LT8610 [ADI]

High Efficiency 42V/120mA Synchronous Buck;
LT8610
型号: LT8610
厂家: ADI    ADI
描述:

High Efficiency 42V/120mA Synchronous Buck

文件: 总20页 (文件大小:2736K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT8604  
High Efficiency 42V/120mA  
Synchronous Buck  
FEATURES  
DESCRIPTION  
The LT®8604 is a compact, high speed synchronous  
monolithic step-down switching regulator that delivers up  
to 120mA with high efficiency at constant switching fre-  
quency, even up to 2.2MHz. It accepts a wide input voltage  
range up to 42V, and consumes only 2.5µA of quiescent  
current. Top and bottom power switches are included with  
all necessary circuitry to minimize the need for external  
components. Low ripple Burst Mode operation enables  
high efficiency down to very low output currents while  
n
High Efficiency 2MHz Synchronous Operation  
n
> 90% Efficiency at 50mA, 12V to 5V  
IN  
OUT  
Ultralow Quiescent Current Burst Mode® Operation  
n
n
< 2.5µA I Regulating 24V to 3.3V  
Q
IN  
OUT  
n
Output Ripple < 10mV  
P-P  
n
n
n
n
n
n
n
n
Wide Input Voltage Range: 3.2V to 42V  
Fast Minimum Switch-On Time: 35ns  
Adjustable Switching Frequency: 200kHz to 2.2MHz  
Allows Tiny Inductors  
Accurate 1V Enable Pin Threshold  
Internal Compensation  
Output Soft-Start and Tracking  
Small 10-Lead 3mm × 2mm Side-Wettable  
DFN Package  
AEC-Q100 Qualified for Automotive Applications  
keeping the output ripple below 10mV  
.
P-P  
Additional features provide for flexible and robust opera-  
tion. Internal compensation with peak current mode topol-  
ogy allows the use of small inductors and results in fast  
transient response and good loop stability. The EN/UV pin  
has an accurate 1V threshold and can be used to program  
VIN under voltage lockout or to shut down the LT8604  
reducing the input supply current to 1µA. A PG flag sig-  
n
APPLICATIONS  
nals when V  
is within 7.5% of the programmed out-  
OUT  
n
Industrial Sensors  
put voltage as well as fault conditions. Thermal shutdown  
provides additional protection. The LT8604 is available in  
a small 10-Lead 3mm × 2mm DFN package with exposed  
pad for low thermal resistance.  
n
Industrial Internet of Things  
n
4mA to 20mA Current Loops  
Flow Meters  
Automotive Housekeeping Supplies  
n
n
All registered trademarks and trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
5V, Step-Down Converter  
Efficiency at VOUT = 5V  
ꢀ00  
ꢀꢁ  
ꢀ ꢁ00ꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ.ꢁꢂ ꢃꢄ ꢅꢆꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀ00ꢁꢂ  
ꢂꢃ0ꢄ  
ꢀꢁꢂ  
ꢀꢁꢁ ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ0ꢂꢃ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀRꢁꢂꢂ  
ꢀꢁ  
Rꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ0ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ0ꢂ ꢃꢄ0ꢅꢆ  
ꢀ0.ꢁꢂ  
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ ꢁ00ꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁ0ꢂ ꢃꢄ0ꢅꢆ  
Rev. 0  
1
Document Feedback  
For more information www.analog.com  
LT8604  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
ꢀꢁꢂ ꢃꢄꢅꢆ  
V , EN/UV Voltage .................................... –0.3V to 42V  
IN  
PG Voltage................................................. –0.3V to 42V  
BIAS Voltage.............................................. –0.3V to 25V  
FB, TR/SS Voltages...................................... –0.3V to 4V  
Operating Junction Temperature Range (Note 2)  
LT8604E, LT8604I.................................. –40°C to 125°C  
LT8604J................................................. –40°C to 150°C  
Storage Temperature Range .................. –65°C to 150°C  
ꢇ0  
ꢉꢖꢀ  
ꢖꢆ  
ꢄꢘ  
ꢅꢘꢞꢢꢃ  
ꢂꢎ  
ꢇꢇ  
ꢉꢄꢋꢖ  
ꢄꢘꢀꢃ  
ꢀRꢞꢖꢖ  
ꢗꢉ  
ꢌꢌ  
Rꢀ  
ꢈꢈꢉꢊ ꢂꢋꢌꢍꢋꢎꢅ  
ꢇ0ꢏꢐꢅꢋꢈ ꢑꢒꢓꢓ × ꢔꢓꢓꢕ ꢂꢐꢋꢖꢀꢄꢌ ꢈꢗꢘ  
ꢚ ꢛꢜꢝꢌꢞꢆꢟ θ ꢚ ꢇꢒ.ꢠꢝꢌꢞꢆ  
θ
ꢙꢋ  
ꢙꢌ  
ꢅꢡꢂꢁꢖꢅꢈ ꢂꢋꢈ ꢑꢂꢄꢘ ꢇꢇꢕ ꢄꢖ ꢎꢘꢈꢟ ꢊꢢꢖꢀ ꢉꢅ ꢖꢁꢐꢈꢅRꢅꢈ ꢀꢁ ꢂꢌꢉ  
ORDER INFORMATION  
Lead Free Finish  
TAPE AND REEL (MINI)  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT8604EDDBM#TRMPBF  
LT8604EDDBM#TRPBF  
LHNB  
LHNB  
LHNB  
10-Lead (3mm × 2mm) Plastic Side-Wettable –40°C to 125°C  
DFN Package  
LT8604IDDBM#TRMPBF  
LT8604JDDBM#TRMPBF  
LT8604IDDBM#TRPBF  
LT8604JDDBM#TRPBF  
10-Lead (3mm × 2mm) Plastic Side-Wettable –40°C to 125°C  
DFN Package  
10-Lead (3mm × 2mm) Plastic Side-Wettable –40°C to 150°C  
DFN Package  
AUTOMOTIVE PRODUCTS**  
LT8604EDDBM#WTRMPBF  
LT8604EDDBM#WTRPBF LHNB  
LT8604IDDBM#WTRPBF LHNB  
LT8604JDDBM#WTRPBF LHNB  
10-Lead (3mm × 2mm) Plastic Side-Wettable –40°C to 125°C  
DFN Package  
LT8604IDDBM#WTRMPBF  
LT8604JDDBM#WTRMPBF  
10-Lead (3mm × 2mm) Plastic Side-Wettable –40°C to 125°C  
DFN Package  
10-Lead (3mm × 2mm) Plastic Side-Wettable –40°C to 150°C  
DFN Package  
TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container.  
Contact the factory for parts specified with wider operating temperature ranges.  
Contact the factory for information on lead based finish parts.  
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.  
**Versions of this part are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. These  
models are designated with a #W suffix. Only the automotive grade products shown are available for use in automotive applications. Contact your  
local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for  
these models.  
Rev. 0  
2
For more information www.analog.com  
LT8604  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
Minimum Input Voltage  
2.9  
3.2  
V
V
Quiescent Current  
V
EN/UV  
V
EN/UV  
= 0V  
1
1.7  
4
12  
µA  
µA  
IN  
= 2V, Not Switching  
V
Current in Regulation  
V
IN  
V
IN  
= 12V, V  
= 12V, V  
= 3.3V, I  
= 3.3V, I  
= 100µA  
= 1mA  
56  
400  
µA  
µA  
IN  
OUT  
OUT  
LOAD  
LOAD  
l
l
l
Feedback Reference Voltage  
FB Voltage Line Regulation  
FB Pin Input Current  
0.762  
0.778  
0.002  
0.798  
0.04  
20  
V
%/V  
nA  
V
V
V
= 4V to 42V  
= 0.8V  
IN  
FB  
BIAS Pin Current Consumption  
Minimum On-Time  
= 3.3V, I  
= 30mA, 700kHz  
LOAD  
0.9  
35  
90  
mA  
ns  
BIAS  
l
65  
Minimum Off-Time  
120  
ns  
l
l
Oscillator Frequency  
R = 221k  
T
140  
1.85  
200  
2.00  
260  
2.15  
kHz  
MHz  
T
R = 18.2k  
Top Power NMOS On-Resistance  
Top Power NMOS Current Limit  
Bottom Power NMOS On-Resistance  
SW Leakage Current  
3.2  
230  
1.2  
Ω
mA  
Ω
l
185  
275  
l
l
V
= 24V  
15  
µA  
IN  
EN/UV Pin Threshold  
Pin Voltage Rising  
0.98  
1.04  
40  
1.11  
V
V
EN/UV Pin Hysteresis  
EN/UV Pin Current  
mV  
nA  
%
V
V
V
= 2V  
20  
10.0  
EN/UV  
l
l
PG Upper Threshold Offset from V  
PG Lower Threshold Offset from V  
PG Hysteresis  
Rising  
Falling  
5.0  
7.5  
–7.5  
0.5  
FB/OUT  
FB/OUT  
FB/OUT  
–5.0  
–10.0  
%
FB/OUT  
%
l
l
PG Leakage  
V
V
V
= 42V  
200  
1200  
3.5  
nA  
Ω
PG  
PG Pull-Down Resistance  
TR/SS Source Current  
= 0.1V  
550  
2
PG  
= 0.1V  
1
µA  
Ω
TR/SS  
TR/SS Pull-Down Resistance  
Fault Condition, V  
= 0.1V  
300  
900  
TR/SS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
temperature range. The LT8604J is guaranteed over the full –40°C to  
150°C operating junction temperature range. High junction temperatures  
degrade operating lifetimes. Operating lifetime is derated at junction  
temperatures greater than 125°C.  
Note 2: The LT8604E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LT8604I is guaranteed over the full –40°C to 125°C operating junction  
Note 3: This IC includes overtemperature protection that is intended to  
protect the device during overload conditions. Junction temperature will  
exceed 150°C when overtemperature protection is active. Continuous  
operation above the specified maximum operating junction temperature  
will reduce lifetime  
Rev. 0  
3
For more information www.analog.com  
LT8604  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency (5V Output)  
Efficiency (5V Output)  
Efficiency (3.3V Output)  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁ ꢂꢃꢄꢅ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁ ꢂꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁ ꢂꢃꢄꢅ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁ  
ꢀ0ꢁ  
ꢀ00ꢁ  
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇꢈꢉ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇꢈꢉꢊ  
ꢀꢁ0ꢂ ꢃ0ꢄ  
ꢀꢁ0ꢂ ꢃ0ꢄ  
ꢀꢁ0ꢂ ꢃ0ꢄ  
Efficiency (3.3V Output)  
Load Regulation  
FB Voltage  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀꢁ0  
ꢀꢀꢁ  
ꢀꢀꢁ  
ꢀꢀꢀ  
ꢀꢀꢁ  
ꢀꢀꢁ  
0.ꢀꢁ  
0.ꢀ0  
ꢀ ꢁ ꢂꢂꢃꢄ  
ꢀRꢁꢂꢃ ꢄꢅꢆꢇ ꢅꢄꢄꢈꢉꢊꢅꢃꢉꢁꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
0.0ꢀ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
0.00  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ0.0ꢁ  
ꢀ0.ꢁ0  
ꢀ0.ꢁꢂ  
ꢀꢁ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇꢈꢉꢊ  
ꢀꢁ0ꢂ ꢃ0ꢂ  
ꢀꢁ0ꢂ ꢃ0ꢄ  
ꢀꢁ0ꢂ ꢃ0ꢁ  
No-Load Supply Current  
Line Regulation  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
0.ꢀ0  
0.ꢀꢁ  
0.ꢀ0  
0.0ꢀ  
0
ꢀꢁꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁ0ꢂꢃ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
R1 = 309kΩ  
R2 = 1MΩ  
ꢀ0.0ꢁ  
ꢀ0.0ꢁ  
ꢀ0.ꢁꢂ  
ꢀ0.ꢁ0  
0
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
0
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁ0ꢂ ꢃ0ꢀ  
ꢀꢁ0ꢂ ꢃ0ꢄ  
Rev. 0  
4
For more information www.analog.com  
LT8604  
TYPICAL PERFORMANCE CHARACTERISTICS  
Top FET Current Limit  
vs Duty Cycle  
Top FET Current Limit  
vs Temperature  
Switch Drop vs Temperature  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
0
ꢀꢁ0  
ꢀꢀ0  
ꢀꢁ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢀꢁ  
ꢀꢀ0  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀ0ꢁ  
ꢀ00  
ꢀꢁꢂꢃꢄꢅ ꢄꢆRRꢇꢈꢃ ꢉ ꢊꢋ0ꢌꢍ  
ꢀꢁꢂ ꢃꢄ  
ꢀꢁꢂ ꢃꢄ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃ ꢄꢃꢄꢅꢆ ꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁ0ꢂ ꢃꢄꢄ  
ꢀꢁ0ꢂ ꢃ0ꢄ  
ꢀꢁ0ꢂ ꢃꢄ0  
Minimum Off-Time  
vs Temperature  
Minimum On-Time  
vs Temperature  
Switch Drop vs Switch Current  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
0
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ ꢁ00ꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ ꢃꢄ  
ꢀꢁꢂ ꢃꢄ  
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁꢂꢃꢄꢅ ꢄꢆRRꢇꢈꢃ ꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁ0ꢂ ꢃꢄꢅ  
ꢀꢁ0ꢂ ꢃꢄꢅ  
ꢀꢁ0ꢂ ꢃꢄꢂ  
Switching Frequency  
vs Temperature  
Burst Frequency vs Load Current  
Dropout Voltage vs Load Current  
ꢀꢁ00  
ꢀꢀꢁ0  
ꢀ000  
ꢀꢁꢂ0  
ꢀꢁ00  
ꢀꢁꢂ0  
ꢀ000  
ꢀꢁ0  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
0
ꢀ0ꢁ0  
ꢀ0ꢀ0  
ꢀ0ꢁ0  
ꢀ000  
ꢀꢁꢁ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀ ꢁ ꢀꢂꢃꢄ0ꢅ0ꢆꢅꢅꢅꢇR  
ꢀ ꢁ ꢂꢂꢃꢄ  
R
= 18.2kΩ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁ.ꢁꢂ  
ꢀ00  
ꢀꢁ0  
0
0
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁ0ꢂ ꢃꢄꢅ  
ꢀꢁ0ꢂ ꢃꢄꢅ  
ꢀꢁ0ꢂ ꢃꢄꢁ  
Rev. 0  
5
For more information www.analog.com  
LT8604  
TYPICAL PERFORMANCE CHARACTERISTICS  
Soft-Start Tracking  
Soft-Start Current vs Temperature  
Frequency Foldback  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁ00  
ꢀꢀꢁ0  
ꢀ000  
ꢀꢁꢂ0  
ꢀꢁ00  
ꢀꢁꢂ0  
ꢀ000  
ꢀꢁ0  
ꢀ.0  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
R.Ω  
ꢀ00  
ꢀꢁ0  
0
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
0
0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ  
0
0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ ꢀ.0 ꢀ.ꢀ ꢀ.ꢁ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁ ꢂꢃꢇꢈ ꢉꢂꢊ  
ꢀRꢁꢂꢂ ꢃꢄꢇꢈ ꢉꢃꢊ  
ꢀꢁ0ꢂ ꢃꢄꢀ  
ꢀꢁ0ꢂ ꢃꢄꢅ  
ꢀꢁ0ꢂ ꢃꢄ0  
VIN UVLO  
PG Thresholds  
Bias Pin Current  
ꢀ0.0  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.0  
0.ꢀ  
0.ꢀ  
ꢀ.00  
ꢀ.ꢁ0  
ꢀ.ꢁ0  
ꢀ.ꢁ0  
ꢀ.ꢀ0  
ꢀ.00  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁ00ꢂꢃ  
Rꢀꢁꢀꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ.0  
ꢀ.ꢁ  
0
ꢀꢁ.ꢂ  
ꢀꢁ.0  
ꢀꢁ.ꢂ  
ꢀꢁ0.0  
ꢀꢁꢂꢂꢃꢄꢅ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ  
ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.0 ꢀ.ꢀ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅꢂꢆꢇ ꢈRꢉꢊꢋꢉꢆꢄꢌ ꢍꢎꢅꢏꢐ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁ0ꢂ ꢃꢄꢄ  
ꢀꢁ0ꢂ ꢃꢄꢅ  
ꢀꢁ0ꢂ ꢃꢄꢅ  
Start-Up Dropout  
Start-Up Dropout  
0
0
R
ꢀꢁꢂꢃ  
= 40Ω  
R
ꢀꢁꢂꢃ  
= 400Ω  
0
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0
0
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁ0ꢂ ꢃꢄꢅ  
ꢀꢁ0ꢂ ꢃꢄꢂ  
Rev. 0  
6
For more information www.analog.com  
LT8604  
TYPICAL PERFORMANCE CHARACTERISTICS  
Switching Waveforms  
Switching Waveforms  
ꢀ0ꢁꢂꢃꢄꢅꢆ  
ꢀ0ꢁꢂꢃꢄꢅꢆ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢁ  
ꢀ0ꢁꢂꢃꢄꢁ  
ꢀRꢁꢂꢃ ꢄꢅꢆꢇ ꢅꢄꢄꢈꢉꢊꢅꢃꢉꢁꢂ  
ꢀRꢁꢂꢃ ꢄꢅꢆꢇ ꢅꢄꢄꢈꢉꢊꢅꢃꢉꢁꢂ  
ꢀꢁꢂ ꢀꢁ ꢂꢃ  
ꢀꢁ ꢂ0ꢃꢀ  
ꢀꢁꢂ ꢀꢁ ꢂꢃ ꢀꢁ ꢂ0ꢃꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ0ꢂ ꢃꢄꢁ  
ꢀꢁ0ꢂ ꢃꢄꢅ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
Switching Waveforms  
Switching Waveforms  
ꢀ0ꢁꢂꢃꢄꢅꢆ  
ꢀ0ꢁꢂꢃꢄꢅꢆ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢁ  
ꢀ0ꢁꢂꢃꢄꢁ  
ꢀRꢁꢂꢃ ꢄꢅꢆꢇ ꢅꢄꢄꢈꢉꢊꢅꢃꢉꢁꢂ  
ꢀRꢁꢂꢃ ꢄꢅꢆꢇ ꢅꢄꢄꢈꢉꢊꢅꢃꢉꢁꢂ  
ꢀꢁꢂ ꢀꢁ ꢂꢃ  
ꢀꢁ ꢂꢃꢀ  
ꢀꢁꢂ ꢀꢁ ꢂꢃ ꢀꢁ ꢂꢃꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ0ꢂ ꢃꢄꢀ  
ꢀꢁ0ꢂ ꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
Switching Waveforms  
Switching Waveforms  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀꢁ0ꢂꢃ  
ꢀꢁ0ꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ0ꢁꢂꢃꢄꢅꢆ  
ꢀ0ꢁꢂꢃꢄꢅꢆ  
ꢀ0ꢁꢂ  
ꢀ0ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ0ꢁꢂꢃꢄꢅꢂ  
ꢀ0ꢁꢂꢃꢄꢅꢂ  
ꢀRꢁꢂꢃ ꢄꢅꢆꢇ ꢅꢄꢄꢈꢉꢊꢅꢃꢉꢁꢂ  
ꢀRꢁꢂꢃ ꢄꢅꢆꢇ ꢅꢄꢄꢈꢉꢊꢅꢃꢉꢁꢂ  
ꢀꢁ0ꢂ ꢃꢄ0  
ꢀꢁ0ꢂ ꢃꢄꢅ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
Rev. 0  
7
For more information www.analog.com  
LT8604  
PIN FUNCTIONS  
BST (Pin 1): This pin is used to provide a drive volt-  
age higher than the input voltage, to the topside power  
switch. Place a 47nF boost capacitor as close as possible  
to the IC. Do not put resistance in series with this pin.  
LT8604 to regulate the FB pin to equal the TR/SS pin volt-  
age. When TR/SS is above 0.778V, the tracking function is  
disabled and the internal reference resumes control of the  
error amplifier. An internal 2µA pull-up current on this pin  
allows a capacitor to program output voltage slew rate.  
This pin is pulled to ground with a 300Ω MOSFET during  
shutdown and fault conditions; use a series resistor if  
driving from a low impedance output.  
SW (Pin 2): The SW pin is the output of the internal power  
switches. Connect this pin to the inductor. This node  
should be kept small on the PCB for good performance.  
BIAS (Pin 3): The internal regulator will draw current from  
PG (Pin 8): The PG pin is the open-drain output of an  
internal comparator. PG remains low until the FB pin is  
within 7.5% of the final regulation voltage, and there are  
BIAS instead of V when BIAS is tied to a voltage higher  
IN  
than 3.2V. For output voltages of 3.3V to 25V this pin  
should be tied to V . If this pin is tied to a supply other  
OUT  
no fault conditions. PG is valid when V is above 3.2V,  
IN  
than V , use a 1µF local bypass capacitor on this pin.  
OUT  
regardless of EN/UV pin state.  
If no supply is available, tie this pin to GND.  
EN/UV (Pin 9): The LT8604 is shut down when this pin is  
low and active when high. The hysteretic threshold volt-  
age is 1.05V rising and 1.00V falling. Tie to VIN if the  
shutdown feature is not used. An external resistor divider  
INTV (Pin 4): Internal 3.4V Regulator Bypass Pin. The  
CC  
internal power drivers and control circuits are powered  
from this voltage. INTVCC maximum output current is  
2mA. Do not load the INTV pin with external circuitry.  
INTVCC current will be suCpCplied from BIAS if BIAS >  
from V can be used to program a V threshold below  
IN  
IN  
which the LT8604 will shut down.  
3.2V, otherwise current will be drawn from V . Voltage  
IN  
on INTV will vary between 2.8V and 3.4V when V  
V (Pin 10): The V pin supplies current to the LT8604  
IN IN  
CC  
is between 3.0V and 3.6V. Decouple this pin to poBwIAeSr  
ground with a low ESR ceramic capacitor of at least 1μF  
placed close to the IC.  
internal circuitry and to the internal top side power switch.  
This pin must be locally bypassed. Be sure to place the  
positive terminal of the input capacitor as close as pos-  
sible to the V pin, and the negative capacitor terminal  
IN  
RT (Pin 5): Tie a resistor between RT and ground to set  
the switching frequency.  
as close as possible to the GND pin.  
GND (Exposed Pad Pin 11): Ground. The exposed pad  
must be connected to the negative terminal of the input  
capacitor and soldered to the PCB in order to lower the  
thermal resistance.  
FB (Pin 6): The LT8604 regulates the FB pin to 0.778V.  
Connect the feedback resistor divider tap to this pin.  
TR/SS (Pin 7): Output Tracking and Soft-Start Pin. This  
pin allows user control of output voltage ramp rate dur-  
ing start-up. A TR/SS voltage below 0.778V forces the  
Rev. 0  
8
For more information www.analog.com  
LT8604  
BLOCK DIAGRAM  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢁꢂ  
ꢀꢁꢂꢃRꢁꢄꢅ 0.ꢆꢆꢇꢈ Rꢃꢉ  
Rꢀ  
ꢀ.ꢁꢂ  
Rꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂꢃꢄ ꢅꢂꢆꢃ  
Rꢀ  
ꢀꢁꢂꢃꢄꢄ  
R
ꢀꢁꢂ  
Rꢀ  
ꢀꢁꢂꢃꢄꢄꢅꢆꢀR  
ꢀ00ꢁꢂꢃ ꢄꢅ ꢀ.ꢀꢆꢂꢃ  
ꢀRRꢁR  
ꢀ.ꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄ  
ꢀꢁRꢂꢃ  
ꢀꢁꢂꢁꢃꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢂꢃ  
ꢀꢁRꢂꢃꢄꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀRꢁꢂꢂ  
ꢀꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
Rꢀ  
Rꢀ  
ꢀꢁ0ꢂ ꢃꢄ  
Rev. 0  
9
For more information www.analog.com  
LT8604  
OPERATION  
associated with controlling the output switch is shut down  
reducing the input supply current to 1.7µA. In a typical  
application with a 24V input, 2.5µA will be consumed from  
the input supply when regulating with no load.  
The LT8604 is a monolithic constant-frequency current  
mode step-down DC/DC converter. Operation is best  
understood by referring to the Block Diagram. An internal  
oscillator turns on the integrated top power switch at the  
beginning of each clock cycle. Current in the inductor then  
increases until the top switch current comparator trips  
and turns off the top power switch. The peak inductor cur-  
rent at which the top switch turns off is controlled by the  
voltage on the internal VC node. The error amplifier servos  
To improve efficiency across all loads, supply current to  
internal circuitry can be sourced from the BIAS pin when  
biased at 3.2V or above. Else, the internal circuitry will  
draw current from V . The BIAS pin should be connected  
IN  
to V  
if the LT8604 output is programmed to a voltage  
between 3.3V and 25V.  
OUT  
the V node by comparing the voltage on the FB pin with  
C
an internal reference. When the load current increases, it  
Comparators monitoring the FB pin voltage will pull the PG  
causes a reduction in the feedback voltage relative to the  
pin low if the output voltage varies more than 7.5% (typi  
-
reference leading the error amplifier to raise the V volt-  
C
cal) from the set point, or if a fault condition is present.  
age until the average inductor current matches the new  
load current. When the top power switch turns off, the  
synchronous power switch turns on until the next clock  
cycle begins or inductor current falls to zero. If overload  
conditions result in excess current flowing through the  
bottom switch, the next clock cycle will be delayed until  
switch current returns to a safe level.  
In the LT8604, the oscillator reduces its operating fre-  
quency when the voltage at the FB pin is low. This fre-  
quency foldback helps to control the inductor current  
when the output voltage is lower than the programmed  
value which occurs during start-up.  
If the EN/UV pin is low, the LT8604 is shut down and  
draws 1µA from the input. When the EN/UV pin is above  
1.05V, the switching regulator becomes active.  
To optimize efficiency, the LT8604 enters Burst Mode  
operation at light loads. Between bursts, all circuitry  
Rev. 0  
10  
For more information www.analog.com  
LT8604  
APPLICATIONS INFORMATION  
Achieving Ultralow Quiescent Current  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢂ  
To enhance efficiency at light loads, the LT8604 enters  
into low ripple Burst Mode operation, which keeps the  
output capacitor charged to the desired output voltage  
while minimizing the input quiescent current and minimiz-  
ing output voltage ripple. In Burst Mode operation, the  
LT8604 delivers single small pulses of current to the out-  
put capacitor followed by sleep periods where the output  
power is supplied by the output capacitor. While in sleep  
mode the LT8604 consumes 1.7μA.  
ꢀ0ꢁꢂꢃꢄꢅꢆ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁ0ꢂ ꢃ0ꢄ  
ꢀꢁꢂꢃꢄꢅꢆ  
Figure 2. Burst Mode Operation  
As the output load decreases, the frequency of single cur-  
rent pulses decreases (see Figure 1) and the percentage  
of time the LT8604 is in sleep mode increases, result-  
ing in much higher light load efficiency than for typical  
converters. By maximizing the time between pulses, the  
converter quiescent current approaches 2.5µA for a typi-  
cal application when there is no output load. Therefore,  
to optimize the quiescent current performance at light  
loads, the current in the feedback resistor divider must  
be minimized as it appears to the output as load current.  
to the switching frequency programmed by the resistor  
at the RT pin as shown in Figure 1. The output load at  
which the LT8604 reaches the programmed frequency  
varies based on input voltage, output voltage, and induc-  
tor choice.  
FB Resistor Network  
The output voltage is programmed with a resistor divider  
between the output and the FB pin. Choose the resistor  
values according to:  
ꢀꢁ00  
ꢀ ꢁ ꢂꢂꢃꢄ  
VOUT  
0.778V  
ꢀꢀꢁ0  
ꢀ000  
ꢀꢁꢂ0  
ꢀꢁ00  
ꢀꢁꢂ0  
ꢀ000  
ꢀꢁ0  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
R2 = R1  
– 1  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
1% resistors are recommended to maintain output volt-  
age accuracy.  
The total resistance of the FB resistor divider should be  
selected to be as large as possible when good low load  
efficiency is desired: The resistor divider generates a  
small load on the output, which should be minimized to  
optimize the quiescent current at low loads.  
ꢀ00  
ꢀꢁ0  
0
0
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁ0ꢂ ꢃ0ꢄ  
Setting the Switching Frequency  
Figure 1. SW Burst Mode Frequency vs Load  
The LT8604 uses a constant frequency PWM architec-  
ture that can be programmed to switch from 200kHz to  
2.2MHz by using a resistor tied from the RT pin to ground.  
Table 1 shows the necessary RT value for a desired  
switching frequency.  
While in Burst Mode operation, the current limit of the top  
switch is approximately 40mA resulting in output voltage  
ripple shown in Figure 2. As the load ramps upward from  
zero the switching frequency will increase but only up  
Rev. 0  
11  
For more information www.analog.com  
LT8604  
APPLICATIONS INFORMATION  
Table 1. SW Frequency vs RT Value  
The LT8604 is capable of maximum duty cycle approach-  
ing 100%, and the V to V dropout is limited by the  
DS(ON)  
f
(MHz)  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
R (kΩ)  
IN  
OUT  
SW  
T
R
of the top switch. In this mode the LT8604 skips  
221  
143  
switch cycles, resulting in a lower switching frequency  
than programmed by R .  
110  
T
86.6  
71.5  
60.4  
52.3  
46.4  
40.2  
33.2  
27.4  
23.7  
20.5  
18.2  
16.2  
For applications that cannot allow deviation from the pro-  
grammed switching frequency at low VIN/VOUT ratios, use  
the following formula to set switching frequency:  
V
+ V  
SW(BOT)  
OUT  
V
=
– V  
+ V  
IN(MIN)  
SW(BOT) SW(TOP)  
1– f • t  
SW OFF(MIN)  
where VIN(MIN) is the minimum input voltage without  
skipped cycles, V is the output voltage, V and  
OUT  
SW(TOP)  
V
are the internal switch drops (~0.38V, ~0.14V,  
SW(BOT)  
respectively at max load), f is the switching frequency  
(set by RT), and tOFF(MIN)SiWs the minimum switch off-  
time. Note that higher switching frequency will increase  
the minimum input voltage below which cycles will be  
dropped to achieve higher duty cycle.  
Operating Frequency Selection and Trade-Offs  
Selection of the operating frequency is a trade-off  
between efficiency, component size, and input voltage  
range. The advantage of high frequency operation is that  
smaller inductor and capacitor values may be used. The  
disadvantages are lower efficiency and a smaller input  
voltage range.  
Inductor Selection and Maximum Output Current  
The LT8604 is designed to minimize solution size by  
allowing the inductor to be chosen based on the output  
load requirements of the application. During overload or  
short circuit conditions the LT8604 safely tolerates opera-  
tion with a saturated inductor through the use of a high  
speed peak-current mode architecture.  
The highest switching frequency (f  
) for a given  
SW(MAX)  
application can be calculated as follows:  
V
+ V  
OUT  
SW(BOT)  
f
=
SW(MAX)  
A good first choice for the inductor value is:  
t
V – V  
+ V  
(
)
IN  
ON(MIN)  
SW(TOP) SW(BOT)  
V
OUT + VSW(BOT)  
L =  
• 20  
where V is the typical input voltage, V  
is the output  
OUT  
voltage,INV  
and V  
are the internal switch  
fSW  
drops (~0S.3W8(VTO, P~)0.14V,SrWes(BpOeTc)tively at max load) and  
tON(MIN) is the minimum top switch on-time (see Electrical  
Characteristics). This equation shows that slower switch-  
where fSW is the switching frequency in MHz, VOUT is  
the output voltage, V  
is the bottom switch drop  
SW(BOT)  
(~0.14V) and L is the inductor value in μH.  
ing frequency is necessary to accommodate a high V /  
IN  
To avoid overheating and poor efficiency, an inductor  
must be chosen with an RMS current rating that is greater  
than the maximum expected output load of the applica-  
tion. In addition, the saturation current (typically labeled  
V
OUT  
ratio.  
For transient operation V may go as high as the Abs Max  
rating regardless of theINRT value, however the LT8604  
will reduce switching frequency as necessary to maintain  
control of inductor current to assure safe operation.  
Rev. 0  
12  
For more information www.analog.com  
LT8604  
APPLICATIONS INFORMATION  
I
) rating of the inductor must be higher than the load  
Finally, for duty cycles greater than 50%, a minimum  
inductance is required to avoid sub-harmonic oscillation:  
SAT  
current plus 1/2 of the inductor ripple current:  
1
2
VOUT + VSW(BOT)  
I
L(PEAK) =ILOAD(MAX) + ΔL  
LMIN  
=
•12.5  
fSW  
where IL is the inductor ripple current as calculated sev-  
eral paragraphs below and ILOAD(MAX) is the maximum  
output load for a given application.  
where f is the switching frequency, V  
is the output  
OUT  
SW  
voltage, V  
is the bottom switch drop (~0.14V) and  
SW(BOT)  
is the inductor value.  
L
MIN  
As a quick example, an application requiring 120mA out-  
put should use an inductor with an RMS rating of greater  
Input Capacitor  
than 120mA and an I of greater than 180mA. To keep  
SAT  
Bypass the input of the LT8604 circuit with a ceramic  
capacitor of X7R or X5R type. Y5V types have poor perfor-  
mance over temperature and applied voltage, and should  
not be used. A 1μF to 2.2μF ceramic capacitor is adequate  
to bypass the LT8604 and will easily handle the ripple  
current. If the input power source has high impedance, or  
there is significant inductance due to long wires or cables,  
additional bulk capacitance may be necessary. This can  
be provided with a low performance electrolytic capacitor.  
the efficiency high, the series resistance (DCR) should be  
less than 1Ω, and the core material should be intended  
for high frequency applications.  
The LT8604 limits the peak switch current in order to  
protect the switches and the system from overload faults.  
The top switch current limit (I ) is at least 185mA at  
LIM  
low duty cycles and decreases linearly to 137mA at D =  
0.8. The inductor value must then be sufficient to supply  
the desired maximum output current (I  
), which  
is a function of the switch current limOitUT(I(LMIMAX)) and the  
ripple current:  
Step-down regulators draw current from the input sup-  
ply in pulses with very fast rise and fall times. The input  
capacitor is required to reduce the resulting voltage rip-  
ple at the LT8604 and to force this very high frequency  
switching current into a tight local loop, minimizing EMI.  
A 1μF capacitor is capable of this task, but only if it is  
placed close to the LT8604 (see the PCB Layout section).  
A second precaution regarding the ceramic input capaci-  
tor concerns the maximum input voltage rating of the  
LT8604. A ceramic input capacitor combined with trace  
or cable inductance forms a high quality (under damped)  
tank circuit. If the LT8604 circuit is plugged into a live  
supply, the input voltage can ring to twice its nominal  
value, possibly exceeding the LT8604’s voltage rating.  
This situation is easily avoided (see Analog Devices  
Application Note 88).  
ΔIL  
2
IOUT(MAX) =ILIM  
The peak-to-peak ripple current in the inductor can be  
calculated as follows:  
VOUT  
L•fSW  
VOUT  
V
IN(MAX)  
ΔIL =  
1–  
where f is the switching frequency of the LT8604, and  
SW  
L is the value of the inductor. Therefore, the maximum  
output current that the LT8604 will deliver depends on  
the switch current limit, the inductor value, and the input  
and output voltages. The inductor value may have to be  
increased if the inductor ripple current does not allow  
Output Capacitor and Output Ripple  
sufficient maximum output current (I  
) given the  
OUT(MAX)  
The output capacitor has two essential functions. Along  
with the inductor, it filters the square wave generated  
by the LT8604 to produce the DC output. In this role it  
determines the output ripple, thus low impedance at the  
switching frequency is important. The second function is  
switching frequency, and maximum input voltage used in  
the desired application.  
For more information about maximum output current and  
discontinuous operation, see Analog Devices Application  
Note 44.  
Rev. 0  
13  
For more information www.analog.com  
LT8604  
APPLICATIONS INFORMATION  
to store energy in order to satisfy transient loads and sta- twice its nominal value, possibly exceeding the LT8604’s  
bilize the LT8604’s control loop. Ceramic capacitors have rating. This situation is easily avoided (see Analog Devices  
very low equivalent series resistance (ESR) and provide Application Note 88).  
the best ripple performance. A good starting value is:  
EN/UV Pin  
50  
COUT  
=
The LT8604 is in shutdown when the EN/UV pin is low  
and active when the pin is high. The rising threshold of  
the EN/UV comparator is 1.05V, with 50mV of hysteresis.  
The EN/UV pin can be tied to V if the shutdown feature  
is not used, or tied to a logic IlNevel if shutdown control  
is required.  
VOUT SW  
f
where fSW is the switching frequency in MHz, VOUT is  
the output voltage, and C is the recommended output  
OUT  
capacitance in μF. Use X5R or X7R types. This choice will  
provide low output ripple and good transient response.  
Transient performance can be improved with a higher value  
output capacitor and the addition of a feedforward capaci-  
Adding a resistor divider from VIN to EN/UV programs  
the LT8604 to regulate the output only when V is above  
a desired voltage (see Block Diagram). TypIiNcally, this  
threshold, VIN(EN/UV), is used in situations where the input  
supply is current limited, or has a relatively high source  
resistance. A switching regulator draws constant power  
from the source, so source current increases as source  
voltage drops. This looks like a negative resistance load  
to the source and can cause the source to current limit  
or latch low under low source voltage conditions. The  
tor placed between V  
and FB. Increasing the output  
OUT  
capacitance will also decrease the output voltage ripple. A  
lower value of output capacitor can be used to save space  
and cost but transient performance will suffer and may  
cause loop instability. See the Typical Applications in this  
data sheet for suggested capacitor values.  
When choosing a capacitor, special attention should be  
given to the data sheet to calculate the effective capaci-  
tance under the relevant operating conditions of voltage  
bias and temperature. A physically larger capacitor or one  
with a higher voltage rating may be required.  
V
threshold prevents the regulator from operating  
IN(EN/UV)  
at source voltages where the problems might occur. This  
threshold can be adjusted by setting the values R3 and  
R4 such that they satisfy the following equation:  
Ceramic Capacitors  
V
R3= IN(EN/UV) 1 •R4  
Ceramic capacitors are small, robust and have very low  
ESR. However, ceramic capacitors can cause problems  
1V  
when used with the LT8604 due to their piezoelectric where the LT8604 will remain off until V is above V  
.
IN  
nature. When in Burst Mode operation, the LT8604’s Due to the comparator’s hysteresis, switching willINn(oEtNs/UtoVp)  
switching frequency depends on the load current, and at until the input falls slightly below V  
very light loads the LT8604 can excite the ceramic capacitor  
.
IN(EN/UV)  
For light-load currents, the current through the VIN(EN/UV)  
resistor network can easily be greater than the supply current  
at audio frequencies, generating audible noise. Since the  
LT8604 operates at a lower current limit during Burst Mode  
operation, the noise is typically very quiet. If this is unac-  
ceptable, use a high performance tantalum or electrolytic  
capacitor at the output.  
consumed by the LT8604. Therefore, the V  
tors should be large to minimize their effect on efficiency at  
resis-  
IN(EN/UV)  
low loads.  
INTV Regulator  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LT8604. As  
previously mentioned, a ceramic input capacitor com-  
bined with trace or cable inductance forms a high qual-  
ity (under damped) tank circuit. If the LT8604 circuit is  
plugged into a live supply, the input voltage can ring to  
CC  
An internal low dropout (LDO) regulator produces the  
3.4V supply from VIN that powers the drivers and the  
internal bias circuitry. The INTVCC can supply enough cur-  
rent for the LT8604’s circuitry and must be bypassed to  
Rev. 0  
14  
For more information www.analog.com  
LT8604  
APPLICATIONS INFORMATION  
will pull the PG pin low. To prevent glitching both the  
upper and lower thresholds include 0.5% of hysteresis.  
ground with a minimum of 1μF ceramic capacitor. Good  
bypassing is necessary to supply the high transient cur-  
rents required by the power MOSFET gate drivers. To  
improve efficiency, the internal LDO can also draw cur-  
rent from the BIAS pin when the BIAS pin is at 3.2V or  
higher. Typically, the BIAS pin can be tied to the output of  
the LT8604 or can be tied to an external supply of 3.3V or  
The PG pin is also actively pulled low during several fault  
conditions: EN/UV pin is below 1V, INTV has fallen too  
CC  
low, V is too low, or thermal shutdown.  
IN  
Shorted and Reversed Input Protection  
above. If BIAS is connected to a supply other than V  
,
be sure to bypass with a local ceramic capacitor. IfOtUhTe  
BIAS pin is below 3.0V, the internal LDO will consume  
The LT8604 will tolerate a shorted output. Several features  
are used for protection during output short-circuit and  
brownout conditions. The first is the switching frequency  
will be folded back while the output is lower than the set  
point to maintain inductor current control. Second, the  
bottom switch current is monitored such that if inductor  
current is beyond safe levels switching of the top switch  
will be delayed until such time as the inductor current  
falls to safe levels. This allows for tailoring the LT8604  
to individual applications and limiting thermal dissipation  
during short circuit conditions.  
current from V . Applications with high input voltage and  
IN  
high switching frequency where the internal LDO pulls  
current from VIN will increase die temperature because  
of the higher power dissipation across the LDO. Do not  
connect an external load to the INTV pin.  
CC  
Output Voltage Tracking and Soft-Start  
The LT8604 allows the user to program its output voltage  
ramp rate by means of the TR/SS pin. An internal 2μA  
pulls up the TR/SS pin to INTVCC. Putting an external  
capacitor on TR/SS enables soft-starting the output to  
prevent current surge on the input supply. During the  
soft-start ramp the output voltage will proportionally track  
the TR/SS pin voltage. For output tracking applications,  
TR/SS can be externally driven by another voltage source.  
From 0V to 0.778V, the TR/SS voltage will override the  
internal 0.778V reference input to the error amplifier, thus  
regulating the FB pin voltage to that of TR/SS pin. When  
TR/SS is above 0.778V, tracking is disabled and the feed-  
back voltage will regulate to the internal reference voltage.  
There is another situation to consider in systems where  
the output will be held high when the input to the LT8604  
is absent. This may occur in battery charging applications  
or in battery backup systems where a battery or some  
other supply is diode ORed with the LT8604’s output. If  
the V pin is allowed to float and the EN/UV pin is held  
IN  
high (either by a logic signal or because it is tied to V ),  
IN  
then the LT8604’s internal circuitry will pull its quiescent  
current through its SW pin. This is acceptable if the sys-  
tem can tolerate several μA in this state. If the EN/UV pin  
is grounded the SW pin current will drop to near 0.7µA.  
However, if the VIN pin is grounded while the output is held  
high, regardless of EN/UV, parasitic body diodes inside  
the LT8604 can pull current from the output through the  
An active pull-down circuit is connected to the TR/SS pin  
which will discharge the external soft-start capacitor in  
the case of fault conditions and restart the ramp when the  
faults are cleared. Fault conditions that clear the soft-start  
SW pin and the V pin. Figure 3 shows a connection of  
IN  
the V and EN/UV pins that will allow the LT8604 to run  
IN  
capacitor are the EN/UV pin transitioning low, V voltage  
IN  
only when the input voltage is present and that protects  
falling too low, or thermal shutdown.  
against a shorted or reversed input.  
Output Power Good  
ꢉꢊ  
ꢁꢂ  
ꢁꢂ  
When the LT8604’s output voltage is within the 7.5%  
window of the regulation point, which is a V voltage in  
the range of 0.720V to 0.836V (typical), the output voltage  
is considered good and the open-drain PG pin goes high  
impedance and is typically pulled high with an external  
resistor. Otherwise, the internal drain pull-down device  
ꢅꢆ0ꢇ  
ꢍꢂꢎꢏꢀ  
ꢈꢂꢉ  
FB  
ꢅꢆ0ꢇ ꢋ0ꢌ  
Figure 3. Reverse VIN Protection  
Rev. 0  
15  
For more information www.analog.com  
LT8604  
APPLICATIONS INFORMATION  
PCB Layout  
on the same side of the circuit board, and their connec-  
tions should be made on that layer. Place a local, unbroken  
ground plane under the application circuit on the layer  
closest to the surface layer. The SW and BOOST nodes  
should be as small as possible. Finally, keep the FB and  
RT nodes small so that the ground traces will shield them  
from the SW and BOOST nodes. The exposed pad on the  
bottom of the package must be soldered to ground so that  
the pad is connected to ground electrically and also acts  
as a heat sink thermally. To keep thermal resistance low,  
extend the ground plane as much as possible, and add  
thermal vias near the LT8604 to additional ground planes  
within the circuit board and on the bottom side.  
For proper operation and minimum EMI, care must be  
taken during printed circuit board layout. Figure 4 shows  
the recommended component placement with trace,  
ground plane and via locations. Note that large, switched  
currents flow in the LT8604’s VIN pins, GND pins, and the  
input capacitor (CIN). The loop formed by the input capaci-  
tor should be as small as possible by placing the capacitor  
adjacent to the V and GND pins. When using a physically  
IN  
large input capacitor the resulting loop may become too  
large in which case using a small case/value capacitor  
placed close to the V and GND pins plus a larger capaci-  
IN  
tor further away is preferred. These components, along  
Figure 4 shows the basic guidelines for a layout example.  
with the inductor and output capacitor, should be placed  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
LT8604  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ0  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀRꢁꢂꢂ  
ꢀꢁ  
ꢀꢀ  
Rꢀ  
ꢀꢁꢂꢃꢄꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Rꢀ  
R
Rꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ0ꢂ ꢃ0ꢂ  
Figure 4. Recommended PCB Layout (Not to Scale)  
Rev. 0  
16  
For more information www.analog.com  
LT8604  
TYPICAL APPLICATIONS  
5V Step-Down Converter  
Typical Performance Minimum  
Load to Full Frequency  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ.ꢁꢂ ꢃꢄ ꢅꢆꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢁ00ꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢂꢃ0ꢄ  
ꢀꢁ0ꢂꢃ  
ꢀ00ꢁ  
ꢀꢁꢂꢃR  
ꢀꢁꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀRꢁꢂꢂ  
ꢀꢁꢂꢂ ꢀRꢃꢄꢁꢃꢅꢆꢇ  
ꢀꢁ  
ꢀ0ꢁꢂ  
Rꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ0ꢁꢂ  
ꢀꢃꢄ  
ꢀꢁR  
ꢀꢁ0ꢂ  
0
0
ꢀꢁꢂꢃ  
ꢀꢁ ꢀꢂꢃꢄ0ꢅ0ꢆꢇ0ꢈꢉR  
ꢀ0.ꢁꢂ  
0
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ ꢁ00ꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁ0ꢂ ꢃꢄ0ꢅꢆ  
3.3V 2MHz Step-Down Converter  
Typical Performance Minimum  
Load to Full Frequency  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ.ꢁꢂ ꢃꢄ ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢁꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀ.ꢀꢁ  
ꢂꢃ0ꢄ  
ꢀꢁ0ꢂꢃ  
ꢀ00ꢁ  
ꢀꢁꢂꢃR  
ꢀꢁꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀRꢁꢂꢂ  
ꢀꢁꢂꢂ ꢀRꢃꢄꢁꢃꢅꢆꢇ  
ꢀꢁ  
ꢀ0ꢁꢂ  
Rꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ0ꢁꢂ  
ꢀꢃꢄ  
ꢀꢁR  
ꢀꢁ0ꢂ  
0
0
ꢀ0ꢁꢂ  
ꢀꢁ ꢀꢂꢃꢄ0ꢅ0ꢆꢅꢅꢅꢇR  
ꢀꢁ.ꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
0
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁ0ꢂ ꢃꢄ0ꢂꢅ  
5V 2MHz Step-Down Converter  
Typical Performance Minimum  
Load to Full Frequency  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ.ꢁꢂ ꢃꢄ ꢅꢆꢂ  
ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ0ꢂꢃ  
ꢀ00ꢁ  
ꢂꢃ0ꢄ  
ꢀꢁꢂꢃR  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀRꢁꢂꢂ  
ꢀꢁꢂꢃ  
ꢀ0ꢁꢂ  
ꢀꢁꢂꢂ ꢀRꢃꢄꢁꢃꢅꢆꢇ  
ꢀꢁ  
Rꢀ  
ꢀꢁ  
ꢀ0ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ.ꢂꢃ  
ꢀꢃꢄ  
ꢀꢁR  
ꢀꢁ0ꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ ꢀꢂꢃꢄ0ꢅ0ꢆꢇꢈꢅꢉR  
0
0
0
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁ0ꢂ ꢃꢄ0ꢅꢆ  
Rev. 0  
17  
For more information www.analog.com  
LT8604  
TYPICAL APPLICATIONS  
Typical Performance Minimum  
Load to Full Frequency  
1.8V Step-Down Converter  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ.ꢁꢂ ꢃꢄ ꢅꢁꢂ  
ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀ.ꢁꢂ  
ꢀꢁ0ꢂꢃ  
ꢂꢃ0ꢄ  
ꢀ00ꢁ  
ꢀꢁꢂꢃR  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁꢂꢀRꢃꢄꢅ ꢆꢇꢈRꢉꢀ  
ꢊꢋ.ꢌꢍ ꢇR ꢎꢃꢏ  
ꢀꢁꢂ  
ꢀRꢁꢂꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ ꢀRꢃꢄꢁꢃꢅꢆꢇ  
ꢀ0ꢁꢂ  
ꢀꢁ  
Rꢀ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢀ0ꢁ  
ꢀꢁꢂꢃ  
ꢄ0ꢅ  
ꢀꢁR  
ꢀꢁꢀ0  
0
0
0
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ ꢁ00ꢂꢃꢄ  
ꢀꢁ ꢀꢂꢃꢄ0ꢅ0ꢆꢇꢈꢅꢉR  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁ0ꢂ ꢃꢄ0ꢁꢅ  
12V Step-Down Converter  
Typical Performance Minimum  
Load to Full Frequency  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ.ꢂꢃ ꢄꢅ ꢆꢁꢃ  
ꢀꢁꢂ  
ꢁꢁ0ꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ0ꢂꢃ  
ꢂꢃ0ꢄ  
ꢀ00ꢁ  
ꢀꢁꢂꢃR  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ ꢀRꢃꢄꢁꢃꢅꢆꢇ  
ꢀRꢁꢂꢂ  
ꢀꢁꢂꢃ  
ꢀ0ꢁꢂ  
ꢀꢁ  
Rꢀ  
ꢀꢁ  
ꢀ.ꢀꢁꢂ  
ꢃ0ꢄ  
ꢀꢁꢂ  
ꢀ0.ꢁꢂ  
ꢀꢁ.ꢂꢃ  
0
0
ꢀꢁR  
0
ꢀꢁ0ꢂ  
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ ꢀꢂꢃꢄ0ꢅ0ꢆꢇꢇꢈꢉR  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁ0ꢂ ꢃꢄ0ꢅꢆ  
Rev. 0  
18  
For more information www.analog.com  
LT8604  
PACKAGE DESCRIPTION  
DDBM Package  
10-Lead Plastic SIDE WETTABLE DFN (3mm × 2mm)  
ꢂReꢩeꢪeꢫꢬe ꢘꢊꢏ ꢅꢍꢎ ꢭ 0ꢠꢓ0ꢨꢓꢁꢣꢠꢠ Rev ꢌꢇ  
R ꢦ 0.ꢁꢁꢠ  
0.ꢠ0 ±0.ꢁ0  
ꢚ.00 ±0.ꢁ0  
ꢂꢀ ꢃꢄꢅꢆꢃꢇ  
ꢊꢢꢕ  
ꢁ0  
ꢀ.00 ±0.ꢁ0  
ꢕꢄꢈ ꢁ ꢝꢌR  
ꢊꢉꢕ ꢑꢌRꢖ  
ꢕꢄꢈ ꢁ  
ꢂꢀ ꢃꢄꢅꢆꢃꢇ  
R ꢦ 0.ꢀ0 ꢉR  
ꢂꢃꢆꢆ ꢈꢉꢊꢆ ꢣꢇ  
0.ꢀꢠ × ꢛꢠ°  
0.ꢀꢠ ±0.ꢁ0  
ꢏꢞꢌꢑꢐꢆR  
ꢂꢀ ꢃꢄꢅꢆꢃꢇ  
ꢂꢅꢅꢝꢑꢁ0ꢇ ꢅꢐꢈ ꢁꢀꢁꢨ Rꢆꢒ ꢌ  
0.ꢀꢠ ±0.0ꢠ  
0.ꢥꢠ ±0.0ꢠ  
0.ꢀ00 Rꢆꢐ  
0.ꢠ0 ꢝꢃꢏ  
ꢅꢆꢊꢌꢄꢘ ꢌ  
ꢀ.ꢠ0 ±0.ꢁ0  
ꢂꢀ ꢃꢄꢅꢆꢃꢇ  
0 ꢧ 0.0ꢠ  
ꢝꢉꢊꢊꢉꢑ ꢒꢄꢆꢍꢤꢆꢜꢕꢉꢃꢆꢅ ꢕꢌꢅ  
ꢅꢆꢊꢌꢄꢘ ꢌ  
ꢈꢉꢊꢆꢋ  
ꢁ. ꢅRꢌꢍꢄꢈꢎ ꢏꢉꢈꢐꢉRꢑꢃ ꢊꢉ ꢒꢆRꢃꢄꢉꢈ ꢂꢍꢆꢏꢅꢓꢁꢇ ꢄꢈ ꢔꢆꢅꢆꢏ ꢕꢌꢏꢖꢌꢎꢆ ꢉꢗꢊꢘꢄꢈꢆ ꢑ0ꢓꢀꢀꢙ  
ꢀ. ꢅRꢌꢍꢄꢈꢎ ꢈꢉꢊ ꢊꢉ ꢃꢏꢌꢘꢆ  
ꢚ. ꢌꢘꢘ ꢅꢄꢑꢆꢈꢃꢄꢉꢈꢃ ꢌRꢆ ꢄꢈ ꢑꢄꢘꢘꢄꢑꢆꢊꢆRꢃ  
ꢊꢆRꢑꢄꢈꢌꢘ ꢘꢆꢈꢎꢊꢞ  
0.ꢠ0 0.ꢁ0  
0.ꢀ0ꢚ Rꢆꢐ  
ꢊꢆRꢑꢄꢈꢌꢘ ꢊꢞꢄꢏꢖꢈꢆꢃꢃ  
ꢛ. ꢅꢄꢑꢆꢈꢃꢄꢉꢈꢃ ꢉꢐ ꢆꢜꢕꢉꢃꢆꢅ ꢕꢌꢅ ꢉꢈ ꢝꢉꢊꢊꢉꢑ ꢉꢐ ꢕꢌꢏꢖꢌꢎꢆ ꢅꢉ ꢈꢉꢊ ꢄꢈꢏꢘꢗꢅꢆ  
ꢑꢉꢘꢅ ꢐꢘꢌꢃꢞ. ꢑꢉꢘꢅ ꢐꢘꢌꢃꢞꢟ ꢄꢐ ꢕRꢆꢃꢆꢈꢊꢟ ꢃꢞꢌꢘꢘ ꢈꢉꢊ ꢆꢜꢏꢆꢆꢅ 0.ꢁꢠꢡꢡ ꢉꢈ ꢌꢈꢢ ꢃꢄꢅꢆ  
ꢠ. ꢆꢜꢕꢉꢃꢆꢅ ꢕꢌꢅ ꢃꢞꢌꢘꢘ ꢝꢆ ꢃꢉꢘꢅꢆR ꢕꢘꢌꢊꢆꢅ  
0.ꢁ0 Rꢆꢐ  
0.0ꢠ Rꢆꢐ  
ꢕꢘꢌꢊꢆꢅ ꢌRꢆꢌ  
ꢣ. ꢃꢞꢌꢅꢆꢅ ꢌRꢆꢌ ꢄꢃ ꢉꢈꢘꢢ ꢌ RꢆꢐꢆRꢆꢈꢏꢆ ꢐꢉR ꢕꢄꢈ ꢁ ꢘꢉꢏꢌꢊꢄꢉꢈ ꢉꢈ ꢊꢞꢆ ꢊꢉꢕ ꢌꢈꢅ ꢝꢉꢊꢊꢉꢑ ꢉꢐ ꢕꢌꢏꢖꢌꢎꢆ  
0.ꢀꢠ ±0.0ꢠ  
ꢂꢀ ꢃꢄꢅꢆꢃꢇ  
0.ꢥ0 ±0.0ꢠ  
ꢀ.ꢠꢠ ±0.0ꢠ  
ꢁ.ꢁꢠ ±0.0ꢠ  
ꢕꢌꢏꢖꢌꢎꢆ  
ꢉꢗꢊꢘꢄꢈꢆ  
0.ꢀꢠ ±0.0ꢠ  
0.ꢠ0 ꢝꢃꢏ  
ꢀ.ꢠ0 ±0.0ꢠ  
ꢂꢀ ꢃꢄꢅꢆꢃꢇ  
Rꢆꢏꢉꢑꢑꢆꢈꢅꢆꢅ ꢃꢉꢘꢅꢆR ꢕꢌꢅ ꢕꢄꢊꢏꢞ ꢌꢈꢅ ꢅꢄꢑꢆꢈꢃꢄꢉꢈꢃ  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
19  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LT8604  
TYPICAL APPLICATION  
Typical Performance Minimum  
Load to Full Frequency  
2.5V Step-Down Converter  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ.ꢁꢂ ꢃꢄ ꢁꢅꢂ  
ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀ.ꢁꢂ  
ꢀꢁ0ꢂꢃ  
ꢂꢃ0ꢄ  
ꢀ00ꢁ  
ꢀꢁꢂꢃR  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁꢂꢀRꢃꢄꢅ ꢆꢇꢈRꢉꢀ  
ꢊꢋ.ꢌꢍ ꢇR ꢎꢃꢏ  
ꢀꢁꢂ  
ꢀRꢁꢂꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀ0ꢁꢂ  
ꢀꢁꢂꢂ ꢀRꢃꢄꢁꢃꢅꢆꢇ  
ꢀꢁ  
Rꢀ  
ꢀꢁ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ0.ꢁꢂ  
ꢀꢁꢂꢃ  
ꢃꢄꢅ  
ꢀꢁR  
ꢀꢁꢀ0  
ꢀꢁ0ꢂ ꢃꢄ0ꢅ  
0
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ ꢁ00ꢂꢃꢄ  
ꢀꢁ ꢀꢂꢃꢄ0ꢅ0ꢆꢇꢈꢅꢉR  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁ0ꢂ ꢃꢄ0ꢅꢆ  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
= 3.4V to 60V (65V abs max), V  
LT8618  
65V 100mA, 90% Efficiency, 2.2MHz Synchronous MicroPower Step-  
Down DC/DC Converter with I = 2.5μA  
V
= 0.778V,  
OUT(MIN)  
IN  
I = 2.5µA, I < 1µA, 2mm × 3mm DFN-10 Package  
Q
Q
SD  
LT8609/  
LT8609A  
42V, 2A/3A Peak, 93% Efficiency, 2.2MHz Synchronous MicroPower  
V
= 3.2V to 42V, V  
= 0.8V, I = 2.5µA, I < 1µA,  
Q SD  
IN  
OUT(MIN)  
Step-Down DC/DC Converter with I = 2.5µA  
MSOP-10E Package  
Q
LT8610A/  
LT8610AB  
42V, 3.5A, 96% Efficiency, 2.2MHz Synchronous MicroPower Step-Down  
V
= 3.4V to 42V, V  
= 0.97V, I = 2.5µA, I < 1µA,  
Q SD  
IN  
OUT(MIN)  
DC/DC Converter with I = 2.5µA  
MSOP-16E Package  
Q
LT8610AC  
LT8610  
LT8611  
LT8616  
LT8620  
LT8614  
LT8612  
LT8640  
LT8602  
42V, 3.5A, 96% Efficiency, 2.2MHz Synchronous MicroPower Step-Down  
V
= 3V to 42V, V  
= 0.8V, I = 2.5µA, I < 1µA,  
OUT(MIN) Q SD  
IN  
DC/DC Converter with I = 2.5µA  
MSOP-16E Package  
Q
42V, 2.5A, 96% Efficiency, 2.2MHz Synchronous MicroPower Step-Down  
V
IN  
= 3.4V to 42V, V  
= 0.97V, I = 2.5µA, I < 1µA,  
Q SD  
OUT(MIN)  
OUT(MIN)  
DC/DC Converter with I = 2.5µA  
MSOP-16E Package  
Q
42V, 2.5A, 96% Efficiency, 2.2MHz Synchronous MicroPower Step-Down  
V
IN  
= 3.4V to 42V, V  
= 0.97V, I = 2.5µA, I < 1µA,  
Q SD  
DC/DC Converter with I = 2.5µA and Input/Output Current Limit/Monitor 3mm × 5mm QFN-24 Package  
Q
42V, Dual 2.5A + 1.5A, 95% Efficiency, 2.2MHz Synchronous  
V
= 3.4V to 42V, V  
= 0.8V, I = 5µA, I < 1µA,  
OUT(MIN) Q SD  
IN  
MicroPower Step-Down DC/DC Converter with I = 5µA  
TSSOP-28E, 3mm × 6mm QFN-28 Packages  
Q
65V, 2.5A, 96% Efficiency, 2.2MHz Synchronous MicroPower Step-Down  
V
IN  
= 3.4V to 65V, V = 0.97V, I = 2.5µA, I < 1µA,  
OUT(MIN)  
Q
SD  
DC/DC Converter with I = 2.5µA  
MSOP-16E, 3mm × 5mm QFN-24 Packages  
Q
42V, 4A, 96% Efficiency, 2.2MHz Synchronous MicroPower Step-Down  
V
IN  
= 3.4V to 42V, V = 0.97V, I = 2.5µA, I < 1µA,  
OUT(MIN)  
Q
SD  
DC/DC Converter with I = 2.5µA  
3mm × 4mm QFN-18 Package  
Q
42V, 6A, 96% Efficiency, 2.2MHz Synchronous MicroPower Step-Down  
V
IN  
= 3.4V to 42V, V = 0.97V, I = 3.0µA, I < 1µA,  
OUT(MIN)  
Q
SD  
DC/DC Converter with I = 2.5µA  
3mm × 6mm QFN-28 Package  
Q
42V, 5A/7A Peak, 96% Efficiency, 3MHz Synchronous MicroPower Step-  
V
IN  
= 3.4V to 42V, V = 0.97V, I = 2.5µA, I < 1µA,  
OUT(MIN)  
Q
SD  
Down DC/DC Converter with I = 2.5µA  
3mm × 4mm QFN-18 Package  
Q
42V, Quad Output (2.5A+1.5A+1.5A+1.5A) 95% Efficiency, 2.2MHz  
V
IN  
= 3V to 42V, V = 0.8V, I = 25µA, I < 1µA,  
OUT(MIN)  
Q
SD  
Synchronous MicroPower Step-Down DC/DC Converter with I = 25µA  
6mm × 6mm QFN-40 Package  
Q
Rev. 0  
12/20  
www.analog.com  
ANALOG DEVICES, INC. 2020  
20  

相关型号:

LT8610A

60V, 1.2A Synchronous Monolithic Buck Regulator with 6μA Quiescent Current
Linear

LT8610A

High Efficiency 42V/120mA Synchronous Buck
ADI

LT8610AB

60V, 1.2A Synchronous Monolithic Buck Regulator with 6μA Quiescent Current
Linear

LT8610AB

High Efficiency 42V/120mA Synchronous Buck
ADI

LT8610ABEMSE-5#PBF

LT8610A/LT8610AB - 42V, 3.5A Synchronous Step-Down Regulator with 2.5&#181;A Quiescent Current; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT8610ABIMSE-5#PBF

LT8610A/LT8610AB - 42V, 3.5A Synchronous Step-Down Regulator with 2.5&#181;A Quiescent Current; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT8610AB_15

42V, 3.5A Synchronous Step-Down Regulator with 2.5A Quiescent Current
Linear

LT8610AC

60V, 1.2A Synchronous Monolithic Buck Regulator with 6μA Quiescent Current
Linear

LT8610AC-1_15

42V, 3.5A Synchronous Step-Down Regulator with 2.5A Quiescent Current
Linear

LT8610AC_15

42V, 3.5A Synchronous Step-Down Regulator with 2.5A Quiescent Current
Linear

LT8610AHMSE-5#PBF

LT8610A/LT8610AB - 42V, 3.5A Synchronous Step-Down Regulator with 2.5&#181;A Quiescent Current; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT8610AIMSE-5#PBF

LT8610A/LT8610AB - 42V, 3.5A Synchronous Step-Down Regulator with 2.5&#181;A Quiescent Current; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear