20  
l
l
l
R = 301k  
T
300  
1.15  
2.20  
335  
1.25  
2.40  
3.0  
kHz  
MHz  
MHz  
MHz  
R = 80.6k  
T
R = 40.2k  
T
SYNC Function Input Frequency Range  
Spread Spectrum Frequency Range  
SYNC/MODE = External Clock  
Range = (f  
/f  
• 100% SYNC/MODE = INTV  
+14  
10  
%
kHz  
V
SW(SPREAD-ON) SW(SPREAD-OFF)-1)  
CC  
Spread Spectrum Modulation Frequency  
SYNC Function Input Low Threshold Voltage  
SYNC Function Input High Threshold Voltage  
SYNC/MODE Pin Voltage  
SYNC/MODE Pulse Falling  
SYNC/MODE Pulse Rising  
SYNC/MODE = Floating  
0.8  
2.0  
V
1.3  
V
Rev. 0  
3
For more information www.analog.com  
LT8338  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VOUT = 36V, CTRL = 2.0V, EN/UVLO = 12V, INTVCC = 2.2µF to  
GND, RT = 40.2kΩ to GND, BST = 0.1µF to SW and SYNC/MODE is tied to GND.  
PARAMETER  
CONDITIONS  
MIN  
30  
TYP  
MAX  
UNITS  
ns  
SYNC/MODE Pulse Width High  
SYNC/MODE Pulse Width Low  
Bottom Switch Current Limit  
Bottom Switch Minimum Off-Time  
Bottom Switch Minimum On-Time  
Bottom Switch On-Resistance  
Top Switch Current Limit (Note 7)  
Top Switch On-Resistance  
Synchronization Mode  
Synchronization Mode  
30  
ns  
l
1.2  
1.4  
1.6  
50  
80  
A
ns  
ns  
240  
1.6  
mΩ  
A
PassThru Mode  
1.3  
1.9  
240  
mΩ  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: These ICs include overtemperature protection that is intended to  
protect the device during momentary overload conditions. The maximum  
rated junction temperature will be exceeded when this protection is active.  
Continuous operation above the specified absolute maximum operating  
junction temperature may impair device reliability or permanently damage  
the device.  
Note 2: Do not drive these pins.  
Note 3: The LT8338E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LT8338J is guaranteed over the full –40° to 150°C operating junction  
temperature range. High junction temperatures degrade operating  
lifetimes; operating lifetime is derated for junction temperatures of greater  
than 125°C.  
Note 5: The V Quiescent Current specifications include the 2.6µA current  
IN  
implied by the specified R  
= 1M resistor.  
INTVCC  
Note 6: V  
regulation is tested in a servo loop.  
OUT  
Note 7: Top Switch Current Limit prevents the bottom switch from turning  
on until the switch current has dropped below the limit.  
Rev. 0  
4
For more information www.analog.com  
LT8338  
TYPICAL PERFORMANCE CHARACTERISTICS  
EN/UVLO Thresholds  
vs Temperature  
INTVCC Voltage vs Temperature  
Output Voltage vs Temperature  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢀ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.0  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢂ  
ꢀ.ꢁ0  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ0ꢁ0  
ꢀ0ꢁ0  
ꢀ0ꢁ0  
ꢀ0ꢁ0  
ꢀ0ꢁ0  
ꢀ0ꢀ0  
ꢀ000  
ꢀꢀ0  
ꢃ ꢄꢅꢀ  
ꢃ ꢄꢅꢀ  
ꢁꢂ  
ꢁꢂ  
ꢃ ꢄꢅꢀ  
ꢁꢂ  
ꢁꢂꢃꢄꢅꢆꢇꢅꢇ  
ꢁꢂꢃꢄꢅꢆꢇꢅꢈ  
ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢂ ꢀꢁꢁ  
ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢂ ꢀꢁꢁ  
ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢂ ꢀꢁꢁ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢁꢀ ꢂ0ꢁ  
ꢀꢁꢁꢀ ꢂ0ꢃ  
ꢀꢁꢁꢀ ꢂ0ꢃ  
Burst Mode Switching Frequency  
vs Load Current  
Switching Frequency  
vs Temperature  
Switching Frequency vs  
Temperature  
ꢀ.ꢁ0  
ꢀ.ꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢀꢀ  
ꢀ.ꢀ0  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢀ  
ꢀ.ꢁ0  
ꢀ0ꢁ  
ꢀ0ꢁ  
ꢀ0ꢀ  
ꢀ0ꢁ  
ꢀ0ꢁ  
ꢀ00  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢄ ꢅꢆꢀ ꢇ ꢄ ꢈ0ꢉꢊ  
R
T
= 40.2kΩ  
ꢁꢂꢃ  
R = 301kΩ  
T
0.ꢀ  
ꢃ ꢄꢅꢀ  
ꢃ ꢄꢅꢀ  
ꢃ ꢄꢅꢀ  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
0.0ꢀ  
ꢀ0  
ꢀ00  
ꢀ00  
ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢂ ꢀꢁꢁ  
ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢂ ꢀꢁꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢁꢀ ꢂ0ꢃ  
ꢀꢁꢁꢀ ꢂ0ꢃ  
ꢀꢁꢁꢀ ꢂ0ꢃ  
Switching Frequency vs  
Temperature  
Burst Mode Efficiency  
vs Inductor Value  
No-Load VIN Current  
vs Temperature, VIN  
ꢀ00.00  
ꢀ0.00  
ꢀ0.00  
ꢀ0.00  
ꢀ0.00  
ꢀ0.00  
ꢀ0.00  
ꢀ0.00  
ꢀ0.00  
ꢀ0.00  
0
ꢀ.ꢁ0  
ꢀ.0ꢁ  
ꢀ.0ꢁ  
ꢀ.0ꢁ  
ꢀ.0ꢁ  
ꢀ.00  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢀ  
ꢀ.ꢁ0  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
R
T
= 28.7kΩ  
ꢀ ꢁꢂ ꢄ ꢃ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ ꢁꢂ ꢄ ꢃ  
ꢀꢁꢂ  
ꢀ ꢁꢂ ꢄ ꢃ  
ꢀꢁꢂ  
ꢄ ꢅꢆꢇ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢄ ꢅ0ꢆꢇ  
ꢄ ꢅ00ꢆꢇ  
ꢃ ꢄꢅ ꢆ ꢀ  
ꢃ ꢊꢋ ꢆ ꢌ ꢀꢁ.ꢁꢂꢃꢄ  
ꢇꢈꢉ ꢀꢁ  
ꢁꢂ  
ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢂ ꢀꢁꢁ  
ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢂ ꢀꢁꢁ  
ꢀ0  
ꢀꢁꢂꢃꢄꢅꢆR ꢇꢈꢉꢊ  
ꢀ00  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢁꢀ ꢂ0ꢃ  
ꢀꢁꢁꢀ ꢂ0ꢃ  
ꢀꢁꢁꢀ ꢂ0ꢀ  
Rev. 0  
5
For more information www.analog.com  
LT8338  
TYPICAL PERFORMANCE CHARACTERISTICS  
Power Switch Current Limit  
vs Temperature  
Bottom Switch On-Resistance  
vs Temperature  
Bottom Switch Minimum On-Time  
vs Temperature  
ꢀ.ꢁ0  
ꢀ.ꢁꢁ  
ꢀ.ꢁ0  
ꢀ.ꢁꢂ  
ꢀ.ꢁ0  
ꢀ.ꢁꢂ  
ꢀ.ꢁ0  
ꢀ.ꢁꢂ  
ꢀ.ꢁ0  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ00  
ꢀꢁ0  
ꢀ00  
ꢀꢁ0  
ꢀ00  
ꢀꢁ0  
ꢀ00  
ꢀꢁ0  
ꢀ00  
ꢀ0  
0
ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢂ ꢀꢁꢁ  
ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢂ ꢀꢁꢁ  
ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢂ ꢀꢁꢁ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢁꢀ ꢂꢃ0  
ꢀꢁꢁꢀ ꢂꢃꢄ  
ꢀꢁꢁꢀ ꢂꢃꢃ  
Bottom Switch Minimum Off-Time  
vs Temperature  
Switch Waveforms  
(In CCM)  
Switching Waveforms  
(In Light Burst Mode Operation)  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀꢁ  
ꢀ0ꢁꢂꢃꢄꢁ  
ꢀꢁ  
ꢀ0ꢁꢂꢃꢄꢁ  
ꢀꢁꢁꢀ ꢂꢃꢄ  
ꢀꢁꢁꢀ ꢂꢃꢄ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢂ ꢀꢁꢁ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢁꢀ ꢂꢃꢁ  
Switching Waveforms  
(In Sleep Mode)  
Switching Waveforms  
(VIN Approaching VOUT  
)
Start-Up Waveforms  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀꢁ  
ꢀꢁ  
ꢀ0ꢁꢂꢃꢄꢁ  
ꢀꢁ  
ꢀ0ꢁꢂꢃꢄꢁ  
ꢀ0ꢁꢂꢃꢄꢁ  
ꢀꢁꢁꢀ ꢂꢃꢀ  
ꢀꢁꢁꢀ ꢂꢃꢄ  
ꢀꢁꢁꢀ ꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀ ꢁꢂ ꢄ ꢃ  
ꢀ ꢁꢂ ꢄ ꢅ  
ꢀ ꢁ00ꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ  
Rev. 0  
6
For more information www.analog.com  
LT8338  
TYPICAL PERFORMANCE CHARACTERISTICS  
Load Step Response  
Load Step Response  
(Burst Mode Operation)  
(Pulse-Skipping Mode)  
ꢁꢂꢃꢄ  
ꢅ00ꢆꢃꢇꢄꢀꢈ  
ꢁꢂꢃꢄ  
ꢅ00ꢆꢃꢇꢄꢀꢈ  
ꢂ00ꢃꢄꢅꢆꢀꢇ  
ꢂ00ꢃꢄꢅꢆꢀꢇ  
ꢁꢂꢃ  
ꢄ00ꢅꢀꢆꢇꢈꢀ  
ꢁꢂꢃ  
ꢄ00ꢅꢀꢆꢇꢈꢀ  
ꢁꢂꢃꢀꢄꢄ  
ꢅ0ꢆꢀꢇꢈꢁꢀ  
ꢁꢂꢃꢀꢄꢄ  
ꢅ0ꢆꢀꢇꢈꢁꢀ  
ꢀꢁꢁꢀ ꢂꢃꢄꢅ0  
ꢀꢁꢁꢀ ꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
PIN FUNCTIONS  
IN  
a low ESR ceramic capacitor of 0.1µF or greater. Place the  
capacitor as close to the pin as possible.  
V (Pin 1): Input Supply Pin. Bypass this pin to GND with  
Pulse-Skipping = Skipped pulse(s) at light load (aligned to clock)  
SYNC = Switching frequency synchronized to external clock  
SSFM = Spread Spectrum Frequency Modulation for low EMI  
RT (Pin 7): Switching Frequency Set Pin. Set the switch-  
ing frequency with a resistor between this pin and GND.  
Do not leave this pin open. In frequency synchronization  
BST (Pin 2): Top Switch Gate Driver Supply Pin. Tie a 0.1µF  
capacitor between BST and SW as close as possible to the  
pins to keep the trace length short.  
mode, use a resistor R to program the frequency the  
T
same as the synchronization signal.  
SW (Pins 3, 4): Switch Node. Connect this pin to inductor,  
and to the boost capacitor. SW is a high dV/dt node that  
should be kept as compact as possible and away from high  
impedance nodes.  
EN/UVLO (Pin 8): Enable and Input Undervoltage  
Lockout Pin. The LT8338 is shut down when this pin is  
below 1V (typ), and is enabled when this pin is above  
1.05V (typ). A resistor divider from V to GND pro-  
V
(Pin 5): Output Voltage Pin. Bypass this pin to GND  
IN  
OUT  
grams a V threshold below which the LT8338 is shut  
with a low ESR ceramic capacitor of 4.7µF or greater. Place  
the capacitor as close to the pin as possible. Additional  
capacitance as required by specific applications must be  
similarly closely placed. See the Applications and Physical  
Layout sections for details. An 18:1 internal resistive  
voltage divider provides feedback sensing of the output  
voltage to the error amplifier.  
IN  
down. Tying this pin to GND shuts down operation and  
reduces quiescent supply current to 0.2µA (max). Tie to  
V if the shutdown feature is not used.  
IN  
CTRL (Pin 9): Reference Input Pin. Tie the tap point of  
a resistive voltage divider between INTV and GND to  
CC  
this pin to set the error amplifier reference input to 1/18  
of the desired system output voltage.  
SYNC/MODE (Pin 6): External Synchronization Input and  
Light Load Operation Mode Selection Pin. This pin allows  
five selectable modes for optimization of performance.  
INTV (Pin 10): Internal 2.6V Regulator Pin. Bypass  
CC  
this pin to GND with a low ESR ceramic capacitor of  
2.2µF or greater. Place the capacitor as close to the pin  
SYNC/MODE PIN INPUT  
(1) GND or <0.14V  
CAPABLE MODE(S) OF OPERATION  
Burst  
as possible. Set the output voltage (V ) by program-  
OUT  
ming the CTRL pin voltage via a resistive voltage divider  
(2) 100k Resistor to GND  
(3) Float (Pin Open)  
Burst/SSFM  
between INTV and GND. Use a minimum total resis-  
CC  
Pulse-Skipping  
tance of 1M to keep the divider’s contribution to the V  
quiescent current to 2.6µA in shut down.  
IN  
(4) INTV or >2.0V  
Pulse-Skipping/SSFM  
Pulse-Skipping/SYNC  
CC  
(5) External Clock  
GND (Pin 11): Ground Pin. Connect this pin to system  
where the selectable modes of operation are:  
ground and to the ground plane to achieve the best ther-  
Burst = Low I , low output ripple operation at light loads  
Q
mal performance.  
Rev. 0  
7
For more information www.analog.com  
LT8338  
BLOCK DIAGRAM  
ꢄꢈ  
ꢄꢈꢅꢖ  
ꢆꢆ  
ꢆꢗ  
ꢆꢙ  
ꢆꢘ  
ꢄꢈ  
ꢄꢈꢅꢖ  
ꢕꢂꢅ  
ꢂꢃ  
ꢆꢆ  
ꢕꢉꢜRꢍꢏꢠ  
ꢙꢖ  
ꢚ.ꢤꢖ ꢊꢑꢋ  
ꢚ.ꢤꢖ  
ꢎꢚ  
ꢆꢆꢊꢋꢃ  
Rꢗ  
Rꢘ  
Rꢍꢂꢍꢅ  
ꢉꢚ  
ꢍꢈꢜꢓꢖꢊꢋ  
ꢔꢅꢋꢒ  
ꢋꢓꢅ  
ꢅꢍꢔꢒ ꢊꢄꢔꢄꢅ  
ꢘꢗ ꢦ R  
ꢄꢈ  
ꢏꢕ  
ꢒꢎꢂꢂꢅꢇRꢓ  
ꢄꢈꢅꢖ  
ꢆꢆ  
ꢂꢃꢄꢅꢆꢇꢄꢈꢉ ꢊꢋꢉꢄꢆꢌ  
ꢄꢈꢅꢍRꢈꢎꢊ ꢂꢋꢏꢂꢅꢎRꢅ  
ꢎꢈꢑ ꢆꢇꢎRꢉꢍ ꢒꢓꢔꢒ  
R
R
ꢑꢄꢖ  
ꢆꢚ  
ꢋꢓꢅ  
ꢉꢙ  
ꢏꢕꢜꢚ  
ꢔꢕꢋꢅ  
ꢙ.ꢙꢥꢖ  
ꢏꢕꢜꢚ  
ꢉꢈꢑ  
ꢋꢓꢅꢊꢄꢔ  
ꢂꢛꢈꢆꢜ  
ꢔꢋꢑꢍ  
ꢄꢈꢅꢖ  
ꢆꢆ  
ꢕꢞꢟꢠꢡ ꢔꢢꢣe  
ꢋꢒꢍRꢎꢅꢄꢋꢈ  
ꢑꢍꢅꢍꢆꢅ  
ꢎꢙ  
Rꢚ  
ꢆꢅRꢊ  
Rꢅ  
Rꢎꢔꢒ  
ꢉꢍꢈꢍRꢎꢅꢋR  
ꢍꢎ  
ꢋꢂꢆ  
Rꢙ  
ꢏꢕ  
R
ꢝꢙ  
ꢂꢋꢏꢂꢅꢎRꢅ  
ꢀꢁꢁꢀ ꢂꢃ  
Rev. 0  
8
For more information www.analog.com  
LT8338  
OPERATION  
If the EN/UVLO pin is lower than 0.3V, the LT8338 is  
shut down and draws < 0.2μA from the input. When the  
EN/UVLO pin is above 1.05V, the switching regulator  
becomes active.  
The LT8338 is a synchronous boost converter that uses a  
fixed frequency, current mode control scheme to provide  
excellent line and load regulation. Referring to the Block  
Diagram, the Switching Logic and Charge Pump block  
turns on the power switch MBOT through driver G1 at the  
The LT8338 can be configured to work in different modes  
by setting SYNC/MODE pin. If the SYNC/MODE pin is tied  
to ground directly, the LT8338 provides low output ripple  
Burst Mode operation with ultralow quiescent current  
at light loads. Connecting SYNC/MODE pin to ground  
througha100kresistorenablesBurstModeoperationwith  
frequency spread spectrum modulation (see Frequency  
Spread Spectrum Modulation section). When Burst Mode  
operation is selected, all circuitries associated with con-  
trolling the output switches are shut down to reduce the  
quiescent current between bursts. When SYNC/MODE pin  
is floated, the LT8338 operates in pulse-skipping mode,  
which reduces output ripple compared to Burst Mode  
operationandincreasesthequiescentcurrenttohundreds  
start of each oscillator cycle. The inductor current I flows  
L
throughMBOT, whosecurrentsensingsignalisaddedtoa  
stabilizingslopecompensationrampandtheresultingsum  
is fed into the positive terminal of the PWM comparator  
A1. The level at the negative input of A1, labeled “V ”, is  
C
set by the error amplifier EA and is an amplified version  
of the difference between the feedback voltage (from the  
internal voltage divider) and the reference voltage (from  
CTRL pin). During the MBOT-on phase, I increases.  
L
When the signal at the positive input of A1 exceeds V ,  
C
A1 sends a signal to turn off MBOT. When MBOT turns  
off, the synchronous power switch MTOP turns on until  
the next clock cycle begins or inductor current I falls to  
L
zero.Ifoverloadconditionsresultinexcesscurrentflowing  
throughthetopswitch,thenextclockcyclewillbedelayed  
until switch current returns to a safe level. Through this  
of microamps. Connecting the SYNC/MODE pin to INTV  
CC  
selects pulse-skipping operation with spread spectrum  
modulation enabled. Spread spectrum modulation varies  
the switching frequency to reduce EMI. When the SYNC/  
MODE pin is driven by an external clock, the converter  
switching frequency is synchronized to that clock and  
pulse-skipping mode is enabled.  
repetitive action, the EA sets the correct I peak current  
level to keep the output voltage in regulation.  
L
Rev. 0  
9
For more information www.analog.com  
LT8338  
APPLICATIONS INFORMATION  
Programming V Turn-On and Turn-Off Thresholds  
high transient currents required by the power MOSFET  
IN  
with the EN/UVLO Pin  
gate drivers. Applications with high V voltage and high  
IN  
switching frequency will increase die temperature due to  
The LT8338 is in shutdown when the EN/UVLO pin is  
low. The falling threshold of the EN comparator is 1V,  
with 50mV of hysteresis. The EN pin can be tied to V if  
the shutdown feature is not used, or tied to a logic level  
if shutdown control is required. The LT8338 draws very  
low shutdown quiescent current (0.2µA typ) When EN/  
UVLO is below 0.3V.  
the higher power dissipation across the LDO. The INTV  
CC  
falling threshold (to stop switching and reset soft-start)  
IN  
is typically 2.2V, and the rising threshold is 2.3V. Do not  
connect an external load to the INTV pin.  
CC  
Achieving Ultralow Quiescent Current  
When LT8338 is set for Burst Mode operation to enhance  
efficiency at light loads, the minimum peak inductor cur-  
Adding a resistor divider from V to EN/UVLO programs  
IN  
the LT8338 to regulate the output only when V is above  
IN  
rent is set to approximately 300mA even though V node  
C
a desired voltage. Typically, this threshold, VIN(EN), is used  
in situations where the input supply is current limited, or  
has a relatively high source resistance. A switching reg-  
ulator draws constant power from the source, so source  
current increases as source voltage drops. This looks like  
a negative resistance load to the source and can cause  
the source to current limit or latch low under low source  
voltage conditions. The VIN(EN) threshold prevents the  
regulator from operating at source voltages where the  
problems might occur. This threshold can be adjusted by  
setting the values R3 and R4 (refer to the Block Diagram)  
such that they satisfy Equation 1.  
indicates a lower value (refer to the Block Diagram). In  
Burst Mode operation, the LT8338 delivers single pulses  
of current to the output capacitor followed by sleep peri-  
ods where the output power is supplied by the output  
capacitor. That is, at light load condition, the LT8338  
maintains the output regulation voltage by reducing the  
switching frequency instead of reducing the inductor peak  
current.  
As the output load decreases, the frequency of single cur-  
rent pulses decreases (see Figure 1) and the percentage of  
time the LT8338 is in sleep mode increases, resulting in  
much higher light load efficiency than typical converters.  
By maximizing the time between pulses, the converter  
quiescent current approaches 6μA for a typical application  
when there is no output load. In addition, if high light load  
efficiency is desired, a larger inductor value should be  
chosen. See the Burst Mode Efficiency vs Inductor Value  
curve in the Typical Performance Characteristics.  
(R3+R4)  
V
= 1V •  
IN,FALLING  
R3  
(1)  
(R3+R4)  
R3  
V
= 40mV •  
+ V  
IN,FALLING  
IN,RISING  
When operating in Burst Mode operation for light load  
applications, the current through the R3 and R4 resis-  
tor network can easily be greater than the supply current  
consumed by the LT8338. Therefore, R3 and R4 should  
be large to minimize their effect on efficiency at low loads.  
ꢀ ꢁꢂ ꢄ ꢅ ꢀ ꢆ0ꢇꢈ  
ꢀꢁꢂ  
0.ꢀ  
INTV Regulator  
CC  
An internal low dropout (LDO) regulator produces the  
2.6V supply from VIN that powers the drivers and the  
internal bias circuitry. INTVCC can supply enough cur-  
rent for the LT8338’s circuitry and must be bypassed  
to ground with a minimum of 2.2μF low ESR ceramic  
capacitor. Good bypassing is necessary to supply the  
0.0ꢀ  
0.00ꢀ  
ꢃ ꢄꢀ  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢃ ꢄꢀ  
ꢃꢄꢅꢀ  
ꢃ ꢄꢅꢀ  
ꢃ ꢄꢅꢀ  
ꢀ0  
ꢀ00  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁꢁꢀ ꢂ0ꢃ  
Figure 1. Burst Mode Frequency vs Load  
Rev. 0  
10  
For more information www.analog.com  
LT8338  
APPLICATIONS INFORMATION  
While in Burst Mode operation (Figure 2), the current  
limit of the bottom switch is approximately 300mA (as  
shown in Switching Waveforms in Burst Mode Operation  
in Typical Performance Characteristics), resulting in larger  
output voltage ripple comparing to that in pulse-skipping  
mode operation. Increasing the output capacitance will  
decrease output ripple proportionally. As the load ramps  
upward from zero, the switching frequency increases until  
The LT8338 uses a constant-frequency architecture that  
can be programmed over a 300kHz to 3MHz range with  
a single external resistor from the RT pin to ground, as  
shown in the Block Diagram.  
Table 1 gives some specific examples of RT values for  
specific switching frequencies.  
Table 1. SW Frequency (fSW) vs RT Value  
reaching the switching frequency programmed by the R  
f
(MHz)  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
R (kΩ)  
f
(MHz)  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
R (kΩ)  
SW  
T
SW  
T
T
resistor. The output load at which the LT8338 reaches the  
programmed frequency varies based on input voltage,  
output voltage, and inductor choice.  
301  
226  
182  
154  
133  
118  
102  
93.1  
84.5  
76.8  
71.5  
64.9  
60.4  
56.2  
52.3  
49.9  
46.4  
44.2  
42.2  
40.2  
38.3  
36.5  
34.8  
33.2  
32.4  
30.9  
29.4  
28.7  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀꢁ  
ꢀ0ꢁꢂꢃꢄꢁ  
ꢀꢁꢁꢀ ꢂ0ꢃ  
ꢀꢁꢂꢃꢄꢅꢆ  
Figure 2. Burst Mode Operation Waveforms  
For some applications it is desirable for the LT8338 to  
operate in pulse-skipping mode. Pulse-skipping mode  
operation offers two major differences from Burst Mode  
operation. First the clock stays awake at all times and all  
switching cycles are aligned to the clock. In this mode  
much of the internal circuitry is awake at all times, increas-  
ing quiescent current to thousand μA (compared to 6μA  
quiescent current in Burst Mode operation). Secondly  
pulse-skipping mode operation exhibits lower output  
ripple as well as lower audio noise and RF interference.  
The operating frequency of the LT8338 can be synchro-  
nized to an external clock source. By providing a clock  
signal into the SYNC/MODE pin, the LT8338 operates  
at the SYNC pulse frequency and automatically enters  
pulse-skipping mode operation at light load. If this feature  
is used, an R resistor should be chosen to program a  
T
switching frequency equal to, or slightly less than the  
SYNC pulse frequency. For example, if the synchroniza-  
tion signal is 500kHz or higher, the R should be selected  
T
for 500kHz. The slope compensation is set by the RT  
value, while the minimum slope compensation required  
to avoid subharmonic oscillations is established by the  
inductor size, input voltage, and output voltage. Since  
the synchronization frequency will not change the slope  
of the inductor current waveform, if the inductor is large  
enough to avoid subharmonic oscillation at the frequency  
Operating Frequency and Synchronization  
The choice of operating frequency is a trade-off between  
efficiency and component size. Low frequency operation  
improves efficiency by reducing the power switches’  
switching losses and gate drive current. However, lower  
frequency operation requires a physically larger inductor.  
set by R , then the slope compensation will be sufficient  
T
for all synchronization frequencies.  
Rev. 0  
11  
For more information www.analog.com  
LT8338  
TYPICAL APPLICATIONS  
The input synchronization clock signal can be square  
wave, triangle wave, or sinusoidal wave. The input signal  
should have valleys that are below 1V and peaks above 2V.  
The minimum duration time that the input signal ampli-  
tude stays higher than the 2V threshold and lower than  
the 0.8V threshold, should be no less than 30ns.  
V to V  
PassThru Mode Operation  
IN  
OUT  
When V rises above the regulated V  
voltage pro-  
OUT  
IN  
grammed by the CTRL pin voltage, the LT8338 boost con-  
verter enters PassThru operation, where the synchronous  
power switch MTOP (refer to the Block Diagram) is kept  
on continuously and power switch MBOT is kept off con-  
tinuously. An internal charge pump circuit is activated to  
deliver sufficient current to the boost capacitor (CBST)  
to maintain the MTOP’s gate drive voltage. In PassThru  
Frequency Spread Spectrum Modulation  
The LT8338 features spread spectrum operation to further  
reduce EMI/EMC emissions. The user can select frequency  
spectrum modulation with Burst Mode operation by con-  
necting the SYNC/MODE pin to ground through a 100k  
resistor, or frequency spread modulation with pulse-skip-  
ping operation by connecting the SYNC/MODE pin to  
mode V  
is essentially shorted to V by the inductor  
OUT  
IN  
and power switch. When V falls below V  
voltage, or  
IN  
OUT  
the inductor conducts more than 300mA current from  
V
V
to V , LT8338 exits PassThru mode operation. If  
OUT  
OUT  
IN  
is lower than the desired voltage, the normal boost  
INTV . When frequency spectrum modulation is selected  
switching operation resumes.  
CC  
and the converter operates at heavy load, the triangu  
-
lar frequency modulation varies the switching frequency  
Switching Frequency Foldback when V  
Approaches V  
IN  
between the value programmed by R to approximately  
T
OUT  
14% higher than that value. The modulation frequency  
is approximately 0.42% of the switching frequency. For  
example, when the LT8338 is programmed to 2MHz, the  
frequency will vary from 2MHz to 2.3MHz at a 9kHz rate.  
When operating at light load, frequency spread spectrum  
modulation is more effective in pulse-skipping mode than  
in Burst Mode operation, due to the fact that pulse-skip-  
ping operation maintains the switching frequency with  
spread spectrum down to a much lower load current com-  
pared to Burst Mode operation.  
In some boost applications, V may rise to a voltage very  
IN  
close to V . When this occurs, the switching regulator  
OUT  
must operate at very low duty cycle to keep V  
in reg-  
OUT  
ulation. However, the minimum on-time limitation may  
prevent the switcher from attaining a sufficiently low duty  
cycle at the programmed switching frequency; as a result  
a typical boost converter may experience a large output  
ripple. LT8338 addresses this issue by adopting a switch-  
ing frequency foldback function to smoothly decrease the  
switching frequency when its minimum on-time starts  
to limit the switcher from attaining a sufficiently low  
duty cycle. The typical switching waveforms when VIN  
CTRL Resistor Network  
The output voltage is internally set as shown in Equation 2.  
approaches V  
are shown in the Typical Performance  
OUT  
Characteristics section.  
V
OUT  
= V  
• 18  
(2)  
CTRL  
Typically, the CTRL pin voltage is programmed with a  
Soft-Start  
resistor divider between the INTV and ground (refer to  
CC  
High peak switch currents during start-up may occur  
the Block Diagram).  
in switching regulators. Since V  
is far from its final  
value, the feedback loop is satuOraUtTed and the regulator  
tries to charge the output capacitor as quickly as possible,  
resulting in large peak currents. A large surge current may  
cause inductor saturation or power switch failure.  
1% resistors are recommended to maintain output voltage  
accuracy. The current flowing in the divider acts as a load  
current of the internal LDO and will increase the no-load  
input current to the converter. If low input quiescent cur-  
rent and good light-load efficiency are desired, use large  
resistor values for the CTRL resistor divider.  
The LT8338 utilizes a soft-start function to limit peak  
switch currents and output voltage (VOUT) overshoot  
during start-up or recovery from a fault condition to  
Rev. 0  
12  
For more information www.analog.com  
LT8338  
APPLICATIONS INFORMATION  
prevent damage to external components or the load.  
As shown in the Block Diagram, the soft-start function  
controls the ramp of the power switch current by con-  
trolling the ramp of VC through Q1. This allows the output  
capacitor to be charged gradually toward its final value  
while limiting the start-up peak currents. The typical  
start-up waveforms are shown in the Typical Performance  
Characteristics section.  
ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢁꢂ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁ  
ꢂꢃꢃꢂ  
ꢀꢁꢂ  
Hot Plug  
ꢀꢁꢁꢀ ꢂ0ꢁ  
If the LT8338 boost converter is plugged into a live sup-  
ply, VOUT can ring to twice the VIN voltage due to the  
resonant circuit composed by L, C2, and the body diode  
of MTOP (refer to the Block Diagram). If such overshoot  
Figure 3. A Simplified LT8338 Power Stage with a  
Diode Added Between VIN and VOUT  
exceeds the V  
rating, it needs to be limited to protect  
OUT  
maximum duty cycles of the converter (see Minimum  
On-Time, Minimum Off-Time, and Switching Frequency  
in the Electrical Characteristics table) as:  
the load and the converter. In these conditions, a small  
diode (Schottky diode or silicon diode) can be connected  
between V and V  
to deactivate the resonant circuit  
IN  
OUT  
Minimum Allowable Duty Cycle =  
and limit V  
overshoot as shown in Figure 3. With the  
OUT  
Minimum On-Time  
• f  
diode connected, the LT8338 boost is also more robust  
against output fault conditions such as output short cir-  
cuit or overload, due to the diode's ability to divert a great  
amount of output current from the LT8338. The diode  
can be rated for about one-half to one-fifth the full load  
current since it only conducts current during start-up or  
output fault conditions.  
(MAX) OSC(MAX)  
Maximum Allowable Duty Cycle =  
1 – Minimum Off-Time  
• f  
(MAX) OSC(MAX)  
The required switch duty cycle range for a boost converter  
operating in continuous conduction mode (CCM) can be  
calculated using Equation 3.  
V
– V  
IN(MAX)  
OUT  
D
=
Fault Protection  
MIN  
V
OUT  
(3)  
INTV undervoltage (INTV < 2.2V), or thermal lockout  
CC  
(TJ > 170°C) will immediaCteCly stop the converter from  
V
– V  
IN(MIN)  
OUT  
D
=
MAX  
switching, pull down V and reset soft-start. Faults are  
C
V
OUT  
removed when INTV > 2.3V, and the die temperature  
CC  
If the above duty cycle calculations for a given appli-  
cation violate the minimum and/or maximum allowed  
duty cycles, operation in discontinuous conduction  
mode (DCM) may provide a solution. For the same V and  
has dropped down to 165°C or lower. Once all faults are  
removed, the LT8338 will resume switching with a soft-  
started V inductor peak current limiting.  
C
In addition, converter will stop switching immediately  
V
levels, operation in DCM does not demand asIlNow a  
OUT  
when V  
overvoltage (V  
> 41.4V) happens, and will  
is lower than 40.6V.  
OUT  
OUT  
OUT  
duty cycle as in CCM. DCM also allows higher duty cycle  
operation than CCM. The additional advantage of DCM is  
the removal of the limitations to inductor value and duty  
cycle required to avoid sub-harmonic oscillations and the  
right half plane zero (RHPZ). While DCM provides these  
resume switching once V  
Duty Cycle Consideration  
The LT8338 minimum on-time, minimum off-time and  
switching frequency define the allowable minimum and  
Rev. 0  
13  
For more information www.analog.com  
LT8338  
TYPICAL APPLICATIONS  
benefits, the trade-off is higher inductor peak current,  
lower available output power and reduced efficiency.  
bulk capacitance may be necessary. This can be provided  
with a low performance electrolytic capacitor.  
The voltage rating of the input capacitor, C1, should com-  
fortably exceed the maximum input voltage. Although  
ceramic capacitors can be relatively tolerant of overvolt-  
age conditions, aluminum electrolytic capacitors are not.  
Be sure to characterize the input voltage for any possible  
overvoltage transients that could apply excess stress to  
the input capacitors.  
Inductor Selection  
The inductor peak-to-peak current ripple ∆ISW has a direct  
effect on the choice of the inductor value, the converter’s  
maximum output current capability, and the light load effi-  
ciency in Burst Mode operation. Smaller values of ∆I  
SW  
increase output current capability and light load efficiency  
in Burst Mode operation, but require large inductances  
and reduces the current loop gain (the converter will  
Output Capacitor Selection  
approach voltage mode). Larger values of ∆I provide  
SW  
The output capacitor has two essential functions. First, it  
filters LT8338’s discontinuous top switch current to pro-  
duce the DC output. In this role it determines the output  
ripple, and thus low impedance at the switching frequency  
is important. The second function is to store energy in  
order to satisfy transient loads and stabilize the LT8338’s  
control loop. The X5R or X7R type ceramic capacitors  
have very low equivalent series resistance (ESR), which  
provides low output ripple and good transient response.  
Transient performance can be improved with higher value  
output capacitance. Increasing the output capacitance will  
also decrease the output voltage ripple. Lower values of  
output capacitance can be used to save space and cost  
but transient performance will suffer and may cause  
loop instability.  
fast transient response and allow the use of low induc-  
tances, but result in higher input current ripple and greater  
core losses, reduce the light load efficiency in Burst Mode  
operation, and reduce output current capability.  
Given an operating input voltage range, and having cho-  
sen the operating frequency and ripple current in the  
inductor, the inductor value of the boost converter can  
be determined using the following equation:  
V
IN(MIN)  
L =  
• D  
MAX  
(4)  
∆I • ƒ  
SW  
here the ripple current ∆I can be set to 0.2A as a good  
starting point. The peakSiWnductor current is the switch  
current limit (1.2A typical). The user should choose an  
inductor having a sufficient saturation and RMS current  
A 4.7μF ceramic capacitor is adequate for the LT8338 out-  
2
put capacitor. This ceramic should be placed near to V  
/
rating, and a low DCR to minimize I R power losses.  
OUT  
GND. See the Board Layout section for more details. Note  
that larger output capacitance is required when a lower  
switching frequency is used. When choosing a capacitor,  
special attention should be given to capacitor’s data sheet  
to calculate the effective capacitance under the relevant  
operating conditions of voltage bias and temperature. A  
physically larger capacitor or one with a higher voltage  
rating may be required. For good starting values, refer to  
the Typical Application section.  
Input Capacitor Selection  
Bypass the input of the LT8338 circuit with a ceramic  
capacitor of type X7R or X5R. The value of the input bypass  
capacitor is a function of the source impedance, and in  
general, the higher the source impedance, the higher the  
required input capacitance. The capacitor value depends  
on the input current ripple as well. The input ripple current  
in a boost converter is relatively low (compared with the  
output ripple current) because this current is continuous.  
A 2.2μF to 10μF ceramic capacitor is adequate to bypass  
the LT8338 and will easily handle the ripple current. If the  
input power source has high impedance or there is sig-  
nificant inductance due to long wires or cables, additional  
Board Layout  
Figure 4 shows a recommended PCB layout. For more  
details and PCB design files refer to the Demo Board guide  
for the LT8338.  
Rev. 0  
14  
For more information www.analog.com  
LT8338  
APPLICATIONS INFORMATION  
vias; these layers spread heat dissipated by the LT8338.  
Placing additional vias can reduce thermal resistance  
further. The maximum load current should be derated  
as the ambient temperature approaches the maximum  
junction temperature rating. Power dissipation within the  
LT8338 can be estimated by calculating the total power  
loss from an efficiency measurement and subtracting the  
inductor loss. The junction temperature can be calculated  
by multiplying the total LT8338 power dissipation by the  
thermal resistance from junction to ambient and adding  
the ambient temperature. The LT8338 includes internal  
overtemperature protection that is intended to protect  
the device during momentary overload conditions. The  
overtemperature protection triggers the internal soft-start  
when junction temperature exceeds 170°C. The maximum  
rated junction temperature is exceeded when this protec-  
tion is active. Continuous operation above the specified  
absolute maximum operating junction temperature (see  
Absolute Junction Ratings section) may impair device  
reliability or permanently damage the device.  
The output capacitor, along with the inductor and input  
capacitor, should be placed on the same side of the circuit  
board, and their connections should be made on that layer.  
Place a local, unbroken power ground plane under the  
application circuit on the layer closest to the surface layer.  
The SW and BST nodes should be as small as possible.  
Keep the CTRL and R nodes small so that the ground  
T
traces will shield them from the noise generated by the  
SW and BST nodes. The exposed pad on the bottom of  
the package should be soldered to GND to reduce ther-  
mal resistance to ambient temperature. To keep thermal  
resistance low, extend the power ground plane from GND  
as much as possible and add thermal vias to additional  
power ground planes within the circuit board and on the  
bottom side.  
Thermal Considerations  
Care should be taken in the layout of the PCB to ensure  
good heat sinking of the LT8338. The power ground  
plane should consist of large copper layers with thermal  
0ꢒ0ꢎ  
0ꢒ0ꢎ  
0ꢁ0ꢄ  
0ꢒ0ꢎ  
ꢀꢅ  
ꢀꢆ  
0ꢁ0ꢄ  
Rꢅ  
Rꢄ  
0ꢊꢌꢈ  
ꢉꢊ  
ꢀꢀ  
0ꢁ0ꢄ  
0ꢁ0ꢄ  
ꢀꢎ  
ꢋꢂꢌ  
ꢂꢍ  
ꢀꢌRꢇ  
Rꢁ  
Rꢆ  
0ꢁ0ꢄ  
ꢀꢁ  
ꢓꢊꢔ  
ꢙꢊꢘ  
ꢅꢅ  
ꢐꢈꢇꢏ  
0ꢁ0ꢄ  
0ꢁ0ꢄ  
ꢂꢍ  
Rꢌ  
R
ꢂꢗꢊꢀꢔ  
ꢃꢏꢘꢓ  
ꢏꢐꢌ  
R
ꢂꢃ  
0ꢁ0ꢄ  
0ꢁ0ꢄ  
0ꢒ0ꢎ  
ꢀꢄ  
ꢀꢁꢁꢀ ꢂ0ꢃ  
Figure 4. A Recommended PCB Layout for the LT8338  
Rev. 0  
15  
For more information www.analog.com  
LT8338  
TYPICAL APPLICATION  
Efficiency  
8V to 16V Input, 24V Output Boost Converter  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ0ꢁꢂ  
ꢁꢂ  
ꢀꢁꢂ ꢃꢄ ꢅꢆꢂꢇ  
ꢀꢁ  
ꢀꢁ  
0.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
Rꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ0ꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
Rꢀ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢂꢃꢃꢂ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢀꢁ  
ꢀ.ꢀꢁꢂ  
Rꢀ  
Rꢀ  
ꢀꢁꢂ  
ꢀꢁRꢂ  
ꢃ ꢄꢀ  
ꢃ ꢄꢅꢀ  
ꢃ ꢄꢅꢀ  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢀꢁꢂꢃ  
Rꢀ  
ꢀ0.ꢁꢂ  
ꢀꢁ  
0.0ꢀꢁꢂ  
Rꢀ  
ꢀ.ꢀ0ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ0  
ꢀ00  
ꢀꢁ  
ꢀꢁꢁꢀ ꢂꢃ0ꢄꢅ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁ ꢂꢃRꢄꢅ ꢆꢀꢆꢇꢄRꢈꢉꢊꢇ ꢋꢌꢍꢎꢌꢎꢎꢏꢐ00  
ꢑꢐꢁ ꢄꢒꢇ ꢑꢓꢔꢍꢕꢎꢖꢋRꢐꢅꢗꢗꢘꢇꢐꢗꢘꢔꢙ  
ꢑꢗꢁ ꢄꢒꢇ ꢑꢓꢔꢍꢕꢐꢖꢋRꢐꢅꢍꢋꢘꢇꢐꢗꢘꢔꢑ  
ꢀꢁꢁꢀ ꢂꢃ0ꢄꢅ  
Efficiency  
5V to 30V Input, 30V Output Boost Converter  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ0ꢁꢂ  
ꢁꢂ  
ꢀꢁꢂ ꢃꢄ ꢅ0ꢂꢆ  
ꢀꢁ  
ꢀꢁ  
0.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
Rꢀ  
ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀ00ꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ0ꢂꢃ  
Rꢀ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢂꢃꢃꢂ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢀꢁ  
ꢀ.ꢀꢁꢂ  
ꢃ ꢄꢀ  
ꢃꢄꢅꢀ  
ꢃ ꢄꢅꢀ  
Rꢀ  
ꢀꢁꢂꢃ  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
Rꢀ  
ꢀꢁꢂ  
ꢀꢁRꢂ  
Rꢀ  
ꢀ0.ꢁꢂ  
ꢀꢁ  
0.0ꢀꢁꢂ  
Rꢀ  
ꢀ0  
ꢀ00  
ꢀꢁ  
ꢀ.ꢀ0ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁꢁꢀ ꢂꢃ0ꢁꢄ  
ꢀꢁꢁꢀ ꢂꢃ0ꢁꢄ  
ꢀꢁ ꢂꢃRꢄꢅ ꢆꢀꢆꢇꢄRꢈꢉꢊꢇ ꢋꢌꢍꢎꢌꢎꢎꢏꢐ00  
ꢑꢐꢁ ꢄꢒꢇ ꢑꢓꢔꢍꢕꢎꢖꢋRꢐꢅꢗꢗꢘꢇꢐꢗꢘꢔꢙ  
ꢑꢗꢁ ꢄꢒꢇ ꢑꢓꢔꢍꢕꢐꢖꢋRꢐꢅꢍꢋꢘꢇꢐꢗꢘꢔꢑ  
Rev. 0  
16  
For more information www.analog.com  
LT8338  
TYPICAL APPLICATION  
3V to 40V Input, 24V Output Pre-Boost Converter  
Efficiency  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ.ꢁꢂꢃ  
ꢁꢂ  
ꢀꢁꢂ ꢃꢄ ꢅ0ꢂꢆ  
ꢀꢁ  
ꢀꢁ  
ꢀ.ꢀꢁꢂ  
0.ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
Rꢀ  
ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀ0ꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
Rꢀ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢂꢃꢃꢂ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢀꢁ  
ꢀ.ꢀꢁꢂ  
Rꢀ  
ꢀꢁꢂ  
ꢀꢁRꢂ  
Rꢀ  
ꢀꢁꢂꢃ  
ꢃ ꢄꢀ  
ꢁꢂ  
ꢁꢂ  
Rꢀ  
ꢃ ꢄꢅꢀ  
ꢀ0.ꢁꢂ  
ꢀꢁ  
Rꢀ  
ꢀꢁꢂꢃ  
ꢀ.ꢀ0ꢁꢂꢃ  
0.0ꢀꢁꢂ  
ꢀ0  
ꢀ00  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁꢁꢀ ꢂꢃ0ꢄꢅ  
ꢀꢁꢁꢀ ꢂꢃ0ꢄꢅ  
ꢀꢁ ꢂꢃRꢄꢅ ꢆꢀꢆꢇꢄRꢈꢉꢊꢇ ꢋꢌꢍꢎꢌꢎꢎꢏ0ꢍꢋ  
ꢐꢑꢁ ꢄꢒꢇ ꢐꢓꢔꢍꢕꢎꢖꢋRꢑꢅꢗꢗꢘꢇꢑꢗꢘꢔꢙ  
ꢐꢗꢁ ꢄꢒꢇ ꢐꢓꢔꢍꢕꢑꢖꢋRꢑꢅꢍꢋꢘꢇꢑꢗꢘꢔꢐ  
3V to 3.6V Input, 5V Output Boost Converter  
Efficiency  
ꢀ00.00  
ꢀ0.00  
ꢀ0.00  
ꢀ0.00  
ꢀ0.00  
ꢀ0.00  
ꢀ0.00  
ꢀ0.00  
ꢀ0.00  
ꢀ0.00  
0
ꢀ.ꢀꢁꢂ  
ꢁꢂ  
ꢃꢄꢀ ꢅꢆ ꢄ.ꢇꢀꢈ  
ꢀꢁ  
ꢀꢁ  
ꢀ.ꢀꢁꢂ  
0.ꢀꢁꢂ  
Rꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀ00ꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢂꢃꢃꢂ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢀꢁ  
ꢀ.ꢀꢁꢂ  
ꢀ ꢁ.0ꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁ.ꢂꢃ  
Rꢀ  
ꢀꢁꢂ  
ꢀꢁRꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
Rꢀ  
ꢀꢁꢂꢃ  
Rꢀ  
ꢀ0.ꢁꢂ  
ꢀꢁ  
0.0ꢀꢁꢂ  
Rꢀ  
ꢀꢁꢀꢂ  
ꢀ.ꢀ0ꢁꢂꢃ  
ꢀ0  
ꢀ00  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁꢁꢀ ꢂꢃ0ꢄꢅ  
ꢀꢁ ꢂꢃRꢄꢅ ꢆꢀꢆꢇꢄRꢈꢉꢊꢇ ꢋꢌꢌꢋꢍꢌꢎ0ꢏ  
ꢐꢑꢁ ꢄꢒꢇ ꢐꢓꢔꢌꢕꢖꢗꢋRꢑꢅꢏꢏꢘꢇꢑꢏꢘꢔꢙ  
ꢐꢏꢁ ꢄꢒꢇ ꢐꢓꢔꢌꢕꢑꢗꢋRꢑꢅꢌꢋꢘꢇꢑꢏꢘꢔꢐ  
ꢀꢁꢁꢀ ꢂꢃ0ꢄꢅ  
Rev. 0  
17  
For more information www.analog.com  
LT8338  
TYPICAL APPLICATION  
4V to 16V Input, 24V Output Micropower Synchronous Boost Converter with SSFM  
ꢀꢁꢂꢃꢄ ꢅꢆꢀ ꢇꢀꢅR  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ.ꢁꢂꢃ  
0.ꢃꢄꢅꢆ  
ꢁꢂ  
ꢀꢁ  
0.ꢀꢁꢂ  
ꢀꢁꢂ ꢃꢄ  
ꢅꢆꢂꢇ  
ꢀꢁ  
0.ꢀꢁꢂ  
ꢀꢁ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢀꢁꢂ  
ꢀꢁ  
ꢀ0ꢁꢂ  
ꢀꢁꢂꢃꢁꢂ ꢄꢅꢆ ꢇꢆꢄR  
Rꢀ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢁꢂ  
0.ꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄ  
ꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢁꢂꢃ  
Rꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
0.ꢀꢁꢂ  
ꢀꢁꢂ  
0.ꢀꢁꢂ  
ꢀꢁ  
ꢀ0ꢁꢂ  
ꢀꢁꢂ  
0.ꢀꢁꢂ  
ꢀꢁ  
0.ꢀꢁꢂ  
ꢀꢁ0ꢂꢃ  
ꢂꢃꢃꢂ  
ꢃꢄ ꢅꢆꢇ  
ꢈꢉ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢀꢁꢂ ꢃꢄRꢅꢆ ꢇꢀꢇꢈꢅRꢉꢊꢋꢈ ꢌꢍꢍꢎꢏꢎꢎꢐ0ꢍꢌ  
ꢀꢁꢂꢃ ꢄꢅRꢆꢇ ꢈꢉꢈꢊꢆRꢋꢌꢍꢊ ꢎꢏꢏꢎꢐꢑꢎꢒꢂꢏꢎ  
ꢀꢁꢂꢃ ꢄꢅRꢆꢇ ꢈꢉꢈꢊꢆRꢋꢌꢍꢊ ꢎꢏꢂꢎꢐꢂ0ꢏ0  
ꢀꢁ  
Rꢀ  
ꢀꢁꢂ  
ꢀꢁRꢂ  
ꢀ.ꢀꢁꢂ  
Rꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢀꢁꢃꢂꢀꢁꢄꢂꢀꢁꢅꢆ ꢇꢈRꢉꢊꢉ ꢋRꢇꢁꢅꢅRꢌꢍꢉꢁ0ꢄꢎꢏꢁꢄꢐ  
ꢀꢁꢂꢀꢃꢄ ꢅꢆꢇꢈꢉ ꢈꢊꢋꢌꢍ ꢊꢎꢏꢁꢐꢃꢀꢑꢒ0ꢓꢏꢎꢔꢕ  
ꢀꢁꢂ ꢃꢄꢅ ꢀꢆꢇꢈꢉꢊꢋꢌRꢍꢎꢍ0ꢏꢅ  
Rꢀ  
ꢀ00ꢁ  
Rꢀ  
Rꢀ  
ꢀꢁꢂꢃ  
ꢀ0.ꢁꢂ  
ꢀꢁꢁ  
0.0ꢀꢁꢂ  
ꢀꢁꢂ ꢃꢄꢅ ꢆꢇ0ꢈꢉꢀꢊꢁꢉꢋꢃꢌꢇꢃ  
ꢀ.ꢀ0ꢁꢂꢃ  
ꢀꢁꢂꢃ ꢄꢅꢆ ꢇꢈꢇꢀꢉRꢊꢆꢋꢀ ꢋꢆꢌꢅꢄꢉRꢋꢇꢄ ꢀꢊRꢍ ꢎ0ꢀꢇꢏꢏꢐꢄ  
ꢀꢁꢁꢀ ꢂꢃ0ꢄꢅ  
Conducted EMI Performance (CISPR25 Class 5 Peak)  
Conducted EMI Performance (CISPR25 Class 5 Average)  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀꢁꢂꢃꢃ ꢄ ꢅꢆꢂꢇ ꢁꢈꢉꢈꢊ  
ꢀꢁꢂꢃꢃ ꢄ ꢂꢅꢆRꢂꢇꢆ ꢁꢈꢉꢈꢊ  
ꢂꢃꢃꢂ ꢄ.ꢄꢅꢆꢇ ꢈ ꢋꢌꢍꢎ ꢌꢅꢏ  
ꢂꢃꢃꢂ ꢄ.ꢄꢅꢆꢇ ꢈ ꢋꢌꢍRꢋꢎꢍ ꢍꢅꢏ  
ꢉꢊ  
ꢉꢊ  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
0.ꢀ  
ꢀ0  
ꢀ0  
0.ꢀ  
ꢀ0  
ꢀ0  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢁꢁꢀ ꢂꢃ0ꢄꢅ  
ꢀꢁꢁꢀ ꢂꢃ0ꢄꢅ  
0
.
0
.
Radiated EMI Performance (CISPR25 Class 5 Peak)  
Radiated EMI Performance (CISPR25 Class 5 Average)  
ꢀ0  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁꢂꢃꢃ ꢄ ꢂꢅꢆRꢂꢇꢆ ꢁꢈꢉꢈꢊ  
ꢂꢃꢃꢂ ꢄ.ꢄꢅꢆꢇ ꢈ ꢋꢌꢍRꢋꢎꢍ ꢍꢅꢏ  
ꢉꢊ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢂꢃꢃ ꢄ ꢅꢆꢂꢇ ꢁꢈꢉꢈꢊ  
ꢂꢃꢃꢂ ꢄ.ꢄꢅꢆꢇ ꢈ ꢋꢌꢍꢎ ꢌꢅꢏ  
ꢉꢊ  
0.ꢀ  
ꢀ0  
ꢀ00  
ꢀꢁ  
0.ꢀ  
ꢀ0  
ꢀ00  
ꢀꢁ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢁꢁꢀ ꢂꢃ0ꢄꢅ  
ꢀꢁꢁꢀ ꢂꢃ0ꢄe  
0
.
0
.
Rev. 0  
18  
For more information www.analog.com  
LT8338  
PACKAGE DESCRIPTION  
MSE Package  
10-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1664 Rev I)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
1.88  
(.074)  
1.88 ±0.102  
(.074 ±.004)  
0.889 ±0.127  
(.035 ±.005)  
1
0.29  
REF  
1.68  
(.066)  
0.05 REF  
5.10  
(.201)  
MIN  
1.68 ±0.102  
3.20 – 3.45  
DETAIL “B”  
(.066 ±.004) (.126 – .136)  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
10  
NO MEASUREMENT PURPOSE  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ±.0015)  
TYP  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 3)  
0.497 ±0.076  
(.0196 ±.003)  
10 9  
8
7 6  
RECOMMENDED SOLDER PAD LAYOUT  
REF  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
4.90 ±0.152  
(.193 ±.006)  
DETAIL “A”  
0° – 6° TYP  
0.254  
(.010)  
1
2
3
4 5  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
0.50  
(.0197)  
BSC  
MSOP (MSE) 0213 REV I  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD  
SHALL NOT EXCEED 0.254mm (.010") PER SIDE.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
19  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LT8338  
TYPICAL APPLICATION  
3V to 40V Input, 12V Output Pre-Boost Converter  
Efficiency  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ.ꢀꢁꢂ  
ꢁꢂ  
ꢀꢁꢂ ꢃꢄ ꢅ0ꢂꢆ  
ꢀꢁ  
ꢀꢁ  
0.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
Rꢀ  
ꢀꢁꢂꢃ  
ꢁꢂ  
ꢀꢁ0ꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
Rꢀ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢂꢃꢃꢂ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢀꢁ  
ꢀ.ꢀꢁꢂ  
Rꢀ  
ꢀꢁꢂꢃ  
Rꢀ  
ꢀꢁꢂ  
ꢀꢁRꢂ  
ꢃ ꢄꢀ  
ꢃ ꢄꢀ  
ꢃ ꢄꢀ  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
Rꢀ  
ꢀ0.ꢁꢂ  
ꢀꢁ  
Rꢀ  
ꢀ.ꢀ0ꢁꢂꢃ  
0.0ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀ0  
ꢀ00  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁꢁꢀ ꢂꢃ0ꢄꢅ  
ꢀꢁ ꢂꢃRꢄꢅ ꢆꢀꢆꢇꢄRꢈꢉꢊꢇ ꢋꢌꢍꢎꢌꢎꢋꢍ0ꢎꢎ  
ꢏꢐꢁ ꢄꢑꢇ ꢏꢒꢓꢍꢔꢎꢕꢋRꢐꢅꢖꢖꢗꢇꢐꢖꢗꢓꢘ  
ꢏꢖꢁ ꢄꢑꢇ ꢏꢒꢓꢍꢔꢐꢕꢋRꢐꢅꢍꢋꢗꢇꢐꢖꢗꢓꢏ  
ꢀꢁꢁꢀ ꢂꢃ0ꢄꢅ  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT8336  
Boost, Monolithic Converter with 2.5A/40 Switch  
2.7V ≤ V ≤ 40V, Current Mode Control, 300kHz to 3MHz Programmable  
IN  
Operation Frequency, QFN-16 Package  
LT8335  
LT8362  
LT8330  
28V, 2A, Low IQ Boost/SEPIC/Inverting 2MHz  
Converter  
V
= 3V to 25V, V  
= 25V, I = 6µA (Burst Mode Operation), 3mm ×  
IN  
OUT(MAX) Q  
2mm DFN package  
60V, 2A, Low I Boost/SEPIC/Inverting Converter  
V
= 2.8V to 60V, V  
= 60V, I = 9µA (Burst Mode Operation), MSOP-  
OUT(MAX) Q  
Q
IN  
16(12)E, 3mm × 3mm DFN-8 packages  
V = 3V to 40V, V = 60V, I = 6µA (Burst Mode Operation),  
IN  
60V, 1A, Low I Boost/SEPIC/Inverting 2MHz  
Q
OUT(MAX)  
Q
Converter  
6-Lead TSOT-23, 3mm × 2mm DFN packages  
LT3958  
LT3757A  
LT3758  
High Input Voltage, Boost, Flyback, SEPIC and  
Inverting Converter with 3.5A/80V Switch  
5V ≤ V < 80V, Current Mode Control, 100kHz to 1MHz Programmable  
IN  
Operation Frequency, 5mm × 6mm QFN-36 Package  
Boost, Flyback, SEPIC and Inverting Controller  
2.9V ≤ V ≤ 40V, Current Mode Control, 100kHz to 1MHz Programmable  
IN  
Operation Frequency, 3mm × 3mm DFN-10 and MSOP-10E Package  
Boost, Flyback, SEPIC and Inverting Controller  
5.5V ≤ V ≤ 100V, Current Mode Control, 100kHz to 1MHz Programmable  
IN  
Operation Frequency, 3mm × 3mm DFN-10 and MSOP-10E Package  
Rev. 0  
04/21  
www.analog.com  
20  
ANALOG DEVICES, INC. 2021  

相关型号:

LT8338

40V, 1.2A Micropower Synchronous Boost Converter with PassThru
ADI

LT834

Optoelectronic
ETC

LT8362EDD#PBF

暂无描述
Linear

LT8362EMSE#PBF

LT8362 - Low IQ Boost/SEPIC/Inverting Converter with 2A, 60V Switch; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT8362HMSE#PBF

暂无描述
Linear

LT8362IDD#PBF

LT8362 - Low IQ Boost/SEPIC/Inverting Converter with 2A, 60V Switch; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT8362IMSE#PBF

LT8362 - Low IQ Boost/SEPIC/Inverting Converter with 2A, 60V Switch; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT8364HMSE#PBF

LT8364 - Low IQ Boost/SEPIC/ Inverting Converter with 4A, 60V Switch; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT8390

60V Synchronous 4-Switch Buck-Boost Controller with Spread Spectrum
Linear

LT8390

60VIN, 100VOUT Synchronous 4-Switch Buck-Boost LED Driver Controller with Low EMI
ADI

LT8390A

60V Synchronous 4-Switch Buck-Boost Controller with Spread Spectrum
Linear

LT8390A

60VIN, 100VOUT Synchronous 4-Switch Buck-Boost LED Driver Controller with Low EMI
ADI